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Key Points: 21 

• The underestimated ratio of transpiration to evapotranspiration can be largely attributed to 22 

too frequent light rain. 23 

• The improved rainfall intensity spectrum greatly impacts evapotranspiration by directly 24 

reducing wet leaf fraction and canopy evaporation. 25 

• The associated changes in solar radiation and other factors also affect evapotranspiration 26 

by increasing vegetation transpiration. 27 
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Abstract   29 

Evapotranspiration (ET) is a key component of the global hydrological cycle, which is strongly 30 

modulated by the occurrence of different rainfall intensities. Global climate models (GCMs) 31 

commonly suffer from “too much light rain” and a negative bias in the ratio of transpiration (T) to 32 

ET (T/ET). It is unclear whether these biases are related. Here we show that with the improved 33 

simulation of probability density functions of rainfall intensity by suppressing light-rain 34 

occurrence using a stochastic convection parameterization in the NCAR CESM1.2, the canopy T 35 

increases in tropical forests while evaporation from canopy interception and bare soil decreases. 36 

The simulated T/ET is increased by 2.5% globally and up to 8% regionally, primarily attributable 37 

to reduced fraction of wet leaves due to less frequent light rain despite its weak intensity. These 38 

results imply that excessive light rain is an important cause of the negative T/ET bias in GCMs. 39 

Plain Language Summary 40 

Water moves from the land surface to the atmosphere via evapotranspiration. Processes 41 

contributing to evapotranspiration (ET) include evaporation from soil and wet leaves, and 42 

transpiration through pores in plants (T). Rainfall intensity is known to be an important factor in 43 

regulating canopy interception and soil moisture, thus impacting ET. “Too much light rain and too 44 

little heavy rain” and underestimated ratio of T to ET (T/ET) are two common weaknesses of 45 

current global climate models (GCMs). Here we examine the impact of rainfall intensity on 46 

climatological ET and show that light rain has a major influence on ET and its components. By 47 

improving the representation of convection, the light rain (1-20 mm d-1) frequency is reduced. As 48 

a result, the fractional coverage of wet leaves of vegetation decreases, resulting in an increase in 49 

T and a decrease in evaporation from canopy interception and bare soil. Therefore, in GCMs, the 50 

issue of excessive light rain is a cause of the problem of underestimated T/ET. 51 

1 Introduction 52 

Terrestrial evapotranspiration (ET) is a critical component of the global hydrological cycle 53 

and surface energy balance. It also represents a central link with the carbon cycle through plant 54 

growth (Wang and Dickinson, 2012; Humphrey et al., 2021; Taylor et al., 2012). ET is governed 55 

by near-surface meteorological conditions, plant physiology and structures, and soil moisture 56 

status. It is generally recognized that ET over land is limited by available soil moisture when the 57 

soil moisture content is low (Teuling et al., 2010), and it responds more to variability in 58 

atmospheric conditions such as solar radiation, precipitation, wind speed and relative humidity 59 

when there is sufficient soil moisture (De Boeck and Verbeeck, 2011; Costa et al., 2010; 60 

Massmann et al., 2019). 61 

Three processes together constitute ET over land, namely plant transpiration (T), evaporation 62 

from vegetation canopy (Ec), and evaporation from bare soil (Es). Due to the lack of global-scale 63 

observations of ET, let alone its partitioning, large uncertainty exists in quantifying the ratio of T 64 

to ET (T/ET) in land surface models (LSMs). In Phase 5 of the Coupled Model Intercomparison 65 

Project (CMIP5) simulations, T/ET varies from 0.22 to 0.58 (Wei et al., 2017). Global climate and 66 

vegetation models suggest that transpiration is the dominant component at the global scale 67 

(Dirmeyer et al., 2006; Jasechko et al., 2013; Good et al., 2015). For example, by constraining the 68 

models with 33 field measurements, the most recent estimate of the global average of T/ET from 69 

CMIP5 models is 0.62 ± 0.06 (Lian et al., 2018). Thus, an underestimation of T/ET widely exists 70 

in global climate models (GCMs).  71 
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Among factors influencing ET, rainfall is one of the most important (Laio et al., 2001; Mutti 72 

et al., 2019). A CMIP5-based study indicated a positive linear and significant correlation between 73 

rainfall bias and ET bias in all models (Li et al., 2018). Using an offline LSM forced by 74 

atmospheric reanalysis, for a given rain event, Qian et al. (2006) adjusted rainfall intensity and 75 

duration while keeping daily rainfall amount unchanged. They found that rainfall intensity has 76 

profound impacts on evaporation and runoff. GCMs have many known biases in the rainfall 77 

simulation, one of which is “too much light rain and too little heavy rain” (e.g., Chen et al., 2021). 78 

In the meantime, all GCMs underestimate transpiration and its ratio to evapotranspiration. Whether 79 

the biases of ET and its associated partitioning are linked to the bias of rainfall intensity spectrum 80 

in a coupled land-atmosphere system is unclear. If they are, does it mean that light rain has a 81 

disproportionate impact on ET and its partitioning via its high occurrence frequency despite its 82 

weak intensity? Besides these, distinct environmental conditions such as clouds, radiation, and 83 

surface temperature in different rainfall events impact ET as well. How are they related to ET in 84 

different rainfall regimes? 85 

Recently, Wang et al. (2016, 2021) successfully suppressed the excessive occurrence of light 86 

rain by incorporating a stochastic convective scheme (Plant and Craig, 2008) into the Zhang-87 

McFarlane deep convection scheme (Zhang and McFarlane, 1995) in two GCMs. The improved 88 

rainfall frequency simulation provides a unique opportunity to address the above questions. The 89 

paper is organized as follows. Section 2 introduces model experiments and data. The impacts of 90 

the improved rainfall frequency spetrum on ET are presented and discussed in section 3. Section 91 

4 examines contributions to ET changes from the broader environmental changes in the 92 

simulations. Concluding remarks are given in section 5. 93 

2 Model experiments and data 94 

The GCM used in this study is the NCAR Community Earth System Model version 1.2 95 

(CESM1.2; see supplementary Text S1). The land component of CESM1.2 is the Community Land 96 

Model version 4 (CLM4; Oleson et al., 2010). The atmospheric component is the Community 97 

Atmosphere Model version 5.3 (CAM5.3; Neale et al., 2010), with a horizontal resolution of 1.9° 98 

× 2.5° and a vertical resolution of 30 layers from the surface to 2.26 hPa. Deep convection is 99 

parameterized following Zhang and McFarlane (1995; hereafter referred to as ZM scheme) along 100 

with dilute convective available potential energy modification (Neale et al., 2008). The stochastic 101 

convection scheme of Plant and Craig (2008) is incorporated into the ZM scheme in CAM5.3. A 102 

detailed description of the implementation of the stochastic scheme and its overall performance in 103 

the climate models can be found in Wang et al. (2016, 2021). Two AMIP-type simulations are 104 

conducted using the observed monthly sea surface temperatures and sea ice extent as lower 105 

boundary conditions, with the standard ZM scheme (CAM5) and the addition of the stochastic 106 

scheme (STOC), respectively. Both simulations are run for 11 years from January 1 1985 to 107 

December 31 1995, and the last 10 years are used for analysis.  108 

To evaluate the characteristics of simulated precipitation, the daily Tropical Rainfall 109 

Measuring Mission (TRMM) 3B42 version 7 products (Huffman and Bolvin, 2013), the Multi-110 

Source Weighted-Ensemble Precipitation (MSWEP) version 2.8 products (Beck et al., 2019) and 111 

the precipitation data from the Global Soil Wetness Project II (GSWP-2; Dirmeyer et al., 2006) 112 

are used as benchmarks. To assess evapotranspiration, the FLUXCOM (Jung et al., 2019), the 113 

Global Land Evaporation Amsterdam Model (GLEAM) version 3.5 (Martens et al., 2017; Miralles 114 

et al., 2011) and the GSWP-2 datasets are used (see details in supplementary Text S2). For a 115 
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consistent comparison, the original high-resolution data are regridded to the same latitude-116 

longitude grids as the model. 117 

3 Impacts of rainfall simulation on ET  118 

As precipitation is a major driving force for the land surface hydrological cycle (Oki and 119 

Kanae, 2006), its simulation using different convective schemes has a large impact on ET. Rainfall 120 

intensity and frequency are two important characteristics of rainfall, and both can regulate ET. 121 

Figure 1 shows the global distribution of frequency changes of no-rain, light rain, and moderate-122 

to-heavy rain from CAM5 to STOC, and changes in ET and its three components (T, Ec, and Es). 123 

Here no-rain, light rain and moderate-to-heavy rain days are defined as 𝑃 < 1 mm d-1, 1 ≤ 𝑃 <124 

20 mm d-1 (Na et al. 2020), and 𝑃 ≥ 20 mm d-1, respectively. There is a large increase in no-rain 125 

frequency over tropical land within 30° S–30° N, by up to 30%. All these increases are entirely at 126 

the expense of decrease of light rain frequency, with only a slight increase of moderate-to-heavy 127 

rain frequency, by less than 5% except in the Amazon, Congo, and Southeast Asian rainforests. 128 

The total amount and the diurnal cycle of rainfall do not change much (Figs. S1-2).  129 

ET is greatly affected by the changes in rainfall frequency and intensity, especially over 130 

tropical land. There are clear differences between ET changes in vegetated areas and deserts, with 131 

significant increases of ET in vegetated areas of South America, Africa, Australia, and the 132 

maritime continent, by up to 150 mm yr-1, but notable decreases in forests along the tropical 133 

coastline, such as those in Guyana, the continental margins of West Africa and South Asia. Over 134 

desert areas such as the Sahara Desert, the Arabian Desert, the Thar Desert, deserts of Australia, 135 

and the Namib Desert, ET are significantly reduced, by up to 150 mm yr-1. Over most vegetated 136 

areas, changes in ET are a result of increasing T and Es and decreasing Ec, whereas over desert 137 

areas the decrease of ET is mainly from Es.  138 

A tight relationship between changes of Ec and light-rain (or no-rain) frequency is found. 139 

Their global distributions are highly correlated, with a correlation coefficient of 0.71 at a 95% 140 

significant level. This implies that light rain frequency plays an important role in regulating canopy 141 

evaporation. In contrast, there is no similarity of changes between total rainfall amount and Ec. 142 

The increase of soil evaporation within the canopy is weakly linked with the increase of the 143 

frequency of moderate-to-heavy rain, showing a correlation coefficient of 0.3 in the tropics, while 144 

the decreased Es in deserts is strongly related to the light-rain frequency, with a correlation 145 

coefficient of 0.8.  146 

Based on results from Fig. 1, the estimated globally averaged ratio of T/ET is increased from 147 

51.8% to 54.3% and the tropical average T/ET is increased from 57.6% to 60.7%, mainly due to 148 

reduced Ec and enhanced T over tropical woodlands, where T/ET increases by as much as 8%. 149 

This suggests that the overstimulated light rain frequency partly contributes to the negative T/ET 150 

biases in GCMs. 151 

 152 
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 153 

Figure 1. Global distributions of annual differences in frequency (% of days) of (a) no rain (P<1 154 

mm d-1), (b) light rain (1 ≤ 𝑃 < 20 mm d-1) and (c) moderate-to-heavy rain (𝑃 ≥ 20 mm d-1), and 155 

differences (mm yr-1) in (d) evapotranspiration, (e) transpiration, (f) canopy evaporation, (g) soil 156 

evaporation between the CAM5 and STOC simulations (STOC minus CAM5). The latitude range 157 

is 60°S-75°N. In (d-g), the differences statistically significant at 95% confidence level are stippled.  158 

The simulated rainfall intensity probability density functions (pdfs) are shown in Figure 2. 159 

Only grid points over tropical land (30° S–30° N) are sampled, where the rainfall frequency varies 160 

the most. Both observations and simulations show a nearly exponential decrease of frequency of 161 

occurrence with rainfall intensity. The pdf in STOC is very close to that from TRMM observations 162 

and is within the uncertainties among different observational datasets. The frequency of light-rain 163 

events is greatly reduced while the frequency of moderate-to-heavy events is increased.  164 

The correlation between ET (or its components) and concurrent rainfall as well as within ±5 165 

days are calculated (Fig. S3). Although rainfall in prior days can affect ET on the current day, and 166 

vice versa, the lead-lag correlation shows that ET and its components have the highest correlation 167 

with concurrent rainfall over most of the tropical areas, especially in vegetated areas. Therefore, 168 

the following analysis focuses on variations in ET components conditionally sampled on 169 

concurrent rainfall events. All daily data including both wet and dry days are divided into bins 170 

with an equal bin interval of 0.5 mm d-1. The sum of ET within each bin is then divided by the sum 171 

of ET over all bins to obtain the fractional contribution from each bin (Text S3.1). In both 172 

observations and simulations, the distribution of ET contribution from different rainfall intensities, 173 

including no-rain, to the total ET generally resembles the frequency distribution of rainfall 174 
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intensity (Figs. 2a&b). Since contributions from each bin is the product of the occurrence 175 

frequency and the corresponding bin-averaged ET (Text S3.1), the approximately linearly varying 176 

or constant bin-averaged ET for different rainfall intensities (Fig. S4) compared to the exponential 177 

decrease by several orders of magnitude of occurrence frequency shows the dominant role of 178 

rainfall frequency in affecting ET and its components. The pdfs of ET from TRMM/FLUXCOM 179 

and MSWEP/GLEAM pairs are very close to each other while the GSWP-2 data has lower ET 180 

contributions from rain rates > 20 mm d-1. CAM5 systematically underestimates ET contributions 181 

from rain rates > 20 mm d-1 and overestimates them from lower rain rate regimes. The pdf of ET 182 

contribution from STOC falls in between those from TRMM/FLUXCOM and MSWEP/GLEAM, 183 

indicating its close agreement with observation-based products. Figs. 2c-e show the comparison 184 

of model simulations with MSWEP/GLEAM and GSWP-2 for T, Ec and Es. CAM5 again 185 

overestimates the fractional contribution of T (or Ec and Es) under light rain and seriously 186 

underestimates the contribution of T (or Ec and Es) under heavy rain. The STOC simulation shows 187 

a close agreement with the observations for the contribution of ET components, although 188 

somewhat underestimates (overestimates) that of Ec and Es and considerably overestimates 189 

(underestimates) that of T from light (moderate-to-heavy) rain. The cumulative contributions from 190 

rain rates < 20 mm d-1 also show better agreement between STOC and observations for ET and its 191 

components, except for Ec, which is underestimated due to underestimation from rain rates less 192 

than 6 mm d-1 (Fig. 2 inset). In addition, they show that over 95% or more of ET and its components 193 

come from contributions of no-rain and light-rain days except Ec for which moderate-to-heavy 194 

rain events have more contribution. 195 
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 196 

Figure 2. (a) Frequency distributions of rainfall intensity over tropical (30° S–30° N) land from 197 

TRMM, MSWEP, GSWP-2, CAM5 and STOC simulations. (b) Fractional contributions of ET 198 

under different rainfall intensities to the total ET over tropical (30°S–30°N) land from FLUXCOM, 199 

GLEAM, GSWP-2, CAM5 and STOC simulations. (c-e) The same as (b), but for (c) T, (d) Ec, 200 

and (e) Es. Bin intervals of 0.5 mm d-1 are used for rainfall rates. The inset frames at the upper 201 

right corner are zoomed to the cumulative contributions from rain rates between 0 to 20 mm d-1. 202 

The dashed line marks the rain rate of 1 mm d-1, delimiter between no-rain and light rain. 203 

As T occurs on dry leaves of vegetation only and Ec takes place on wet leaves only (Oleson 204 

et al., 2004), Figure 3a-d shows changes of T/ET, T, Ec and fraction of wet leaves (Fwet) as 205 

functions of light rain changes for different simulated leaf area indices (LAI; Fig S1b). The 206 

percentage changes in T and its ratio (T/ET) are negatively correlated with percentage changes in 207 

light-rain frequency, and the slope of the linear fit becomes steeper as LAI increases. The areas 208 

with LAI<1, where the ET mostly comes from soil evaporation, are excluded. Different from T 209 

and T/ET, the percentage changes in Ec and Fwet are positively correlated with changes in the 210 

light-rain frequency. The slope of the linear fit also increases with LAI. This is because a higher 211 

portion of water could be potentially intercepted from each rainfall event for denser vegetation 212 

(Gash et al., 1980; Miralles et al., 2010). In CLM4, the percentage of rainfall intercepted is 213 
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proportional to the product of total rainfall and plant density (Oleson et al. 2004). Because of its 214 

frequent occurrence, light rain strongly regulates ET and its partitioning over densely vegetated 215 

areas despite its weak intensity. Figure 3e shows the changes of ET and its components from 216 

CAM5 to STOC as functions of LAI. The ET change is negative in areas with LAI<1, increasing 217 

gradually to become positive for LAI>5. The Ec changes are negative for all LAI values and the 218 

magnitude increases with LAI. The T changes are mostly insignificant for LAI<5 but strongly 219 

positive for LAI>6, largely offsetting the Ec changes. The Es changes are negative for LAI<1, and 220 

small positive for LAI>2. Clearly, the ET changes are dominated by different components 221 

dependent on the LAI. 222 

 223 

Figure 3. (a-d) Scatter plot of bin-averaged percentage change (%) in the light rain frequency 224 

versus percentage change in (a) the ratio of T/ET, (b) T, (c) Ec and (d) fraction of wet leaves (Fwet). 225 

(e) Box chart of average amount of changes (mm yr-1) in ET, T, Ec and Es in areas with varying 226 

degrees of vegetation over tropical land (30° S–30° N). The changes are calculated from 227 

differences between CAM5 and STOC simulations. In (a-d), different colored dots represent grid 228 

points with different LAI and the colored lines are the best fit between the two variables. The 229 
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equation for the linear relationship between the two in regions with LAI≥2 and the correlation 230 

coefficient 𝑟 are given above each frame. 231 

4 Impacts of environmental changes on ET  232 

Qian et al. (2006) also found that rainfall frequency and intensity have large impacts on ET 233 

when running the NCAR CLM offline driven by reanalysis data. However, factors that are also 234 

important to evapotranspiration, such as solar radiation, surface air temperature and humidity etc., 235 

were not considered. In this study, by modifying the convection scheme, the clouds, radiation, 236 

atmospheric temperature, moisture, and circulation are all affected (Wang and Zhang, 2016). As 237 

such, the environmental conditions are different in CAM5 and STOC. Here we further examine 238 

their roles in regulating ET and its components.  239 

Figure 4 shows the spatial distribution of changes in four factors: Fwet, incident solar 240 

radiation, vapor pressure deficit (VPD, defined as the difference between the near-surface 241 

saturated water vapor pressure and the actual water vapor pressure) and soil moisture, and the 242 

dominant factor contributing to the ET changes. Among these factors, Fwet is more directly 243 

associated with rainfall characteristics than the rest. The wet leaves decrease by 10%-15% in 244 

rainforests in Amazon, Congo, and Indonesia. As expected, the global pattern of the wet leaf 245 

decrease highly resembles the pattern of decrease in light rain, indicating that light rain plays a 246 

dominant role in wetting leaves due to its frequent occurrence. Closely related to the decrease of 247 

light rain and increase of no-rain days, there is more solar radiation reaching the plant canopy and 248 

bare soil (Fig. 4b). Accordingly, the near-surface atmosphere is warmer and drier, leading to 249 

increased VPD (Fig. 4c). Light rain is effective in moistening soil with little runoff (Trenberth et 250 

al., 2003). Therefore, the spatial pattern of changes in soil moisture is similar to changes in light 251 

rain (Fig. 4d). Overall, due to the decrease in light rain frequency and increase in no-rain frequency, 252 

both the wetness of vegetation canopy and the atmospheric/soil conditions undergo significant 253 

changes. We also performed a cursory examination of surface runoff, an important parameter in 254 

land surface hydrological cycle, and found that its changes are mostly related to annual-mean total 255 

precipitation.  256 
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 257 

Figure 4. Global distribution of (a-d) annual differences in (a) fraction of wet to total leaves (%), 258 

(b) downward shortwave radiation at the surface (W m-2), (c) vapor pressure deficit (VPD; hPa) 259 

and (d) top soil moisture (defined as soil moisture from the surface to 10 cm; kg m-2) between the 260 

CAM5 and STOC simulations (STOC minus CAM5), and (e-h) the dominant factor over land for 261 

changes in (e) ET, (f) T, (g) Ec, and (h) Es, based on the stepwise MLR analysis. In (e-h), only 262 

results significant at 95% confidence level are shown by colors. The regions shown as “not 263 

significant” mean that changes caused by all factors are less than the unexplained term in the 264 

regression equation or less than 5 mm yr-1, “Fwet” means the dominance of Fwet, “Rs+VPD” 265 

atmospheric influence, which combines solar radiation and VPD, and “Soil” soil moisture. 266 
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Figure 4 also shows the geographical distribution of the major influencing factor for the 267 

changes in ET, T, Ec and Es, respectively. We perform a stepwise multiple linear regression (MLR, 268 

Jung et al. 2017; Peng et al. 2013) analysis to identify the major influencing factor among the 269 

vegetation (Fwet), atmospheric (radiation and VPD) and soil (topsoil moisture) conditions, using 270 

10-year daily output of the two simulations (Text S3.2). The changes in the four influencing factors 271 

together can well explain the changes in ET (with an explained variance of 77%; Fig. S5a), T 272 

(82%; Fig. S5b) and Ec (72%; Fig. S5c) over the tropical woodland and the changes in Es (62%; 273 

Fig. S5d) over the tropical desert.  274 

Note that VPD usually increases with radiation, thus we combine them into a single factor in 275 

Figs. 4e-h. In most land areas with sufficient water, the total ET is mainly regulated by atmospheric 276 

conditions, while in deserts soil moisture is a more important constraining factor. In terms of the 277 

components of ET, T in the tropics is affected by both atmospheric conditions and biophysical 278 

properties (Fig. 4f). Solar radiation and VPD affect transpiration by modulating available energy, 279 

driving force, and stomatal regulation of plants. Generally, radiation can enhance T by increasing 280 

both available energy and stomatal conductance. However, an increase in VPD can impact T 281 

positively by enhancing the driving force but negatively by reducing stomatal conductance. Here 282 

T is enhanced by more radiation and suppressed by the correspondingly increased VPD (Fig. S6). 283 

T is negatively correlated to the fraction of wet leaves. When leaves are wet, usually after rain, the 284 

relative humidity near leaves is close to 100% and the driving force is close to zero. Therefore, T 285 

is inhibited. Overall, T is more influenced by atmospheric factors in the tropics. But changes in 286 

the fraction of wet leaves seem crucial in several tropical woodlands (e.g., forests around the State 287 

of Amazonas in Brazil, Congo rainforest, forests in southern India and the Indochina Peninsula), 288 

where T shows a substantial increase (Fig. 1). Soil moisture is not a limiting factor in tropical 289 

woodland due to the abundance of soil moisture there. 290 

The relationship between Ec and wet leaves is dominant almost in all tropical vegetated land 291 

(Fig. 4g). The similar patterns of the decreases in light rain frequency, the fraction of wet leaves, 292 

and Ec illustrate the role of light rain in regulating canopy interception and evaporation. As the 293 

excessively high frequency of light rain in CAM5 is suppressed and the frequency of no rain is 294 

increased, canopy interception is reduced, and so is Ec. The dominant factor is different for soil 295 

evaporation (Fig. 4h). No environmental factors dominate the changes in Es in most of the 296 

vegetated lands, whereas soil moisture is the main limiting factor for Es in most desert regions. 297 

5 Concluding remarks 298 

Rainfall frequency and intensity can greatly impact the land-atmosphere interaction through 299 

evapotranspiration. This study investigates the implication of the improved rainfall simulation on 300 

ET and its partitioning. The results show that the change of rainfall intensity spectrum has profound 301 

impacts on ET (Fig. 1). ET increases significantly in forest areas and decreases systematically over 302 

deserts, with the magnitude of changes as large as 150 mm yr-1. In savannas and deserts over 303 

southeast South America, southeast and north Africa, ET changes are partly due to increases of 304 

total rainfall, whereas in tropical rainforests, ET changes result from changes in rainfall intensity 305 

spectrum. 306 

By separating contributions of ET in different rainfall intensities to the total ET, we find that 307 

light rain has a large effect on ET, whether for transpiration or evaporation of canopy and soil 308 

(Figs. 2&3). This is due to its frequent occurrence despite its weak intensity. With an excessively 309 

high frequency of light rain compared with observations, the portion of the overall ET in the default 310 
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model during light rain periods is overestimated. Moreover, the overstimulated light rain could be 311 

an important cause of the negative T/ET biases common in GCMs. Because of suppressed light 312 

rain frequency in STOC, the shift of rainfall intensity frequency leads to the repartitioning of ET, 313 

and T/ET is increased from 51.8% to 54.3% on global land and from 57.6% to 60.7% in tropical 314 

land. In addition, the dominant impact factors through which rainfall intensity affects ET and its 315 

partitioning are identified through stepwise MLR analysis. It is found that solar radiation and near-316 

surface dryness are important for transpiration, wet leaf fraction is important for canopy 317 

evaporation in vegetated regions, and soil moisture is important for soil evaporation in desert 318 

regions (Fig. 4). 319 

This study focuses on the impacts of changes in rainfall frequency and associated atmospheric 320 

conditions in an atmospheric GCM due to modifications of convection parameterization on 321 

terrestrial water flux. As evapotranspiration is closely related to plant photosynthesis, the 322 

simulation of rainfall spectrum may also affect the land carbon cycle and thus the global carbon 323 

budget. For instance, photosynthesis rate may be limited through downregulation of stomatal 324 

conductance in response to increased VPD. Further research is needed in this regard, including 325 

running a fully coupled model. 326 
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