

1 **Complete Genome Sequence of *Desulfomicrobium* sp. ZS1 from Zodletone Spring in**
2 **Oklahoma, USA**

5 Sayali A. Mulay^a, William G. Alexander^b, C. Ryan Hahn^c, Dawn Klingeman^b, Mostafa S. Elshahed^c,
6 Noha H. Youssef^c and Mircea Podar^{a,b*}

8 ^aDepartment of Microbiology, University of Tennessee Knoxville, Knoxville, Tennessee, USA

9 ^bBiosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA

10 ^cDepartment of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater,
11 Oklahoma, USA

13 Running head: *Desulfomicrobium* sp. ZS1 genome sequence

15 *Address correspondence to Mircea Podar at podarm@ornl.gov

18 **Abstract**

20 *Desulfomicrobium* sp. ZS1 is an obligate anaerobic, sulfate-reducing member of the
21 Desulfobacterota from Zodletone spring, an anoxic sulfide-rich spring in southwestern
22 Oklahoma. Its complete genome was sequenced using a combination of Illumina and Oxford
23 Nanopore platforms and encodes 3364 proteins and 81 RNAs on a single chromosome.

26 The anoxic sediments and air exposed water of Zodletone spring (Kiowa County,
27 Oklahoma, GPS coordinates 35.002444 N, 98.688167 W) host some of the most highly diverse
28 microbial communities known, encompassing over 60 phyla and candidate phyla of Bacteria
29 and Archaea (1). The interplay of anaerobic and aerobic sulfur-based metabolism in Zodletone
30 may be reminiscent of physiological adaptations characteristic of microbial life during Archean
31 Earth leading to the great oxygenation event (2). *Desulfomicrobium* sp. strain ZS1 was isolated
32 from a Zodletone sediment sample (1) as a strict anaerobic, motile chemolithoheterotroph,
33 reducing sulfate with lactate as electron donor. A pure culture was obtained following streaking
34 to single colonies on DSMZ medium 63 at 25°C under 85% N₂, 10% CO₂ and 5% H₂.

35 For genomic DNA isolation, strain ZS1 was grown in 50 ml liquid DSMZ medium 63 for 5
36 days at 25°C. All subsequent protocols followed manufacturers' instructions. DNA was isolated
37 using the Promega Wizard HMW DNA extraction kit. A short insert library was prepared using
38 the Illumina Nextera XT DNA Library Preparation Kit, followed by sequencing (2x250-nucleotide
39 reads) on a MiSeq instrument (Illumina, Inc., San Diego, CA), yielding 1 million paired reads.
40 Trimmomatic v0.36 (3) was used for quality-based trimming. Long-read sequencing was
41 performed using the Oxford Nanopore Ligation Sequencing Kit followed by sequencing on a
42 MinION R9.4.1 device (Oxford Nanopore Technologies, Inc., Cambridge MA), yielding 1.9 Gb
43 with an N50 of 8.2 kbp. All subsequent data analyses were performed using software defaults.
44 Base calling and long-read polishing were performed using ONT's Guppy and Medaka v1.5,

45 respectively. First pass assemblies of the long reads were generated using Trycycler v0.5.0
46 pipeline (4) with Miniasm/Minpolish v0.3-r179 (5), Flye v2.9 (6), Raven v1.5.3 (7) and wtdbg2
47 v2.5 (8) assemblers, followed by polishing of the consensus single contig with the Illumina short
48 reads using Polypolish v0.4.3 (9) and POLCA v4.0.5 (10) in tandem. Circularity was confirmed as
49 part of Trycycler pipeline assembly and further verified by back mapping of the Illumina reads.
50 The genome is 3,867,579 bp long, with an average coverage of 479x and a G+C% of 58.9.

51 To predict and annotate the genes, we used the NCBI Prokaryotic Genome Annotation
52 Pipeline (PGAP) v6.1 (11). The genome encodes 3364 proteins and 81 RNAs, which include
53 three ribosomal RNA operons. The gene encoding the chromosomal replication initiator protein
54 DnaA was set as the first gene. Comparative genomic analyses were performed using software
55 implemented in KBase (12) as follows. A phylogenetic tree constructed using SpeciesTree
56 v2.2.0, using a set of 49 core, universal bacterial genes, placed *Desulfomicrobium* sp. ZS1 closest
57 to *Desulfomicrobium baculum* strain X^T, the genus type species (NCBI accession
58 [PRJNA29527](#)) (13, 14) (Fig. 1). Whole-genome average nucleotide identity (ANI) between the two
59 genomes, calculated using FastANI v0.1.3 (15), is of 94%, suggesting that ZS1 is a closely related
60 species to *D. baculum*. *Desulfomicrobium* sp. ZS1 will facilitate studies on the evolution of
61 microbial sulfur metabolism and adaptation to anoxic and microoxic environments.

62 **Data availability.** The annotated genome sequence has been deposited in GenBank
63 under the accession number [CP100351](#). The version described in this article is CP100351.1. The
64 Nanopore and Illumina reads are available in the NCBI Sequence Read Archive (SRA) under the
65 accession numbers [SRR21699889](#) and [SRR20017258](#), respectively.

66 **Acknowledgements.** This research was funded by the National Science Foundation
67 grants 2016371 (to M.P.) and 2016423 (to N.H.Y. and M.S.E.). Oak Ridge National Laboratory is
68 managed by UT-Battelle, LLC., for the U.S. Department of Energy under contract DE-AC05-
69 00OR22725.

70

71

72

- 73 1. Hahn CR, Farag IF, Murphy CL, Podar M, Elshahed MS, Youssef NH. 2022. Microbial
74 Diversity and Sulfur Cycling in an Early Earth Analogue: From Ancient Novelty to Modern
75 Commonality. *mBio* 13:e0001622.
- 76 2. Buhring SI, Sievert SM, Jonkers HM, Ertefai T, Elshahed MS, Krumholz LR, Hinrichs KU.
77 2011. Insights into chemotaxonomic composition and carbon cycling of phototrophic
78 communities in an artesian sulfur-rich spring (Zodletone, Oklahoma, USA), a possible
79 analog for ancient microbial mat systems. *Geobiology* 9:166-79.
- 80 3. Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina
81 sequence data. *Bioinformatics* 30:2114-20.
- 82 4. Wick RR, Judd LM, Cerdeira LT, Hawkey J, Meric G, Vezina B, Wyres KL, Holt KE. 2021.
83 Trycycler: consensus long-read assemblies for bacterial genomes. *Genome Biol* 22:266.
- 84 5. Li H. 2016. Minimap and miniasm: fast mapping and de novo assembly for noisy long
85 sequences. *Bioinformatics* 32:2103-10.
- 86 6. Kolmogorov M, Yuan J, Lin Y, Pevzner PA. 2019. Assembly of long, error-prone reads
87 using repeat graphs. *Nat Biotechnol* 37:540-546.

88 7. Vaser R, Šikić M. 2021. Time- and memory-efficient genome assembly with Raven.
89 Nature Computational Science 1:332-336.

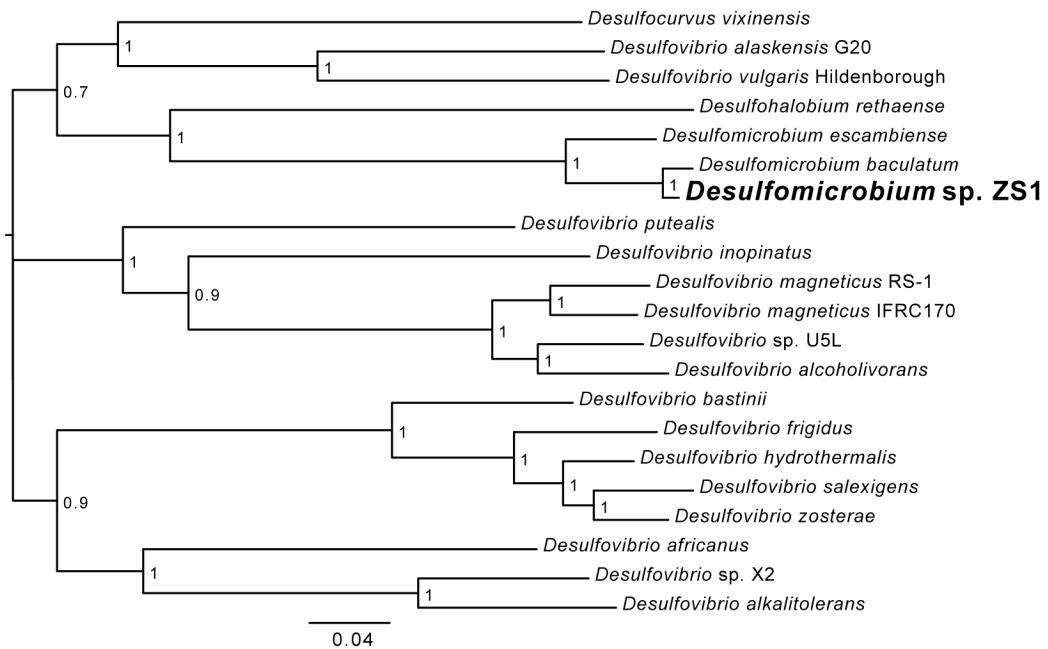
90 8. Ruan J, Li H. 2020. Fast and accurate long-read assembly with wtdbg2. Nat Methods
91 17:155-158.

92 9. Wick RR, Holt KE. 2022. Polypolish: Short-read polishing of long-read bacterial genome
93 assemblies. PLoS Comput Biol 18:e1009802.

94 10. Zimin AV, Salzberg SL. 2020. The genome polishing tool POLCA makes fast and accurate
95 corrections in genome assemblies. PLoS Comput Biol 16:e1007981.

96 11. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, Lomsadze
97 A, Pruitt KD, Borodovsky M, Ostell J. 2016. NCBI prokaryotic genome annotation
98 pipeline. Nucleic Acids Res 44:6614-24.

99 12. Arkin AP, Cottingham RW, Henry CS, Harris NL, Stevens RL, Maslov S, Dehal P, Ware D,
100 Perez F, Canon S, Sneddon MW, Henderson ML, Riehl WJ, Murphy-Olson D, Chan SY,
101 Kamimura RT, Kumari S, Drake MM, Brettin TS, Glass EM, Chivian D, Gunter D, Weston
102 DJ, Allen BH, Baumohl J, Best AA, Bowen B, Brenner SE, Bun CC, Chandonia JM, Chia JM,
103 Colasanti R, Conrad N, Davis JJ, Davison BH, DeJongh M, Devoid S, Dietrich E, Dubchak I,
104 Edirisinghe JN, Fang G, Faria JP, Frybarger PM, Gerlach W, Gerstein M, Greiner A,
105 Gurtowski J, Haun HL, He F, Jain R, et al. 2018. KBase: The United States Department of
106 Energy Systems Biology Knowledgebase. Nat Biotechnol 36:566-569.


107 13. Anonymous. 1994. Validation of the publication of new names and new combinations
108 previously effectively published outside the IJSB. List No. 49. IntJSystBacteriol 44:370-
109 371.

110 14. Copeland A, Spring S, Goker M, Schneider S, Lapidus A, Del Rio TG, Tice H, Cheng JF,
111 Chen F, Nolan M, Bruce D, Goodwin L, Pitluck S, Ivanova N, Mavrommatis K,
112 Ovchinnikova G, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CC,
113 Meincke L, Sims D, Brettin T, Detter JC, Han C, Chain P, Bristow J, Eisen JA, Markowitz V,
114 Hugenholz P, Kyrpides NC, Klenk HP, Lucas S. 2009. Complete genome sequence of
115 Desulfomicrobium baculatum type strain (X). Stand Genomic Sci 1:29-37.

116 15. Jain C, Rodriguez RL, Phillippy AM, Konstantinidis KT, Aluru S. 2018. High throughput ANI
117 analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun
118 9:5114.

119

120

121
122

123 **Figure 1.** Phylogenetic tree of *Desulfomicrobium* sp. ZS1 and related Desulfobacterota species,
124 based on 49 core, universal bacterial proteins. Numbers at the nodes indicate support values.
125 The scale bar indicates estimated amino acid substitutions per site.