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Abstract: Sodium metal batteries are an emerging technology that shows promise in terms of materials
availability with respect to lithium batteries. Solid electrolytes are needed to tackle the safety issues
related to sodium metal. In this work, a simple method to prepare a mechanically robust and efficient
soft solid electrolyte for sodium batteries is demonstrated. A task-specific iongel electrolyte was
prepared by combining in a simple process the excellent performance of sodium metal electrodes of
an ionic liquid electrolyte and the mechanical properties of polymers. The iongel was synthesized by
fast (<1 min) UV photopolymerization of poly(ethylene glycol) diacrylate (PEGDA) in the presence
of a saturated 42%mol solution of sodium bis(fluorosulfonyl)imide (NaFSI) in trimethyl iso-butyl
phosphonium bis(fluorosulfonyl)imide (P111i4FSI). The resulting soft solid electrolytes showed high
ionic conductivity at room temperature (> 10~3 S cm~1) and tunable storage modulus (10107 Pa).
Iongel with the best ionic conductivity and good mechanical properties (Iongel10) showed excellent
battery performance: Na/iongel /NaFePOj full cells delivered a high specific capacity of 140 mAh g1
at0.1 C and 120 mAh g1 at 1 C with good capacity retention after 30 cycles.

Keywords: iongel electrolyte; polymer electrolyte; sodium metal battery

1. Introduction

Today, lithium ion batteries (LIBs) are the leading energy storage technology in the
market of consumer electronics and electric mobility [1]. However, it is unlikely that
LIBs alone can satisfy the demand for large-format energy storage due to the limited
availability and the increasing price of lithium sources. Recent research is focusing on
emerging post-lithium-ion batteries [2,3]. Multivalent ion batteries—such as magnesium,
zinc, and aluminum—hold the theoretical advantage of transferring multiple charges by
each ion, but the development of these technologies is still in an early stage [4]. On the
other hand, sodium-ion batteries (SIBs) have gained increasing traction in academia and
industry with few companies—such as Faradion (UK) and CATL (China)—near to market
introduction. Sodium is a cheap and extremely abundant element that displays a very
similar electrochemical behavior to lithium [5,6]. Nevertheless, SIBs still face some research
challenges including lower energy densities than LIBs [4]. SIBs usually employ hard carbon
anodes and carbonate-based electrolytes. Replacing hard carbon-negative electrodes with
sodium metal ones could theoretically increase the energy density if suitable electrolytes for
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sodium metal are found. Super-concentrated ionic liquid (IL) electrolytes have been under
extensive investigation due to their superior stability as electrolytes for sodium and lithium
metal batteries [7,8]. While previous studies focused on pyrrolidinium ionic liquids, only
recently has there been interest in phosphonium-based ionic liquids. For instance, Hilder
et al. described an electrolyte based on 42%mol NaFSI in trimethyl iso-butyl phosphonium
bis(fluorosulfonyl)imide (42% mol NaFSI in P1114iFSI) electrolytes for long lasting and
stable sodium metal batteries [9,10]. Despite these advantages, IL electrolytes require a
porous separator and are limited by the risks of leakage [11]. To overcome these issues
and enable solid-state sodium batteries, the preparation of solid gel electrolytes (also
known as iongel electrolytes) has become a very popular solution. This novel class of
materials combines the unique electrolyte properties of ILs with the superior mechanical
properties of polymers. Ionic conductivity is one of the most important parameters in
determining whether a material is a good candidate for use as an electrolyte in a battery
(ionic conductivity values of the order of 107#-1073 S cm~! are normally required). On the
other hand, the storage modulus is a measure of the mechanical properties of the material,
which are reflected in the resistance of the electrolyte to dendrite growth. Along the same
line, we recently demonstrated the excellent performance of iongels with sodium metal,
which involves several polymer matrixes and a pyrrolidinium-type sodium ionic liquid
electrolyte [12]. The goal of this work is to explore the fast UV photopolymerization method
to prepare an iongel for an all-solid-state battery using a sodium-metal anode and triphylite
NaFePOj as the cathode material, which includes the high-performing phosphonium ionic
liquid electrolyte.

In this work, fast UV photopolymerization of poly(ethylene glycol) diacrylate (PEGDA)
in the presence of 42% mol NaFSI in P111i4FSI was used to prepare self-standing iongel
electrolyte membranes for application in sodium metal batteries.

2. Results and Discussion

Figure 1 shows the schematic diagram of the polymerization of cross-linked iongels.

We used 2-hydroxy-2-methylpropiophenone (DAROCUR 1173) as a radical photoinitiator.

We varied the amount of PEGDA cross-linker between 5 and 40 wt%, naming the iongel

using the following codes: Iongel5, Iongel10, Iongel20, and Iongel40, where the number

indicates the wt% of the PEGDA cross-linker. The obtained iongels were easy to handle,

optically transparent, and did not leak the IL electrolyte. After polymerization, the soluble

fraction was separated using a Soxhlet extractor and analyzed via 'H-NMR. The complete
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2.1. Dynamic Mechanical Analysis (DMA)

DMA was used to determine the effect of PEGDA crosslinker content on the storage
modulus of the phosphonium iongel electrolytes. Figure 2 shows the storage modulus as
a function of temperature (measured between —40 and 90 °C), consisting of two character-
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showed stable mechanical properties within the typical operational temperature range of
solid-state batteries, i.e., RT and above.

2.2. Ionic Conductivity

The ionic conductivity of the iongels was obtained from broadband dielectric spec-
troscopy (BDS) using the DC plateau from spectra in the conductivity representation. The
IL was placed between two parallel plates made of brass and separated by a Teflon spacer
ring with a thickness L = 100 um. Figure 3 shows the plot of ionic conductivity between
—80 and 80 °C. In general, a tradeoff was observed between ionic conductivity and the
amount of PEGDA, and the sample with the lowest content of PEGDA (longel5) displayed
the highest conductivity in the whole temperature range studied. The ionic conductivity
of Tongel10 ranged between 7:1072 S cm~! at 80 °C and 2:1078 S em~! at -70 °C. The
conductivity decreased up to two orders of magnitude for higher PEGDA content, and the
ionic conductivity of Tongel40 ranged between 2.5:1073Scm ™! at 80 °C and 3-10~ ' Scm ™!
at -80 °C. Interestingly, despite the significant differences of several orders of magnitude in
the mechanical modulus, the conductivity only decreased by a factor of 3 in going from
Iongel10 to Iongel40. Surprisingly, the pure ionic liquid electrolyte displayed a lower ionic
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though the capacity at C/1 slightly decreased, the ce showe a good capacity retention and
the coulombic efficiency remained close to 99.5%. Additionally, the cell recovered its initial
capacity of ~140 mAh g~! with a coulombic efficiency of around 100%. In our previous
work, a cell based on a N-propyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide iongel
delivered a maximum discharge capacity around 145 mAhg~! at C/10, corresponding
to 95% of the theoretical capacity of NaFePOy (154 mAh g~!). Despite a slightly lower
initial capacity, the phosphonium cell showed a far greater capacity retention, as shown by
Figure 4c, of the normalized capacity of two cells cycling at C/10. In our previous work,
we observed that iongels from superconcentrated phosphonium electrolytes exhibit better
battery performance compared to the previously reported pyrrolidinium counterparts due
to their superior electrochemical stability [12]. The results of this work suggest that the
same behavior is observed in the iongel form of these electrolytes.
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the amount of polymer in each electrolyte. Taking into account these parameters, Iongel10
was selected for testing in a sodium battery, and this electrolyte showed a higher capacity
retention compared to other pyrrolidinium-based electrolytes.

4. Materials and Methods
4.1. Materials

Trimethyl iso-butyl phosphonium bis(fluorosulfonyl)imide (P111i4FSI, Boron Molecu-
lar, Victoria, Australia) and sodium bis(fluorosulfonyl)imide (NaFSI, Solvionic, Toulouse,
France) were dried under vacuum at 50 °C and transferred inside an Ar-filled glove box be-
fore use. Poly(ethylene glycol) diacrylate My, 575 (PEGDA; Sigma-Aldrich, Madrid, Spain)
was passed through a basic alumina column to remove the hydroquinone monomethyl
ether inhibitor (MEHQ), filtered with a 0.45 um syringe filter, and kept refrigerated at 5 °C
before use. 2-hydroxy-2-methylpropiophenone (DAROCUR 1173, Sigma-Aldrich) was
used as received.
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4.2. Sample Preparation

A saturated 42% mol electrolyte solution of NaFSI in P111i4FSI was prepared inside
an Ar-filled glovebox by stirring the solution on a hot plate at 50 °C, and stored inside
the glovebox until use. A 2.5% wt monomer solution of DAROCUR 1173 in PEGDA was
prepared outside the glovebox before use. Iongels membranes were prepared by mixing
different weight amounts of the electrolyte and monomer solution (Table S1). The mixtures
were cast on a silicone mold irradiated with a UV lamp for 90 s twice. The iongel membranes
were kept for 24 h under vacuum at 90 °C and stored in an argon-filled glovebox until use.
The membranes were circular disks (diameter = 14 mm; average thickness = 250 um).

4.3. Physical-Chemical Characterization

DMA experiments were performed on a PerkinElmer DMA 8000 in tension mode
with a heating rate of 5 °C min~!, at a 1 Hz frequency and strain of 25 pm, and in a N
atmosphere. Broadband dielectric spectra in the frequency range of 10! to 10° Hz were
measured using a Novocontrol Concept-80 system, which includes an Alpha-A impedance
analyzer and a Quatro Cryosystem temperature control unit. The samples were placed
between the stainless-steel parallel plates with a 20 mm diameter, and the separation
between the electrodes was determined by the film thickness, approximately 0.2 mm. The
samples were placed inside the cryostat in a dry nitrogen atmosphere. The samples were
equilibrated for at least 15 min after each temperature step to achieve thermal stabilization
within 0.2 K.

The Triphylite-NaFePOy cathode active material was synthesized using a two-step
reaction reported previously [20].

4.4. Cell Assembly and Testing

Na/iongel/NaFePO; cells were assembled for testing in sodium batteries. Sodium
metal was used as the anode. The electrolytes and the electrodes were placed between two
stainless-steel spacers (0.d. = 16 mm; thickness = 0.5 mm), and the cells were prepared
inside the glovebox in argon atmosphere. These cells were measured in a VMP3 Biologic
potentiostat at 50 °C and cycled at C/20 cycled in a potential range of 1.5-4 V for 30 cycles.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/ gels8110725/s1, Figure S1: H!-NMR spectra of soluble fraction
after Soxhlet extraction; Table S1: Composition of the different electrolytes prepared.
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