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Fluid elements deform in turbulence by stretching and folding. In this Letter, by projecting the material
deformation tensor onto the largest stretching direction, we depict the dynamics of folding through the
evolution of the material curvature. Results from direct numerical simulation (DNS) show that the curvature
growth exhibits two regimes: first, a linear stage dominated by folding fluid elements through a persistent
velocity Hessian that then transition to an exponential-growth stage driven by the stretching of already
strongly bent fluid elements. This transition leads to strong curvature intermittency at later stages, which
can be explained by a proposed curvature-evolution model. The link between velocity Hessian to folding
provides a new way to understand the crucial steps in energy cascade and mixing in turbulence beyond the
classical linear description of stretching dynamics.
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The deformation of fluid elements, as already described
by Reynolds in 1894 [1], is a process that involves
stretching and folding. Stretching elongates fluid elements
exponentially [2] along one (or two) direction(s) and
compresses them in the other directions, while folding
brings fluid particles closer, which increases the local
curvature and also reduces length scales. Given its con-
nection to flow structures and their dynamics, deformation
is therefore essential to many fundamental problems in
turbulence, including mixing [3,4], energy cascade [5],
and vortex dynamics [6], as well as in turbulent multi-
phase flows with nonspherical [7,8] and deformable
particles [9,10].
The linear component of deformation has been studied

extensively in turbulence [2,11–15], and the dynamic
equation for linear deformation links the geometries of
flow structures to the velocity gradient and Cauchy-Green
strain tensors. This linkage paves the foundation to finite-
time Lyapunov exponent and the Lagrangian coherent
structures [2], which have impacted studies of the transport
and mixing of passive scalars in the atmosphere [16,17],
ocean [18], and solar interior [19].
The natural question arises as to how such a framework

can be extended to the folding dynamics and what is the
right dynamical system approach for describing folding.
Given the nonlinear nature of the problem, several different
methods have been proposed, such as taking the total
deviation from the linear part, [20] or calculating the
curvature of fluid elements [12,21–23]. However, the
connection from these statistics to the underlying fluid
dynamics in the Eulerian and Lagrangian frameworks has
not been clearly illustrated.
To build a framework that makes that connection,

we consider the folding of infinitesimal fluid elements.

Figure 1(a) shows a number of infinitesimal spherical fluid
elements being deformed after a time 3τη (τη is the
Kolmogorov time scale) in 3D homogeneous and isotropic
turbulence [24,25] (details of the direct numerical simu-
lation (DNS) of the turbulence can be found in
Supplemental Material [26]). It is clear that the deformed
fluid elements show complex geometry involving both
stretching and folding. To mathematically describe this
high-order deformation, we consider each point X at t0
within an infinitesimal fluid element mapped to another
point x within the deformed element after a finite time Δt,
where x and X are the relative positions with respect
to the center of the fluid elements. The nonlinear map-
ping function between X and x with the leading orders
follows:

x ¼ Fðt0 þ ΔtÞ · X þ X · Gðt0 þ ΔtÞ · X; ð1Þ

where Fij ¼ ∂xi=∂Xj is the deformation gradient tensor
andGijk ¼ ∂2xi=∂Xj∂Xk is the deformation Hessian tensor.
The tensors Fij and Gijk can be then determined by
integrating dFijðtÞ=dt ¼ AimFmjðtÞ and dGijkðtÞ=dt ¼
AimGmjkðtÞ þHimnFmjðtÞFnkðtÞ=2 along the trajectories
of fluid elements, with Aij ¼ ∂ui=∂xj and Hijk ¼
∂2ui=∂xj∂xk being the velocity gradient and velocity
Hessian tensors, respectively. Details of these equations
can be found in Supplemental Material [26].
To further simplify Eq. (1), we consider the deformation

of an arbitrary straight material line passing through the
center of a fluid element, represented by a set of positionsX
represented parametrically according to XðλÞ ¼ êλ. ê is a
selected unit vector and the parameter λ → 0 indicates the
distance from the center of the fluid element. Substituting
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XðλÞ ¼ êλ into Eq. (1) yields the expression for the
deformed material line at t0 þ Δt,

xðλÞ ¼ F · êλþ ê · G · êλ2 ¼ rsλþ rbλ2; ð2Þ

where rs ¼ F · ê and rb ¼ ê · G · ê are defined as the
stretching vector and the bending vector, respectively.
A highly relevant material line is the one that gets

stretched the most, written as XðλÞ ¼ êR1λ. Here, êR1 is the
unit eigenvector associated with the greatest eigenvalue of
right Cauchy-Green strain tensor CR ¼ FTF. This special
material line, as the “skeleton” of the fluid element, can be
used to reflect the overall geometry of the fluid element.
Substituting ê ¼ êR1 in Eq. (2) results in the quadratic
equation xðλÞ ¼ rs1λþ rb1λ

2 where rs1 ¼ F · êR1 and
rb1 ¼ êR1 · G · êR1. An example of this material line is
shown as the inset of Fig. 1(a) (black dashed line).
Given this quadratic equation, the curvature of the material
line κ1 can be found using κ1 ¼ 2rb1⊥=ðrs1Þ2, where rb1⊥

represents the component of rb1 that is perpendicular to rs1.
Although κ1 is not sufficient to describe the complete
deformation, it does reflect the overall folding of the fluid
element.
The curvature κ1 can therefore be obtained by computing

F andG and their associated rb1 and r
s
1 along with each fluid

trajectory. Figure 1(b) shows the time evolution of the mean
curvature hκ1i, averaged over 105 fluid elements, as a
function of the integration time Δt using the DNS data. It is
evident that, for the available simulation duration, the mean
curvature of the fluid elements grows continuously, but the
growth rate changes appreciably between two regimes. In
early times, hκ1i increases linearly. The linear regime lasts
until about the Kolmogorov timescale τη when the length
scale 1=hκ1i is around 25η (η is the Kolmogorov length
scale), and the growth of hκ1i slows down, marking the
transition of the curvature dynamics. Soon after τη, the
growth of hκ1i accelerates again, and this late stage
behavior is better fitted with an exponential function,
which is illustrated in a semilogarithmic plot in the inset
of Fig. 1(b).
The transition from the linear to the exponential growth

of hκ1i indicates different mechanisms at play, which can be
better understood using local curvature. Here, the proba-
bility density function (PDF) of κ1, i.e. pðκ1Þ, at different
times is shown in Fig. 2 for the early (a) and late (b) stages.
In the early stage, the curvature grows continuously, but
follows a self-similar behavior as indicated by the collapsed
PDFs of the normalized curvature pðκ1=hκ1iÞ in the inset of
Fig. 2(a). In the late stage, the tail of the PDF still rises over
time, whereas the peak location remains constant. This
distinct behavior suggests that the curvature distribution
becomes more intermittent over time, which is confirmed
by the growing kurtosis as shown in Fig. 2(b) inset. This
result highlights the growing inhomogeneity of local
mixing as locations with extreme curvature should reach
a well-mixed stage much sooner than what is implied by
the mean.
To model the multistage growth behavior of curvature,

we consider an arbitrary deforming infinitesimal material
line as in Eq. (2). The equation for this material line can
therefore be decomposed along two directions, êk ¼ rs=rs

and ê⊥ ¼ rb⊥=r
b
⊥, following

xðλÞ ¼ ðrsλþ rbkλ
2Þêk þ rb⊥λ

2ê⊥; ð3Þ

where rbk ¼ ðrb · êkÞêk and rb⊥ ¼ rb − rbk .
The velocity of any arbitrary material point on the

material line, uðλÞ, can then be expressed in the frame
spanned by (êk, ê⊥) in two different ways by taking either
the direct time derivative of Eq. (3) or the Taylor expansion
based on the velocity information (see Supplemental
Material [26]). Comparing these two expressions for
uðλÞ leads to evolution equations for rs and rb⊥, which
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FIG. 1. (a) The deformation of infinitesimal spherical fluid ele-
ments after Δt ¼ 3τη (size not to scale). (b) The time evolution of
the mean curvature hκ1i (black solid curve). The black dashed line
represents a linear relationship, and the cyan dashed line represents
the prediction based on an Eulerian quantity hjê1 ·H · ê1ji with ê1
being the eigenvector corresponding to the maximum eigenvalue
of the rate-of-strain tensor. Inset: the same figure for hκ1i (black
solid line) with a linear scale in time. The black dashed line
represents an exponential growth over time.
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then yields the evolution equation for curvature of the
material line:

dκ
dt

¼ ðêk ·H · êkÞ · ê⊥ þ ðê⊥ · S · ê⊥ − 2êk · S · êkÞκ: ð4Þ

Here, S and H are the rate-of-strain tensor and the velocity
Hessian tensor following the trajectories of fluid elements,
respectively.
Equation (4) holds for an arbitrary material line, so it also

works for the curvature κ1 along the largest stretching (êR1)
direction. The first term on the right side of Eq. (4)
represents the contribution from the velocity Hessian,
which can directly bend the fluid element as shown in
Fig. 3(a). Here, the thick blue arrows indicate the primary
velocity Hessian that bends the element (i.e., the velocity
gradient that changes along the êk direction). In the short

time limit, κ1 → 0, all the terms multiplied by κ1 in Eq. (4)
are negligible, so Eq. (4) can be simplified to dκ1=dt ¼
ðêk ·H · êkÞ · ê⊥, which corresponds to the linear growth in
the early stage as in Fig. 1(b). At later times (Δt > τη), this
contribution of the velocity Hessian approaches zero as
shown in Fig. 3(d) (blue solid line) because ðêk ·H · êkÞ
may not be perfectly aligned with ê⊥. Since the velocity
Hessian is a small-scale quantity, it is not surprising that the
transition in Fig. 1(b) begins at a small Δt as the velocity
Hessian decorrelates [27].
In addition to the Hessian term, the other two terms in

Eq. (4), both proportional to κ1, represent how the strain
affects the curvature of an already-bent fluid element. Here,
ê⊥ · S · ê⊥ represents the stretching along ê⊥, which tends
to increase the curvature [as shown in Fig. 3(b)]; êk · S · êk
represents the stretching along êk, which straightens an
already-bent fluid element and reduces the curvature [as
shown in Fig. 3(c)]. At later times, the mean curvature hκ1i
is large so both terms associated with κ1 become dominant,
leading to dκ1=dt ∝ κ1. As a result, the late stage growth of
curvature exhibits exponential trend, consistent with the
results in Fig. 1(b) inset.
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FIG. 2. (a) The PDFs of the curvature pðκ1Þ at different time
instants in the early stage. Inset of (a): the same PDFs but for the
normalized curvature pðκ1=hκ1iÞ. (b) The PDFs of the curvature
pðκ1Þ at different time instants in the late stage with the solid
curves representing the data and the dashed curves representing
the prediction by the model [Eq. (5)]. Inset of (b): the time
evolution of the kurtosis of κ1.
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FIG. 3. (a)–(c) Schematics illustrating how (a) velocity
Hessian, (b) strain along ê⊥, and (c) strain along êk contribute
to the curvature change, respectively. For all cases, the black dashed
curves represent the special material line (skeleton) while the gray
dashed curves indicate the same material line at a later time
deformed by the surrounding flows indicated by the thick arrows.
(d) The time evolution of the contribution to the mean curvature
growth by each term in Eq. (4), conditioned on κ1 > 3hκ1i. All the
terms are normalized by the Kolmogorov scales.
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The contributions from strain by each of the two terms
(dashed line) and their combination (red solid line) are
shown in Fig. 3(d). The statistics were collected by only
using the fluid elements with κ1 > 3hκ1i because the late
stage is dominated by the large-curvature cases as indicated
by Eq. (4). It is evident that, as the velocity Hessian contri-
bution approaches zero, the total contribution by the strain
grows significantly, signaling the transition of the roles
between these two mechanisms. This growing contribution
by the strain is dominated by ðê⊥ · S · ê⊥Þκ, which enhances
the folding, whereas the other term, ð−êk · S · êkÞκ that
reduces the curvature plateaus close to zero.
To understand the enhanced curvature intermittency at

the late stage, the time evolution of the PDF of κ1, i.e.
pðκ1; tÞ as shown in Fig. 2(b), is modeled by assuming that
pðκ1;tÞdκ1¼pðκ01;tþdtÞdκ01, where κ01¼ κ1þðdκ1=dtÞdt
is the curvature of the fluid elements with an initial
curvature κ1 after dt. Substituting κ01 into the equation
for PDF leads to

∂p
∂t

þ ðdκ1=dtÞ
∂p
∂κ1

þ p
dðdκ1=dtÞ

dκ1
¼ 0: ð5Þ

Here, we approximate dκ1=dt≈ hê⊥ ·S · ê⊥−2êk ·S · êkiκ1
because (i) the strain is the dominant mechanism in the late
stage and (ii) the contribution by velocity Hessian will only
result in a self-similar distribution of curvature as shown in
Fig. 2(a), whereas the PDFs in the late stage exhibit longer
tails over time. Equation (5) is then solved numerically with
pðκ1Þ at t=τη ¼ 3 obtained from the DNS data serving as
the initial condition.
The predicted PDFs at different times are shown as the

dashed curves in Fig. 2(b). An overall good agreement
between the prediction and the data is achieved up to
t ≈ 10τη, particulary in the tail region extended beyond
κ1η ≈ 0.2 in Fig. 2(b), which corresponds to a length scale
smaller than 5η. This suggests that the intermittency shown
here is related to the curved elements being stretched even
further by small-scale straining motions in the dissipative
range. Note that the range of κ1η is limited because of the
exceedingly low probability of finding fluid elements with
κ1η greater than 0.25. We also note that the model following
Eq. (5) is simplified and it only holds when dκ1=dt
increases with κ1, i.e., more curved elements are being
bent at a faster rate, which can only be satisfied at the late
stage given the overall positive magnitude of hê⊥ · S · ê⊥ −
2êk · S · êki in Eq. (4). Furthermore, the model is intended
only for the tail region because the peak region with smaller
κ1 is dominated by the velocity Hessian. As a result, a
mismatch between model predictions and simulation
results is not unexpected for smaller κ1η.
Equation (4) also enables us to use simple Eulerian

quantities to understand folding in the early stage. As
Δt → 0, êk approaches ê1, which is the one of the three
eigenvectors [êi (i ¼ 1, 2, 3)] corresponding to the

maximum eigenvalue of the rate-of-strain tensor S. The
early growth of the material curvature can therefore be
determined by an Eulerian quantity hjê1 ·H · ê1ji following
dhκ1i=dt ≈ hðêk ·H · êkÞ · ê⊥i ≈ hjê1 ·H · ê1jiβ, where β ≈
0.85 is the mean cosine of the angle between êk ·H · êk and
ê⊥ obtained from the DNS data. The predicted result is
shown as the cyan dashed line in Fig. 1(b), and it overlaps
with the DNS data perfectly.
This Eulerian quantity hjê1 ·H · ê1ji also helps to estab-

lish a better physical picture of the deformed fluid elements
in the short time limit beyond a simple flat sheet that
extends along the ê1 and ê2 directions considered in the
classical framework [28]. As illustrated in the schematics of
Fig. 4, such a sheet could be curved along ê3 direction,
and its geometry can be described by two curvatures,
whose growth are controlled by ðê1 ·H · ê1Þ · ê3 and
ðê2 ·H · ê2Þ · ê3, respectively.
The joint PDF of ðê1 ·H · ê1Þ · ê3 and ðê2 ·H · ê2Þ · ê3

normalized by Kolmogorov scales is shown in Fig. 4. Here,
the direction of ê3 is chosen such that ðê1 ·H · ê1Þ · ê3 > 0,
while ðê2 ·H · ê2Þ · ê3 can be either positive (bowl shape) or
negative (saddle shape). The joint PDF suggests a nearly
symmetric probability for either shape, skewing only
slightly toward the bowl case. Nevertheless, for a given
curvature in one direction, the most likely curvature in the
other direction is zero, so there appears to be some
preference for cigarlike shapes. This is confirmed in
Fig. 1(a) where the bending occurs mostly in one direction
(although various other bending configurations can be
seen). Note that large values of the velocity Hessian
may be the result of local instabilities (e.g., shear insta-
bilities that are responsible for rolling up the vortex
sheets into tubes [29]). Connecting the dynamics of
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FIG. 4. The joint PDF of the normalized curvature along ê1 and
ê2 directions. Two schematics show an initially spherical fluid
elements deforming to a bowl shape (top) and a saddle shape
(bottom) after a short time, respectively.
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instabilities to velocity Hessian and curvature requires
further investigations.
In sum, our work establishes a new framework to

connect folding dynamics to the velocity Hessian and
deformation Hessian tensors in a way similar to the
connection between stretching to velocity gradient and
Cauchy-Green strain tensors. As the stretching can be well
described by the Lyapunov exponents based on strain, such
a relationship may inspire the development of new ways to
formulate the dynamical system for folding. Our frame-
work also provides new insights into the flow intermittency
that the sharp-turning points in flows become even
more curved due to strain, which could help gain deeper
insights into the intermittency and inhomogeneity of
turbulent mixing. Future work can possibly extend our
framework to finite-sized fluid elements considering the
coarse-graining effect at the same length scale. This
extension will help develop improved models for length-
scale reduction in the energy cascade process.
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