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Abstract: We develop a linear theory for non-Hermitian optical systems having excep-
tional points. In contrast to previous studies, our analysis results in an exact expression
for the resolvent operator without the need to use perturbation expansions. © 2022 The Author(s)

Linear response analysis of optical systems is crucial for understanding their behavior at all levels (linear, nonlin-
ear, classical, quantum, etc.). Under linear conditions, the steady-state response of a resonant photonic structure
can be expressed in terms of the frequency domain resolvent (sometimes also called Green’s operator or function)
G(w)= (ol —H)~", where H is the system’s Hamiltonian, and { is the unit operator. In the absence of exceptional
points (EPs) from the spectrum associated with H, the resolvent G can be expressed as a series expansion of the
left and right eigenvectors of H. However, the situation is quite different when the spectrum exhibits EPs, in which
case we will denote the Hamiltonian by Hgp. In this case, the dimensionality of the eigenspace associated with
Hpgp is reduced, and the Hamiltonian is said to be defective. In previous studies, it was assumed that under this
condition, the system can be analyzed only within the scope of perturbation theory [1].

In this work, we show that this is not correct, and we obtain an exact expression for the system’s linear response
using the generalized left and right eigenvectors of the defective Hamiltonian Hgp. Moreover, our analysis also
reveals a regular pattern that governs the frequency response function, showing that it follows a Lorentzian or
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Fig. 1. (a) A schematic of an N-dimensional open resonant photonic structure with an EP of order M
that could arise due to gain/absorption or coupling to L input/output ports. (b) Pictorial representation
of the linear response of a non-Hermitian system having an EP. Input and output channels belonging
to the same modal class excite Lorentzian response. However, a super-Lorentzian response emerges
if the output signal matches a generalized (or ordinary) eigenvector with an order lower than the
order of the generalized eigenvector corresponding to the input signal. The symbol L" indicates a
super-Lorentzian response of order m.
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Fig. 2. (a) A schematic of a photonic structure implementing second-order exceptional surface. (b),
(c) Plots of the steady state electric field distribution under excitation from ports P », respectively.

super-Lorentzian line shape in the same system depending on the input/output channel configuration. As an
example, we consider the system shown in Fig. 1(a), which has an EP of order M as well as L input and L output
channels. Fig. 1(b) presents a pictorial representation of the system’s frequency response based on our exact
analytic expression for the resolvent operator. For instance, when the input/output channels overlap only with
the eigenfunctions of the system, the response is a simple Lorentzian. On the other hand, a driving signal that
excites one of the canonical Jordan vectors will lead to a more complicated response that involves multiple terms
with different super-Lorentzian functions. To illustrate this point, consider an excitation that overlaps with the
canonical vector |J5), described by (Hgp — Qgpl)?|J5) = 0. By referring to Fig. Fig. 1(b), it is clear that such
an excitation will lead to both first (gray arrow) and second (red arrow) order Lorentzian shapes. These results
explain the complex lineshape predicted recently for the process of spontaneous emission from a single quantum
dot in the vicinity of EPs [2, 3].

Another intriguing feature predicted by our analysis is that the mode matching condition between the driving
signal and the resonant eigenstates does not necessarily lead to the best excitation efficiency in open systems
with EPs. To illustrate this point, we consider the photonic structure shown 2(a), which consists of an optical ring
resonator coupled symmetrically to two waveguides with an end mirror at one port, as shown in the figure. As has
been shown in [4], this structure exhibits an exceptional surface. The exceptional eigenvector of this device, |J])
and the generalized eigenvector |J}), which correspond to clockwise and counterclockwise waves, can be excited
from ports Py 5, respectively. Our analysis reveals that, under steady state conditions, excitation from port P leads
to higher optical energy storage inside the resonator than that from P;. These predictions are in perfect agreement
with full-wave simulations. Figure 2(b) depicts the electric field distribution corresponding to these two cases.
Notice that in the first case, the field is purely a traveling wave, whereas in the second, it contains a standing wave
component. Importantly, in agreement with our linear response theory, the scattering coefficient between ports P;
and Q; demonstrates a Lorentzian response while that between P> and O features a super-Lorentzian of order two.

In conclusion, in this work, we present a detailed analysis for resonant optical systems having exceptional
points and develop a linear response theory to describe their behavior. Our analysis shows that the resolvent
operator associated with defective Hamiltonians can be obtained exactly without resorting to perturbation theory.
Our formalism explains the mixed lineshape responses predicted in previous studies for systems operating close to
exceptional points and presents a clear algorithmic approach for engineering the spectral response by controlling
the input/output channel configurations. Finally, we also show that maximization of the optical energy stored
inside a photonic system can be achieved by violating the mode matching condition- an effect analogous to adjoint
coupling in bulk resonator systems [5].
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