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Abstract: We develop a linear theory for non-Hermitian optical systems having excep-

tional points. In contrast to previous studies, our analysis results in an exact expression

for the resolvent operator without the need to use perturbation expansions.

Linear response analysis of optical systems is crucial for understanding their behavior at all levels (linear, nonlin-

ear, classical, quantum, etc.). Under linear conditions, the steady-state response of a resonant photonic structure

can be expressed in terms of the frequency domain resolvent (sometimes also called Green’s operator or function)

Ĝ(ω)≡ (ω Î−Ĥ)−1, where Ĥ is the system’s Hamiltonian, and Î is the unit operator. In the absence of exceptional

points (EPs) from the spectrum associated with H, the resolvent Ĝ can be expressed as a series expansion of the

left and right eigenvectors of H. However, the situation is quite different when the spectrum exhibits EPs, in which

case we will denote the Hamiltonian by HEP. In this case, the dimensionality of the eigenspace associated with

HEP is reduced, and the Hamiltonian is said to be defective. In previous studies, it was assumed that under this

condition, the system can be analyzed only within the scope of perturbation theory [1].

In this work, we show that this is not correct, and we obtain an exact expression for the system’s linear response

using the generalized left and right eigenvectors of the defective Hamiltonian HEP. Moreover, our analysis also

reveals a regular pattern that governs the frequency response function, showing that it follows a Lorentzian or

Fig. 1. (a) A schematic of an N-dimensional open resonant photonic structure with an EP of order M
that could arise due to gain/absorption or coupling to L input/output ports. (b) Pictorial representation

of the linear response of a non-Hermitian system having an EP. Input and output channels belonging

to the same modal class excite Lorentzian response. However, a super-Lorentzian response emerges

if the output signal matches a generalized (or ordinary) eigenvector with an order lower than the

order of the generalized eigenvector corresponding to the input signal. The symbol Lm indicates a

super-Lorentzian response of order m.
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Fig. 2. (a) A schematic of a photonic structure implementing second-order exceptional surface. (b),

(c) Plots of the steady state electric field distribution under excitation from ports P1,2, respectively.

super-Lorentzian line shape in the same system depending on the input/output channel configuration. As an

example, we consider the system shown in Fig. 1(a), which has an EP of order M as well as L input and L output

channels. Fig. 1(b) presents a pictorial representation of the system’s frequency response based on our exact

analytic expression for the resolvent operator. For instance, when the input/output channels overlap only with

the eigenfunctions of the system, the response is a simple Lorentzian. On the other hand, a driving signal that

excites one of the canonical Jordan vectors will lead to a more complicated response that involves multiple terms

with different super-Lorentzian functions. To illustrate this point, consider an excitation that overlaps with the

canonical vector |Jr
2〉, described by (ĤEP −ΩEPÎ)2 |Jr

2〉 = 0. By referring to Fig. Fig. 1(b), it is clear that such

an excitation will lead to both first (gray arrow) and second (red arrow) order Lorentzian shapes. These results

explain the complex lineshape predicted recently for the process of spontaneous emission from a single quantum

dot in the vicinity of EPs [2, 3].

Another intriguing feature predicted by our analysis is that the mode matching condition between the driving

signal and the resonant eigenstates does not necessarily lead to the best excitation efficiency in open systems

with EPs. To illustrate this point, we consider the photonic structure shown 2(a), which consists of an optical ring

resonator coupled symmetrically to two waveguides with an end mirror at one port, as shown in the figure. As has

been shown in [4], this structure exhibits an exceptional surface. The exceptional eigenvector of this device, |Jr
1〉

and the generalized eigenvector |Jr
2〉, which correspond to clockwise and counterclockwise waves, can be excited

from ports P1,2, respectively. Our analysis reveals that, under steady state conditions, excitation from port P2 leads

to higher optical energy storage inside the resonator than that from P1. These predictions are in perfect agreement

with full-wave simulations. Figure 2(b) depicts the electric field distribution corresponding to these two cases.

Notice that in the first case, the field is purely a traveling wave, whereas in the second, it contains a standing wave

component. Importantly, in agreement with our linear response theory, the scattering coefficient between ports P1

and Q1 demonstrates a Lorentzian response while that between P2 and Q2 features a super-Lorentzian of order two.

In conclusion, in this work, we present a detailed analysis for resonant optical systems having exceptional

points and develop a linear response theory to describe their behavior. Our analysis shows that the resolvent

operator associated with defective Hamiltonians can be obtained exactly without resorting to perturbation theory.

Our formalism explains the mixed lineshape responses predicted in previous studies for systems operating close to

exceptional points and presents a clear algorithmic approach for engineering the spectral response by controlling

the input/output channel configurations. Finally, we also show that maximization of the optical energy stored

inside a photonic system can be achieved by violating the mode matching condition- an effect analogous to adjoint

coupling in bulk resonator systems [5].

References

1. A. Pick, et al., ”General theory of spontaneous emission near exceptional points”, Opt. Express, 25 12325–12348

(2017).

2. M. Khanbekyan and J. Wiersig, ”Decay suppression of spontaneous emission of a single emitter in a high-Q cavity at

exceptional points”, Phys. Rev. Research, 2 023375 (2020).

3. Q. Zhong, et al., ”Control of spontaneous emission dynamics in microcavities with chiral exceptional surfaces”, Phys.

Rev. Research, 3 013220 (2021).

4. , Q. Zhong, et al., ”Sensing with Exceptional Surfaces in Order to Combine Sensitivity with Robustness”, Phys. Rev.

Lett., 122 153902 (2019).

5. A. E. Siegman, ”Lasers without photons – or should it be lasers with too many photons?”, Appl. Phys. B, 60 247–257

(1995).

FM4B.2 CLEO 2022 © Optica Publishing Group 2022

Authorized licensed use limited to: Penn State University. Downloaded on June 13,2023 at 12:44:30 UTC from IEEE Xplore.  Restrictions apply. 


