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Abstract. We consider a simulation-based ranking and selection (R&S) problem with
input uncertainty, in which unknown input distributions can be estimated using input
data arriving in batches of varying sizes over time. Each time a batch arrives, additional
simulations can be run using updated input distribution estimates. The goal is to confi-
dently identify the best design after collecting as few batches as possible. We first introduce
a moving average estimator for aggregating simulation outputs generated under heteroge-
nous input distributions. Then, based on a sequential elimination framework, we devise
two major R&S procedures by establishing exact and asymptotic confidence bands for the
estimator. We also extend our procedures to the indifference zone setting, which helps
save simulation effort for practical usage. Numerical results show the effectiveness and
necessity of our procedures in controlling error from input uncertainty. Moreover, the effi-
ciency can be further boosted through optimizing the “drop rate” parameter, which is the
proportion of past simulation outputs to discard, of the moving average estimator.
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1. Introduction
Stochastic simulation is used widely for evaluating and
optimizing complex systems arising in manufacturing,
transportation, and many other domains. Building a
stochastic simulation model requires accounting for
external random factors (e.g., lead time, traveling time,
demand load) that affect the system’s performance. A
common practice is tomodel such randomness by prob-
ability distributions, from which random samples are
generated to simulate real-world scenarios. These dis-
tributions are referred to as “input distributions.”

In practice, input distributions need to be estimated
from finite historical data known as “input data,” for
which the estimation error results in input uncertainty
(IU). Aside from this extrinsic uncertainty, the simula-
tion output is also subject to stochastic uncertainty (SU),
which is the intrinsic uncertainty induced by random
samples generated from input distributions. However,
these two types of uncertainty differ in nature: whereas
SU can be reduced by investing simulation effort, IU is
determined by the availability of input data, which is
largely beyond a modeler’s control. Ignoring IU can be

risky when simulation results are used to inform deci-
sions (see, e.g., Zhou and Xie 2015).

In many application problems, input data are col-
lected frequently to reduce the IU of the simulation
model. The simulation model, which is often time-
consuming to run, is then used to compare different
designs/strategies to find the best one with high confi-
dence. Such a procedure is often referred to as ranking
and selection (R&S). Data often come on a fast time
scale (such as daily), but system designs cannot be
changed so frequently; otherwise, it not only incurs
excessive cost and labor, but also might cause instabil-
ity to the system. Hence, simulation becomes extremely
useful to test and compare potential designs/strategies
before they are implemented in the real system. The fol-
lowing application examples illustrate such a problem
setting:

1. Start a ride-sharing service in an airport: In some
cities, ride sharing used to be regulated (disallowed) in
the airport. When such regulation is lifted, the platform
faces a cold-start problem for pricing and matching
strategies because of the lack of historical data at the
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airport (such as driver and rider arrival rates, pricing
and earnings elasticities), which are the inputs to a typi-
cal simulation system that the platform uses to choose
the pricing and matching strategies. Such simulation
can take hours per replication to capture the day/week
effect in the market condition. As new data come in
daily, the simulation input is updated, and new simula-
tions are run to compare potential pricing and match-
ing strategies until one best strategy is identified and
then rolled out to the platform.

2. Supply chain optimization: A multinational re-
tailer makes use of a complex supply chain simulation
model to evaluate and compare a few potential inven-
tory policies (including the current policy in use). The
model’s input distributions capture the uncertainty in
production lead time, transit lead time, demand, and
so on. As data accrues daily over the selling season, the
retailer continuously updates the input models and
runs simulations until it identifies the best inventory
policy with high confidence and then implements the
policy on the real system.

3. Budget R&D capital: A company conducts testing
on a set of products with the goal of finding the prod-
uct with the highest expected net gain within the short-
est possible time period. Testing each product is time
costly and subject to stochastic error, so multiple repli-
cations of testing are needed. As outside investments
reveal over time, the company uses this data to update
its estimate of the market condition of each product
with reduced uncertainty and runs new tests until it
narrows down to one best product and then releases it
to the market.

These examples motivate us to consider a fixed con-
fidence R&S problem in which new input data arrives
over time in batches of possibly varying and random
sizes. In each time stage, the number of simulation rep-
lications that can be run is limited because of the
expensive simulation cost and the time length of each
stage. On the one hand, we can use the new data batch
to update the input distribution of the simulation
model so as to reduce IU. Because of the limited simu-
lation replications at each time stage, it is necessary to
aggregate the simulation outputs across different time
stages to reduce SU in the performance estimate. On
the other hand, simulations are run under a different
(updated) input distribution at each stage, and hence,
the simulation outputs are correlated and differently
distributed across different time stages. This creates a
major challenge in designing an R&S procedure for
this setting because most classical R&S requires an
independent and identically distributed (i.i.d.) condi-
tion on the simulation outputs. Further complications
lie in how to (i) update the input models and (ii) aggre-
gate simulation outputs generated under heteroge-
nous input models. Whereas there are well-established

methods for these two tasks, whether they fit into the
R&S framework needs investigation.

To address these challenges in the problem setting,
we propose amoving average estimator for systemper-
formance to aggregate the simulation outputs across
time stages. Intuitively, the moving average estimator
drops the obsolete simulation outputs, keeping the
more recent outputs that are generated under closer
input distributions to the latest one. A parameter, called
the drop rate, is used to balance the trade-off between
bias (because of keeping the old simulation outputs)
and variance (because of the limited number of simula-
tion outputs) in the performance estimate. We then
build on the sequential elimination (SE) framework,
which was first developed by Even-Dar et al. (2002;
2006), to perform R&S using the moving average esti-
mator. Specifically, by computing the confidence bands
to account for both the IU and SU of the moving aver-
age estimates, the SE procedures eliminate one (statisti-
cally) inferior design each time. We summarize the
contributions of this paper as follows:

1. To our knowledge, this paper, along with our ear-
lier conference paper, Wu and Zhou (2019), are the first
to consider streaming input data in R&S problems and
design a data-driven approach. The simulation outputs
generated from different stages are neither independent
nor identically distributed, which is a major theoretical
challenge that makes our approach drastically different
from the classic R&S procedures.

2. We introduce a moving average estimator to aggre-
gate simulation outputs generated under heterogenous
inputmodels and substantially extend a sequential elim-
ination framework to handle IU with streaming input
data.

3.We design sequential elimination procedures, called
SEIU and SEIU-MCB, based on confidence bands estab-
lished using two different approaches. The SEIU ap-
proach relies on exact confidence bands but tends to be
conservative; the SEIU-MCB approach relies on asymp-
totically valid but tighter confidence bands. Specifically,
the latter leverages results from “multiple comparison
with the best” (MCB) (Chang and Hsu 1992) and an
asymptotic normality result that we establish for charac-
terizing the trade-off between IU and SU under stream-
ing data, which is of independent interest and can be
viewed as a multistage generalization of a well-known
result in Cheng and Holland (1997). We also extend
the two SE procedures to the indifference zone set-
ting, named SEIU(IZ) and SEIU-MCB(IZ), which further
boosts the procedures for practical usage.

4. The necessity and effectiveness of the procedures are
demonstrated numerically through a simple quadratic
problem and a more sophisticated production inventory
problem. Furthermore, we show that SEIU-MCB can be
accelerated by optimizing the drop rate parameter that
shows up in themoving average estimator.
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We should remark that the aggregation of simula-
tion outputs under different input distributions via
the likelihood ratio method is studied by Feng and
Staum (2015; 2017), Eckman and Feng (2018), and
Feng and Song (2019) under the name “green simu-
lation” and recently by Liu and Zhou (2020) for simu-
lation optimization. Such methods have the potential
to be extended to the setting in this paper. We leave
the adaptation of these methods to data-driven R&S
as an open problem.

1.1. Literature Review
The mixed effect of IU and SU on simulation output is
studied in a variety of contexts. In terms of quantify-
ing the impact of IU on a single system design’s simu-
lation output, the earliest method at least dates back
to Barton and Schruben (1993), followed by many
other works, including but not limited to Cheng and
Holland (1997), Chick (2001), Zouaoui and Wilson
(2003; 2004), Barton et al. (2014), Xie et al. (2014; 2016),
Lam and Qian (2022), Lin et al. (2015), Lam and Zhou
(2017), Feng and Song (2019), Song and Nelson (2015),
and Zhu et al. (2020).

These works assume a fixed batch of input data, but
recently Zhou and Liu (2018) and Liu and Zhou (2019)
considered streaming input data—the same setting as
this paper. However, they take the likelihood ratio
method to estimate the performance and a sampling-
based method to quantify IU, whereas we develop a
moving average estimator and analytically compute
confidence bands to quantify IU. We refer the reader
to Corlu et al. (2020) for a recent review on the topic of
input uncertainty.

There is an abundant and fast-growing R&S litera-
ture. Although a comprehensive review is out of this
paper’s scope, in what follows, wemake our best effort
to present our work through a broader perspective.

In simulation optimization or ordinal optimization
(Ho et al. 1992), R&S arises in the context of identifying
the best system design (or a subset of good designs)
through noisy simulation outputs. Simulation-based
R&S is predominantly studied under the assumption
that SU is the only source of uncertainty. Research in
this field can roughly be categorized into two problem
settings: fixed budget and fixed confidence. In the fixed
budget setting, the total number of simulation runs is
constrained, and the goal is to maximize the probabil-
ity of correct selection (PCS) of the best design. In this
paper, we focus on the fixed confidence setting, in
which the goal is to attain a prespecified PCS using as
little simulation effort as possible.

The study on fixed confidence R&S is primarily
focused on the IZ formulation, in which the goal is to
select the best system design with a target probability
when the top two designs differ by at least some value
δ in expected performance.

Since Bechhofer (1954), the IZ formulation has been
studied actively by the statistics community. In simu-
lation literature, the milestone work that adapts IZ to
simulation-based R&S is Kim and Nelson (2001), in
which the proposed KN procedure not only outper-
forms classic statistical procedures, but also allows the
use of common random numbers (CRN), a variance
reduction technique, for further enhancement. The
KN procedure is extended to steady-state simulation
in Goldsman et al. (2002) and Kim and Nelson (2006)
and also inspires numerous subsequent works on
fully sequential procedures, including Batur and Kim
(2006), Hong and Nelson (2005; 2007), Pichitlamken
et al. (2006), Hong (2006), and so on. More recently,
Frazier (2014) proposes an IZ procedure that is Baye-
sian in spirit but provides a guarantee on the fre-
quentist PCS; Luo et al. (2015) designs procedures for
large-scale R&S problems in parallel computing envi-
ronments; and Fan et al. (2016) develops procedures
that do not require an IZ parameter.

The fixed confidence R&S problem is also studied
extensively in the multiarmed bandits literature under
the name of best arm identification (BAI). Except for a
minor difference in performance criterion, R&S and
BAI are essentially the same mathematical problem.
Nevertheless, the research in the two fields diverges in
several aspects with the most notable difference that
BAI focuses more on characterizing complexity results
and designing algorithms that match some worst case
or problem-specific lower bounds, such as the seminal
works of Even-Dar et al. (2002) andMannor and Tsitsi-
klis (2004) followed by Gabillon et al. (2012), Karnin
et al. (2013), Jamieson and Nowak (2014), and Kauf-
mann et al. (2016) and culminating in Garivier and
Kaufmann (2016).

Aside from these frequentist results, Russo (2016)
proposes some simple algorithms from a Bayesian
viewpoint.

Compared with the studies on classic R&S and BAI,
which have gradually matured over the past few deca-
des, research on R&S under IU is only starting to gain
momentum. One stream of work takes a distribution-
ally robust optimization approach by assuming that
the true input distribution is contained in a finite set of
known distributions (i.e., ambiguity set) with a goal of
selecting the design with the best worst case perform-
ance over the ambiguity set, such as Gao et al. (2017),
Xiao and Gao (2018), Xiao et al. (2020), Fan et al. (2020),
and Wu and Zhou (2017). Another line of research
aims to screen out as many inferior designs as possible
in the presence of IU, such as Corlu and Biller (2013,
2015) and Song and Nelson (2019). Our work has a
close connection with Song and Nelson (2019) in that
we both assume parametric input distributions and
incorporate the MCB framework from Chang and Hsu
(1992). However, despite these similarities, our settings
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of streaming input data are fundamentally different.
In Song and Nelson (2019), the performance estimate
only consists of i.i.d. samples simulated under the same
input distribution, whereas in this paper, we sequen-
tially update input distributions over time and aggre-
gate past simulation outputs from heterogeneous input
distributions. Therefore, the methodologies therein can-
not be easily extended to our problem.

All the papers on R&S under IU listed here share
one assumption in common: input data are a static
data set that does not grow over time. Streaming data
have only been considered recently for R&S by Wu
and Zhou (2019), which is a preliminary conference
version of this paper. Song and Shanbhag (2019) and
Liu et al. (2021; 2022) study continuous simulation
optimization with streaming data.

The rest of the paper is organized as follows. We for-
mulate the problem in Section 2 and extend the sequen-
tial elimination framework in Section 3. We derive the
exact and asymptotically valid confidence bands in the
SE framework and present the corresponding proce-
dures SEIU and SEIU-MCB in Sections 4 and 5, respec-
tively. We extend the procedures to the IZ setting in
Section 6. Finally, we numerically demonstrate the
procedures’ performance in Section 7 and conclude in
Section 8.

2. Problem Formulation
2.1. Review on Fixed Confidence R&S Without IU
We begin with a brief review on the classic fixed confi-
dence R&S problem and lay down some basic nota-
tions. Suppose that we are given a set of designs
I � {1, : : : ,K}, and the goal is to find the design with
the highest expected performance. A design i ∈ I is
evaluated through repeated simulation runs, and dur-
ing each run, we first generate a random sample ξ
from a distribution Pi and then compute the output by
evaluating a deterministic function of i and ξ.

The input distributions {Pi} are used as input to the
simulation model to capture various sources of real-
world randomness. In classic R&S literature, {Pi} are
assumed to be known, and the simulation outputs for
any design i, denoted by {Xi,r}r, are i.i.d. Let μi :�
EPi[Xi,1] be the true mean performance of design i.
Then, μi can be estimated by averaging the simulation
outputs {Xi,r}r. Because of finite-sample error, the
probability of selecting the best design (PCS) is often
adopted to quantify the confidence of selection. In the
fixed confidence setting, there is no constraint on the
simulation budget, but the PCS is required to exceed a
prespecified level. We refer to procedures that guaran-
tee to attain the PCS target as statistically valid. The
core of the fixed confidence R&S problem is to find
statistically valid procedures that terminate after as
few simulation runs as possible.

2.2. Fixed Confidence R&S with Streaming
Input Data

A limitation of the classic R&S framework is that true
input distributions are rarely known in practice;
instead, they must be estimated using finite data,
which incurs IU that propagates to simulation output.
Throughout the paper, we assume that all the designs
share the same set of input distributions. Furthermore,
to facilitate the characterization of IU, we impose the
following structure on the input distributions.

Assumption 1. The set of input distributions belongs to a
known parametric family, which contains S mutually inde-
pendent distributions with unknown parameters {uc1,uc2,
: : : ,ucS}, where ucs ∈ R

ds .

The parametric assumption is common in the litera-
ture of R&S. Let d :�∑S

s�1 ds be the total dimension of
parameters and u :� [u�1 ,: : : ,u�S ]� be a vector in R

d con-
catenating all parameters. The input distributions
then form a product measure Pu �∏S

s�1Pus . Also, let
uc ∈ R

d denote the true input parameter. Under
Assumption 1, the expected performance of design i
becomes a function of θ and is, therefore, denoted
μi(u).

The negative impact of IU on R&S can be seen as
follows. For simplicity, assume throughout the paper
that b ∈ I is the unique true best design, that is,
μb(uc) >maxi≠bμi(uc). When θc is unknown and is
replaced by a finite-sample estimate û, the best design
under û may be different from b, in which case one
cannot correctly identify the true best design even
using infinite simulation runs. If input data are given
as a static data set that does not grow over time, then
our best hope is to gauge the impact of IU and pro-
vide a more conservative statistical guarantee (e.g., a
lower PCS) because of limited resolution in perform-
ance estimation.

Assuming a static input data set is reasonable in
applications in which gathering data is expensive,
labor-intensive, or time-consuming. Nevertheless, with
the advancement in big data technology, additional
data can sometimes be collected efficiently and econom-
ically. This motivates us to consider an R&S problem
with streaming input data, which we elaborate on as
follows.

Suppose that, for each input distribution Pucs
, the

input data consists of i.i.d. samples denoted by {ζs,1,
ζs,2, : : : }. The input data arrives in batches sequentially
in time, and the sample size of batch t is ns(t) ≥ 1.
Denote by Ns(t) :�∑t

ℓ�1 ns(ℓ) the total number of data
samples up to batch t and let Ns(0) � 0. We allow ns(t)
to vary in s and t in order to have the most flexible
model for multiple streams of input data with time-
varying batch sizes.

Wu, Wang, and Zhou: Data-Driven Ranking and Selection Under Input Uncertainty
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The arrival process of input data, thus, divides the
simulation process into multiple time stages. At the
beginning of stage t, a new batch of input data arrives,
which, together with historical data, is used to com-
pute an updated parameter estimate ût. After that,
incremental simulations are run by drawing i.i.d.
samples from the updated input distributions Pût

.
Similarly, let m(t) ≥ 1 be the number of incremental
simulation runs for each design at stage t and let
M(t) :�∑t

ℓ�1m(ℓ) be the total number of runs up until
stage t. The simulation batch size m(t) can vary across
different stages because the interarrival times between
two adjacent data batches could be different. How-
ever, here, we require the same batch size of simula-
tion runs for each design because we make a pairwise
comparison, which uses the CRN strategy.

Figure 1 illustrates how simulation outputs are gen-
erated for a single design, for which we highlight the
following observations. First, the parameter estimates
{ût} are correlated because they are computed using
the same stream of input data. Second, because {ût}
are random variables that generally take different val-
ues, the simulation outputs X are not identically dis-
tributed across different stages. Third, conditioned on
{ût}, the outputs X are i.i.d. within the same stage and
independent across stages, but unconditional inde-
pendence no longer holds because X are jointly af-
fected by the correlation among {ût}. In sum, the
simulation outputs are neither independent nor identi-
cally distributed, which sets the problem apart from
most of the R&S studies.

The online estimation of an individual design’s per-
formance under streaming input data is an important
problem in its own right. In this paper, however, we
are concerned with designing R&S procedures that

can achieve a prespecified PCS upon termination.
To make the problem well-defined, we first need to
address the following questions:

i. What is the estimator of the input parameter θc?
ii. How do we aggregate non-i.i.d. simulation out-

puts to estimate μi(uc)?
Many existing methods can be applied to these two

problems, but most of them do not suit our purpose.
The key is to find an estimator that allows a tractable
decomposition of the correlation among different
stages’ simulation outputs. This motivates us to make
the following assumption.

Assumption 2. For each input parameter ucs, there exists a
function Ds such that

ûs,t :� 1
Ns(t)

∑Ns(t)

j�1
Ds(ζs,j) (1)

is an unbiased estimator of ucs.

Assumption 2 can often be satisfied through repara-
meterization. Specifically, for a parametric family of
distributions with k unknown parameters, the param-
eters (or some transformation of the parameters,
which can be transformed back to the parameters) can
often be estimated by the first k moments with Ds(x)
being the functions x,x2, : : : ,xk. For example, if we
reparameterize the normal distribution by the first
two moments, then Ds(ζ) � [ζ,ζ2]� satisfies the de-
sired property. Let Ds,j be shorthand for Ds(ζs,j). Then,
{Ds,j} are i.i.d. transformed input data samples with
E[Ds,1] � uc. As we see in Section 5, the additive form
of ûs,t plays an important role in designing R&S
procedures.

The other question is how to estimate μi(uc) using
samples generated under different input distributions.

Figure 1. Illustration of Simulating a Single Design with Streaming Input Data, Where ζDenotes Input Data, θ̂ Is the Input
Parameter Estimate, and XDenotes Simulation Output

Stage 1 Stage 2 Stage 3
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To simplify indexing, let {Xi,r(ût)}m(t)
r�1 denote the batch

of simulation outputs generated at stage t under the
input distribution Pût

. We consider the following mov-
ing average estimator:

μ̂i,t :� [M(t) −M(tη)]−1
∑t

ℓ�tη+1

∑m(ℓ)

r�1
Xi,r(ûℓ), (2)

where η ∈ [0, 1) is called the drop rate, which controls
the amount of effective samples used for computation,
and tη :� �ηt� is the number of stages “discarded.” In
words, the estimator in (2) only averages the latest
(1− η) portion of all the simulation output, hence the
name “moving average.” The idea of throwing away
some earlier samples is motivated by the following
two extreme cases:

i. η � 0: Keeping all the outputs helps reduce SU but
also retains all the biases {μi(ût) −μi(uc)} that accumu-
late over time.

ii. η � 1: This roughly corresponds to keeping only
the latest output Xi,m(t)(ût), which reduces the bias
but also prohibits the estimator from converging to
μi(uc).

In Section 5, we explicitly characterize this trade-off
between IU and SU through η and show that optimz-
ing η can lead to a lower asymptotic variance than in
both of the two extreme cases.

We now formally state the problem as follows. We
aim to find the best design among K alternatives via
simulation. The designs share the same input distribu-
tion with an unknown parameter θc, which can be esti-
mated via (1) using input data arriving in batches. The
arrival process divides time into multiple stages, and
during each stage, we can update the input parameter
estimate û and run incremental simulations under Pû .
The performance of each design is estimated via a
moving average estimator in (2). Given α ∈ (0, 1), the
goal is to design a procedure that terminates after a
number of stages and outputs the true best designwith
probability≥ 1−α.
On a side note, classic R&S procedures may still be

applied to our problem. For instance, we can collect a
few batches of input data and apply KN as if the
input distribution estimates are accurate. However,
statistical validity is no longer guaranteed under the
influence of IU. Whereas, in theory, this issue can
be overcome with sufficient data, classic procedures
have no way of telling when to safely stop collecting
data.

3. Sequential Elimination Framework
In fixed confidence R&S, an important idea underlying
many sequential procedures is to construct a “conti-
nuation region” in which a design can be confidently

labeled as suboptimal if its performance estimate exits
the region. One example is the triangular region in the
KN procedure (see Kim and Nelson 2001). In our prob-
lem setting, most of the existing methods are inapplica-
ble because they rely on key assumptions such as i.i.d.
and normality. To construct a continuation region in
the presence of IU, we resort to an SE framework in
Even-Dar et al. (2002, 2006).

In short, an SE procedure sequentially eliminates
inferior designs until there is only one left, and the sur-
viving design is output as the estimated best design.
Let δij(u) :� μi(u) −μj(u) and δ̂ij,t � μ̂i,t − μ̂j,t. A require-
ment for an SE procedure is a collection of the confi-
dence bands for δij(uc),

P
⋂∞
t�1

⋂
i<j

| δ̂ij,t − δij(uc) | ≤ wij,t

{ }{ }
≥ 1−α, (3)

where wij,t → 0 as t→∞. The elimination happens to
design i if there exists a design j such that

δ̂ij,t +wij,t � μ̂i,t − μ̂j,t +wij,t < 0: (4)

That is if the upper confidence of δij is below zero. To
see why (4) achieves statistical validity, notice that, if
the confidence bands achieve perfect coverage, that is,
δij(uc) ∈ [δ̂ij,t −wij,t, δ̂ij,t +wij,t] for all i, j, and t, then for
any design i≠ b (recall that b is the unique best
design),

μ̂b,t − μ̂i,t +wbi,t ≥ μb(uc) −μi(uc) > 0,

meaning that design b is never eliminated. Meanwhile,
becausewij,t → 0 as t→∞, the procedure terminates in
finite time almost surely, and the final output must be
design b.

In applying the SE procedure, the core question is
how to construct the confidence bands {wij,t}. Notice
that the false selection happens at any stage when the
true optimal design is eliminated. Therefore, we can
write the probability of false selection (PFS) as

PFS � P(The optimal design b is eliminated at some t)

� P
⋃∞
t�1

The optimal design b is eliminated at t
{ }( )

�∑∞
t�1

P The optimal design b is eliminated at t
( )

≤∑∞
t�1

P
⋃
i<j

{ | δ̂ij,t − δij(uc) | > wij,t}
( )

, (5)

where the second equality follows from the fact that
the events {The optimal design b is eliminated at t},
t � 1, 2, : : : are disjoint, and the last inequality follows
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from

{The optimal design b is eliminated at t}
⊆⋃

i<j
{ | δ̂ij,t − δij(uc) | > wij,t}:

Hence, if we can find wij,t such that

P
⋃
i<j

{ | δ̂ij,t − δij(uc) | > wij,t}
( )

≤ 6α
π2t2

,

then we have∑∞
t�1

P
⋃
i<j

{ | δ̂ij,t − δij(uc) | > wij,t}
( )

≤∑∞
t�1

6α
π2t2

� α: (6)

We obtain that PCS is at least 1− α.
Notice that we can also use a nonpairwise frame-

work that derives the confidence bands wi,t for each μi.
Nonetheless, the pairwise framework allows for the
use of CRN, which often sharpens the comparison
between designs. Furthermore, the common input dis-
tributionmay introduce additional positive correlation
that further reduces variance. All things considered,
it is promising to achieve wij,t < wi,t +wj,t and, there-
fore, faster termination. Therefore, we only focus on
the pairwise framework.

The problem is reduced to finding tight confidence
bands for δ̂ij,t. In the classic IU-free setting in which δ̂ij,t
are averages of i.i.d. samples, many concentration
bounds (e.g., Hoeffding’s inequality, Gaussian tail
bounds) are readily available. Unfortunately, these
bounds do not apply directly to the case with IU. In the
upcoming section, we derive IU-compatible confi-
dence bands, on top of which we build SE procedures.

4. SEIU Procedures
We propose procedures based on confidence bands
derived through an exact approach. These confidence
bands allow us to build idealized SE procedures,
which assume full knowledge on several key parame-
ters. The idealized procedures are shown to be statisti-
cally valid and are equipped with upper bounds on
their expected runtime. We also briefly discuss how to
estimate the unknown parameters in practice to end
this section.

4.1. Derivation of Exact Confidence Bands
We recall a few notations and concepts before deriving
the confidence bands. Denote by Θ ⊆ R

d the space in
which θ lives. The stream of transformed input data
for the sth input distribution, denoted by {Ds,t}t, are
i.i.d. random vectors in R

ds whose sample mean is an

unbiased estimator of ucs. Also recall that a randomvar-
iable X with mean μ � E[X] is called sub-Gaussian if
there exists σ > 0 such that E[es(X−μ)] ≤ exp (σ2s2=2) for
all s ∈ R, in which case we writeX ~ subG(σ2), and σ2 is
called a variance proxy. In the following assumption,
Ds,t,j denotes the jth component of the random vector
Ds,t.

Assumption 3.
i.Θ is a compact subset ofRd.
ii. For any s, t, and j, Ds,t,j ~ subG(ν2s ) for some νs > 0 and

{Ds,t,j} are i.i.d.
iii. For any u ∈Θ and i ∈ I , Xi(u) ~ subG(σ̄2

i ) for some
σ̄i > 0 independent of θ.

iv. For any design i, the performance function μi is Lip-
schitz continuous with respect to input parameter θ. More
specifically, there exists L̄i > 0 such that

|μi(u1) −μi(u2) | ≤ L̄i‖u1 − u2‖1, ∀u1,u2 ∈Θ,

where ‖ · ‖1 denotes the ℓ1-norm.

In Assumption 3, the major condition is the com-
pactness of Θ, which can be satisfied in most real-
world applications in which input distributions are
supported on a bounded set (e.g., number of visitors
on a given day, customerwaiting time, etc.). With com-
pactness, σ̄2

i can often be taken as the maximum var-
iance proxy over Θ, and the Lipschitz continuity of μi

becomes a local property that usually holds in practice.
Also, the boundedness of input data and simulation
outputs implies their sub-Gaussianity. Furthermore,
Assumption 3 implies that there exists σ̄ij > 0 such that
Xi(u) −Xj(u) ~ subG(σ̄2

ij) for all u ∈Θ and there exists

L̄ij > 0 such that δij(·) � μi(·) −μj(·) is L̄ij-Lipschitz con-
tinuous onΘ.

We now motivate exact confidence bands for the
moving average estimator δ̂i,t. The goal is to find
bounds Bt(·) such that, for any fixed x > 0, we have

P{ | δ̂ij,t − δij(uc) | > x} ≤ Bt(x),
where Bt(x) → 0 as t→∞. To gain intuition for an
IU-compatible bound, consider a simplified setting in
which uc ∈ R and there is no SU, that is,

δ̂ij,t � 1
t

∑t
ℓ�1

δij(ûℓ): (7)

In this case, error only comes from the biases {δij(ûℓ)−
δij(uc)}. Then, for any x > 0,

P{ | δ̂ij,t − δij(uc) | > x} ≤ P
1
t

∑t
ℓ�1

|δij(ûℓ) − δij(uc) | > x

{ }

≤ P
∑t
ℓ�1

| ûℓ − uc | > tx=L̄ij

{ }
(8)
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by the Lipschitz continuity of δij. To further decom-
pose the last term in (8), notice that, for any nonnega-
tive sequence {ωℓ}with

∑t
ℓ�1ωℓ � 1, we have

P
∑t
ℓ�1

| ûℓ −uc | > tx=L̄ij

{ }
≤ P

⋃t
ℓ�1

| ûℓ −uc | >ωℓtx=L̄ij
{ }{ }

≤∑t
ℓ�1

P | ûℓ −uc | >ωℓtx=L̄ij
{ }

:

The question is whether we can choose {ωℓ} such that
the resulting bound converges to zero as t→∞. Note
that taking equal weights ωℓ � 1=t is not helpful
because the resulting bound is bounded from below
by a positive constant:

∑t
ℓ�1

P | ûℓ − uc | > x=L̄ij
{ } ≥ P | û1 − uc | > x=L̄ij

{ }
� P |D1 − uc | > x=L̄ij
{ }

:

Instead, an intuitive way to tighten this bound is to
allow larger deviations (assign a greater ωℓ) for earlier
stages and smaller deviations for later stages. This idea
is made concrete by the following proposition.

Proposition 1. Let Assumption 3 hold. Then, for any
design i and any x,y > 0,

P | δ̂ij,t − δij(uc) | > x+ y
{ }
≤ 2exp −[M(t) −M(tη)]x2

2σ̄2
ij

{ }

+ 2(t− tη)ΣS
s�1dsexp −[M(t) −M(tη)]2y2

2d2L̄2
ijν

2
sγ

2
s,η(t)

⎧⎪⎪⎪⎨⎪⎪⎪⎩ ⎫⎪⎪⎪⎬⎪⎪⎪⎭, (9)

where γs,η(t) :�∑t
ℓ�tη+1m(ℓ)= �������Ns(ℓ)

√
.

Remark 1. The term γs,η loosely characterizes the rate
at which the IU-induced error accumulates over time:
the 1=

�������
Ns(ℓ)
√

term reflects how fast IU (i.e., estimation
error in ûℓ) diminishes as input data grows, but the
error is multiplied by a factor of m(ℓ) because, during
each stage, we perform m(ℓ) simulation runs under
the inaccurate input distribution Pûℓ

.

Remark 2. In the proof of Proposition 1, the choice of
ωℓ∝m(ℓ)= �������Ns(ℓ)

√
echoes our interpretation of γs,η, and

it reweighs IU at different stages to yield a useful
upper bound. It is also worth noting that, despite the
multiplicative factor (t− tη) in (9), the bound still con-
verges to zero exponentially fast as t→∞.

Proposition 1 provides IU-compatible bounds for a
pair of designs. When it comes to designing SE proce-
dures, however, it is more advantageous to use the

following simultaneous bounds for all pairs of de-
signs, which exploits the fact that all designs share the
same input distribution and is, therefore, tighter than
directly applying Bonferroni’s inequality to (9).

Lemma 1. Let Assumption 3 hold. Then, for any xij,yij > 0,

P
⋃
i<j

| δ̂ij,t − δij(uc) | > xij + yij
{ }{ }

≤∑
i<j

exp −[M(t) −M(tη)]x2ij
2σ̄ij2

{ }

+ 2(t− tη)ΣS
s�1dsmax

i<j
exp −[M(t) −M(tη)]2y2ij

2ν2s d2L̄
2
ijγ

2
s,η(t)

⎧⎪⎪⎪⎨⎪⎪⎪⎩ ⎫⎪⎪⎪⎬⎪⎪⎪⎭⎧⎪⎪⎪⎨⎪⎪⎪⎩ ⎫⎪⎪⎪⎬⎪⎪⎪⎭,
(10)

where γs,η(t) :�∑t
ℓ�tη+1m(ℓ)= �������Ns(ℓ)

√
.

4.2. The SEIU Procedures
Based on Lemma 1, we design the SEIU procedure
based on exact confidence band derivation, in which
SEIU stands for sequential elimination under input
uncertainty. The procedure relies on the key parame-
ters ν, σ̄ij, and L̄ij, which are assumed to be known for
themoment.

Procedure: SEIU
• Initialization. α ∈ (0, 1),η ∈ (0, 1),S � I , t � 1.
• Step 1. At stage t, update the estimate of θc using

new input data and run additional simulations. For
each pair of designs i > j in S, compute δ̂ij,t � μ̂i,t − μ̂j,t

using (2).
• Step 2. Compute the confidence bands wij,t �

uij,t + vij,t for each pair of designs i < j using

uij,t � 2σ̄ij

�������������������
ln

����������
K(K−1)π2

3α

√
t

( )
M(t) −M(tη)

√√√√√
, (11)

vij,t � max
1≤s≤S

dνsL̄ijγs,η(t)
M(t) −M(tη)

����������������������������
2 ln

2Sdsπ2(1− η)t3
3α

( )√{ }
,

(12)

where γs,η(t) :�∑t
ℓ�tη+1m(ℓ)= �������Ns(ℓ)

√
.

• Step 3. For each design i ∈ I , if

min
i>j

δ̂ij,t +wij,t

{ }
< 0, (13)

then set S ← S \ {i}. Go to Output if |S | � 1; other-
wise, set t← t+ 1 and go to step 1.

•Output. Output the only design in S.
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In the SEIU procedure presented here, ui,t and vi,t
are chosen to ensure that PCS ≥ 1−α. Specifically, by
substituting x and ywith u and v in Lemma 1, we have

P
⋃
i<j

| δ̂ij,t − δij(uc) | > uij,t + vij,t
{ }{ }

≤ 6α
π2t2

,

that is, the probability of any design’s estimate at any
stage exiting its confidence band does not exceed 6α

π2t2,
and as a result, the probability of false selection does
not exceed α as shown in (5) and (6). To run SEIU, a
user first needs to specify the target PCS level 1− α

and a drop rate η for themoving average estimator μ̂i,t.
Then, the procedure collects input data and runs simu-
lations alternately and removes design(s) from the sur-
vival set S whenever the elimination criterion (13) is
met. Finally, the last surviving design is output as the
selected best.

The following theorem shows the statistical valid-
ity of the procedure SEIU and characterizes the num-
ber of stages needed for the procedure to terminate,
denoted as τ̃, assuming full knowledge of νs, σ̄ij and
L̄ij.

Theorem 1. Let Assumption 3 hold, and suppose that νs,
Σ̄ij, and L̄ij are known. Then, SEIU selects the best design
with probability at least 1−α. Furthermore,

E[τ̃] ≤max
i≠b

min
j≠i

τ̃ij + α, (14)

where
τ̃ij � inf {t |wij,t < δij(uc)}: (15)

The intuition behind the bound on E[τ̃] is that, if all
confidence bands achieve perfect coverage, then they
eventually become narrow enough for us to distin-
guish between any two designs. Hence, τ̃ij is the worst
case time it takes for a design j to eliminate design i,
which is infinity if j is inferior to i. By taking the mini-
mum of τ̃ij over all designs j other than i, we obtain
the longest survival time for i. Thus, the total runtime
does not exceed the maximum survival time of all
suboptimal designs. Although τ̃ij does not have a sim-
ple closed form, it clearly depends on two factors: (i)
the widths of the confidence bands {wij,t} and (ii) the
difference between means, that is, δij(uc).

As in many elimination-based procedures, SEIU can
be prestopped at any stage to output a subset S that
contains the true best with probability at least 1− α.
Moreover, the following corollary provides a selection
at any stage with an IZ-type guarantee.

Corollary 1. Let Assumption 3 hold and suppose that
νs, σ̄ij, and L̄ij are known. Following the SEIU procedure, at
any stage t, with the remaining set of designs S, the design
with the largest moving average mean, that is, the design

i∗ � argmaxi∈St μ̂i,t, is εt-optimal with probability 1− α,
that is, with probability 1− α, μi∗ (uc) ≥max1≤i≤Kμi(uc)
−εt, where εt �maxj∈S,j≠i∗wi∗j,t.

Corollary 1 implies that, before the procedure elimi-
nates all the inferior designs, one can also make the
selection at any intermediate stage t by choosing the
remaining design that has the largest sample mean.
Such a selection gives an εt-optimal design with confi-
dence level 1− α. The value of εt depends on the confi-
dence bands wij,t, which is the sum of {uij,t} and {vij,t}
that account for SU and IU, respectively.

To gain more insight, consider a special case in
whichm(ℓ) ≡m0 and ns(ℓ) ≡ n0, that is, a constant batch
size of data and simulation over different stages. Then,
(11) and (12) can be simplified as

uij,t � 2
σ̄ij����
m0

√

�������������������
ln

����������
K(K−1)π2

3α

√
t

( )
t− tη

√√√√√
, (16)

vij,t ≈ max
1≤s≤S

2dνsL̄i���
n0

√ (1+ ��
η

√ )

��������������������
2 ln 2Sdsπ2(t−tη)3

3(1−η)2α
( )

t

√√⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭: (17)

Thus, ui,t and vi,t are both of order O( �������ln t=t
√ ), which is

common in SE procedures. Moreover, it can be seen
from (16) that the width of ui,t primarily depends on
the magnitude of σ̄ij=

����
m0

√
, that is, the discounted var-

iance proxy after averaging m0 output samples at each
stage; clearly, a smaller σ̄ij and a higher m0 yield nar-
rower bands. The drop rate η also matters: notice that
uij,t →∞ as η→ 1, meaning that the confidence band
needs to expand in order to cover inflated SU with
more samples thrown away.

Also clear from (17) is that greater values of νs=
���
n0

√
and L̄ij, which capture the extent of IU and δij’s sensi-
tivity to IU, respectively, result in a wider vij,t. It can
further be checked that vij,t → 0 as η→ 1, which agrees
with the intuition that the more stages we discard, the
less we suffer from the biases {δij(ût) − δij(uc)} from
previous stages.

In the SEIU procedure, we require full knowledge of
the parameters σ̄i,j,νs, L̄i,j, which is often unknown and
needs to be estimated in practice. We propose some
heuristic methods and discussions for estimating these
unknown parameters, which can be found in the elec-
tronic companion, Section EC.1.

5. SEIU-MCB Procedures
In this section, we propose a more efficient SEIU-MCB
procedure by deriving asymptotically valid confidence
bands, which utilizes the result of MCB proposed by
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Chang and Hsu (1992). MCB is extended by Song and
Nelson (2019) to construct confidence bands account-
ing for IU, in which they exploit the jointly asymptotic
normality of pairwise differences of performance esti-
mators (referring to {δ̂ij,t}j≠i) that consist of samples
under the current estimated input distribution. We
extend this jointly asymptotic normality to ourmoving
average estimator. The major challenge of establishing
the asymptotic normality result for our moving aver-
age estimator is that the estimator aggregates simula-
tion outputs from different stages, which disallows
the application of the central limit theorem by a direct
partition of the total error into two parts caused,
respectively, by IU and SU. Instead, we adopt the
Lindeberg–Feller theorem (see proposition 2.2.7 in Van
der Vaart 2000) to prove the asymptotic normality of
ourmoving average estimator.

Compared with SEIU, the SEIU-MCB procedure
requires much less restrictive assumptions and achieves
higher efficiency. Furthermore, the MCB framework
helps to avoid the usage of Boole’s inequality across
designs, and as a result, the asymptotic normality result
yields much tighter confidence bands to control the
cumulative error across stages. In addition, our result
explicitly characterizes how η affects the trade-off be-
tween IU and SU and shows that the elimination be-
tween any two designs can be potentially boosted by
optimizing η.

5.1. MCB
The MCB result is shown as the following theorem.

Theorem 2. Let μ̂i,t be the estimator of μi for i � 1, 2, : : : ,
K, x+ �max(x, 0) and x− � −min(x, 0). If, for each fixed i,
P μ̂i,t −μi − (μ̂j,t −μj) ≥ −wij,t for i≠ j
{ }

� 1− α, (18)

then we can make the joint probability statement

P μi −max
j≠i

μj ∈ [W−
i ,W

+
i ] for i � 1, 2, : : :K

{ }
� 1− α,

where W−
i and W+

i can be computed as

W+
i � min

j≠i
[μ̂i,t − μ̂j,t +wij,t]

( )+
,G � {i :W+

i > 0}

W−
i �

0 if G � {i}

− min
j≠i

[μ̂i,t − μ̂j,t −wji,t]
( )−

otherwise:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩ (19)

Theorem 2 says that, if we are provided with the
simultaneous pairwise confidence bands wij,t for each
i, then we can get a simultaneous confidence band for
i that measures how the design i is compared with the

remaining best. If the upper bound W+
i is zero, then

we eliminate design i because it is inferior to the
remaining best design. If W−

i is zero, then we directly
choose design i as the optimal design.

Now, the key to the problem remains as how to
compute the simultaneous pairwise confidence band
wij,t, which depends on the joint distribution of

Δi,t¢(δ̂i1,t − δi1(uc), : : : , δ̂ii−1,t − δii−1(uc), δ̂ii+1,t − δii+1(uc),
: : : , δ̂iK,t − δiK(uc)):

However, usually the joint distribution is hardly com-
putable, and even so, the computation can be expensive.
Hence, instead of finding the exact joint distribution, we
show the asymptotic joint distribution in the following
Section 5.2.

5.2. Asymptotic Normality
In Section 4, a critical assumption underpinning the
SEIU framework is the compactness of input distribu-
tion’s parameter space Θ, which plays an important
role in rigorously bounding the variation of simulation
output in the presence of IU. We now relax this condi-
tion and shift to the following assumption.

Assumption 4. For all i ∈ I and s ∈ {1, 2, : : : ,S},
i. ΣD,s :� Cov(Ds,1) exists.
ii. Σ(u) exists and is continuous for all u ∈Θ, where

Σij(u) � Cov[Xi(u),Xj(u)].
iii. μi(·) is twice continuously differentiable inΘ.
iv. ns t( ){ } and {m(t)} are uniformly bounded. Further-

more, there exist positive constants n̄s and m̄ such that
Ns(t)=t→ n̄s and M(t)=t→ m̄ as t→∞.

In Assumption 4, (i) and (ii), the existence of input
data’s covariance and simulation output’s variance is
far less stringent than the sub-Gaussianity conditions
in Assumption 3 and holds in most real-world appli-
cations. The smoothness of μi(·) in (iii) is also a reason-
able assumption for many parametric families of Pu.
Moreover, (iv) only requires the limit of input data
and simulation batch sizes to exist in the Cesàro sense,
and the uniform boundedness of {ns(t)} and {m(t)} is
guaranteed in practice. With Assumption 4, we estab-
lish the following asymptotic result for Δi,t.

Theorem 3. Let Assumption 4 hold. Then, for any η ∈
[0, 1) and any design i,��

t
√

Δi,t ⇒N (0,Σi,∞), as t→∞, (20)

where⇒ means convergence in distribution,N denotes the
normal distribution, and

Σi,∞( j, j′) :� λI,η∇δij(uc)�Σ̄D∇δij′ (uc)
+λS,ηm̄−1Cov Xi(uc) −Xj(uc),Xi(uc) −Xj′ (uc)

( )
,

(21)
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in which Σ̄D :� diag(n̄−1
1 ΣD,1, : : : , n̄−1

S ΣD,S) and

λI,η :� 2
1− η

+ 2η lnη

(1− η)2 , λS,η :� 1
1− η

: (22)

Theorem 3 shows that the asymptotic covariance matrix
ofΔi,t is theweighted sum of two components,

Σi,IU( j, j′) :� ∇δij(uc)�Σ̄D∇δij′ (uc),
Σi,SU( j, j′) :� m̄−1Cov Xi(uc) −Xj(uc),Xi(uc) −Xj′ (uc)

( )
,

(23)

which quantify the variance induced by IU and SU,
respectively. Furthermore, if we let ∂usδij(uc) denote
the partial derivative ∂δij(uc)=∂us, then we can decom-
poseΣi,IU as

Σi,IU( j, j′) �
∑S
s�1

∂usδij(uc)�ΣD,s∂usδij′ (uc)=n̄s,

which attributes the variance to each individual input
distribution. The O(1=n̄s) and O(1=m̄) convergence rate
in (21) are standard. However, the weights λI,η and λS,η

are less common and, therefore, deserve a closer look.
The expressions of λI,η and λS,η are shaped by two

major factors: (i) the structure imposed on ût (see
Assumption 2) and (ii) the choice of estimator μ̂i,t. In

particular, the sample average structure of ût makes
asymptotic analysis more tractable because it allows the
correlated biases {δij(ût) − δij(uc)} to be decoupled into
a weighted sum of i.i.d. samples Ds,t. To get a sense of
the limiting behavior of λI,η and λS,η, we investigate
two extreme cases:

Case 1. If η→ 1, then λI,η → 1 and λS,η →∞, which
coincides with the intuition that IU can be reduced by
dropping samples, but there will be fewer simulation
outputs to average out SU.

Case 2. If η � 0, then λI,η � 2 and λS,η � 1, that is,��
t

√
δ̂ij,t − δij(uc)
[ ]

⇒N (0, 2Σi,IU +Σi,SU), as t→∞:

(24)

To put (24) in perspective, we cite an asymptotic nor-
mality result from Wu and Zhou (2017) for the case of
static input data. Suppose that there is only a single
batch of input data, which we use to compute the
parameter estimate ût and then run simulations under
Pût

. Let μ̃i,t � 1
Mi(t)
∑Mi(t)

r�1 Xi,r(ût) be the estimator for
μi(uc). Under some mild conditions, we have��

t
√

δ̃ij,t − δij(uc)[ ]⇒N (0,Σi,IU +Σi,SU), as t→∞:

(25)

By comparing (24) with (25), it can be seen that the
weight of Σi,IU is doubled in the case of streaming

input data, whereas the weight of Σi,SU remains the
same, and the inflation of Σi,IU is due to estimation
error accumulated over multiple stages.

With Theorem 3, we approximate the joint distribu-
tion of Δi,t as

Δi,t≈DN (0,Σi,∞=t):
Then, {wij,t, j≠ i} is a (K− 1)-multidimensional quan-
tile. When given the confidence level 1−α, the choice
of K – 1-dimensional quantile is not unique because
the degree of freedom is K – 1. We can reduce the
degree of freedom to one by letting

P δ̂ij,t − δij(uc) ≥ −wij,t

( )
� P δ̂ij′,t − δij′ (uc) ≥ −wij′,t

( )
∀j≠ j′:

That is, all the confidence bands result in the same
probability coverage. This can be done easily under
the asymptotic normality of δ̂ij,t. To be specific, for
each i, we find the smallest wi,t, such that

P δ̂ij,t − δij(uc) ≥ −wi,tσij,t, ∀j≠ i
( )

≥ 1−α,

where σij,t refers to the variance of δ̂ij,t and we assume
δ̂ij,t approximately follows a normal distribution cen-
tered at δij(uc). We present the SEIU-MCB procedure
in the next section.

5.3. SEIU-MCB Procedure
With the elimination and selection rule stated in Sec-
tion 5.1, we have the SEIU-MCB procedure as follows.

SEIU-MCB
• Initialization. α ∈ (0, 1),η ∈ (0, 1), t � 1,S � I .
• Step 1. At stage t, update the estimate of θc using

new input data and run additional simulations using
CRN. For each system i ∈ S, compute μ̂i,t using (2).

• Step 2. Compute the simultaneous pairwise confi-
dence bands wij,t using (18) and (20) with confidence
level set as 6α

π2t2. Then, computeW−
i ,W

+
i using (19).

• Step 3. For each i, if W−
i � 0, then S � {i}; else if

W+
i � 0, S ← S\{i}. If |S | � 1, then go to Output. Incre-

ment t by one and go to step 1.
• Output. Output the only design in S as the optimal

system.
As we can see from the procedure, compared with

the SEIU in which we have the sub-Gaussian and Lip-
schitz continuous assumption, SEIU-MCB requires
much less knowledge of those parameter estimates.
This is attributed to the general asymptotic normality
result established in Section 5.2, by which we can com-
pute the confidence bands easily.

Moreover, from Section 5.2, we can see the drop rate
balances the impact of input uncertainty and simulation
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uncertainty characterized by the asymptotic covariance
matrix. Detailed discussions on minimizing such impact
through η are presented in Section EC.2.

6. Extension to the IZ Setting
In Sections 4 and 5, the SEIU and SEIU-MCB proce-
dures are designed to proceed until there is only one
design left in the remaining candidate set because of
our goal to identify the unique optimal design. How-
ever, in practice, selecting one of the “near-optimal”
designs is often sufficient, which is the motivation
behind the indifference zone R&S procedures. To be
more specific, an IZ R&S procedure aims to find an
ε-optimal design with a given ε > 0, that is, a design i∗
such that μi∗ ≥max1≤i≤Kμi − ε, where the ε is often
referred to as the IZ preference. Such an ε compromise
can sometimes dramatically save simulation effort,
especially when the optimal performance μb(uc) is close
to the second optimal performance μb′ (uc). Inspired by
Corollary 1, we can also extend our procedures to the
IZ setting and terminate the procedure when either
of these cases happens: (i) there is only one design
remaining or (ii) εt < ε. Denote by SEIU(IZ) and SEIU-
MCB(IZ), the procedures with the IZ setting.We add an
additional step 4 in both procedures to verify whether
an ε-optimal is found.

• Step 4 in SEIU(IZ). Let i∗ � argmaxi∈St μ̂i,t. If

max
j∈S, j≠i∗

wi∗j,t < ε,

then set S ← {i∗} and go to Output; otherwise, set t←
t+ 1 and go to step 1.

• Step 4 in SEIU-MCB(IZ). Let I � i ∈ S | −W−
i < ε

{ }
.

If |I | ≥ 1, let î
∗ � argmaxi∈I μ̂i,t, set S ←{î∗}, and go to

Output. Otherwise, increment t by one and go to step 1.
With similar intuition as Theorem 1, the following

corollary provides the statistical validity of SEIU(IZ)
and characterization of the number of stages needed
to terminate the algorithm.

Corollary 2. Let Assumption 3 hold and suppose that νs, σ̄ij,
and L̄ij are known. Then, SEIU(IZ) selects an ε-optimal de-
sign with probability at least 1− α. Furthermore, let τ denote
the number of stages it takes to terminate. Then,

τ ≤ inf t
∣∣∣ max
1≤i<j≤K

wij,t < ε

{ }
a:s: (26)

Corollary 2 shows that an advantage of using the IZ
criterion is that we can characterize the number of
stages needed to terminate in a stronger, almost sure
sense. The intuition is that, with the IZ criterion, when
the confidence band is small enough, we always either
identify the best design or reach the specified accuracy
(ε-optimal). Again, although we do not have a closed
form of the upper bound on τ, it clearly depends on

the width of the confidence bands, the true difference
δij(uc), and the IZ preference ε.

Another advantage of our IZ procedures compared
with the well-known KN procedure (see Kim and Nel-
son 2001) is that our procedures compute the confi-
dence bands independently of IZ preference and
terminate when either the best selection is made or
the IZ preference is satisfied. In contrast, the KN pro-
cedure computes the confidence bands by considering
a so-called “slippage configuration” in which the best
design has expected performance exactly δ better than
the second best. If the actual difference is bigger than
δ, the KN procedure computes a larger confidence
band and makes redundant simulations. In our proce-
dures, if we set δ smaller than the true difference of
the expected performance between the best and sec-
ond best designs, it does not affect the performance of
the procedures because they act at least as good as the
SEIU and SEIU-MCB procedures.

7. Numerical Results
The numerical study mainly consists of three parts:
(i) comparing our procedures with the KN++ proce-
dure, which does not consider input uncertainty; (ii)
investigating the performance of all our proposed pro-
cedures; (iii) optimizing η to boost the efficiency of
SEIU-MCB.

7.1. Test Problems
Two problems are used for numerical testing. One is to
minimize a quadratic objective function with a single
source of IU, and the other is a more complex pro-
duction inventory optimization problem from Hong
(2009) with multiple independent sources of IU. A
detailed description of the two problems can be found
in Sections EC.3.1 and EC.3.2. In all subsequent experi-
ments, we consider the following settings unless other-
wise stated:

i. Equal batch size: ns(t) � n,m(t) �m for some fixed
n,m ∈ Z

+.
ii. Random batch size: ns(t) andm(t) are i.i.d. samples

drawn from the uniform distribution on the lattice
{k̄, 2k̄, : : : , 5k̄} for some fixed k̄.

More specifically, in the case of unequal batch size,
the random samples of ns(t) and m(t) are independent
of input data and simulation outputs.

7.2. Experiment Results
In the following sections, we first use the simple quad-
ratic example to show the necessity of accounting for
input uncertainty by comparing the KN++ procedure
with our two IZ-type procedures: SEIU(IZ) and SEIU-
MCB(IZ). We then demonstrate the applicability and
effectiveness of all our proposed procedures on the
more general production inventory example, in which
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we havemultiple input distributions and allow different
batch sizes for both input data and simulation budget.
Finally, we show that the performance of SEIU-MCB can
be further boosted by optimizing η.

7.2.1. Necessity of Considering IU. We first use the
quadratic problem with equal batch size and I �
{uc + 0:3 · i : i ∈ [−5, 5] ∩ Z}, to test the three proce-
dures with the IZ setting: SEIU(IZ), SEIU-MCB(IZ),
and KN++. The KN++ procedure (Kim and Nelson
2006) is an extension of the KN procedure that allows
nonnormal observation data and updating the var-
iance estimator. The KN++ procedure uses average
batch mean to estimate the variance and updates the
variance estimator as more simulation outputs are
collected, and hence, it can be directly applied to our
example with equal batch size. Specifically, it is ap-
plied by ignoring the existence of input uncertainty
and carrying out simulations in each stage conditioned
on the current estimated input parameter. Table 1
shows the empirical PCS and average termination
stage along with their 95% confidence intervals based
on 100 independent runs of the three procedures with
different values of the IZ parameter δ and different
input data batch sizes. The empirical PCS is computed
as the percentage of algorithm runs that correctly select
the true optimal design. The target PCS is set as 90%.
Some observations can bemade as follows:

1. The empirical PCS of the KN++ procedure is less
than the target PCS 0.9 across all settings. The true differ-
ence between the best design and the second best is
0.16. Hence, with δ � 0:1, it is sufficient to identify the
best design. Furthermore, by examining the estimated in-
put parameters when incorrect selection or elimination
happens, we find that the KN++ procedure makes the

false selectionmainlywhen procedures terminate in ear-
lier stages, in which input parameters are estimated
more inaccurately. This implies the necessity of control-
ling the input error.

2. The SEIU-MCB(IZ) achieves the target PCS when
δ � 0:1 and shoots a higher PCS than KN++ in all set-
tings with mostly earlier termination. This implies the
high efficiency of the SEIU-MCB procedure even when
it takes IU into consideration.

3. Comparing SEIU(IZ) and SEIU-MCB(IZ), the
latter procedure requires much less simulation effort
and achieves more accurate empirical PCS. It shows
that the usage of asymptotic normality and MCB
in SEIU-MCB significantly relieves the conservative-
ness in the SEIU procedure. The empirical PCS of
SEIU(IZ) always overshoots the target PCS, revealing
the conservativeness of the procedure. The conserva-
tiveness is mainly a result of the Bonferroni inequal-
ity used in deriving the confidence bands in the SEIU
procedure.

7.2.2. Inventory Production Problem: A More General
Setting. In this section, we show the applicability and
effectiveness of all our proposed procedures using an
inventory production example, in which we have multi-
ple unknown input distributions with random batch
sizes for both input and simulation data.We set themax-
imal production amount R∗ � 4, holding cost cH � 0:5,
and backlog cost cB � 1. We consider two scenarios with
different input dimension S and input parameter θc: S �
2, uc � [4, 5]�, and S � 4, uc � [4, 5, 3, 3]�. The optimal
order-up-to quantity is selected among I � {1, 2, : : : , 10}.
For IZ procedures, we set the IZ preference δ � 0:3.
Table 2 shows the empirical PCS and average termina-
tion stage along with their 95% confidence intervals

Table 1. PCS and Termination Stage for Quadratic
Example (Equal Batch Size)

η � 0:5,ms � ns � 10

δ SEIU(IZ) SEIU-MCB(IZ) KN++(IZ)
0.3 98%61:7% 82%65% 75%68%

7766:2 1761:9 1561:5
0.2 99%60:6% 88%64% 83%67%

11166:7 1861:4 2161:3
0.1 100%60% 90%62% 85%66%

521 6 31 2560:9 3465:4

η � 0:5,ms � 10,δ � 0:2

ns SEIU(IZ) SEIU-MCB(IZ) KN++(IZ)
5 99%60:6% 87%65% 74%65%

17069:7 2561:6 2461:5
10 99%60:6% 88%64% 83%67%

11166:7 1861:4 2161:3
15 97%61:8% 89%64% 86%63%

8965:0 1660:9 1861:0

Table 2. PCS and Termination Stage for Production
Inventory Problem with Random Batch Size (η � 0:5)

θc � [4, 5]�(S � 2)
k̄ SEIU SEIU(IZ) SEIU-MCB SEIU-MCB(IZ)

10 100%60% 100%60% 90%64% 81%66%
364 6 16 205 6 13 4464:7 1761:2

20 100%60% 100%64% 94%63% 87%65%
15667:9 9065:5 2562:4 1160:6

30 100%60% 100%64% 96%62% 90%64%
10265:7 5463:8 1961:4 7.5 6 0.4

θc � [4, 5, 3, 3]�(S � 4)
k̄ SEIU SEIU(IZ) SEIU-MCB SEIU-MCB(IZ)

10 100%60% 100%60% 93%63% 90%64%
1137 6 152 528 6 84 6069:6 3063:1

20 100%60% 100%64% 95%62% 92%63%
522 6 102 235658 42 6 6 1861:6

30 100%60% 100%64% 96%62% 90%64%
301 6 33 139 6 30 3664:1 1461:2

Wu, Wang, and Zhou: Data-Driven Ranking and Selection Under Input Uncertainty
Operations Research, Articles in Advance, pp. 1–15, © 2022 INFORMS 13

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[2

61
0:

14
8:

20
02

:6
00

0:
32

48
:5

75
5:

47
41

:b
d2

] o
n 

13
 Ju

ne
 2

02
3,

 a
t 0

8:
09

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 



based on 100 independent runs of each procedure. We
summarize our observations as follows:

1. The SEIU and SEIU(IZ) procedures obtain the 100%
empirical PCS across all settings, overshooting the target
PCS. The improved procedures SEIU-MCB and SEIU-
MCB(IZ) significantly relieve the conservativeness and
achieve an empirical PCS much closer to the target and
terminating in amuch smaller number of stages.

2. Comparing the two scenarios in which the number
of unknown input distributions S � 2 and S � 4, the
actual difference between the best design and the second
best is similar, but all four procedures tend to terminate
in later stages when S� 4 than S� 2. Specifically, the ter-
mination stages of SEIU and SEIU(IZ) increase roughly
by a factor of three, whereas those of SEIU-MCB and
SEIU-MCB(IZ) increase by a factor of less than two.
Their empirical PCS also increase and overshoot the tar-
get PCS slightly when S� 4. This implies that a higher
dimension of input uncertainty can cause a larger impact
on both the PCS and the termination stage, and SEIU-
MCB and SEIU-MCB(IZ) aremore robust to this impact.

7.2.3. Optimizing the Drop Rate h. Finally, we explore
boosting the performance of SEIU-MCB by optimizing
η. The experiment setting and result can be found in
Section EC3.3. The result shows the optimized η im-
proves both the PCS and the termination stage.

8. Conclusion and Future Directions
We study ranking and selection under input uncertainty
in which input data arrive in time-varying batches over
time. A moving average estimator is proposed to aggre-
gate the simulation outputs under different input mod-
els across time stages because of the limited simulation
budget at each stage. We further propose the SEIU and
SEIU-MCB procedures by, respectively, deriving the ex-
act and asymptotic confidence bands in a substantially
extended sequential elimination framework. We also
derive the corresponding SEIU(IZ) and SEIU-MCB(IZ)
procedures to extend our algorithms to the indifference
zone setting. We analyze the impact of the drop rate
of the moving average estimator on the procedures.
Numerical results show the necessity of our proposed
procedures under input uncertainty and the statistical
validity to achieve the target PCS. The SEIU-MCBproce-
dure is highly efficient for practical use and can be accel-
erated by optimizing the drop rate.

There are several future research directions. First,
other methods can be used to update the input model
and aggregate simulation outputs over time stages.
Second, other R&S procedures can be extended to the
setting of streaming input data, especially when (asy-
mptotic) normality of the aggregated performance
estimate could be established. Third, other types of per-
formancemeasure, such as quantiles, can be considered
in data-driven ranking and selection problems.

Acknowledgments
The authors thank the associate editor and anonymous review-
ers for their careful reading of the paper and very constructive
comments that led to a substantially improved paper.

References
Barton RR, Schruben LW (1993) Uniform and bootstrap resampling

of empirical distributions. Evans GW, Mollaghasemi M, Russell
EC, Biles WE, eds. Proc. 1993 Winter Simulation Conf. (IEEE, Pis-
cataway, NJ), 503–508.

Barton RR, Nelson BL, Xie W (2014) Quantifying input uncertainty via
simulation confidence intervals. INFORMS J. Comput. 26(1):74–87.

Batur D, Kim SH (2006) Fully sequential selection procedures with a
parabolic boundary. IIE Trans. 38(9):749–764.

Bechhofer RE (1954) A single-sample multiple decision procedure
for ranking means of normal populations with known varian-
ces. Ann. Math. Statist. 25(1):16–39.

Chang JY, Hsu JC (1992) Optimal designs for multiple comparisons
with the best. J. Statist. Planning Inference 30(1):45–62.

Cheng RC, Holland W (1997) Sensitivity of computer simulation
experiments to errors in input data. J. Statist. Comput. Simulation
57(1–4):219–241.

Chick SE (2001) Input distribution selection for simulation experi-
ments: Accounting for input uncertainty.Oper. Res. 49(5):744–758.

Corlu CG, Biller B (2013) A subset selection procedure under input
parameter uncertainty. Pasupathy R, Kim S-H, Tolk A, Hill R,
Kuhl ME, eds. Proc. 2013 Winter Simulation (IEEE, Piscataway,
NJ), 463–473.

Corlu CG, Biller B (2015) Subset selection for simulations accounting
for input uncertainty. Yilmaz L, Chan WKV, Moon I, Roeder
TMK, Macal C, Rossetti MD, eds. Proc. 2015 Winter Simulation
Conf. (IEEE, Piscataway, NJ), 437–446.

Corlu CG, Akcay A, Xie W (2020) Stochastic simulation under input
uncertainty: A review. Oper. Res. Perspect. 7:100162.

Eckman DJ, Feng MB (2018) Green simulation optimization using
likelihood ratio estimators. Rabe M, Juan AA, Mustafee N,
Skoogh A, Jain S, Johansson B, eds. Proc. 2018 Winter Simulation
Conf. (IEEE, Piscataway, NJ), 2049–2060.

Even-Dar E, Mannor S, Mansour Y (2002) PAC bounds for multi-
armed bandit and Markov decision processes. Kivinen J, Sloan
RH, eds. Internat. Conf. Comput. Learn. Theory (Springer, Berlin),
255–270.

Even-Dar E, Mannor S, Mansour Y (2006) Action elimination and
stopping conditions for the multi-armed bandit and reinforce-
ment learning problems. J. Machine Learn. Res. 7:1079–1105.

Fan W, Hong LJ, Nelson BL (2016) Indifference-zone-free selection
of the best. Oper. Res. 64(6):1499–1514.

Fan W, Hong LJ, Zhang X (2020) Distributionally robust selection of
the best. Management Sci. 66(1):190–208.

Feng BM, Song E (2019) Efficient input uncertainty quantification
via green simulation using sample path likelihood ratios. Mus-
tafee N, Bae K-HG, Lazarova-Molnar S, Rabe M, Szabo C, Haas
P, Son Y-J, eds. Proc. 2019 Winter Simulation Conf. (IEEE, Piscat-
away, NJ), 3693–3704.

Feng M, Staum J (2015) Green simulation designs for repeated
experiments. Yilmaz L, Chan WKV, Moon I, Roeder TMK,
Macal C, Rossetti MD, eds. Proc. 2015 Winter Simulation Conf.
(IEEE, Piscataway, NJ), 403–413.

Feng M, Staum J (2017) Green simulation: Reusing the output of
repeated experiments. ACM Trans. Model. Comput. Simulation
27(4):1–28.

Frazier PI (2014) A fully sequential elimination procedure for
indifference-zone ranking and selection with tight bounds on
probability of correct selection. Oper. Res. 62(4):926–942.

FuMC, ed. (2015)Handbook of SimulationOptimization, vol. 216 (Springer,
Berlin).

Wu, Wang, and Zhou: Data-Driven Ranking and Selection Under Input Uncertainty
14 Operations Research, Articles in Advance, pp. 1–15, © 2022 INFORMS

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[2

61
0:

14
8:

20
02

:6
00

0:
32

48
:5

75
5:

47
41

:b
d2

] o
n 

13
 Ju

ne
 2

02
3,

 a
t 0

8:
09

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 



Gabillon V, Ghavamzadeh M, Lazaric A (2012) Best arm identification:
A unified approach to fixed budget and fixed confidence. Pereira F,
Burges CJ, Bottou L, Weinberger KQ, eds. Adv. Neural Inform. Proc-
essing Systems, vol. 25 (MITPress, Cambridge,MA), 3212–3220.

Gao S, Xiao H, Zhou E, Chen W (2017) Robust ranking and selection
with optimal computing budget allocation. Automatica 81:30–36.

Garivier A, Kaufmann E (2016) Optimal best arm identification with
fixed confidence. Feldman V, Rakhlin A, Shamir O, eds. Conf.
Learn. Theory (PMLR, New York), 998–1027.

Goldsman D, Kim SH, Marshall WS, Nelson BL (2002) Ranking and
selection for steady-state simulation: Procedures and perspec-
tives. INFORMS J. Comput. 14(1):2–19.

Ho YC, Sreenivas R, Vakili P (1992) Ordinal optimization of DEDS.
Discrete Event Dynamic Systems 2(1):61–88.

Hong LJ (2006) Fully sequential indifference-zone selection procedures
with variance-dependent sampling.Naval Res. Logist. 53(5):464–476.

Hong LJ (2009) Estimating quantile sensitivities. Oper. Res. 57(1):
118–130.

Hong LJ, Nelson BL (2005) The tradeoff between sampling and
switching: New sequential procedures for indifference-zone
selection. IIE Trans. 37(7):623–634.

Hong LJ, Nelson BL (2007) Selecting the best system when systems
are revealed sequentially. IIE Trans. 39(7):723–734.

Jamieson K, Nowak R (2014) Best-arm identification algorithms for
multi-armed bandits in the fixed confidence setting. Czachórski
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