


and solving generalized versions of the Fokker-Planck equation

governing the evolution in time of the non-Markovian response

process PDF; see, indicatively, Sapsis and Athanassoulis (2008),

Mamis et al. (2019), and references therein. Clearly, such ap-

proaches exhibit significant theoretical merit. However, in general,

they lack versatility and resort to ad hoc approximations, whereas

in many cases the computational challenges can be significant.

One of the promising solution techniques in stochastic engi-

neering dynamics relates to the concept of Wiener path integral

(WPI) (e.g., Wiener 1921; Chaichian and Demichev 2001). Spe-

cifically, a WPI-based technique for stochastic response determi-

nation of diverse dynamical systems has recently been developed

(e.g., Kougioumtzoglou and Spanos 2012; Psaros et al. 2018;

Petromichelakis et al. 2020). In this regard, the system response

joint transition PDF is given as a functional integral over the space

of all possible paths connecting the initial and the final states

of the response vector. Notably, this functional integral is rarely

amenable to analytical evaluation. Thus, an approximate calcula-

tion is pursued by considering, ordinarily, the contribution only

of the path with the maximum probability of occurrence. This

is known as the most probable path and corresponds to an

extremum of the functional integrand. In this regard, the most

probable path is determined by solving a functional minimiza-

tion problem that takes the form of a deterministic boundary value

problem.

Remarkably, the technique exhibits both high accuracy and low

computational cost (e.g., Petromichelakis and Kougioumtzoglou

2020; Psaros and Kougioumtzoglou 2020). However, the formu-

lation of the WPI technique has been developed to-date in conjunc-

tion with the Markovian assumption for the system response

process. In this paper, an alternative novel formalism is developed

for the WPI technique for circumventing the Markovian response

assumption. Specifically, considering the probability of a path cor-

responding to the Wiener (excitation) process, and employing a

functional change of variables in conjunction with the governing

stochastic differential equation, yields the probability of a path

corresponding to the response process. This leads to representing

the system response joint transition PDF as a functional integral

over the space of possible paths connecting the initial and final

states of the response vector. This is done without invoking the

assumption of a Markovian response process. Overall, the veracity

and mathematical legitimacy of the WPI technique to treat also

non-Markovian system response processes are demonstrated. In

this regard, nonlinear systems with a history-dependent state, such

as hysteretic structures or oscillators endowed with fractional

derivative elements, can be accounted for in a direct manner—that

is, without resorting to any ad hoc modifications of the WPI tech-

nique pertaining, typically, to employing additional auxiliary filter

equations and state variables.

Preliminaries

Markov Processes and Stochastic Differential
Equations

In this section, the basic aspects of Markov processes and the

associated Chapman-Kolmogorov equation are presented for com-

pleteness; see also, indicatively, Gardiner (1985) and Grigoriu

(2002) for a broader perspective.

In this regard, consider a vector stochastic process α, where

α ¼ ½αj�n×1 is a n-length vector whose components αj, ∀j ∈

f1; : : : ; ng, are themselves scalar stochastic processes. Next, con-

sider α to be a Markov process. That is, for every l and for

t0 < · · · < tl, the following relationship for the corresponding tran-

sition PDF holds true:

pðαl; tljαl−1; : : : ; α1; tl−1; : : : ; t0Þ ¼ pðαl; tljαl−1; tl−1Þ ð1Þ

Considering Eq. (1), it can be readily seen that for a Markov

process α, each state ftl; αlg depends only on the previous (in time)

state ftl−1;αl−1g. Also, for any three distinct time instants

tl−1 < tl < tlþ1, the Chapman-Kolmogorov equation is satisfied.

That is,

pðαlþ1;tlþ1jαl−1;tl−1Þ¼
Z

pðαlþ1;tlþ1jαl;tlÞpðαl;tljαl−1;tl−1Þdαl

ð2Þ

It is remarked that for a wide range of engineering dynamics

applications (e.g., Li and Chen 2009) the governing equations

of motion take the form of a coupled system of stochastic differ-

ential equations, i.e.,

dα ¼ Aðα; tÞdtþ Bðα; tÞdW ð3Þ

where Aðα; tÞ and Bðα; tÞ represent the drift vector and diffusion

matrix, respectively; andW denotes the Wiener process, which is a

Markov process with independent increments; i.e., Wðtlþ1Þ ¼
WðtlÞ þΔWðtl; tlþ1Þ, ∀l ≥ 0, with ΔWðtl; tlþ1Þ being statistically
independent from any other increment corresponding to different

time instants. Furthermore,W has continuous, nowhere differentia-

ble, sample paths and is a Gaussian stochastic process. Notwith-

standing some loss of mathematical rigor, Eq. (3) is written

alternatively as

α̇ ¼ Aðα; tÞ þ Bðα; tÞηðtÞ ð4Þ

where the dot above a variable denotes differentiation with respect

to time t; and η denotes a zero-mean and delta-correlated Gaussian

white-noise stochastic process of intensity one. That is, E½ηjðtÞ� ¼
0 and E½ηjðtlÞηkðtlþ1Þ� ¼ δjkδðtl − tlþ1Þ for any j; k ∈ f1; : : : ; ng,
where δjk is the Kronecker delta, and δðtÞ is the Dirac delta func-
tion. Regarding the relation between the Wiener and the whitenoise

processes, ηðtÞ can be defined as an infinitesimal jump of the Wie-

ner process, i.e., ηðtÞdt ¼ dW. Thus, it is often, informally, written

as the time derivative of the Wiener process in the form ηðtÞ ¼
dW=dt; see also Gardiner (1985) and Øksendal (2003) for a more

detailed discussion on the topic.

Note that the Markovian assumption for the process α as the

response of a dynamical system governed by Eq. (4) has been

adopted, routinely, by various solution methodologies developed

in the field of stochastic engineering dynamics (e.g., Li and

Chen 2009). Indicatively, based on preliminary work in theoretical

physics (Wehner and Wolfer 1983), numerical path integration has

been developed and firmly established as a robust solution tool in

stochastic engineering dynamics (e.g., Naess and Johnsen 1993;

Chen et al. 2018). Specifically, numerical path integration essen-

tially constitutes a discrete version of the Chapman-Kolmogorov

Eq. (2), which utilizes an appropriately chosen short-time transition

PDF for advancing in time the system response joint PDF.

The scheme exhibits excellent accuracy in determining even the

tails of the response PDF. However, it becomes computationally

prohibitive with increasing dimensionality. This is due to the fact

that a multiconvolution integral needs to be computed for each

and every time step, whereas the requisite time increment must

remain short. Regarding the short-time transition PDF, it was

shown by Dekker (1976) that this can be approximated as ϵ ¼
tlþ1 − tl → 0 by
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pðαiþ1; tiþ1jαi; tiÞ ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2πεÞn det½ ~Bðαi; tiÞ�
q

�

−1

× exp

�

−
1

2

½αiþ1 − αi − ϵAðαi; tiÞ�T ½ ~Bðαi; tiÞ�−1½αiþ1 − αi − ϵAðαi; tiÞ�
ϵ

�

ð5Þ

where ~Bðα; tÞ ¼ Bðα; tÞBTðα; tÞ (e.g., Langouche et al. 1979).

Clearly, numerical path integration relies on the Markovian re-

sponse assumption. Thus, it cannot be used in a direct manner for

treating stochastic processes with a non-Markovian behavior, such

as the response of systems exhibiting hysteresis or endowed with

fractional derivative elements; see also Di Paola and Alotta (2020)

for a relevant discussion. Typically, the aforementioned limitation is

bypassed in the literature either by considering an augmented re-

sponse vector or by applying a stochastic averaging treatment.

In the former case, auxiliary equations are utilized for describing

the dependence of the state of the system on its history; see, for

example, the popular Bouc-Wen hysteretic model (e.g., Ikhouane

and Rodellar 2007), or a recent approach by Di Paola and Alotta

(2020), where the equation of motion of a single degree-of-freedom

(DOF) linear oscillator with a fractional derivative term is recast

into a set of coupled linear equations involving integer-order deriv-

atives and additional state variables.

In the latter case, stochastic averaging relates to a Markovian

approximation of an appropriately chosen amplitude of the system

response, and to a dimension reduction of the original problem

(e.g., Spanos et al. 2018). Notably, stochastic averaging has been

used in conjunction with numerical path integration for treating ar-

bitrary forms of non-white and non-stationary stochastic excitations,

as well as systems with diverse hysteretic behaviors (e.g., Naess

and Moe 1996; Kougioumtzoglou and Spanos 2013).

However, modeling the history-dependent response behavior

via additional state variables and equations can be a challenging

task that also increases the associated computational cost, whereas

a stochastic averaging solution treatment introduces considerable

approximations.

Wiener Path Integral Formalism Based on Markovian
Response Assumption

This section presents in a concise manner the salient elements

of a recently developed technique for determining approximately

the stochastic response of diverse structural and mechanical sys-

tems (e.g., Kougioumtzoglou and Spanos 2012; Kougioumtzoglou

2017; Petromichelakis and Kougioumtzoglou 2020). The technique

relies on functional integration concepts for representing the system

response joint PDF as a WPI over the space of all possible paths

(e.g., Chaichian and Demichev 2001). TheWPI formalism has been

developed to-date in conjunction with the Markovian assumption

for the response process (e.g., Psaros and Kougioumtzoglou 2020).

Specifically, consider the probability of the process α propagat-

ing through some infinitesimally thin tube surrounding a path αðtÞ,
∀t ∈ ½ti; tf�, with fixed initial and final states fti; αig and ftf;αfg,
respectively. This can be construed as the probability of the

compound event that the path αðtÞ successively passes through

gates corresponding to specific time instants (e.g., Chaichian and

Demichev 2001). Next, relying on the Markov properties of α, the

probability of the compound event is expressed, equivalently, as the

product of the probabilities corresponding to the independent

events. The independent events are described by Eq. (5), and thus,

the product of the probabilities takes the form

P½αðtÞ� ¼ lim
ϵ→0

��

Y

L

l¼0

��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2πϵÞn det½ ~Bðαl; tlÞ�
q

�
−1
���

Y

L

l¼1

Y

n

j¼1

dαj;l

�

× exp

�

−
1

2

X

L

l¼0

½αlþ1 − αl − ϵAðαl; tlÞ�T ½ ~Bðαl; tlÞ�−1½αlþ1 − αl − ϵAðαl; tlÞ�
ϵ

��

ð6Þ

In Eq. (6), the time domain is discretized into Lþ 2 points,

ϵ apart (with L→∞ as ϵ→ 0), as ti ¼ t0 < t1 < · · · < tLþ1 ¼ tf,

and the path αðtÞ is represented by its values αl at the discrete time

points tl, for l ∈ f0; : : : ;Lþ 1g. Also, dαjl denotes the (infinite in

number) infinitesimal gates through which the path propagates. In

the continuous limit, Eq. (6) becomes

P½αðtÞ� ¼ exp

�

−

Z

tf

ti

L½α̇;α�
�

D½αðtÞ� ð7Þ

where the Lagrangian functional L½α̇;α� is given by

L½α̇;α� ¼ 1

2
½α̇ − Aðα; tÞ�T ½ ~Bðα; tÞ�−1½α̇ − Aðα; tÞ� ð8Þ

and D½αðtÞ� takes the form

D½αðtÞ� ¼
Y

n

j¼1

D½αjðtÞ� ¼
Y

n

j¼1

Y

tf

t¼ti

dαjðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πðdet½ ~Bðα; tÞ�Þ1=ndt
q ð9Þ

Further, it is rather intuitive to argue that the respective proba-

bilities of each and every path given by Eq. (7) need to be ac-

counted for, and loosely speaking, summed up to evaluate the
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total probability of α starting from αi at time ti and reaching αf at

time tf . In this regard, denoting the set of all paths with initial state

αi at time ti and final state αf at time tf by Cfαi; ti; αf; tfg, the joint
transition PDF pðαf; tfjαi; tiÞ takes the form of a functional inte-

gral over Cfαi; ti; αf; tfg, i.e.,

pðαf; tfjαi; tiÞ ¼
Z

Cfαi;ti;αf ;tfg
expð−S½α̇;α�ÞD½αðtÞ� ð10Þ

where

S½α̇;α� ¼
Z

tf

ti

L½α̇;α�dt ð11Þ

It can be readily seen that the WPI formalism presented in this

section relies on the assumption that the system response behaves as

a Markov process. Thus, similarly to the numerical path integration

scheme discussed previously, it appears that the aforementioned

WPI formalism cannot treat in a direct manner stochastic processes

with a non-Markovian behavior, such as the response of systems

exhibiting hysteresis or endowed with fractional derivative ele-

ments. Nevertheless, the WPI technique has been capable of deter-

mining the stochastic response of such systems with a history-

dependent state provided that they are modeled by utilizing addi-

tional auxiliary equations and degrees of freedom; see, for instance,

Petromichelakis et al. (2020) where a stochastically excited Bouc-

Wen nonlinear hysteretic oscillator was considered.

Further, a conceptually different WPI-based approach was fol-

lowed by Di Matteo et al. (2014) for treating nonlinear systems

with fractional derivative elements subject to Gaussian white-noise

excitation. Specifically, by employing the Lagrangian functional

of a Gaussian white-noise process that is known in closed-form

(e.g., Chaichian and Demichev 2001), a Lagrangian functional re-

ferring to the system response process was defined. This was done

in a rather heuristic manner by simply substituting the left-hand

side of the equation of motion into the white-noise Lagrangian

expression and by interpreting the resulting Lagrangian functional

as the one corresponding to the response process. In this regard,

although the excitation (input) process is Markovian, the Markovian

assumption for the system response process is not invoked; see also

Di Paola and Alotta (2020) for a discussion. Remarkably, the afore-

mentioned WPI-based technique exhibited a high degree of accu-

racy in determining the system response joint PDF, which further

supported the veracity of the expression for the Lagrangian func-

tional proposed by Di Matteo et al. (2014).

In the ensuing analysis, to demonstrate the mathematical legiti-

macy of the approach proposed by Di Matteo et al. (2014), a rig-

orous derivation of a novel WPI formalism is developed based on

functional change of variables. The novel formulation circumvents

the Markovian assumption for the system response process. Thus, it

is shown that the WPI technique can also treat, in a straightforward

manner, systems whose response exhibits non-Markovian charac-

teristics, such as the response of hysteretic systems or of oscillators

with fractional derivative elements.

Mathematical Formulation

Circumventing the Markovian Response Assumption:
A Novel Wiener Path Integral Formalism Based on
Functional Change of Variables

Consider an m-DOF nonlinear system governed by

Mẍþ gðx; ẋ; tÞ ¼ wðtÞ ð12Þ

where x is the displacement vector process ðx ¼ ½x1; : : : ; xm�TÞ;M
is the m ×m mass matrix of the system; and gð·Þ is an arbitrary

nonlinear vector function that can account for possible dependence

of the state of the system on its history. In this regard, gð·Þ can

include, indicatively, fractional derivatives or other integro-

differential operators modeling hysteresis. Thus, in general, the re-

sponse process cannot be modeled as Markovian. Further, wðtÞ is a
white-noise stochastic vector process with E½wðtÞ� ¼ 0 and

E½wðtÞwTðtþ τÞ� ¼ SwδðτÞ, where Sw ∈ R
m×m is a nonsingular

symmetric matrix.

In the following, a novel WPI formalism is developed capable of

also treating systems whose response exhibits a non-Markovian

behavior. In fact, considering the probability of a path and the as-

sociated transition PDF corresponding to the Wiener (excitation)

process, and employing a functional change of variables in con-

junction with the governing stochastic differential equation, yields

the joint transition PDF of the system response. Remarkably, this is

expressed as a functional integral given by Eq. (10) without invok-

ing the assumption of a Markovian response process.

Specifically, by employing a state variable formulation, Eq. (12)

is recast in the form of Eq. (4) with n ¼ 2m, where

α ¼
�

x

ẋ

�

¼
�

x

v

�

¼
�

α1

α2

�

ð13Þ

Aðα; tÞ ¼
�

v

−M−1gðx; v; tÞ

�

¼
�

A1

A2

�

ð14Þ

and

Bðα; tÞ ¼
�

0m×m 0m×m

0m×m M−1
ffiffiffiffiffiffi

Sw
p

�

ð15Þ

where the square root of matrix Sw is given by
ffiffiffiffiffiffi

Sw
p ffiffiffiffiffiffi

Sw
p

T ¼ Sw.

Next, considering a discretization of the time domain into Lþ 2

points ϵ apart as in Eq. (6), i.e., ti ¼ t0 < · · · < tLþ1 ¼ tf, it has been

shown (e.g., Chaichian and Demichev 2001) that the probability of

a path corresponding to the n-dimensional Wiener vector process

of Eq. (3) withWðt0Þ ¼ W0,WðtfÞ ¼ Wf andΔWl ¼ Wlþ1 −Wl

is given by

P½WðtÞ� ¼ lim
ϵ→0

8

<

:

exp

�

−
1

2ϵ

X

L

l¼0

ΔWT
l ΔWl

�

×
Y

L

l¼0

h

ffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2πϵÞn
p

i

−1
Y

n

j¼1

"

Y

Lþ1

l¼1

dWj;l

#

9

=

;

ð16Þ

Alternatively, Eq. (16) can be derived by setting Aðα; tÞ ¼ 0 and

Bðα; tÞ ¼ I in Eq. (3). In this regard, α ¼ W and Eq. (6) degener-

ates to Eq. (16). Further, considering Eq. (16) and accounting for

the probabilities of all possible paths that the Wiener processW can

follow, the corresponding transition PDF is given as the limit of an

L-dimensional integral (with L→∞, or equivalently ϵ→ 0) in the

form

pðWf; tfjWi; tiÞ ¼ lim
ϵ→0

Z

∞

−∞

· · ·

Z

∞

−∞

fðW0; : : : ;WLþ1Þ

×
Y

L

l¼0

h

ffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2πϵÞn
p

i

−1 Y
n

j¼1

"

Y

Lþ1

l¼1

dWj;l

#

ð17Þ

where
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fðW0; : : : ;WLþ1Þ ¼ exp

�

−
1

2ϵ

X

L

l¼0

ΔWT
l ΔWl

�

ð18Þ

Furthermore, the transition PDF of a stochastic process α that is

related toW at an arbitrary time instant tl viaWl ¼ hlðα0; : : : ;αlÞ,
where hlð·Þ is a differentiable function, can be evaluated by em-

ploying a functional change of variables in Eq. (17). That is,

pðαf; tfjαi; tiÞ

¼ lim
ϵ→0

Z

∞

−∞

· · ·

Z

∞

−∞

fðh0ðα0Þ; : : : ;hlðα0; : : : ;αlÞ; : : : ;

hLþ1ðα0; : : : ;αLþ1ÞÞ× detðJÞ
Y

L

l¼0

�

ffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2πϵÞn
p

�

−1Yn

j¼1

"

Y

Lþ1

l¼1

dαj;l

#

ð19Þ

where J is the Jacobian of the transformation (e.g., Chaichian and

Demichev 2001).

Clearly, in the herein considered problem, hlð·Þ corresponds to

the relationship between W and α as given by Eq. (3). In fact, note

that hlð·Þ in Eq. (19) is defined so that at tl it depends not only on the
variable αl, but also on the previous in time variables α0; : : : ;αl−1.

In this manner, hlð·Þ can account also for cases where Eq. (3), or

equivalently Eq. (12), incorporates hysteretic elements. In this re-

gard, employing the Itô discretization rule (e.g., Grigoriu 2002;

Øksendal 2003), the discretized in time Eq. (3) takes the form

Δαl ¼ ϵAl þ BlΔWl ð20Þ

whereΔαl ¼ αlþ1 − αl. Further, to bypass the singularity of matrix

Bl in Eq. (20) given by Eq. (15), an auxiliary variable β → 0 is em-

ployed, and Eq. (15) is cast in the form

B̄ðα; tÞ ¼
�

ffiffiffi

β
p

Im×m 0m×m

0m×m B̂

�

ð21Þ

with B̂ ¼ M−1
ffiffiffiffiffiffi

Sw
p

. Next, Eq. (21) is inverted and Eq. (20) is solved

for ΔWl yielding

ΔWl ¼

2

6

4

1
ffiffiffi

β
p ½Δxl − ϵvl�

B̂−1
l ½Δvl − ϵA2;l�

3

7

5
ð22Þ

where Eqs. (13) and (14) have been taken into account. Thus, con-

sidering Eq. (22), the product ΔWT
l ΔWl becomes

ΔWT
l ΔWl ¼

1

β
½Δxl − ϵvl�T ½Δxl − ϵvl�

þ ½Δvl − ϵA2;l�T ~B−1
l ½Δvl − ϵA2;l� ð23Þ

where

~B
−1
l ¼ ðB̂lB̂

T
l Þ−1 ¼ ðB̂−1

l ÞTB̂−1
l ð24Þ

Furthermore, manipulating Eq. (22) yields

Wl ¼

2

6

4

1
ffiffiffi

β
p xl þW1;l−1 −

1
ffiffiffi

β
p ½xl−1 þ ϵvl−1�

B̂−1
l−1vl þW2;l−1 − B̂−1

l−1½vl−1 þ ϵA2;l−1�

3

7

5
ð25Þ

where W ¼ ½W1;W2�T . Next, employing sequentially l − 1

times Eq. (25) for eliminating its dependence on the history

of W, and also considering the Wiener process property W0 ¼ 0

(e.g., Grigoriu 2002), yields

Wl ¼

2

6

6

6

6

4

1
ffiffiffi

β
p ðxl − x0Þ −

ϵ
ffiffiffi

β
p

X

l

k¼1

vk−1

X

l

k¼1

B̂−1
k−1ðvk − vk−1 − ϵA2;k−1Þ

3

7

7

7

7

5

ð26Þ

Obviously, comparing the relationship Wl ¼ hlðα0; : : : ; αlÞ with

Eq. (26), it is readily seen that

hlðα0; : : : ;αlÞ ¼

2

6

6

6

6

4

1
ffiffiffi

β
p ðxl − x0Þ −

ϵ
ffiffiffi

β
p

X

l

k¼1

vk−1

X

l

k¼1

B̂−1
k−1ðvk − vk−1 − ϵA2;k−1Þ

3

7

7

7

7

5

ð27Þ

In this regard, the Jacobian matrix J in Eq. (19) takes the form

J ¼

2

6

6

6

6

6

6

6

4

K1;1 K1;2 K1;Lþ1

K2;1
. .
. ..

.

..

. . .
. ..

.

KLþ1;1 KLþ1;Lþ1

3

7

7

7

7

7

7

7

5

ð28Þ

where

Kl1;l2
¼
�

∂hj1;l1
∂αj2;l2

�

2m×2m

; j1; j2 ∈ f1; · · · ;2mg; l1; l2 ∈ f1; : : : ;Lþ 1g

ð29Þ

Note that based on the definition of hlðα0; : : : ;αlÞ, which cor-

responds to causal systems, hj;l1 does not depend on αl2
for all j ∈

f1; · · · ; 2mg and l1 < l2 ∈ f1; : : : ;Lþ 1g. Thus,

Kl1;l2
¼ 02m×2m for l1 < l2 ð30Þ

Consequently, based on Eq. (30), J is a lower-triangular block ma-

trix. Considering Eq. (29) in conjunction with Eq. (27), the diago-

nal elements Kl;l become

Kl;l ¼

2

4

1
ffiffiffi

β
p Im×m 0m×m

0m×m B̂−1
l−1

3

5; for l ∈ f1; : : : ;Lþ 1g ð31Þ

Thus, the determinant of J is given by (Strang 2016)

jJj ¼
Y

Lþ1

l¼1

jKl;lj ¼
�

Y

Lþ1

l¼1

�

1
ffiffiffi

β
p

�

m
��

Y

Lþ1

l¼1

jB̂l−1j−1
�

¼
�

Y

L

l¼0

�

1
ffiffiffi

β
p

�

m
��

Y

L

l¼0

j ~Blj
−1
2

�

ð32Þ

Next, substituting Eq. (23) and Eq. (32) into Eq. (19) yields
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pðαf; tfjαi; tiÞ ¼ lim
ϵ→0

Z

∞

−∞

· · ·

Z

∞

−∞

�

Y

L

l¼0

��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2πϵÞnj ~Blj
q

�

−1
���

Y

L

l¼1

Y

n

j¼1

dαj;l

�

× exp

�

−
1

2ϵ

X

L

l¼0

1

β
½Δxl − ϵvl�T ½Δxl − ϵvl� þ ½Δvl − ϵA2;l�T ~B−1

l ½Δvl − ϵA2;l�
�

ð33Þ

or, equivalently

pðαf; tfjαi; tiÞ ¼ lim
ϵ→0

Z

∞

−∞

· · ·

Z

∞

−∞

�

Y

L

l¼0

Y

m

j¼1

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πϵj ~Blj
1
m

q
�

−1
��

Y

L

l¼1

Y

m

j¼1

dxj;l

�

×

�

Y

L

l¼1

Y

m

j¼1

dvj;l

�

exp

�

−
1

2ϵ

X

L

l¼0

½Δvl − ϵA2;l�T ~B−1
l ½Δvl − ϵA2;l�

�

×

�

Y

L

l¼0

Y

m

j¼1

1
ffiffiffi

β
p exp

�

−
1

2βϵ
½Δxjl − ϵvjl�2

��

ð34Þ

Further, taking the limit as β → 0 and employing the delta function

properties yields (e.g., Demidov 2001)

lim
β→0

1
ffiffiffi

β
p exp

�

−
1

2βϵ
½Δxjl − ϵvjl�2

�

¼ ϵδðΔxjl − ϵvjlÞ ð35Þ

Note that in the continuous limit, Eq. (35) simply enforces the

compatibility condition ẋ ¼ v on Eq. (34). Lastly, combining

Eqs. (34) and (35) and taking the continuous limit, as ϵ→ 0,

the transition PDF of the process α converges to the exact same

form as in Eq. (10), where the Lagrangian functional is given

by Eq. (8). Specifically, employing Eq. (13) and expressing α in

terms of ðx; ẋÞ, the response transition PDF of the system of

Eq. (12) is given by

pðxf; ẋf; tfjxi; ẋi; tiÞ ¼
Z

Cfxf ;ẋf ;tf ;xi;ẋi;tig
expð−S½x; ẋ; ẍ�ÞD½xðtÞ�

ð36Þ

where

S½x; ẋ; ẍ� ¼
Z

tf

ti

L½x; ẋ; ẍ�dt ð37Þ

The Lagrangian functional L½x; ẋ; ẍ� in Eq. (37) takes the form

L½x; ẋ; ẍ� ¼ 1

2
½Mẍþ gðx; ẋ; tÞ�T S−1w ½Mẍþ gðx; ẋ; tÞ� ð38Þ

and

D½xðtÞ� ¼
Y

m

j¼1

D½xjðtÞ� ¼
Y

m

j¼1

Y

tf

t¼ti

dxjðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πðdet½ ~Bðx; tÞ�Þ1
mdt

q ð39Þ

Overall, an alternative novel WPI formalism has been developed

in this section based on functional change of variables. In com-

parison with previous efforts, which resort to the Chapman-

Kolmogorov Eq. (2) as the starting point (e.g., Petromichelakis and

Kougioumtzoglou 2020; Psaros and Kougioumtzoglou 2020), the

Markovian assumption for the system response process has been

circumvented. In fact, the mathematical legitimacy of using the

general form of the Lagrangian functional given by Eq. (8), or

equivalently Eq. (38), also for systems whose response exhibits

non-Markovian characteristics, has been demonstrated. In this re-

gard, systems with a history-dependent state, such as hysteretic

structures or oscillators endowed with fractional derivative ele-

ments, can be treated in a direct manners. That is, without resorting

to ad hoc modifications of the technique pertaining, typically, to

considering additional auxiliary equations and state variables.

Most Probable Path Approximation

In this section the basic aspects of the numerical implementation of

the WPI technique are presented for completeness. The interested

reader is also directed to Di Matteo et al. (2014), to Petromichelakis

et al. (2020) and to Petromichelakis et al. (2021a) for more details

and a broader perspective.

In this regard, note that the analytical calculation of the WPI of

Eq. (36) for determining the transition PDF of the process x is, in

general, impossible. Thus, alternative approaches are typically pur-

sued in the literature for evaluating approximately Eq. (36), such as

the most probable path approach (e.g., Chaichian and Demichev

2001). It is remarked that the most probable path approximation

has exhibited a quite high degree of accuracy in various diverse

engineering mechanics applications (e.g., Kougioumtzoglou 2017;

Petromichelakis et al. 2018, 2021b). In fact, as proved by Psaros

et al. (2020), for the case of linear systems, the most probable path

approximation yields the exact joint response PDF.

Specifically, the largest contribution to the functional integral of

Eq. (36) relates to the trajectory xcðtÞ for which the stochastic ac-

tion of Eq. (37) becomes as small as possible. This leads to the

variational (functional minimization) problem

minimize
Cfxi;ẋi;ti;xf ;ẋf ;tfg

S½x; ẋ; ẍ� ð40Þ

The deterministic problem of Eq. (40) can be readily solved

by standard numerical approaches such as Rayleigh-Ritz type

schemes (e.g., Zienkiewicz and Morgan 1983; Di Matteo et al.

2014; Petromichelakis et al. 2020). Alternatively, relying on com-

putational algebraic geometry concepts and tools, Petromichelakis

et al. (2021a) developed recently a technique based on Groebner

basis for solving Eq. (40) and for determining the most probable

path xcðtÞ. Next, following solution of Eq. (40) and determination

of xcðtÞ, the functional integral of Eq. (36) is evaluated approxi-

mately as

pðxf; ẋf; tfjxi; ẋi; tiÞ ≈ C expð−S½xc; ẋc; ẍc�Þ ð41Þ

where C is a constant to be determined by the normalization

condition

Z

∞

−∞

Z

∞

−∞

pðxf; ẋf; tfjxi; ẋi; tiÞdxfdẋf ¼ 1 ð42Þ
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Mechanization of the Technique

Concisely stated, the mechanization of the technique comprises the

following steps:

1. For a given time instant tf, consider an effective domain of final

states fxf; ẋfg and discretize it into N2m points, where N is the

number of points in each dimension and 2m is the number of

stochastic dimensions.

2. For each final state fxf; ẋfg, determine the most probable path

xcðtÞ by solving numerically Eq. (40).

3. Obtain the system response transition PDF by utilizing Eqs. (41)

and (42).

Clearly, solution of the functional minimization problem of

Eq. (40) yields xcðtÞ to be substituted into Eq. (41) for determining

a specific point of the response PDF. In this regard, it is readily

seen that a brute-force approach for computing the complete 2m-

dimensional transition PDF at time instant tf dictates, first, the dis-

cretization of the ðxf; ẋfÞ domain into N2m points, where N is the

number of points in each dimension, and second, the numerical

solution of N2m problems of the form of Eq. (40). Evidently, the

computational cost increases exponentially with increasing number

of dimensions. Thus, alternative, more efficient formulations have

been developed recently (e.g., Psaros et al. 2018; Zhang et al. 2022)

by relying on sparse PDF expansions in conjunction with compres-

sive sampling concepts and tools (e.g., Kougioumtzoglou et al.

2020). Notably, the aforementioned approaches can be coupled

with a WPI variational formulation with mixed fixed/free bounda-

ries for further reduction of the computational cost. Specifically,

Petromichelakis and Kougioumtzoglou (2020) showed that the sys-

tem response joint PDF can be marginalized in an a priori manner,

and thus, the associated computational cost becomes independent

of the total number of stochastic dimensions.

Numerical Examples

Biot Hysteretic Oscillator with Cubic Nonlinearities

Consider a single-DOF oscillator with cubic nonlinearities and a

Biot hysteretic element (e.g., Biot 1958; Caughey 1962). In this

regard, Eq. (12) becomes

mẍþ gðx; ẋ; tÞ ¼ wðtÞ ð43Þ

where

gðx; ẋ; tÞ ¼ k

�

2η

π

Z

t

ti

I½λðt − τÞ�ẋðτÞdτ
�

þ kðxþ ϵx3Þ ð44Þ

and

IðyÞ ¼
Z

∞

y

e−u

u
du ð45Þ

wherem and k denote the mass and stiffness coefficients; ϵ controls
the nonlinearity magnitude; η is the loss factor of the Biot model;

and λ is a constant. Further, the scalar Gaussian white-noise exci-

tation process wðtÞ in Eq. (43) corresponds to a constant power

spectrum S0. The interested reader is also directed to Spanos

and Tsavachidis (2001) and references therein for a detailed pre-

sentation and discussion of the Biot hysteretic model.

Obviously, the response of the Biot hysteretic oscillator depends

on its history based on Eq. (44). Thus, a solution treatment relying

on the Markovian response assumption cannot be employed. In

contrast, the herein developed alternative formulation of the WPI

technique can treat in a direct manner the oscillator of Eq. (43).

In this regard, utilizing the parameter values m ¼ 1, k ¼ 1,

ϵ ¼ 2.2, η ¼ 1.2, λ ¼ 0.1, S0 ¼ 0.125, ti ¼ 0, and N ¼ 85, the

functional minimization problem of Eq. (40) is solved based on

a Rayleigh-Ritz scheme for determining the most probable path

xcðtÞ. This is done in conjunction with the Lagrangian functional

of Eq. (38) that takes the form

L½x; ẋ; ẍ�¼ 1

4πS0

�

mẍþk

�

2η

π

Z

t

ti

I½λðt−τÞ�ẋðτÞdτ
�

þkðxþϵx3Þ
�

2

ð46Þ

Next, the joint response PDF is evaluated based on Eq. (41) and

plotted in Fig. 1(a) for various indicative time instants. Further, the

corresponding marginal response displacement and velocity PDFs

are shown in Fig. 2. Comparisons with Monte Carlo simulation

(MCS)-based estimates (50,000 realizations) corresponding to

the joint response PDF in Fig. 1(b), and to the marginal PDFs

in Fig. 2 demonstrate a quite high degree of accuracy. It is noted

that the MCS data were obtained by resorting to the recursive al-

gorithm developed by Spanos and Tsavachidis (2001) for integrat-

ing numerically the equation of motion given by Eqs. (43) and (44)

Nonlinear Oscillator with Asymmetric Response PDF
and Fractional Derivative Elements

Consider next a single-DOF oscillator with asymmetric nonlinear-

ities and fractional derivative elements. Its equation of motion takes

the form of Eq. (43) with the nonlinear function gðx; ẋ; tÞ given by

gðx; ẋ; tÞ ¼ cCtiD
a
t xþ kðxþ ϵx2Þ ð47Þ

wherem, c, and k are constant coefficients; the parameter ϵ controls
the nonlinearity magnitude; and tCi D

a
t x denotes the left Caputo

fractional derivative of order a, defined as

tCi D
a
t xðtÞ ¼

1

Γð1 − aÞ

Z

t

ti

ẋðτÞ
ðt − τÞa dτ ð48Þ

where Γð·Þ = gamma function; and 0 < a < 1.

Fig. 1. Response joint PDFs at indicative time instants tf ¼ 1, 2, and

9 s corresponding to a stochastically excited Biot hysteretic oscillator

with cubic nonlinearities (m ¼ 1, k ¼ 1, ϵ ¼ 2.2, η ¼ 1.2, λ ¼ 0.1, and

S0 ¼ 0.125): (a) results obtained by the WPI technique; and (b) com-

parison with MCS data (50,000 realizations).

© ASCE 04022092-7 J. Eng. Mech.

 J. Eng. Mech., 2023, 149(1): 04022092 

D
o
w

n
lo

ad
ed

 f
ro

m
 a

sc
el

ib
ra

ry
.o

rg
 b

y
 C

o
lu

m
b
ia

 U
n
iv

er
si

ty
 o

n
 1

1
/0

8
/2

2
. 
C

o
p
y
ri

g
h
t 

A
S

C
E

. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

; 
al

l 
ri

g
h
ts

 r
es

er
v
ed

.



Clearly, the oscillator exhibits a hysteretic response behavior

due to the presence of the fractional derivative term. Indeed, based

on the definition of Eq. (48), it is seen that the fractional derivative

operator depends on the oscillator response history from the initial

time ti to the current time tf. Thus, a solution treatment based

on Markovian response modeling cannot be reasonably justified.

In fact, as noted by Di Paola and Alotta (2020), numerical path

integration schemes cannot be utilized in a straightforward man-

ner for treating systems with a history-dependent response, such

as oscillators with fractional derivative elements. This is due to the

fact that such schemes constitute essentially discrete versions of

the Chapman-Kolmogorov Eq. (2), which inherently assumes a

Markovian response process.

In contrast, the herein-developed novel formulation of the WPI

technique can treat in a direct manner the oscillator of Eqs. (43) and

(47). In this regard, the Lagrangian functional of Eq. (38) becomes

L½x; ẋ; ẍ� ¼ 1

4πS0
½mẍþ cCtiD

a
t xþ kðxþ ϵx2Þ�2 ð49Þ

and a Rayleigh-Ritz scheme is employed next for solving the func-

tional minimization problem of Eq. (40), and for determining the

oscillator response joint PDF by Eq. (41); see also Di Matteo et al.

(2014) for more details on the Rayleigh-Ritz solution scheme.

Further, strictly speaking, the response of the oscillator in Eq. (43)

cannot reach stationarity. This is due to the fact that escape from the

corresponding potential energy well is possible if the displacement
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-4 -2 0 2 4
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0.2
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-1 -0.5 0 0.5 1
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-4 -2 0 2 4
0

0.2

0.4

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

-4 -2 0 2 4
0

0.1

0.2

0.3

0.4

(a) (b)

(c) (d)

(e) (f)

Fig. 2. (a–d) Nonstationary; and (e and f) stationary response displacement and velocity PDFs at various time instants corresponding to a stochas-

tically excited Biot hysteretic oscillator with cubic nonlinearities (m ¼ 1, k ¼ 1, ϵ ¼ 2.2, η ¼ 1.2, λ ¼ 0.1, and S0 ¼ 0.125), and comparisons with

MCS data (50,000 realizations).

Fig. 3. Nonstationary response joint PDF at indicative time instants

tf ¼ 1, 2, and 3 s corresponding to a stochastically excited oscillator

with asymmetric nonlinearities and fractional derivative elements

(m ¼ 1, c ¼ 0.6, k ¼ 1, ϵ ¼ 0.5, a ¼ 0.5, and S0 ¼ 0.05): (a) results

obtained by the WPI technique; and (b) comparison with MCS data

(50,000 realizations).
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exceeds a critical level. Such an escape is followed, typically, by an

unbounded response behavior. In the following numerical results,

such an escape event has practically zero probability of occurrence

for the selected parameters values and final time instants [Section 5.

3.6 in the book by Roberts and Spanos (2003) offers a relevant

discussion].

Next, utilizing the values m ¼ 1, c ¼ 0.6, k ¼ 1, ϵ ¼ 0.5,

a ¼ 0.5, S0 ¼ 0.05, ti ¼ 0, and N ¼ 105, the WPI-based estimates

are plotted in Fig. 3(a) corresponding to the joint response PDF

pðx; ẋÞ at various time instants. Comparisons with MCS-based es-

timates shown in Fig. 3(b) (50,000 realizations) demonstrate a sat-

isfactory degree of accuracy. For the MCS analyses, the L1

algorithm (e.g., Koh and Kelly 1990) has been used for integrating

numerically Eq. (43) and for determining response realizations.

Further, the quite high accuracy exhibited by the WPI technique

is also shown in Fig. 4, where the marginal response displacement

and velocity PDFs at various time instants are compared with per-

tinent MCS data.

Concluding Remarks

In this paper, an alternative novel formalism of the WPI technique

has been developed that circumvents the Markovian assumption for

the system response process. Specifically, the transition PDF of the

response process has been derived as a functional integral over

the space of possible paths connecting the initial and final states

of the response vector. This has been accomplished by considering

the probability of a path corresponding to the Wiener excitation

process and by applying a functional change of variables in con-

junction with the system equation of motion. In this regard, it has

been demonstrated that the WPI technique can treat in a direct man-

ner also cases where the Markovian response assumption cannot be

reasonably justified. These pertain, indicatively, to nonlinear sys-

tems with a history-dependent state, such as hysteretic structures or

oscillators endowed with fractional derivative elements. A Biot

hysteretic oscillator with cubic nonlinearities, and an oscillator with

asymmetric nonlinearities and fractional derivative elements have

been considered as illustrative numerical examples. Comparisons

with pertinent MCS data have corroborated further the veracity

of the developed formalism.
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Fig. 4. Nonstationary response displacement and velocity PDFs at various time instants corresponding to a stochastically excited oscillator with

asymmetric nonlinearities and fractional derivative elements (m ¼ 1, c ¼ 0.6, k ¼ 1, ϵ ¼ 0.5, a ¼ 0.5, and S0 ¼ 0.05), and comparisons with MCS

data (50,000 realizations).
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