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A Wiener Path Integral Formalism for Treating Nonlinear
Systems with Non-Markovian Response Processes

llias G. Mavromatis, S.M.ASCE"; Apostolos F. Psaros?;
and loannis A. Kougioumtzoglou, M.ASCE?

Abstract: A novel formalism of the Wiener path integral (WPI) technique for determining the stochastic response of diverse dynamical
systems is developed. It can be construed as a generalization of earlier efforts to account, in a direct manner, also for systems with non-
Markovian response processes. Specifically, first, the probability of a path and the associated transition probability density function (PDF)
corresponding to the Wiener excitation process are considered. Next, a functional change of variables is employed, in conjunction with the
governing stochastic differential equation, for deriving the system response joint transition PDF as a functional integral over the space of
possible paths connecting the initial and final states of the response vector. In comparison to alternative derivations in the literature, which
resort to the Chapman-Kolmogorov equation as the starting point, the herein-developed novel formalism circumvents the Markovian
assumption for the system response process. Overall, the veracity and mathematical legitimacy of the WPI technique to treat also non-
Markovian system response processes are demonstrated. In this regard, nonlinear systems with a history-dependent state, such as hysteretic
structures or oscillators endowed with fractional derivative elements, can be accounted for in a direct manner—that is, without resorting to any
ad hoc modifications of the WPI technique pertaining, typically, to employing additional auxiliary filter equations and state variables. A Biot
hysteretic oscillator with cubic nonlinearities and an oscillator with asymmetric nonlinearities and fractional derivative elements are con-
sidered as illustrative numerical examples for demonstrating the reliability of the developed technique. Comparisons with relevant Monte
Carlo simulation (MCS) data are included as well. DOI: 10.1061/JENMDT.EMENG-6873. © 2022 American Society of Civil Engineers.

Introduction

Various methodologies have been developed over the last 6 decades
in the field of stochastic engineering dynamics for determining
response statistics of diverse structural and mechanical systems
(e.g., Roberts and Spanos 2003; Li and Chen 2009). Indicatively,
relying on the Markovian assumption for the system response pro-
cess, a wide range of techniques have been developed for solving
the Fokker-Planck partial differential equation governing the sys-
tem response joint transition probability density function (PDF);
see Risken (1984) and Soize (1994) for a broad perspective. Also,
related research efforts include discrete versions of the Chapman-
Kolmogorov equation for propagating the system response joint
PDF in short time steps (e.g., Wehner and Wolfer 1983; Kapitaniak
1985; Grigoriu 1990; Naess and Johnsen 1993); see also Di Paola
and Alotta (2020) for a recent review paper.

Nevertheless, for a wide range of systems, the convenient
Markovian response assumption cannot be reasonably justified.
Indicative examples include systems exhibiting hysteresis or sub-
jected to non-white stochastic excitations. Systems endowed with
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fractional derivative elements can be construed as a special case
of hysteretic systems because their state depends on its history
(e.g., Rossikhin and Shitikova 2010). It is remarked, in passing,
that fractional calculus has been successfully employed recently
in theoretical and applied mechanics for developing nonlocal con-
tinuum mechanics theories (e.g., Di Paola et al. 2013; Tarasov
2017), and for modeling viscoelastic materials (e.g., Di Paola
et al. 2011).

It is readily seen that such systems with non-Markovian re-
sponse processes cannot be treated in a straightforward manner
by stochastic dynamics techniques that inherently rely on the
Markovian response assumption, such as solution schemes based
on the Chapman-Kolmogorov and Fokker-Planck equations.
Typically, this challenge is bypassed in the literature by augmenting
the response vector and by considering additional state variables.
These relate to auxiliary equations that are utilized for modeling
non-white excitation processes as the output of filters to white
noise (e.g., Spanos 1986; Alotta et al. 2014), or for describing the
dependence of the state of the system on its history (e.g., Ikhouane
and Rodellar 2007; Di Paola et al. 2012). In this regard, the original
system is recast into an equivalent one with a Markovian response,
and thus, standard random vibration theory tools can be applied
(e.g., Roberts and Spanos 2003). Nevertheless, this kind of solution
treatment relates usually to increased computational cost due to the
increased dimensionality of the problem.

Further, stochastic averaging constitutes a versatile approximate
technique for treating diverse nonlinear/hysteretic systems, even
when subjected to non-white and non-stationary stochastic excita-
tion (e.g., Kougioumtzoglou and Spanos 2013; Spanos et al. 2018).
Specifically, stochastic averaging relates to a Markovian approxi-
mation of an appropriately chosen amplitude of the system
response and to a dimension reduction of the original problem
(e.g., Roberts and Spanos 1986; Zhu 1996). Furthermore, it is
worth referring to alternative approaches aiming at developing
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and solving generalized versions of the Fokker-Planck equation
governing the evolution in time of the non-Markovian response
process PDF; see, indicatively, Sapsis and Athanassoulis (2008),
Mamis et al. (2019), and references therein. Clearly, such ap-
proaches exhibit significant theoretical merit. However, in general,
they lack versatility and resort to ad hoc approximations, whereas
in many cases the computational challenges can be significant.

One of the promising solution techniques in stochastic engi-
neering dynamics relates to the concept of Wiener path integral
(WPD) (e.g., Wiener 1921; Chaichian and Demichev 2001). Spe-
cifically, a WPI-based technique for stochastic response determi-
nation of diverse dynamical systems has recently been developed
(e.g., Kougioumtzoglou and Spanos 2012; Psaros et al. 2018;
Petromichelakis et al. 2020). In this regard, the system response
joint transition PDF is given as a functional integral over the space
of all possible paths connecting the initial and the final states
of the response vector. Notably, this functional integral is rarely
amenable to analytical evaluation. Thus, an approximate calcula-
tion is pursued by considering, ordinarily, the contribution only
of the path with the maximum probability of occurrence. This
is known as the most probable path and corresponds to an
extremum of the functional integrand. In this regard, the most
probable path is determined by solving a functional minimiza-
tion problem that takes the form of a deterministic boundary value
problem.

Remarkably, the technique exhibits both high accuracy and low
computational cost (e.g., Petromichelakis and Kougioumtzoglou
2020; Psaros and Kougioumtzoglou 2020). However, the formu-
lation of the WPI technique has been developed to-date in conjunc-
tion with the Markovian assumption for the system response
process. In this paper, an alternative novel formalism is developed
for the WPI technique for circumventing the Markovian response
assumption. Specifically, considering the probability of a path cor-
responding to the Wiener (excitation) process, and employing a
functional change of variables in conjunction with the governing
stochastic differential equation, yields the probability of a path
corresponding to the response process. This leads to representing
the system response joint transition PDF as a functional integral
over the space of possible paths connecting the initial and final
states of the response vector. This is done without invoking the
assumption of a Markovian response process. Overall, the veracity
and mathematical legitimacy of the WPI technique to treat also
non-Markovian system response processes are demonstrated. In
this regard, nonlinear systems with a history-dependent state, such
as hysteretic structures or oscillators endowed with fractional
derivative elements, can be accounted for in a direct manner—that
is, without resorting to any ad hoc modifications of the WPI tech-
nique pertaining, typically, to employing additional auxiliary filter
equations and state variables.

Preliminaries

Markov Processes and Stochastic Differential
Equations

In this section, the basic aspects of Markov processes and the
associated Chapman-Kolmogorov equation are presented for com-
pleteness; see also, indicatively, Gardiner (1985) and Grigoriu
(2002) for a broader perspective.

In this regard, consider a vector stochastic process a, where
a =[], is a n-length vector whose components c;, Vj €
{1, ..., n}, are themselves scalar stochastic processes. Next, con-

sider « to be a Markov process. That is, for every [/ and for
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ty <---<t;, the following relationship for the corresponding tran-
sition PDF holds true:
plagtila . ..oty ootg) = plag, ey ty) (1)
Considering Eq. (1), it can be readily seen that for a Markov
process a, each state {#;, a;} depends only on the previous (in time)
state {t,_;,a;_}. Also, for any three distinct time instants

1| <t;<t;., the Chapman-Kolmogorov equation is satisfied.
That is,

plag.ti al—htl—l):/p(al+17tl+1|alstl)p(al’tl‘al—lﬁtl—l)dal
(2)

It is remarked that for a wide range of engineering dynamics
applications (e.g., Li and Chen 2009) the governing equations
of motion take the form of a coupled system of stochastic differ-
ential equations, i.e.,

da = A(a, t)dt + B(a, 1)dW (3)

where A(a, t) and B(a, ) represent the drift vector and diffusion
matrix, respectively; and W denotes the Wiener process, which is a
Markov process with independent increments; i.e., W(t, ) =
W(t;) + AW (1, 1,,,), VI > 0, with AW(z;, 1, ) being statistically
independent from any other increment corresponding to different
time instants. Furthermore, W has continuous, nowhere differentia-
ble, sample paths and is a Gaussian stochastic process. Notwith-
standing some loss of mathematical rigor, Eq. (3) is written
alternatively as

a=A(a,t)+ B(a,t)n(1) (4)

where the dot above a variable denotes differentiation with respect
to time ¢; and 7 denotes a zero-mean and delta-correlated Gaussian
white-noise stochastic process of intensity one. That is, E[n;(7)] =
0 and E[n;(t,)m(t151)] = 6x0(t; — t141) forany j, k € {1, ..., n},
where ¢, is the Kronecker delta, and 6(¢) is the Dirac delta func-
tion. Regarding the relation between the Wiener and the whitenoise
processes, 77(f) can be defined as an infinitesimal jump of the Wie-
ner process, i.e., 77(¢)dt = dW. Thus, it is often, informally, written
as the time derivative of the Wiener process in the form #(r) =
dW/dr; see also Gardiner (1985) and @Pksendal (2003) for a more
detailed discussion on the topic.

Note that the Markovian assumption for the process a as the
response of a dynamical system governed by Eq. (4) has been
adopted, routinely, by various solution methodologies developed
in the field of stochastic engineering dynamics (e.g., Li and
Chen 2009). Indicatively, based on preliminary work in theoretical
physics (Wehner and Wolfer 1983), numerical path integration has
been developed and firmly established as a robust solution tool in
stochastic engineering dynamics (e.g., Naess and Johnsen 1993;
Chen et al. 2018). Specifically, numerical path integration essen-
tially constitutes a discrete version of the Chapman-Kolmogorov
Eq. (2), which utilizes an appropriately chosen short-time transition
PDF for advancing in time the system response joint PDF.
The scheme exhibits excellent accuracy in determining even the
tails of the response PDF. However, it becomes computationally
prohibitive with increasing dimensionality. This is due to the fact
that a multiconvolution integral needs to be computed for each
and every time step, whereas the requisite time increment must
remain short. Regarding the short-time transition PDF, it was
shown by Dekker (1976) that this can be approximated as ¢ =
fi,1 — 1 — 0 by
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plaii, tiileg. ;) = {\/(27&9)" det[l?(a,», )]

—1

X €Xp (_%[‘liﬂ —a; — cA(a;, 1)) Bl 1;)] " [y —

where B(a, 1) = B(a, )B” (a. 1) (e.g., Langouche et al. 1979).

Clearly, numerical path integration relies on the Markovian re-
sponse assumption. Thus, it cannot be used in a direct manner for
treating stochastic processes with a non-Markovian behavior, such
as the response of systems exhibiting hysteresis or endowed with
fractional derivative elements; see also Di Paola and Alotta (2020)
for a relevant discussion. Typically, the aforementioned limitation is
bypassed in the literature either by considering an augmented re-
sponse vector or by applying a stochastic averaging treatment.

In the former case, auxiliary equations are utilized for describing
the dependence of the state of the system on its history; see, for
example, the popular Bouc-Wen hysteretic model (e.g., Ikhouane
and Rodellar 2007), or a recent approach by Di Paola and Alotta
(2020), where the equation of motion of a single degree-of-freedom
(DOF) linear oscillator with a fractional derivative term is recast
into a set of coupled linear equations involving integer-order deriv-
atives and additional state variables.

In the latter case, stochastic averaging relates to a Markovian
approximation of an appropriately chosen amplitude of the system
response, and to a dimension reduction of the original problem
(e.g., Spanos et al. 2018). Notably, stochastic averaging has been
used in conjunction with numerical path integration for treating ar-
bitrary forms of non-white and non-stationary stochastic excitations,
as well as systems with diverse hysteretic behaviors (e.g., Naess
and Moe 1996; Kougioumtzoglou and Spanos 2013).

However, modeling the history-dependent response behavior
via additional state variables and equations can be a challenging

a; — eA(a;, fiﬂ) (5)

€

task that also increases the associated computational cost, whereas
a stochastic averaging solution treatment introduces considerable
approximations.

Wiener Path Integral Formalism Based on Markovian
Response Assumption

This section presents in a concise manner the salient elements
of a recently developed technique for determining approximately
the stochastic response of diverse structural and mechanical sys-
tems (e.g., Kougioumtzoglou and Spanos 2012; Kougioumtzoglou
2017; Petromichelakis and Kougioumtzoglou 2020). The technique
relies on functional integration concepts for representing the system
response joint PDF as a WPI over the space of all possible paths
(e.g., Chaichian and Demichev 2001). The WPI formalism has been
developed to-date in conjunction with the Markovian assumption
for the response process (e.g., Psaros and Kougioumtzoglou 2020).

Specifically, consider the probability of the process a propagat-
ing through some infinitesimally thin tube surrounding a path a(z),
Vt € [t;, 1], with fixed initial and final states {7;,&;} and {¢;,e;},
respectively. This can be construed as the probability of the
compound event that the path a(t) successively passes through
gates corresponding to specific time instants (e.g., Chaichian and
Demichev 2001). Next, relying on the Markov properties of «, the
probability of the compound event is expressed, equivalently, as the
product of the probabilities corresponding to the independent
events. The independent events are described by Eq. (5), and thus,
the product of the probabilities takes the form

{7

=0

1L
X exp (_EZ T

=0

In Eq. (6), the time domain is discretized into L + 2 points,
€ apart (with L — o0 as € > 0), as t; = 1o <1 <-- <ty = I,
and the path a(7) is represented by its values a; at the discrete time
points #;, for I € {0, ..., L + 1}. Also, da;; denotes the (infinite in
number) infinitesimal gates through which the path propagates. In
the continuous limit, Eq. (6) becomes

Plat)] = exp - / Cia] ) D) )

where the Lagrangian functional L[d, ] is given by
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eAlay, 1)]" [B(az,fl)r @ —a— A, f/)])} (6)

€

Lla al =%[d—A(a, 0 [B(a.1) '@ —A(a.1)]  (8)
and Dla(t)] takes the form

]—HD a;(n)] =

i day (1)
7110 /27 (det(Blar. 1)) "t

©)

Further, it is rather intuitive to argue that the respective proba-
bilities of each and every path given by Eq. (7) need to be ac-
counted for, and loosely speaking, summed up to evaluate the

J. Eng. Mech.

J. Eng. Mech., 2023, 149(1): 04022092



Downloaded from ascelibrary.org by Columbia University on 11/08/22. Copyright ASCE. For personal use only; all rights reserved.

total probability of a starting from a; at time #; and reaching e, at
time 7. In this regard, denoting the set of all paths with initial state
a; attime ¢; and final state o at time ¢, by Cay, 135 ay, tf}, the joint
transition PDF p(ay, t/|a;, t;) takes the form of a functional inte-
gral over C{a;, t;;ap, 14}, ie.,

play, tyla;, t;) = /

Cla.tyopty}

exp(=Sla.a])Dla(r)]  (10)

where
t
Sla,a] = /fc[a,a]dr (11)
1

It can be readily seen that the WPI formalism presented in this
section relies on the assumption that the system response behaves as
a Markov process. Thus, similarly to the numerical path integration
scheme discussed previously, it appears that the aforementioned
WPI formalism cannot treat in a direct manner stochastic processes
with a non-Markovian behavior, such as the response of systems
exhibiting hysteresis or endowed with fractional derivative ele-
ments. Nevertheless, the WPI technique has been capable of deter-
mining the stochastic response of such systems with a history-
dependent state provided that they are modeled by utilizing addi-
tional auxiliary equations and degrees of freedom; see, for instance,
Petromichelakis et al. (2020) where a stochastically excited Bouc-
Wen nonlinear hysteretic oscillator was considered.

Further, a conceptually different WPI-based approach was fol-
lowed by Di Matteo et al. (2014) for treating nonlinear systems
with fractional derivative elements subject to Gaussian white-noise
excitation. Specifically, by employing the Lagrangian functional
of a Gaussian white-noise process that is known in closed-form
(e.g., Chaichian and Demichev 2001), a Lagrangian functional re-
ferring to the system response process was defined. This was done
in a rather heuristic manner by simply substituting the left-hand
side of the equation of motion into the white-noise Lagrangian
expression and by interpreting the resulting Lagrangian functional
as the one corresponding to the response process. In this regard,
although the excitation (input) process is Markovian, the Markovian
assumption for the system response process is not invoked; see also
Di Paola and Alotta (2020) for a discussion. Remarkably, the afore-
mentioned WPI-based technique exhibited a high degree of accu-
racy in determining the system response joint PDF, which further
supported the veracity of the expression for the Lagrangian func-
tional proposed by Di Matteo et al. (2014).

In the ensuing analysis, to demonstrate the mathematical legiti-
macy of the approach proposed by Di Matteo et al. (2014), a rig-
orous derivation of a novel WPI formalism is developed based on
functional change of variables. The novel formulation circumvents
the Markovian assumption for the system response process. Thus, it
is shown that the WPI technique can also treat, in a straightforward
manner, systems whose response exhibits non-Markovian charac-
teristics, such as the response of hysteretic systems or of oscillators
with fractional derivative elements.

Mathematical Formulation

Circumventing the Markovian Response Assumption:
A Novel Wiener Path Integral Formalism Based on
Functional Change of Variables

Consider an m-DOF nonlinear system governed by

Mi +g(x,x,1) = w(1) (12)
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where x is the displacement vector process (x = [x;, ..., x,]7); M
is the m x m mass matrix of the system; and g(-) is an arbitrary
nonlinear vector function that can account for possible dependence
of the state of the system on its history. In this regard, g(-) can
include, indicatively, fractional derivatives or other integro-
differential operators modeling hysteresis. Thus, in general, the re-
sponse process cannot be modeled as Markovian. Further, w(?) is a
white-noise stochastic vector process with E[w(7)] =0 and
Ew(t)wT(t+7)] = S,,6(7), where S,, € R™™ is a nonsingular
symmetric matrix.

In the following, a novel WPI formalism is developed capable of
also treating systems whose response exhibits a non-Markovian
behavior. In fact, considering the probability of a path and the as-
sociated transition PDF corresponding to the Wiener (excitation)
process, and employing a functional change of variables in con-
junction with the governing stochastic differential equation, yields
the joint transition PDF of the system response. Remarkably, this is
expressed as a functional integral given by Eq. (10) without invok-
ing the assumption of a Markovian response process.

Specifically, by employing a state variable formulation, Eq. (12)
is recast in the form of Eq. (4) with n = 2m, where

AR

Alod) = [ ” } - [A] (14)

~M'g(x,v,1) A,
and
B( ) |:0m><m 0m><m ] (15)
a,l) =
0”1)(]" M_l V SW

where the square root of matrix S,, is given by 1/8,,\/S, = S,,.

Next, considering a discretization of the time domain into L + 2
points € apart as in Eq. (6), i.e., #; =ty <--- <1, = 5, ithas been
shown (e.g., Chaichian and Demichev 2001) that the probability of
a path corresponding to the n-dimensional Wiener vector process
Oqu (3) with W(fo) = Wo, W(tf) = Wf and AWZ = Wl+l — Wl
is given by

. LS or
PIW(1)] = lim exp (_Z; AW! AW,)

I V@] H [H dw,-,,} (16)

=0

Alternatively, Eq. (16) can be derived by setting A (e, 1) = 0 and
B(a,t) =1 in Eq. (3). In this regard, @ = W and Eq. (6) degener-
ates to Eq. (16). Further, considering Eq. (16) and accounting for
the probabilities of all possible paths that the Wiener process W can
follow, the corresponding transition PDF is given as the limit of an
L-dimensional integral (with L — oo, or equivalently ¢ — 0) in the
form

o0 oo
p(Wf,tf|W,-,t,-):lin(1)/ / f(Wo» -~~7WL+1)
—VJ - —o0

<11 [\/(27“)"}‘1 H [H dW_,;l} (17)
=0 Jj=1LI=1

where
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1 L
FWo, ... W) :exp<—2—€ZAWITAW,> (18)
=0

Furthermore, the transition PDF of a stochastic process & that is
related to W at an arbitrary time instant 7, via W; = Iy(ay, ..., @),
where h(-) is a differentiable function, can be evaluated by em-
ploying a functional change of variables in Eq. (17). That is,

play, tyla, ;)
:lln(l)/ / f ho ao (ao, .,al), P
L —1.n_ |L+1
hpai(@o. .. ..apiy)) x det) ] | [ (m)n} {Hdaﬂ}
1=0 J=1 L1=1

where J is the Jacobian of the transformation (e.g., Chaichian and
Demichev 2001).

Clearly, in the herein considered problem, /;(-) corresponds to
the relationship between W and a as given by Eq. (3). In fact, note
that 72,(+) in Eq. (19) is defined so that at 7, it depends not only on the
variable a;, but also on the previous in time variables aj, ..., 0;_;.
In this manner, /,;(-) can account also for cases where Eq. (3), or
equivalently Eq. (12), incorporates hysteretic elements. In this re-
gard, employing the Itd discretization rule (e.g., Grigoriu 2002;
(ksendal 2003), the discretized in time Eq. (3) takes the form

Aa, = 641 +BlAW[ (20)

where Aa; = @;,; — ;. Further, to bypass the singularity of matrix
B, in Eq. (20) given by Eq. (15), an auxiliary variable 5 — 0 is em-
ployed, and Eq. (15) is cast in the form

— [ \/Blmxm 0m><m :|

Bla.t) = (21)

PN

Ome B

with B = M~! VS, Next, Eq. (21) is inverted and Eq. (20) is solved
for AW, yielding

1
aw, — | vl 22)

B'[Av, — A, ]

where Egs. (13) and (14) have been taken into account. Thus, con-
sidering Eq. (22), the product AWT AW, becomes

1
AWZAW[ = B [Axl — EVZ]T[AXI - €V1]
+ [Av, — eAy |TB; ' [Av, — Ay ] (23)
where
B'= (BB = (BB (24)

Furthermore, manipulating Eq. (22) yields

1
=X+ Wi - Pery + vy

1
w,=| VB VBT - (25)
Bl + W =B\ iy + Ay ]
where W = [W,W,]T. Next, employing sequentially [— 1
times Eq. (25) for eliminating its dependence on the history

of W, and also considering the Wiener process property Wy = 0
(e.g., Grigoriu 2002), yields
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1
\/—( —X) \/—ka 1

!
Bl (v — vy —eAayy)
=1

Obviously, comparing the relationship W; = (e, ..., a;) with
Eq. (260), it is readily seen that

1
\/_B( —X) ka 1

Bl (v — vy —Aoyy)
=1

h(ag, ... ) = (27)

In this regard, the Jacobian matrix J in Eq. (19) takes the form

[ Kii K, Ky
K>,
J= (28)
_KL+1,] KL+I,L+] i
where
Oh;, o
K= |55 s €{l - 2mys L ef{l, ... L+1}
J2.bd 2mx2m

(29)

Note that based on the definition of 4;(e, .. .,e;), which cor-
responds to causal systems, /;; does not depend on a;, for all j €
{1,---,2m} and I, <, € {1, ...,L + 1}. Thus,

K 1, = 050, for 1y <1, (30)

Consequently, based on Eq. (30), J is a lower-triangular block ma-
trix. Considering Eq. (29) in conjunction with Eq. (27), the diago-
nal elements K;; become

1
—1
K= | V3w Yol e L+1y (1)

n—1
0m><m Blfl

Thus, the determinant of J is given by (Strang 2016)
L+1 L+1 m7 L+l
= [Tmt = 11 ()| [T
Y glu\ IH\/— [11B:1
Gl
-1 () | [T (32)
o \VP 1=0

Next, substituting Eq. (23) and Eq. (32) into Eq. (19) yields
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. 00
p(af,tf|a,»,t,~) :]lm/ .
e—~0 J_~o

:0

or, equivalently

oot =ty |+ [~ FTT [t ]|

[ ([Verom] )] [TTTTo

1 ~_
X exp (_Z_Z Ax;—ev)]"[Ax; — ev)] + [Av, — eAy "By [Av, — 642,10 (33)

[T

=1 j

« [Hﬁdvﬂ] exp —%i[m,—d”ﬁz,'[Avl—mu) [ﬁ i Lﬁ (—L[Axﬂ—evﬂpﬂ (34)

=0

Further, taking the limit as 3 — 0 and employing the delta function
properties yields (e.g., Demidov 2001)

11m exp (
3—0 \/w

Note that in the continuous limit, Eq. (35) simply enforces the
compatibility condition ¥ =v on Eq. (34). Lastly, combining
Egs. (34) and (35) and taking the continuous limit, as € — 0,
the transition PDF of the process a converges to the exact same
form as in Eq. (10), where the Lagrangian functional is given
by Eq. (8). Specifically, employing Eq. (13) and expressing « in
terms of (x,x), the response transition PDF of the system of
Eq. (12) is given by

[Ax evﬂ]z) =eb(Axj; —evy)  (35)

POty Ei ) = / exp(~S[x. £, £])Dfe(r)]
Cl{xy ey ity Xt; }
(36)

where
t
Sl x.%] = / Lk, E)de (37)
4
The Lagrangian functional L[x,x,¥] in Eq. (37) takes the form

Ll ] = 5 M5 + glak. )] S, M3 +gleon)] (39

and

o) - om0
=1 j=1 = \/ 2 (det[B(x, 1)] )ﬁdt

Overall, an alternative novel WPI formalism has been developed
in this section based on functional change of variables. In com-
parison with previous efforts, which resort to the Chapman-
Kolmogorov Eq. (2) as the starting point (e.g., Petromichelakis and
Kougioumtzoglou 2020; Psaros and Kougioumtzoglou 2020), the
Markovian assumption for the system response process has been
circumvented. In fact, the mathematical legitimacy of using the
general form of the Lagrangian functional given by Eq. (8), or
equivalently Eq. (38), also for systems whose response exhibits
non-Markovian characteristics, has been demonstrated. In this re-
gard, systems with a history-dependent state, such as hysteretic
structures or oscillators endowed with fractional derivative ele-
ments, can be treated in a direct manners. That is, without resorting

(39)
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=0 j=1

to ad hoc modifications of the technique pertaining, typically, to
considering additional auxiliary equations and state variables.

Most Probable Path Approximation

In this section the basic aspects of the numerical implementation of
the WPI technique are presented for completeness. The interested
reader is also directed to Di Matteo et al. (2014), to Petromichelakis
et al. (2020) and to Petromichelakis et al. (2021a) for more details
and a broader perspective.

In this regard, note that the analytical calculation of the WPI of
Eq. (36) for determining the transition PDF of the process x is, in
general, impossible. Thus, alternative approaches are typically pur-
sued in the literature for evaluating approximately Eq. (36), such as
the most probable path approach (e.g., Chaichian and Demichev
2001). It is remarked that the most probable path approximation
has exhibited a quite high degree of accuracy in various diverse
engineering mechanics applications (e.g., Kougioumtzoglou 2017;
Petromichelakis et al. 2018, 2021b). In fact, as proved by Psaros
et al. (2020), for the case of linear systems, the most probable path
approximation yields the exact joint response PDF.

Specifically, the largest contribution to the functional integral of
Eq. (36) relates to the trajectory x,.(#) for which the stochastic ac-
tion of Eq. (37) becomes as small as possible. This leads to the
variational (functional minimization) problem

minimize S[x,x, ¥| (40)
Claidi i Xp.tr}

The deterministic problem of Eq. (40) can be readily solved
by standard numerical approaches such as Rayleigh-Ritz type
schemes (e.g., Zienkiewicz and Morgan 1983; Di Matteo et al.
2014; Petromichelakis et al. 2020). Alternatively, relying on com-
putational algebraic geometry concepts and tools, Petromichelakis
et al. (2021a) developed recently a technique based on Groebner
basis for solving Eq. (40) and for determining the most probable
path x.(7). Next, following solution of Eq. (40) and determination
of x.(t), the functional integral of Eq. (36) is evaluated approxi-
mately as

p(Xf,Xf, [f‘xi»xi’ ti) ~ Cexp(_s[xwxc’xc]) (41)
where C is a constant to be determined by the normalization
condition

3] 00
/ / p(Xf,Xf,[f|xi,xi,ti)dede =1 (42)
—00 J —00
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Mechanization of the Technique

Concisely stated, the mechanization of the technique comprises the

following steps:

1. For a given time instant ¢/, consider an effective domain of final
states {x,, %} and discretize it into N2 points, where N is the
number of points in each dimension and 2m is the number of
stochastic dimensions.

2. For each final state {x f,xf}, determine the most probable path
x.(t) by solving numerically Eq. (40).

3. Obtain the system response transition PDF by utilizing Egs. (41)
and (42).

Clearly, solution of the functional minimization problem of
Eq. (40) yields x.(¢) to be substituted into Eq. (41) for determining
a specific point of the response PDF. In this regard, it is readily
seen that a brute-force approach for computing the complete 2m-
dimensional transition PDF at time instant 7, dictates, first, the dis-
cretization of the (x, %) domain into N 2m points, where N is the
number of points in each dimension, and second, the numerical
solution of N" problems of the form of Eq. (40). Evidently, the
computational cost increases exponentially with increasing number
of dimensions. Thus, alternative, more efficient formulations have
been developed recently (e.g., Psaros et al. 2018; Zhang et al. 2022)
by relying on sparse PDF expansions in conjunction with compres-
sive sampling concepts and tools (e.g., Kougioumtzoglou et al.
2020). Notably, the aforementioned approaches can be coupled
with a WPI variational formulation with mixed fixed/free bounda-
ries for further reduction of the computational cost. Specifically,
Petromichelakis and Kougioumtzoglou (2020) showed that the sys-
tem response joint PDF can be marginalized in an a priori manner,
and thus, the associated computational cost becomes independent
of the total number of stochastic dimensions.

Numerical Examples

Biot Hysteretic Oscillator with Cubic Nonlinearities

Consider a single-DOF oscillator with cubic nonlinearities and a
Biot hysteretic element (e.g., Biot 1958; Caughey 1962). In this
regard, Eq. (12) becomes

mix + g(x, x,1) = w(t) (43)

where

o, 1) = k<2—: /t"z[m _ T)]x(f)df) L krted)  (44)

i

and

00 g
1) = / du (45)
y u
where m and k denote the mass and stiffness coefficients; ¢ controls
the nonlinearity magnitude; 7 is the loss factor of the Biot model;
and A is a constant. Further, the scalar Gaussian white-noise exci-
tation process w(t) in Eq. (43) corresponds to a constant power
spectrum Sy. The interested reader is also directed to Spanos
and Tsavachidis (2001) and references therein for a detailed pre-
sentation and discussion of the Biot hysteretic model.

Obviously, the response of the Biot hysteretic oscillator depends
on its history based on Eq. (44). Thus, a solution treatment relying
on the Markovian response assumption cannot be employed. In
contrast, the herein developed alternative formulation of the WPI
technique can treat in a direct manner the oscillator of Eq. (43).
In this regard, utilizing the parameter values m =1, k=1,
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Fig. 1. Response joint PDFs at indicative time instants 7, = 1, 2, and
9 s corresponding to a stochastically excited Biot hysteretic oscillator
with cubic nonlinearities (m = 1,k =1,e =2.2,7 = 1.2, A = 0.1, and
So = 0.125): (a) results obtained by the WPI technique; and (b) com-
parison with MCS data (50,000 realizations).

€e=22,n=12, A=0.1, S5 =0.125, t; =0, and N = 85, the
functional minimization problem of Eq. (40) is solved based on
a Rayleigh-Ritz scheme for determining the most probable path
x.(t). This is done in conjunction with the Lagrangian functional
of Eq. (38) that takes the form

Ll :ﬁso {mx—&—k(z—: / t][)\(t—T)])'C(T)dT) +k(x+ex3)r

i

(46)

Next, the joint response PDF is evaluated based on Eq. (41) and
plotted in Fig. 1(a) for various indicative time instants. Further, the
corresponding marginal response displacement and velocity PDFs
are shown in Fig. 2. Comparisons with Monte Carlo simulation
(MCS)-based estimates (50,000 realizations) corresponding to
the joint response PDF in Fig. 1(b), and to the marginal PDFs
in Fig. 2 demonstrate a quite high degree of accuracy. It is noted
that the MCS data were obtained by resorting to the recursive al-
gorithm developed by Spanos and Tsavachidis (2001) for integrat-
ing numerically the equation of motion given by Eqgs. (43) and (44)

Nonlinear Oscillator with Asymmetric Response PDF
and Fractional Derivative Elements

Consider next a single-DOF oscillator with asymmetric nonlinear-
ities and fractional derivative elements. Its equation of motion takes
the form of Eq. (43) with the nonlinear function g(x, X, ) given by

g(x.x,1) = cEDx + k(x + ex?) (47)

where m, ¢, and k are constant coefficients; the parameter e controls
the nonlinearity magnitude; and t,-CD?x denotes the left Caputo
fractional derivative of order a, defined as

1 t x(7)
F(l—a)/,' (z—T)adT (48)

where I'(-) = gamma function; and 0 < a < 1.

1€D¢x(t) =
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Fig. 2. (a—d) Nonstationary; and (e and f) stationary response displacement and velocity PDFs at various time instants corresponding to a stochas-
tically excited Biot hysteretic oscillator with cubic nonlinearities (m =1, k =1, e = 2.2, n = 1.2, A = 0.1, and S, = 0.125), and comparisons with

MCS data (50,000 realizations).

Clearly, the oscillator exhibits a hysteretic response behavior
due to the presence of the fractional derivative term. Indeed, based
on the definition of Eq. (48), it is seen that the fractional derivative
operator depends on the oscillator response history from the initial
time #; to the current time 7;. Thus, a solution treatment based
on Markovian response modeling cannot be reasonably justified.
In fact, as noted by Di Paola and Alotta (2020), numerical path
integration schemes cannot be utilized in a straightforward man-
ner for treating systems with a history-dependent response, such
as oscillators with fractional derivative elements. This is due to the
fact that such schemes constitute essentially discrete versions of
the Chapman-Kolmogorov Eq. (2), which inherently assumes a
Markovian response process.

In contrast, the herein-developed novel formulation of the WPI
technique can treat in a direct manner the oscillator of Egs. (43) and
(47). In this regard, the Lagrangian functional of Eq. (38) becomes

Llx, x,%] = [mx + ch?x + k(x + ex?)]? (49)

47TSO
and a Rayleigh-Ritz scheme is employed next for solving the func-
tional minimization problem of Eq. (40), and for determining the
oscillator response joint PDF by Eq. (41); see also Di Matteo et al.
(2014) for more details on the Rayleigh-Ritz solution scheme.
Further, strictly speaking, the response of the oscillator in Eq. (43)
cannot reach stationarity. This is due to the fact that escape from the
corresponding potential energy well is possible if the displacement
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Fig. 3. Nonstationary response joint PDF at indicative time instants
tp =1, 2, and 3 s corresponding to a stochastically excited oscillator
with asymmetric nonlinearities and fractional derivative elements
m=1,¢=06,k=1,¢=0.5,a=0.5, and Sy = 0.05): (a) results
obtained by the WPI technique; and (b) comparison with MCS data
(50,000 realizations).
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Fig. 4. Nonstationary response displacement and velocity PDFs at various time instants corresponding to a stochastically excited oscillator with
asymmetric nonlinearities and fractional derivative elements (m = 1, ¢ = 0.6, k = 1, ¢ = 0.5, a = 0.5, and S, = 0.05), and comparisons with MCS

data (50,000 realizations).

exceeds a critical level. Such an escape is followed, typically, by an
unbounded response behavior. In the following numerical results,
such an escape event has practically zero probability of occurrence
for the selected parameters values and final time instants [Section 5.
3.6 in the book by Roberts and Spanos (2003) offers a relevant
discussion].

Next, utilizing the values m =1, ¢ =0.6, k=1, e=0.5,
a=0.5,8,=0.05¢ =0,and N = 105, the WPI-based estimates
are plotted in Fig. 3(a) corresponding to the joint response PDF
p(x, %) at various time instants. Comparisons with MCS-based es-
timates shown in Fig. 3(b) (50,000 realizations) demonstrate a sat-
isfactory degree of accuracy. For the MCS analyses, the L1
algorithm (e.g., Koh and Kelly 1990) has been used for integrating
numerically Eq. (43) and for determining response realizations.
Further, the quite high accuracy exhibited by the WPI technique
is also shown in Fig. 4, where the marginal response displacement
and velocity PDFs at various time instants are compared with per-
tinent MCS data.

Concluding Remarks

In this paper, an alternative novel formalism of the WPI technique
has been developed that circumvents the Markovian assumption for
the system response process. Specifically, the transition PDF of the
response process has been derived as a functional integral over
the space of possible paths connecting the initial and final states
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of the response vector. This has been accomplished by considering
the probability of a path corresponding to the Wiener excitation
process and by applying a functional change of variables in con-
junction with the system equation of motion. In this regard, it has
been demonstrated that the WPI technique can treat in a direct man-
ner also cases where the Markovian response assumption cannot be
reasonably justified. These pertain, indicatively, to nonlinear sys-
tems with a history-dependent state, such as hysteretic structures or
oscillators endowed with fractional derivative elements. A Biot
hysteretic oscillator with cubic nonlinearities, and an oscillator with
asymmetric nonlinearities and fractional derivative elements have
been considered as illustrative numerical examples. Comparisons
with pertinent MCS data have corroborated further the veracity
of the developed formalism.
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