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A B S T R A C T

A technique based on the concept of Wiener path integral (WPI) is developed for determining approximately the
joint response probability density function (PDF) of nonlinear oscillators endowed with fractional derivative
elements. Specifically, first, the dependence of the state of the system on its history due to the fractional
derivative terms is accounted for, alternatively, by augmenting the response vector and by considering
additional auxiliary state variables and equations. In this regard, the original single-degree-of-freedom (SDOF)
nonlinear system with fractional derivative terms is cast, equivalently, into a multi-degree-of-freedom (MDOF)
nonlinear system involving integer-order derivatives only. From a mathematics perspective, the equations
of motion referring to the latter can be interpreted as constrained. Second, to circumvent the challenge of
increased dimensionality of the problem due to the augmentation of the response vector, a WPI formulation
with mixed fixed/free boundary conditions is developed for determining directly any lower-dimensional
joint PDF corresponding to a subset only of the response vector components. This can be construed as an
approximation-free dimension reduction approach that renders the associated computational cost independent
of the total number of stochastic dimensions of the problem. Thus, the original SDOF oscillator joint PDF
corresponding to the response displacement and velocity is determined efficiently, while circumventing the
computationally challenging task of treating directly equations of motion involving fractional derivatives. Two
illustrative numerical examples are considered for demonstrating the reliability of the developed technique.
These pertain to a nonlinear Duffing and a nonlinear vibro-impact oscillators with fractional derivative
elements subjected to combined stochastic and deterministic periodic loading. Note that alternative standard
approximate techniques, such as statistical linearization, need to be significantly modified and extended to
account for such cases of combined loading. Remarkably, it is shown herein that the WPI technique exhibits
the additional advantage of treating such types of excitation in a straightforward manner without the need for
any ad hoc modifications. Comparisons with pertinent Monte Carlo simulation data are included as well.

1. Introduction

Addressing the challenge of uncertainty quantification in engineer-
ing dynamics relates to the development of analytical and numerical
methodologies for determining response and reliability statistics of
complex systems. Indicative techniques include moments equations,
statistical linearization, stochastic averaging, perturbation approaches,
discrete versions of the Chapman–Kolmogorov equation, Fokker–Planck
equation solution schemes, probability density evolution methods,
as well as sparse representations and polynomial chaos expansions;
see [1–7] for a broad perspective.
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Further, relying on the mathematical tool of Wiener path integral

(WPI) [8,9], Kougioumtzoglou and co-workers have recently developed

a solution technique in stochastic engineering dynamics that exhibits

both high accuracy and low computational cost. The basic concept of

the technique relates to treating, formally, the system response joint

transition probability density function (PDF) as a functional integral

over the space of all possible paths connecting the initial and the final

states of the response vector. Notably, this functional integral is rarely

amenable to analytical evaluation. Thus, an approximate calculation is

pursued by considering, ordinarily, the contribution only of the path

with the maximum probability of occurrence. This is known as the
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most probable path and corresponds to an extremum of the functional
integrand. In this regard, the most probable path is determined by
solving a functional minimization problem that takes the form of a
deterministic boundary value problem (BVP) [10,11].

Remarkably, the WPI technique is capable of determining the joint
response transition PDF of multi-degree-of-freedom (MDOF) systems
exhibiting diverse nonlinear/hysteretic behaviors and excited by non-
white/non-Gaussian stochastic processes (e.g., [12–14]). Further, it
has been shown that the computational cost associated with a brute-
force numerical implementation of the technique can be drastically
reduced by employing sparse representations for the system response
PDF in conjunction with compressive sampling schemes and group
sparsity concepts [15,16]. Furthermore, high-dimensional systems can
be readily treated by relying on a variational formulation with mixed
fixed/free boundary conditions that renders the computational cost
independent of the total number of stochastic dimensions [17].

Nevertheless, note that classical continuum (or discretized) me-
chanics theories have been traditionally used for modeling the system
equations of motion. In this regard, the generalization of the afore-
mentioned solution approaches to treat systems exhibiting time- and
space-localized behaviors, described by operators based on wavelets
and/or non-integer order derivatives, can be a rather challenging task
(e.g., [18–20]). In fact, the need for more accurate media behavior
modeling has led recently to advanced mathematical tools such as
fractional calculus (e.g., [21–23]). Fractional calculus can be construed
as a generalization of ordinary calculus, and as such provides with
enhanced modeling capabilities. In this context, it has been successfully
employed in theoretical and applied mechanics for developing non-
local continuum mechanics theories (e.g., [24,25]), as well as for
modeling viscoelastic materials (e.g., [26]).

Several methodologies have been developed over the past few years,
with varying degrees of success, for determining the stochastic response
of nonlinear oscillators endowed with fractional derivative elements.
Indicatively, a large number of research efforts pertain to extensions of
the well-established techniques of stochastic averaging and statistical
linearization to account for fractional derivative modeling (e.g., [27–
30]). However, a stochastic averaging solution treatment is associated
typically with significant approximations, whereas the standard formu-
lation of statistical linearization yields second-order response statistics
only. Further, a WPI-based technique was proposed in [31] for treat-
ing nonlinear systems with fractional derivative elements subject to
Gaussian white noise excitation. Specifically, resorting to a variational
principle led to a functional minimization problem that was cast in
the form of a deterministic BVP involving Euler–Lagrange equations
with fractional derivative terms. Obviously, addressing the resulting
fractional BVP has its own theoretical and methodological merit. Nev-
ertheless, its solution is associated with significant challenges both from
an analytical treatment and a computational cost perspectives.

In this paper, to circumvent solving a computationally cumber-
some deterministic BVP with fractional derivative terms [31], an al-
ternative formulation of the WPI technique is pursued. Specifically,
relying on a transformation proposed in [32] and considering addi-
tional auxiliary state variables, the original single-degree-of-freedom
(SDOF) nonlinear system endowed with fractional derivative elements
is cast, equivalently, into a MDOF nonlinear system involving integer-
order derivatives only. Thus, it can be argued that the complexity
of the original equation of motion is reduced. However, note that
the dimensionality of the problem increases significantly due to the
augmentation of the response vector. To bypass this challenge, the WPI
variational formulation with mixed fixed/free boundary conditions,
which was developed originally in [17], is employed and extended
herein to treat the resulting constrained functional minimization prob-
lem. In this regard, the developed technique is capable of determining
directly any lower-dimensional joint PDF corresponding to a subset
only of the response vector components. Note that this is done in an a
priori manner; that is, without computing the multi-dimensional joint

PDF first and marginalizing afterwards. In fact, due to this a priori
marginalization the associated computational cost of the technique
becomes independent of the total number of stochastic dimensions of
the problem. Thus, the curse of dimensionality in stochastic dynamics
is circumvented and the original SDOF oscillator response joint PDF can
be determined efficiently.

Two illustrative numerical examples are considered for demon-
strating the reliability of the developed technique. These pertain to a
nonlinear Duffing and a nonlinear vibro-impact oscillators with frac-
tional derivative elements subjected to combined loading. In particu-
lar, the applied excitation comprises a white noise and a determinis-
tic harmonic components. Interestingly, alternative standard approxi-
mate techniques, such as stochastic averaging and statistical lineariza-
tion, need to be significantly modified and extended to account for
such cases of combined stochastic and deterministic periodic loading
(e.g., [33–36]). In this regard, it is shown herein that such types of
combined loading, for which the purely stochastic excitation can be
construed as a special case, can be treated by the WPI technique in
a straightforward manner without the need for any ad hoc modifica-
tions of the original formulation of the technique. Comparisons with
pertinent Monte Carlo simulation (MCS) data are included as well.

2. Mathematical formulation

2.1. Governing equation of motion

A SDOF nonlinear oscillator endowed with fractional derivative
elements is considered next subjected both to stochastic loading and to
a deterministic harmonic excitation component. Its equation of motion
takes the form

𝑥̈ + 𝐶𝛼𝐷
𝛼(𝑥) + 𝑔(𝑥, 𝑥̇) = 𝑤(𝑡) + 𝐹1 sin(𝜔1𝑡) (1)

where 𝑥 represents the nonlinear system response displacement, and a
dot over a variable denotes differentiation with respect to time 𝑡; 𝑔(𝑥, 𝑥̇)
is an arbitrary nonlinear function; 𝑤(𝑡) is a Gaussian zero-mean white
noise excitation process with a constant power spectrum value equal to
𝑆0; 𝐹1 and 𝜔1 represent the amplitude and frequency of the harmonic
excitation component, respectively. Further, 𝐷𝛼(𝑥) denotes an 𝛼-order
Caputo fractional derivative defined as

𝐷𝛼(𝑥) =
1

𝛤 (1 − 𝛼) ∫
𝑡

0

𝑥̇(𝜏)

(𝑡 − 𝜏)𝛼
d𝜏, 0 < 𝛼 < 1 (2)

where 𝛤 (⋅) is the Gamma function given by

𝛤 (𝛼) = ∫
∞

0

𝑒−𝜅𝜅𝛼−1𝑑𝜅 (3)

and 𝐶𝛼 represents a coefficient associated with the fractional derivative
term.

Next, following [32,37], Eq. (1) is recast, equivalently, in a form
containing integer-order derivatives only. Specifically, employing
Eq. (3) and the relationship 𝛤 (𝛼)𝛤 (1 − 𝛼) = 𝜋∕𝑠𝑖𝑛(𝛼𝜋), and setting
𝜅 = (𝑡 − 𝜏)𝑦2, Eq. (2) becomes

𝐷𝛼(𝑥) = 𝜇 ∫
∞

0

𝑦2𝛼−1
(
∫

𝑡

0

𝑒−(𝑡−𝜏)𝑦
2
𝑥̇(𝜏)𝑑𝜏

)
𝑑𝑦 (4)

where 𝜇 = 2𝑠𝑖𝑛(𝜋𝛼)∕𝜋. Further, note that the expression

𝑢𝑦(𝑡) = ∫
𝑡

0

𝑒−(𝑡−𝜏)𝑦
2
𝑥̇(𝜏)𝑑𝜏 (5)

for 𝑢𝑦(𝑡 = 0) = 0 can be construed as the solution of the differential
equation

𝑢̇𝑦(𝑡) + 𝑦
2𝑢𝑦(𝑡) = 𝑥̇(𝑡); 𝑢𝑦(0) = 0 (6)

Clearly, taking into account Eq. (5), Eq. (4) can be written as

𝐷𝛼(𝑥) = 𝜇 ∫
∞

0

𝑢𝑦(𝑡)𝑦
2𝛼−1𝑑𝑦 (7)

2
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or, approximately, as

𝐷𝛼(𝑥) ≈ 𝜇

∞∑
𝑗=1

𝑢𝑦,𝑗 (𝑡)𝑦
2𝛼−1
𝑗

𝛥𝑦 (8)

where 𝑦𝑗 = 𝑗𝛥𝑦. Furthermore, considering Eqs. (6) and (8), Eq. (1) can
be cast in the form

𝑥̈(𝑡) + 𝐶𝛼𝜇

∞∑
𝑗=1

𝑢𝑦,𝑗 (𝑡)𝑦
2𝛼−1
𝑗

𝛥𝑦 + 𝑔(𝑥, 𝑥̇) = 𝑤(𝑡) + 𝐹1 sin(𝜔1𝑡);

𝑢̇𝑦,𝑗 (𝑡) + 𝑦
2
𝑗
𝑢𝑦,𝑗 (𝑡) = 𝑥̇(𝑡), 𝑗 = 1, 2,… ,∞

(9)

Obviously, for numerical applications the summation in Eq. (9) is
truncated after 𝑛 terms. Alternatively, Eq. (9) can be expressed in the
matrix form

𝐌𝐱̈ + 𝐡(𝐱, 𝐱̇, 𝑡) = 𝐰(𝑡) (10)

where 𝐱 = [𝑥(𝑡),𝐮𝑇
𝑦
]𝑇 with 𝐮𝑦 = [𝑢𝑦,1(𝑡),… , 𝑢𝑦,𝑛(𝑡)]

𝑇 , 𝐰(𝑡) =

[𝑤(𝑡), 0,… , 0]𝑇 ,

𝐌 =

⎡
⎢⎢⎢⎢⎣

1 0 ⋯ 0

0 0 ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ 0

⎤
⎥⎥⎥⎥⎦

(11)

and

𝐡(𝐱, 𝐱̇, 𝑡) =

⎡
⎢⎢⎢⎣

𝐶𝛼𝜇

𝑛∑
𝑗=1

𝑢𝑦,𝑗 (𝑡)𝑦
2𝛼−1
𝑗

𝛥𝑦 + 𝑔(𝑥, 𝑥̇) − 𝐹1 sin(𝜔1𝑡)

𝐟𝑛×1(𝐱, 𝐱̇)

⎤
⎥⎥⎥⎦

(12)

where

𝐟𝑛×1(𝐱, 𝐱̇) =

⎡⎢⎢⎣

𝑢̇𝑦,1(𝑡) + 𝑦
2
1
𝑢𝑦,1(𝑡) − 𝑥̇(𝑡)

⋮

𝑢̇𝑦,𝑛(𝑡) + 𝑦
2
𝑗
𝑢𝑦,𝑛(𝑡) − 𝑥̇(𝑡)

⎤⎥⎥⎦
(13)

It is readily seen that the original SDOF nonlinear system endowed
with fractional derivative elements and governed by Eq. (1) has been
recast into the MDOF nonlinear system of Eq. (10) involving integer-
order derivatives only. Thus, it can be argued that the complexity
of the original equation has been reduced. Note, however, that the
dimensionality of the problem has increased significantly due to the
augmentation of the response vector. Of course, this does not pose any
considerable computational challenges for the special case of linear
systems, i.e., 𝑔(𝑥, 𝑥̇) in Eq. (1) is a linear function of 𝑥 and 𝑥̇. Indeed,
as shown in [32], standard linear random vibration theory tools can
be employed for determining the MDOF system response statistics
efficiently, even in closed-form for some cases; see also [2] for a broader
perspective.

Nevertheless, determining response statistics for the general case of
the nonlinear MDOF system in Eq. (10), accurately and in a computa-
tionally efficient manner, has been a persistent challenge in the field
of stochastic engineering dynamics (e.g., [4]). In the following, the
WPI solution technique developed recently by Kougioumtzoglou and
co-workers (e.g., [14,17]) is extended and applied herein to treat the
nonlinear system of Eq. (10), and to determine its response joint PDF
𝑝(𝑥, 𝑥̇).

2.2. Wiener path integral technique formulation

It is seen that Eq. (10) describing the motion of the nonlinear MDOF
system involves an (𝑛+1) × 1 excitation vector 𝐰(𝑡) with 𝑛 zero entries.
In this regard, the resulting constant matrix 𝐃, where 𝐸[𝐰(𝑡)𝐰(𝑡+𝜏)𝑇 ] =
𝐃𝛿(𝜏), becomes singular. Thus, the special WPI solution formulation
developed in [14] to account for singular 𝐃 matrices is adapted next
to treat Eq. (10).

Specifically, the singularity of 𝐃 is addressed by interpreting
Eq. (10) as a set of two coupled subsystems. The first refers to the
first row of Eq. (10) corresponding to the excitation 𝑤(𝑡). The second

pertains to the vector 𝐟𝑛×1 in Eq. (13) corresponding to the zero entries
of 𝐰(𝑡). In other words, it can be argued that the motion of the MDOF
dynamical system is governed by the first subsystem constrained,
however, by the second subsystem of equations. Based on the above
rationale, it was shown in [14] that the joint response transition PDF
of such systems can be represented as a functional integral over the
space of all paths satisfying the constraint equations.

In particular, referring to the system of Eq. (10), the joint response
transition PDF 𝑝(𝑥𝑓 , 𝑥̇𝑓 ,𝐮𝑦𝑓 , 𝑡𝑓 |𝑥𝑖, 𝑥̇𝑖,𝐮𝑦𝑖, 𝑡𝑖) starting from the initial
state (𝑥𝑖, 𝑥̇𝑖,𝐮𝑦𝑖, 𝑡𝑖) and reaching the final state (𝑥𝑓 , 𝑥̇𝑓 ,𝐮𝑦𝑓 , 𝑡𝑓 ) takes the
form of the functional integral

𝑝(𝑥𝑓 , 𝑥̇𝑓 ,𝐮𝑦𝑓 , 𝑡𝑓 |𝑥𝑖, 𝑥̇𝑖,𝐮𝑦𝑖, 𝑡𝑖) = ∫𝐶{𝑥𝑖 ,𝑥̇𝑖 ,𝐮𝑦𝑖 ,𝑡𝑖;𝑥𝑓 ,𝑥̇𝑓 ,𝐮𝑦𝑓 ,𝑡𝑓 |𝐟𝑛×1=0}
exp

(
−∫

𝑡𝑓

𝑡𝑖

𝐿(𝑥, 𝑥̇, 𝑥̈, 𝐮𝑦)𝑑𝑡

)
𝑑𝐱(𝑡)

(14)

where 𝐿(𝑥, 𝑥̇, 𝑥̈, 𝐮𝑦) denotes the Lagrangian functional given by

𝐿(𝑥, 𝑥̇, 𝑥̈, 𝐮𝑦) =
[𝑥̈(𝑡) + 𝐶𝛼𝜇

∑𝑛

𝑗=1
𝑢𝑦,𝑗 (𝑡)𝑦

2𝛼−1
𝑗

𝛥𝑦 + 𝑔(𝑥, 𝑥̇) − 𝐹1 sin(𝜔1𝑡)]
2

4𝜋𝑆0

(15)

In Eq. (14), 𝑑𝐱(𝑡) represents a functional measure, and 𝐶{𝑥𝑖, 𝑥̇𝑖,𝐮𝑦𝑖, 𝑡𝑖;
𝑥𝑓 , 𝑥̇𝑓 , 𝐮𝑦𝑓 , 𝑡𝑓 |𝐟𝑛×1 = 0} denotes the set of all paths with initial state
(𝑥𝑖, 𝑥̇𝑖,𝐮𝑦𝑖, 𝑡𝑖) and final state (𝑥𝑓 , 𝑥̇𝑓 ,𝐮𝑦𝑓 , 𝑡𝑓 ) satisfying the constraint
𝐟𝑛×1 = 0.

Note that the joint PDF in Eq. (14) refers to the augmented (𝑛 +

1) × 1 response vector 𝐱. However, from a practical point of view, the
primary objective relates to determining the joint PDF of the response
displacement 𝑥 and velocity 𝑥̇ corresponding to the original oscillator
of Eq. (1). In other words, it can be argued that knowledge of the
joint PDF corresponding to vector 𝐮𝑦 is of limited practical value.
Indeed, 𝐮𝑦 constitutes a vector of auxiliary variables used to model
the dependence of the state of the oscillator on its history due to the
fractional derivative term.

In this regard, the WPI variational formulation with mixed fixed/
free boundary conditions, which was developed originally in [17], is
employed and extended herein to account for constrained problems
such as the one shown in Eq. (14). Specifically, considering the re-
sponse vector 𝐱, the technique is capable of determining directly any
lower-dimensional joint PDF corresponding to a subset only of the
components of the vector 𝐱. Note that this is done in an a priori manner;
that is, without computing the complete (𝑛 + 2)-dimensional joint PDF
first and marginalizing afterwards. Further, as demonstrated in [17]
and remarked also in Section 2.4, due to this a priori marginalization
the computational cost of the technique becomes independent of the
total number of stochastic dimensions of the problem. Thus, the curse
of dimensionality in stochastic dynamics is circumvented and the joint
PDF 𝑝(𝑥, 𝑥̇) can be determined efficiently.

In particular, the transition PDF of Eq. (14) becomes

𝑝(𝑥𝑓 , 𝑥̇𝑓 , 𝑡𝑓 |𝑥𝑖, 𝑥̇𝑖,𝐮𝑦𝑖, 𝑡𝑖) = ∫𝐶{𝑥𝑖 ,𝑥̇𝑖 ,𝐮𝑦𝑖 ,𝑡𝑖;𝑥𝑓 ,𝑥̇𝑓 ,𝑡𝑓 |𝐟𝑛×1=0}
exp

(
−∫

𝑡𝑓

𝑡𝑖

𝐿(𝑥, 𝑥̇, 𝑥̈, 𝐮𝑦)𝑑𝑡

)
𝑑𝐱(𝑡)

(16)

Note that the coordinates 𝐮𝑦 at 𝑡𝑓 are considered free; see also [17] for
more details.

2.3. Constrained variational problem and system response joint PDF deter-
mination

Evaluating analytically the functional integral of Eq. (16) is, in
general, an impossible task. To address this challenge, approximate
approaches are typically employed in the literature such as the most
probable path approximation (e.g., [11]). It is remarked that the most

3
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probable path approximation has exhibited a quite high degree of accu-

racy in various diverse engineering mechanics applications (e.g., [10,

38,39]). In fact, as proved in [40], for the case of linear systems the

most probable path approximation yields the exact joint response PDF.

In particular, note that the largest contribution to the functional

integral of Eq. (16) relates to the trajectory 𝐱𝑐 (𝑡) = [𝑥𝑐 (𝑡),𝐮
𝑇
𝑦,𝑐
]𝑇 for

which the integral in the exponential becomes as small as possible. This

leads to the constrained variational (functional minimization) problem

minimize 𝐽 (𝐱) = ∫
𝑡𝑓

𝑡𝑖

𝐿(𝑥, 𝑥̇, 𝑥̈, 𝐮𝑦)𝑑𝑡

subject to 𝐟𝑛×1 = 0

(17)

Next, the most probable path 𝐱𝑐 (𝑡) satisfying Eq. (17) can be used in

conjunction with Eq. (16) for determining approximately the system

response joint transition PDF as

𝑝(𝑥𝑓 , 𝑥̇𝑓 , 𝑡𝑓 |𝑥𝑖, 𝑥̇𝑖,𝐮𝑦𝑖, 𝑡𝑖) ≈ 𝐶exp

(
−∫

𝑡𝑓

𝑡𝑖

𝐿(𝑥𝑐 , 𝑥̇𝑐 , 𝑥̈𝑐 ,𝐮𝑦,𝑐 )𝑑𝑡

)
(18)

where 𝐶 is a normalization constant determined by

∫
+∞

−∞ ∫
+∞

−∞

𝑝(𝑥𝑓 , 𝑥̇𝑓 , 𝑡𝑓 |𝑥𝑖, 𝑥̇𝑖,𝐮𝑦𝑖, 𝑡𝑖)𝑑𝑥𝑓𝑑𝑥̇𝑓 = 1 (19)

Further, the constrained variational problem of Eq. (17) can be cast

in the form of an unconstrained problem by employing an approach

based on Lagrange multipliers (e.g., [41]). Specifically, defining the

auxiliary Lagrangian functional

𝐿∗(𝑥, 𝑥̇, 𝑥̈, 𝐮𝑦) = 𝐿(𝑥, 𝑥̇, 𝑥̈, 𝐮𝑦) + 𝝀(𝑡)
𝑇
𝐟𝑛×1 (20)

Eq. (17) becomes

minimize 𝐽 ∗(𝐱) = ∫
𝑡𝑓

𝑡𝑖

𝐿∗(𝑥, 𝑥̇, 𝑥̈, 𝐮𝑦)𝑑𝑡 (21)

where 𝝀(𝑡) in Eq. (20) denotes the 𝑛-dimensional vector of the Lagrange

multiplier functions. Furthermore, the most probable path 𝐱𝑐 (𝑡) that

minimizes 𝐽 ∗(𝐱) is an extremal of the functional 𝐽 ∗(𝐱). According to the

fundamental theorem of calculus of variations [42], an extremal can be

evaluated by enforcing the necessary condition that the first variation

of the functional vanishes, i.e.,

𝛿𝐽 ∗(𝐱) = 0 (22)

Applying Eq. (22) in conjunction with fixed boundary conditions for

(𝑥, 𝑥̇,𝐮𝑦) at 𝑡𝑖, and fixed conditions for (𝑥, 𝑥̇) and free conditions for 𝐮𝑦
at 𝑡𝑓 , yields the Euler–Lagrange equations (e.g., [17])

𝜕𝐿∗

𝜕𝑥𝑗
−
𝜕

𝜕𝑡

𝜕𝐿∗

𝜕𝑥̇𝑗
+
𝜕2

𝜕𝑡2
𝜕𝐿∗

𝜕𝑥̈𝑗
= 0, 𝑗 = 1, 2,… , 𝑛 + 1 (23)

where 𝑥𝑗 denotes the 𝑗-th component of the vector 𝐱 = [𝑥(𝑡),𝐮𝑇
𝑦
]𝑇 .

Eq. (23) is subjected to the boundary conditions

𝑥(𝑡𝑖) = 𝑥𝑖, 𝑥̇(𝑡𝑖) = 𝑥̇𝑖,

𝑢𝑦,𝑗 (𝑡𝑖) = 𝑢𝑦𝑖,𝑗 , 𝑗 = 1, 2,… , 𝑛
(24)

𝑥(𝑡𝑓 ) = 𝑥𝑓 , 𝑥̇(𝑡𝑓 ) = 𝑥̇𝑓 (25)

[
𝜕𝐿∗

𝜕𝑢̇𝑦,𝑗

]

𝑡=𝑡𝑓

= 0, 𝑗 = 1, 2,… , 𝑛 (26)

Eqs. (23)–(26) need to be solved in conjunction with the 𝑛 constraint

equations 𝐟𝑛×1 = 0 for determining both 𝐱𝑐 (𝑡) and the Lagrange multipli-

ers 𝝀(𝑡). In this regard, note that 𝑢̇𝑦,𝑗 (𝑡𝑖) = 𝑥̇𝑖 − 𝑦
2
𝑗
𝑢𝑦𝑖,𝑗 , for 𝑗 = 1, 2,… , 𝑛,

reflecting the constraint relationship at 𝑡𝑖. The interested reader is also

directed to the Appendix for a detailed derivation of Eqs. (23)–(26).

2.4. Computational aspects

Clearly, solution of the functional minimization problem of Eq. (17),

or equivalently of the Euler–Lagrange Eqs. (23)–(26), yields the most

probable path 𝐱𝑐 (𝑡) to be substituted into Eq. (18) for determining a

specific point of the response PDF. In this regard, it is readily seen

that a brute-force approach for computing the complete 2-dimensional

transition PDF 𝑝(𝑥𝑓 , 𝑥̇𝑓 , 𝑡𝑓 |𝑥𝑖, 𝑥̇𝑖,𝐮𝑦𝑖, 𝑡𝑖) at time instant 𝑡𝑓 dictates, first,
the discretization of the (𝑥𝑓 , 𝑥̇𝑓 ) domain into 𝑁

2 points, where 𝑁 is the

number of points in each dimension, and second, the numerical solution

of 𝑁2 problems of the form of Eq. (17); see also [17] for more details.

The aforementioned approach demonstrates the significant advan-

tage, in terms of computational efficiency, of the herein extended WPI

formulation with mixed fixed/free boundaries that marginalizes the

system response joint PDF in an a priori manner. To elaborate further,

applying an alternative standard WPI formulation involving only fixed

boundaries dictates the PDF representation of Eq. (14) corresponding to

the augmented response vector [𝑥𝑓 ,𝐮
𝑇
𝑦𝑓
]𝑇 . In this regard, determining

the (𝑛 + 2)-dimensional transition PDF 𝑝(𝑥𝑓 , 𝑥̇𝑓 ,𝐮𝑦𝑓 , 𝑡𝑓 |𝑥𝑖, 𝑥̇𝑖, 𝐮𝑦𝑖, 𝑡𝑖) at
time instant 𝑡𝑓 relates, first, to discretizing the (𝑥𝑓 , 𝑥̇𝑓 , 𝐮𝑦𝑓 ) domain

into 𝑁 (2+𝑛) points, and second, to solving 𝑁 (2+𝑛) problems of the form

of Eq. (23), but with fixed boundary conditions at both 𝑡𝑖 and 𝑡𝑓

for the state variables (𝑥, 𝑥̇,𝐮𝑦). Obviously, this yields a prohibitive

computational cost taking into account that 𝑛 ∼ 𝑂(102) as shown

in [32].

In the ensuing analysis and numerical examples a Rayleigh–Ritz

solution approach is employed for determining the most probable path

𝐱𝑐 (𝑡) (e.g., [10,11]). Specifically, 𝐱𝑐 (𝑡) is approximated by

𝐱𝑐 (𝑡) ≈ 𝝍(𝑡) + 𝐑𝐡(𝑡) (27)

where 𝐡(𝑡) = [ℎ𝑙(𝑡)]𝑚×1 denotes a vector of 𝑚 trial functions vanishing at

the boundaries, i.e., 𝐡(𝑡𝑖) = 𝐡(𝑡𝑓 ) = 0; 𝐑 ∈ R
(𝑛+1)×𝑚 is a coefficient matrix

to be determined; and 𝝍(𝑡) = [𝜓𝑞(𝑡)](𝑛+1)×1 is an appropriately chosen

vector function satisfying the boundary conditions. In particular, the

Hermite interpolating polynomials

𝜓𝑞(𝑡) =

3∑
𝑘=0

𝑎𝑞,𝑘𝑡
𝑘, 𝑞 = 1, 2,… , 𝑛, 𝑛 + 1 (28)

are employed. Further, the trial functions vanishing at the boundaries

take the form

ℎ𝑙(𝑡) = (𝑡 − 𝑡𝑖)
2(𝑡 − 𝑡𝑓 )

2𝑃𝑙(𝑡) (29)

where 𝑃𝑙(𝑡) denote the shifted Legendre polynomials given by the

recursive formula

𝑃𝑙+1(𝑡) =
2𝑙 + 1

𝑙 + 1
𝑃1(𝑡)𝑃𝑙(𝑡) −

𝑙

𝑙 + 1
𝑃𝑙−1(𝑡), 𝑙 = 1, 2,… (30)

with 𝑃0(𝑡) = 1 and 𝑃1(𝑡) = (2𝑡 − 𝑡𝑖 − 𝑡𝑓 )∕(𝑡𝑓 − 𝑡𝑖).

Obviously, the adoption of the Rayleigh–Ritz solution approach sim-

plifies the constrained variational (functional minimization) problem

of Eq. (17) to an ordinary minimization problem of a function that

depends on a finite number of variables [43]. That is, Eq. (17) becomes

minimize 𝐽 (𝐑) (31)

subject to 𝐟𝑛×1(𝐑) = 0 (32)

Notably, the fact that the constraint equations 𝐟𝑛×1 = 0 are linear facil-

itates a computationally efficient numerical solution of Eqs. (31)–(32)

by employing the nullspace of the constraint equations; see also [14]

for more details.
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Fig. 1. Joint response PDF 𝑝(𝑥, 𝑥̇) at indicative time instants 𝑡 = 0.5, 1.5 and 5 s of a Duffing nonlinear oscillator with a fractional derivative element: (a) WPI technique; (b) MCS
data (10,000 realizations).

3. Numerical examples

In this section, two illustrative numerical examples are considered
for demonstrating the reliability of the developed technique. These
pertain to a nonlinear Duffing and a nonlinear vibro-impact oscillators
with fractional derivative elements governed by Eq. (1) and starting
from rest. The joint response PDF estimates obtained by the herein
developed WPI technique are compared with MCS-based estimates
obtained by numerically solving Eq. (1) and by conducting a statis-
tical analysis on the response time-histories (10,000 realizations). To
this aim, the 𝐿1-algorithm [44] is utilized for numerically integrating
Eq. (1).

Further, 𝑛 ∼ 𝑂(102) as shown in [32]. In this regard, to reduce the
number 𝑛 of additional state-variables 𝐮𝑦 required in the transformed
system of Eq. (9), the Laguerre formula is employed next for approx-
imating the integral of Eq. (7) [37]. Specifically, considering Eqs. (7)
and (8) yields

𝐷𝛼(𝑥) = 𝜇 ∫
∞

0

𝑢𝑦(𝑡)𝑦
2𝛼−1𝑑𝑦 ≈ 𝜇

𝑛∑
𝑗=1

𝑢𝑦,𝑗 (𝑡)𝑦
2𝛼−1
𝑗

𝛥𝑦

≈ 𝜇

𝑛𝐿∑
𝑗=1

𝑘𝑗𝑒
𝑦𝑗 𝑦2𝛼−1

𝑗
𝑢𝑦,𝑗 (𝑡)

(33)

where 𝑘𝑗 and 𝑦𝑗 , 𝑗 = 1, 2,… , 𝑛𝐿 denote the Laguerre weights and
node points, respectively. As shown in [37], 𝑛𝐿 ∼ 𝑂(101) that is
approximately an order of magnitude smaller than 𝑛.

3.1. Nonlinear duffing oscillator

Consider a Duffing nonlinear oscillator with a fractional derivative
element, whose dynamics is governed by Eq. (1) with

𝑔(𝑥, 𝑥̇) = 𝜔2
0
𝑥 + 𝜀𝜔2

0
𝑥3 (34)

In Eq. (34), 𝜔0 denotes the natural frequency of the corresponding
linear oscillator (i.e., for 𝜀 = 0), and the parameter 𝜀 > 0 controls the
magnitude of the nonlinearity. In the following, the parameter values
used are 𝑆0 = 1∕(2𝜋), 𝐶𝛼 = 1, 𝛼 = 0.6, 𝜔0 = 1, 𝜀 = 1, 𝐹1 = 1.5, 𝜔1 = 1, and
𝑛𝐿 = 5.

Further, employing the herein developed WPI technique described
in Section 2.3, with free boundaries at 𝑡𝑓 for the state variables 𝐮𝑦,
yields the joint response PDF 𝑝(𝑥, 𝑥̇) shown in Fig. 1a for three arbitrary
time instants, i.e., 𝑡 = 0.5, 1.5 and 5 s. Comparisons with MCS-based
estimates in Fig. 1b demonstrate a satisfactory degree of accuracy.
Furthermore, the marginal response displacement and velocity PDFs
are plotted in Figs. 2 and 3, respectively, for 𝑡 = 0.5 s, 1.5 s and
5 s. Clearly, the accuracy degree exhibited by the WPI technique based
on comparisons with MCS data is quite high, even for the herein
considered challenging case of combined loading. In this regard, not

Fig. 2. Response displacement PDF of a Duffing nonlinear oscillator with a fractional
derivative element at indicative time instants 𝑡 = 0.5, 1.5 and 5 s; comparisons with
MCS data (10,000 realizations).

Fig. 3. Response velocity PDF of a Duffing nonlinear oscillator with a fractional
derivative element at indicative time instants 𝑡 = 0.5, 1.5 and 5 s; comparisons with
MCS data (10,000 realizations).

only the technique is capable of treating such excitation types in a
straightforward manner without the need for any ad hoc modifications,
but it also succeeds in capturing the strongly time-variant behavior of
the response PDF due to the sinusoidal excitation component.

3.2. Nonlinear vibro-impact oscillator

Consider a nonlinear vibro-impact oscillator with a fractional deriv-
ative element. Its equation of motion is given by Eq. (1) with

𝑔(𝑥, 𝑥̇) = 𝜔2
0
𝑥 + 𝜂ℎ(𝑥) (35)
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Fig. 4. Joint response PDF 𝑝(𝑥, 𝑥̇) at indicative time instants 𝑡 = 1, 5 and 8 s of a vibro-impact nonlinear oscillator with a fractional derivative element: (a) WPI technique; (b)
MCS data (10,000 realizations).

Fig. 5. Response displacement PDF of a vibro-impact nonlinear oscillator with a
fractional derivative element at indicative time instants 𝑡 = 1, 5 and 8 s; comparisons
with MCS data (10,000 realizations).

where

ℎ(𝑥) =

{
(𝑥 − 𝑎)3∕2 if 𝑥 ≥ 𝑎

0 otherwise
(36)

In Eqs. (35)–(36), 𝜔0 denotes the natural frequency of the correspond-
ing linear oscillator (i.e., for 𝜂 = 0); the parameter 𝜂 controls the
nonlinearity magnitude; and 𝑎 represents the displacement bound. The
interested reader is also directed to the review paper [45] for more
details and for a broader perspective. In the following, the parameter
values 𝑆0 = 0.0637, 𝐶𝛼 = 1, 𝛼 = 0.3, 𝜔0 = 1, 𝜂 = 4, 𝑎 = 0.5, 𝐹1 = 0.2, 𝜔1 =

1, and 𝑛𝐿 = 4 are used.
Similarly to the example in Section 3.1, applying the WPI tech-

nique of Section 2.3 and solving the constrained optimization problem
described by Eqs. (31)–(32) yields the most probable path. This is
substituted in Eq. (16) for evaluating the joint response PDF 𝑝(𝑥, 𝑥̇).
This is plotted in Fig. 4 for indicative time instants 𝑡 = 1, 5, and 8 s and
compared with pertinent MCS data (10,000 realizations). Further, the
corresponding marginal response displacement and velocity PDFs are
plotted in Figs. 5 and 6, respectively, for 𝑡 = 1, 5, and 8 s. It is seen that
the WPI technique exhibits a satisfactory accuracy degree, even for the
highly asymmetric displacement PDF shape at 𝑡 = 8 s.

4. Concluding remarks

In this paper, a WPI technique has been developed for determining
the joint response PDF of nonlinear oscillators with fractional derivative
elements. In this regard, relying on a transformation proposed in [32],
the original SDOF nonlinear system with fractional derivative terms
has been cast into a MDOF nonlinear system involving integer-order

Fig. 6. Response velocity PDF of a vibro-impact nonlinear oscillator with a fractional
derivative element at indicative time instants 𝑡 = 1, 5 and 8 s; comparisons with MCS
data (10,000 realizations).

derivatives only. In particular, the dependence of the state of the
oscillator on its history due to the fractional derivative terms has been
accounted for by augmenting the response vector and by considering
additional auxiliary state variables and equations.

Further, the MDOF system equations of motion have been treated as
a set of two coupled subsystems. The rationale relates to the interpre-
tation that the first subsystem corresponding to the applied excitation
governs the motion of the MDOF system, which is constrained, how-
ever, by the second subsystem of equations. Furthermore, to address
the challenge of increased dimensionality of the MDOF system, a
WPI formulation with mixed fixed/free boundary conditions has been
developed for determining directly any lower-dimensional joint PDF
corresponding to a subset only of the response vector components.
Note that this is done in an a priori manner; that is, without comput-
ing the complete multi-dimensional joint PDF first and marginalizing
afterwards. In fact, due to this a priori marginalization the associ-
ated computational cost becomes independent of the total number of
stochastic dimensions of the problem. Thus, the original SDOF oscilla-
tor joint PDF corresponding to the response displacement and velocity
has been determined efficiently, while circumventing the analytically
and computationally challenging task of treating directly equations of
motion involving fractional derivatives. Notably, the developed tech-
nique can be construed also as an extension of the concepts and results
in [17] to account for equations of motion with constraints.

Two illustrative numerical examples have been considered for
demonstrating the reliability of the developed technique, pertaining
to a nonlinear Duffing and a nonlinear vibro-impact oscillators with
fractional derivative elements subjected to combined stochastic and
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deterministic periodic loading. Remarkably, compared to alternative
standard approximate techniques that need to be significantly modified
and extended to account for such cases of combined loading (e.g., [33–
36]), it has been shown herein that the WPI technique can treat such
types of excitation in a straightforward manner without the need for
any ad hoc modifications. Comparisons with pertinent MCS data have
demonstrated a quite high accuracy degree of the WPI technique.
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Appendix

In this Appendix, additional details are provided regarding the
derivation of the Euler–Lagrange equations shown in Eq. (23) and
the associated mixed fixed/free boundary conditions of Eqs. (24)–(25).
Specifically, considering Eq. (21), the first variation of the functional
𝐽 ∗(𝐱) becomes

𝛿𝐽 ∗(𝐱) = ∫
𝑡𝑓

𝑡𝑖

[
𝐿∗

(
𝐱 + 𝛿𝐱, 𝐱̇ + 𝛿𝐱̇, 𝐱̈ + 𝛿𝐱̈

)
− 𝐿∗

(
𝐱, 𝐱̇, 𝐱̈

)]
𝑑𝑡 (A.1)

In Eq. (A.1), and in the ensuing analysis, the Lagrangian functional of
Eq. (15) is denoted as 𝐿∗(𝐱, 𝐱̇, 𝐱̈) for notation simplicity, where 𝐱 =

[𝑥(𝑡),𝐮𝑇
𝑦
]𝑇 . Next, applying Taylor’s formula, the integrand in Eq. (A.1)

is written as

𝐿∗
(
𝐱 + 𝛿𝐱, 𝐱̇ + 𝛿𝐱̇, 𝐱̈ + 𝛿𝐱̈

)
− 𝐿∗

(
𝐱, 𝐱̇, 𝐱̈

)

=

𝑛+1∑
𝑗=1

(
𝜕

𝜕𝑥𝑗
𝐿∗𝛿𝑥𝑗 +

𝜕

𝜕𝑥̇𝑗
𝐿∗𝛿𝑥̇𝑗 +

𝜕

𝜕𝑥̈𝑗
𝐿∗𝛿𝑥̈𝑗

)
+ 𝑅𝑙

(A.2)

where 𝑥𝑗 represents the 𝑗-th component of the vector 𝐱 = [𝑥(𝑡),𝐮𝑇
𝑦
]𝑇 ,

and 𝑅𝑙 denotes an infinitesimal of higher order than 𝛿𝑥𝑗 , 𝛿𝑥̇𝑗 , 𝛿𝑥̈𝑗 .
Further, utilizing Eq. (A.2) and ignoring 𝑅𝑙, Eq. (A.1) becomes

𝛿𝐽 ∗ =

𝑛+1∑
𝑗=1

∫
𝑡𝑓

𝑡𝑖

(
𝜕

𝜕𝑥𝑗
𝐿∗𝛿𝑥𝑗 +

𝜕

𝜕𝑥̇𝑗
𝐿∗𝛿𝑥̇𝑗 +

𝜕

𝜕𝑥̈𝑗
𝐿∗𝛿𝑥̈𝑗

)
𝑑𝑡 (A.3)

Furthermore, integrating by parts the second and third terms in
Eq. (A.3) yields

∫
𝑡𝑓

𝑡𝑖

𝜕

𝜕𝑥̇𝑗
𝐿∗𝛿𝑥̇𝑗𝑑𝑡 =

[
𝜕

𝜕𝑥̇𝑗
𝐿∗𝛿𝑥𝑗

]𝑡𝑓
𝑡𝑖

− ∫
𝑡𝑓

𝑡𝑖

𝑑

𝑑𝑡

𝜕

𝜕𝑥̇𝑗
𝐿∗𝛿𝑥𝑗𝑑𝑡,

∫
𝑡𝑓

𝑡𝑖

𝜕

𝜕𝑥̈𝑗
𝐿∗𝛿𝑥̈𝑗𝑑𝑡 =

[
𝜕

𝜕𝑥̈𝑗
𝐿∗𝛿𝑥̇𝑗

]𝑡𝑓
𝑡𝑖

−

[
𝑑

𝑑𝑡

𝜕

𝜕𝑥̈𝑗
𝐿∗𝛿𝑥𝑗

]𝑡𝑓
𝑡𝑖

+ ∫
𝑡𝑓

𝑡𝑖

𝑑2

𝑑𝑡2
𝜕

𝜕𝑥̈𝑗
𝐿∗𝛿𝑥𝑗𝑑𝑡

(A.4)

Next, substituting Eq. (A.4) into Eq. (A.3), the necessary condition of
Eq. (22) for the minimization of the functional 𝐽 ∗(𝐱) becomes

𝛿𝐽 ∗ =

𝑛+1∑
𝑗=1

{
∫

𝑡𝑓

𝑡𝑖

(
𝜕

𝜕𝑥𝑗
𝐿∗ −

𝑑

𝑑𝑡

𝜕

𝜕𝑥̇𝑗
𝐿∗ +

𝑑2

𝑑𝑡2
𝜕

𝜕𝑥̈𝑗
𝐿∗

)
𝛿𝑥𝑗𝑑𝑡

+

[
𝜕

𝜕𝑥̇𝑗
𝐿∗𝛿𝑥𝑗

]𝑡𝑓
𝑡𝑖

+

[
𝜕

𝜕𝑥̈𝑗
𝐿∗𝛿𝑥̇𝑗

]𝑡𝑓
𝑡𝑖

−

[
𝑑

𝑑𝑡

𝜕

𝜕𝑥̈𝑗
𝐿∗𝛿𝑥𝑗

]𝑡𝑓
𝑡𝑖

}
= 0

(A.5)

Note that for fixed boundary conditions at 𝑡𝑖 and 𝑡𝑓 the variations
𝛿𝐱, 𝛿𝐱̇, 𝛿𝐱̈ become zero, and thus, Eq. (A.5) yields the Euler–Lagrange
Eq. (23). Alternatively, consider the fixed boundary conditions

𝑥1(𝑡𝑖) = 𝑥𝑖, 𝑥̇1(𝑡𝑖) = 𝑥̇𝑖, 𝑥1(𝑡𝑓 ) = 𝑥𝑓 , 𝑥̇1(𝑡𝑓 ) = 𝑥̇𝑓

𝑥𝑗 (𝑡𝑖) = 0, 𝑥̇𝑗 (𝑡𝑖) = 0, 𝑗 = 2, 3,… , 𝑛 + 1
(A.6)

whereas 𝑥𝑗 (𝑡𝑓 ), 𝑥̇𝑗 (𝑡𝑓 ), 𝑗 = 2, 3,… , 𝑛+1 are considered free. In this case,
the variations 𝛿𝐱, 𝛿𝐱̇, 𝛿𝐱̈ take the form
[
𝛿𝑥𝑗

]
𝑡=𝑡𝑖

=
[
𝛿𝑥̇𝑗

]
𝑡=𝑡𝑖

= 0, 𝑗 = 1, 2,… , 𝑛 + 1
[
𝛿𝑥1

]
𝑡=𝑡𝑓

=
[
𝛿𝑥̇1

]
𝑡=𝑡𝑓

= 0

[
𝛿𝑥𝑗

]
𝑡=𝑡𝑓

= 𝛿𝑥𝑗,𝑓 ,
[
𝛿𝑥̇𝑗

]
𝑡=𝑡𝑓

= 𝛿𝑥̇𝑗,𝑓 , 𝑗 = 2, 3,… , 𝑛 + 1

(A.7)

As remarked previously, the most probable path 𝐱𝑐 is also an
extremal with respect to the more restricted class of functions 𝐱 that
have their boundaries fixed. In this regard, 𝐱𝑐 also satisfies the Euler–
Lagrange Eq. (23). Thus, the first term in Eq. (A.5) vanishes. Lastly,
considering Eq. (A.5) in conjunction with the mixed fixed/free bound-
ary conditions of Eq. (A.7) yields Eqs. (24)–(26); see also [41] for a
broader perspective.
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