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Abstract. In this paper we consider the contextual multi-armed bandit problem for linear payoffs under a
risk-averse criterion. At each round, contexts are revealed for each arm, and the decision maker chooses
one arm to pull and receives the corresponding reward. In particular, we consider mean-variance as the
risk criterion, and the best arm is the one with the largest mean-variance reward. We apply the Thompson
sampling algorithm for the disjoint model, and provide a comprehensive regret analysis for a variant of the
proposed algorithm. For T rounds, K actions, and d-dimensional feature vectors, we prove a regret bound
of O(1+p + %)d InTIn %, |dKT1+2¢ In %%) that holds with probability 1 — 6 under the mean-variance
criterion with risk tolerance p, for any 0 < € < %, 0 < 0 < 1. The empirical performance of our proposed

algorithms is demonstrated via a portfolio selection problem.
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1. Introduction we consider the contextual MAB problem. As
opposed to the standard MAB problem, before
The multi-armed bandit (MAB) problem is a
making the choice of which arm to play, the de-
classic online decision-making problem with
limited feedback. In the standard MAB prob-

lem, in each of T rounds, a decision maker

cision maker observes a d-dimensional context
x; associated with each arm i, and chooses an

) arm to play in the current round based on the
plays one of the K arms and receives a reward
rewards of the arms played in the past along
(also called payoff) of that arm. It has a wide
with the contexts. In this paper, we assume the
variety of real-world applications, such as clin-
expected reward of each arm is linear in the
ical trials, online advertisement, and portfo-
context, i.e., we assume there is an underlying
lio selection. In certain situations, the deci- p )
. ) . mean parameter y; € R? for each arm i, such
sion maker may also be provided with contexts .
that the expected reward for each arm i takes
(also known as covariates or side information).
) ) ) the form x ;. A class of predictors is said to
For example, in personalized web services, the
be linear if each predictor predicts which arm
decision maker also knows the demographic,
) ) ) ) gives the best expected reward that is linear in
geographic, and behavioral information of the
the observed context. The linear assumption
user (Li et al. 2010), which may be useful to
) o leads to a succinct and tractable representa-
infer the conditional average reward of an arm
tion and is enough for good real-world perfor-
and allows the decision maker to personalize
mance (Li et al. 2010). The goal of the decision
decisions for every situation and even improve
maker is to minimize the so-called regret, with
the average reward over time. In this paper,
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respect to the best linear predictor in hindsight,
who predicts exactly p; and pulls the arm with

the largest expected reward x;" u;, i € [K].

The MAB (or contextual MAB) problem es-
sentially seeks a trade-off between exploitation
(of the current information by playing the arm
with the highest estimated reward) and explo-
ration (by playing other arms to collect reward
information). The majority of the literature
balance this trade-off by designing algorithms
that maximize the expected total reward (or
equivalently, minimize the expected total re-
gret). However, in many real-world problems,
maximizing the expected reward is not always
the most desirable. For example, in the port-
folio selection problem, some portfolio man-
agers are risk-averse and prefer less risky port-
folios with low expected return rather than
highly risky portfolios with high expected re-
turn. In this case, the risk of the reward should
also be taken into consideration. Motivated
by such risk consideration in real-world prob-
lems, we take a risk-averse perspective on the
stochastic contextual MAB problem. Although
many risk measures have been used in the
risk-averse MAB problems, we focus on the
mean-variance paradigm (Markowitz 1952),
given its advantages in interpretability, com-
putation, and popularity among practitioners.
To the best of our knowledge, we are among
the first to consider the risk-averse contextual
MAB problem.

To solve risk-averse contextual MAB, we
propose algorithms based on Thompson sam-
pling (TS, see Thompson (1933)). TS is one
of the earliest heuristics for the MAB problems
via a Bayesian perspective. Intuitively speak-

ing, TS assumes a prior distribution on the un-

derlying parameters of the reward distribution
for each arm and updates the posterior distri-
butions after pulling the arms. At each round,
it samples from the posterior distribution for
each arm, and plays the arm that produces
the best sampled reward. Most of the exist-
ing literature that apply TS to the MAB prob-
lem does not care about the variance of the
reward distribution, as they intend to main-
tain a low expected regret. However, in the
risk-averse setting, the variance also plays a vi-
tal role in determining the best arm. Hence,
in addition to sampling the reward mean, we
also need to sample the reward variance. It
poses great challenges to the Bayesian updat-
ing of the parameters as well as the regret
analysis, as one also has to bound the devi-
We

then provide the theoretical analysis of a vari-

ation of the sampled reward variance.

ant of the proposed algorithms and show a
O((l+p+ %)d InTIn £ /dKT1+2¢ In £1) regret
bound with high probability 1 -6, under some
mild assumptions on the reward. The variant
has the same posterior updating rule but car-
ries out the sampling process differently, due

to the technical difficulty in the regret analysis.

1.1 Literature Review

The contextual MAB problem is widely stud-
ied for online decision making. Two princi-
pled approaches that balance the trade-off be-
tween exploitation and exploration in the con-
textual MAB problem are upper confidence
bound (UCB) and TS. The UCB algorithm ad-
dresses the problem from a frequentist per-
spective, which captures the uncertainty of the
reward distribution by the width of the confi-
dence bound. Most notably, Auer (2002) con-
siders the contextual MAB problem with lin-
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ear reward, and presents LinRel, a UCB-type
algorithm that achieves an O(VTd) high prob-
ability regret bound. Li et al. (2010) present
LinUCB, which utilizes ridge regression to es-
timate the mean parameters and is much eas-

ier to solve than LinRel. Chu et al. (2011)
later show an O \/Td In®(KT ln(T)/(S)) regret

bound that holds with probability 1 — 6 for a
variant of LinUCB. Abbasi et al. (2011) modify
the UCB algorithm in Auer (2002) and improve

the regret bound by a logarithmic factor.

On the other hand, TS is Bayesian ap-
proach to the same problem and is shown to
be competitive to or better than the UCB al-
gorithms (Chapelle and Li 2011). Most no-
tably, Agrawal and Goyal (2013) provide the
first theoretical guarantee for the TS algorithm
on the contextual MAB problem, and shows
an O(d*?VT) (or O(d+/Tlog(K))) high prob-
ability regret bound. Note that in the regret
analysis of Agrawal and Goyal (2013), the re-
ward distribution is only assumed to be sub-
Gaussian, while the Bayesian updating of the
posterior parameters assumes a Gaussian like-
lihood with an unknown mean but known
variance. In this paper, we assume a Gaussian
likelihood, but with (unknown mean and) un-
known variance. It is well known that the con-
jugate prior (Schlaifer and Raiffa 1961) for the
Gaussian likelihood is normal-gamma. Later
in the paper we will show that the in case the
reward distribution is not Gaussian, we can
still choose to use the normal-gamma poste-

rior updating rule.

The aforementioned literature on the con-
textual MAB problem all assume the best arm
is chosen according to its expected perfor-

mance. In some applications, however, the risk

of the reward should also be taken into consid-
eration. The risk-aware (or risk-averse) MAB
problems have drawn increasing attention re-
cently. Sani et al. (2012) consider the mean-
variance risk criterion and present a UCB-type
algorithm (MV-UCB). Later, Vakili and Zhao

(2015) and Vakili and Zhao (2016) further
complete the regret analysis of the MV-UCB
algorithm. It should be noted that their defini-
tion of the regret is with respect to the mean-
variance over a given horizon, which does not
generalize to the contextual setting because the
mean of each arm also depends on the con-
text given at each round. Galichet et al. (2013)
consider the conditional value at risk (CVaR,
see Rockafellar and Uryasev (2000)) criterion
and present the multi-armed risk-aware ban-
dit (MaRaB), a UCB-type algorithm. However,
while they choose to pull the arm with the
largest empirical CVaR reward, they consider
the expected regret (rather than CVaR) and an-
alyze the regret under the assumption that the
confidence level @ = 0 and that the CVaR and
average criteria coincide. Maillard (2013) con-
sider entropic risk measure and present RA-
UCB algorithm that achieves logarithmic re-
gret. Zimin et al. (2014) consider risk measures
as a continuous function of reward mean and
reward variance, and present a UCB-type al-
gorithm that achieves logarithmic regret. We
extend their regret definition to the contextual
setting, while one should note that the opti-
mal arm at each round may vary, depending
on the given contexts. Cassel et al. (2018) pro-
vide a more systematic approach to analyzing
general risk criteria within the stochastic MAB
formulation, and design a UCB-type algorithm
that reaches O (\/T ) regret bound. Liu et al.
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(2020) design a UCB-type algorithm for the
mean-variance MAB problem with Gaussian
(2021) de-

velop a UCB-based algorithm that maximizes

rewards. Khajonchotpanya et al.

the expected empirical CVaR. On the other
hand, even though TS is empirically shown
in Baudry et al. (2021) to outperform UCB-
type algorithms that often suffer from non-
optimal confidence bounds, it has been con-
sidered only very recently for the risk-averse
setting, due to its lack of theoretical under-
standing and difficulty of analyzing the regret
bound. Chang et al. (2020) consider to mini-
mize the expected cost with CVaR constraint on
the cost (threshold constraint) using CVaR-TS
algorithm, which achieves improvements over
the compared UCB-based algorithms for Gaus-
sian bandits with finite variances. Zhu and Tan
(2020) design TS algorithms for Gaussian ban-
dits and Bernoulli bandits, with the optimiza-
tion objective being the mean-variance. Ang et
al. (2021) present a Thompson sampling algo-
rithm to minimize the entropic risk for Gaus-
sian MABs, using similar tricks in Zhu and Tan
(2020).

1.2 Contributions and Outlines

In this paper, we consider contextual MAB
problems with linear rewards under the mean-
variance risk criterion. Our contributions are

summarized as follows:

e We develop a TS algorithm, namely
mean-variance TS disjoint (MVTS-D) for
the disjoint model.

* We present the theoretical analysis of a
variant of the proposed algorithm un-

The re-

gret analysis is a non-trivial extension

der some mild assumptions.

of the existing results in Agrawal and

Goyal (2013) to the risk-averse setting, as
the considered mean-variance criterion
greatly complicates the regret analysis.

e We carry out extensive sets of simula-
tions on different reward distributions to
demonstrate the performance of our pro-
posed algorithms in a portfolio selection

example.

The rest of the paper is organized as fol-
lows. Section 2 introduces the contextual MAB
problem under the mean-variance paradigm.
Section 3 presents the Thompson sampling al-
gorithm for the disjoint model. We then con-
duct the regret analysis for a variant of the
proposed algorithm in Section 4. Section 5
demonstrates the empirical performance of the
proposed algorithms with a portfolio selection

example. Section 6 concludes the paper.

2. Problem Setting

Consider a contextual MAB problem with K
arms. Ateachround t =1,2,---,T, a context
xi(t) € R? is revealed for each arm i € K. The
contexts can be chosen arbitrarily. After ob-
serving the contexts, the decision maker plays
one of the K arms a(t) and receives the re-
ward 7,;)(t). We assume the reward for arm
i at round t is generated from an unknown
distribution v;(y;, 01,2) with mean x;(t)" u; and
variance of, where u; € R is a fixed but un-
known mean parameter for the arm i, and o7
is a fixed but unknown variance parameter for
the arm i. This model is called disjoint since
the mean parameter and variance parameter
De-
fine the history H; = {x(7),a(1), 74(1)(7),i =

are not shared among different arms.

1,---,K;7t =1,--- ,t}, which summarizes all
the information of contexts, pulled arms, and

corresponding rewards up to round t. All re-
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ward samples are independent conditioned on

the choice of the arm and the context, and thus

Elrae(t) | {xi(H)}y, a(t), Hi-1]
=E[ra)(t) | a(t), xa0)()]

=Xy (1) " Uar)

and similarly

Var[ra(t) | {xi(D)} S, a(t), Hia
= Var[ra()(t) | a(t), xa() ()]

_ 2
)

Definition 1 The mean-variance of arm i at round
t with mean x;(t)" y;, variance aiz, referred to as
regret mean and regret variance, and risk tolerance
p, is denoted by MV;(t) := x;(t)T u; — pa?.

1

It should be noted that different from the
traditional contextual MAB problem, the cri-
terion of choosing an optimal arm is based on
the mean-variance performance. The risk tol-
erance parameter reflects the risk attitude of
the decision maker. When p = 0, the deci-
sion maker is risk-neutral, and our problem
is reduced to the traditional contextual MAB
with a risk-neutral criterion. When p — oo,
the decision maker hates the risk so much that
our problem turns to a variance minimization
problem, which can also be easily handled by
only sampling regret variance and choosing
the arm with the smallest sampled regret vari-
ance to pull. Hence, we focus on the more
interesting case 0 < p < oco. As a final note,
our algorithm and analysis can also be easily
extended to the case p < 0, which means the
decision maker is risk-seeking.

A policy, or allocation strategy 7, is an al-
gorithm that chooses at each round ¢, an arm

a(t) to pull, based on the history H;_1 and

the context x;(t) for i € [K]. Let a*(t) de-
note the optimal arm to pull at round ¢ un-
der the mean-variance criterion, i.e., a*(t) :=
arg maxe(x) Xi(£) " i — pof. Let A;(t) denote
the difference between the mean-variances of

the optimal arm a*(t) and arm i, i.e.,
Ai(t) = MV () (t) = MV;(t)

The regret at round ¢ is defined as R(t) =
Aqt)(t), where a(t) is the arm to pull at round
t, determined by the algorithm 7. The goal is
to minimize the total regret R(T) = Y./_; R(t),
or in other words, design an algorithm whose
regret increases as slowly as possible as T in-
creases. Note that the optimal action may not
be a single-arm action, since the optimal arm
ateach round ¢ is determined by the given con-

texts.

3. Thompson Sampling

In this section, we consider TS for the risk-
averse contextual MAB problem under the dis-
joint model. In case the true reward distribu-
tion is Gaussian, we use Gaussian likelihood
(for the rewards) and normal-gamma conju-
gate prior (for the mean and variance param-
eters) to design our Thompson sampling algo-
rithm. As for a more general reward distribu-
tion that may not be Gaussian, usually we can
take two approaches. On the one hand, we can
choose the same likelihood as the true reward
distribution and update the posterior distribu-
tion accordingly. The resulting posterior, how-
ever, is usually intractable. One can choose
to use Markov Chain Monte Carlo (MCMC) to
sample from the posterior, and use those sam-
pled parameters to choose the optimal arm.
The latest work along this line can be found in
Xu et al. (2022). On the other hand, we can still
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choose the Gaussian likelihood, even though
it is different from the true reward distribu-
tion, which is often refereed to as model mis-
specification. Then we apply the variational
Bayes (VB) technique to obtain a tractable ap-
proximate posterior. We show the details of

VB in the subsection below.

3.1 Variational Bayes under Model Mis-
specification

For ease of exposition, we first introduce some
notations and a simplified problem setting.
Denote the mean and variance parameters of
the true reward distribution by 6 = (u, 0?).
The reward vy1,---,y, are n data points in-
dependently and identically distributed (i.i.d.)
with a true density po(-). The (Gaussian) like-
lihood is denoted by p(y | 0). The mean field
variational Bayes (MFVB) approximates the ex-
act posterior distribution (updated using the
likelihood) by a probability distribution with
density q(60) belonging to some tractable fam-
ily of distributions Q that are factorizable, i.e.,
Q = {q(0):9(0) = q1 (1) 42 (6?)}. The (opti-
mal) VB posterior 4*(0) is then found by mini-
mizing the Kullback-Leibler (KL, see Kullback
and Leibler (1951)) divergence from the exact
posterior distribution p(0 | y), i.e.,

7'(0) =arg min{KL(qlIp( | y)
7(0)eQ

‘_ q(0)
. /q(e) log p(6 | y)de}

It is shown in Tran et al. (2021) that the VB

posterior takes the form of normal-gamma by

choosing a normal-gamma prior and the Gaus-
sian likelihood. It should be noted that the VB
posterior is an approximation to the exact pos-
terior. According to the Bernstein-Von Mises
theorem under the model mis-specification,
the exact posterior converges in distribution to

a point mass at 0" (Kleijn et al. 2021), where

0" is the value of 0 that minimizes the KL di-
vergence between the assumed likelihood and

the true reward distribution, i.e.,
0" = argminKL (po(y)lp(y | 0))
6

and Wang and Blei (2019) later show that
the VB posterior also converges in distribution
to a point mass at 0%, and the VB posterior
mean converges almost surely to 0*. For ex-
ample, when the true reward is generated ac-
cording to a uniform distribution with lower
bound a and upper bound b, the VB posterior

mean 0 = (fi,52) converges almost surely to

6" = (%, (b;zu)z ), which is the mean and vari-
ance of the uniform distribution. Since we con-
sider the mean-variance objective, we only care
about the accuracy of the mean and variance
estimates of the reward distribution. Hence,
the normal-gamma posterior updating is fair
and reasonable, even for the non-Gaussian re-
ward distribution. Hence, in the rest of the pa-
per, we consider the Gaussian likelihood with
a normal-gamma prior on the mean and vari-

ance parameters.

3.2 TS for the Disjoint Model

Suppose the likelihood of reward r;(t) for
arm 7 at round ¢, given the context x;(t), the
mean parameter y; and the precision param-
eter A; (reciprocal of the variance parame-
ter 02), were given by the probability density
function (p.d.f.) of the Gaussian distribution
N(xi(t)Tui, A7Y). Let Ti(t) be the set of the
rounds that arm i has been pulled during the
first t — 1 rounds, whose cardinality is denoted
by #T;(t). We show the Bayesian updating of

the parameters in the next proposition.

Proposition 1 Suppose the prior for A; at round t
is given by Gamma(C;(t), Di(t)), and conditioned
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Algorithm 1: Posterior Updating for the Disjoint Model at Round ¢

input : prior parameters (A;(t), bi(t), Ci(t), Di(t)), context x;(t), set of rounds that arm i has been pulled

during the first t — 1 rounds T;(t); arm to play a(t); and reward sample 7,;)(t).

output: posterior parameters (A;(f + 1), b;(t + 1), C;(t + 1), D;(t + 1)) for each arm i.

1 fori=1,2,--- ,K,i#a(t) do

N

3 end

Aany(t+1) = Ay (8) + x40 (D x0(5) (DT
bagy(t +1) = by (t) + Xy Ta(r)(1);
Ca(t+1) = Con (D + 5

'S

&}

o

K

‘ Aj(t+1) = Ai(t), bt +1) = b;(£),Ci(t +1) = Ci(t), Di(t +1) = Di(t);

Dagiy(t +1) = Dyiy (1) + 3[0aey ()T Aairy () 0a(ay(£) = bagey(t + DT Ay (£ + 1) (e (E + 1) + 1o ()]

on Aj, the prior for p; at round t is given by
N(A; () 1bi(t), (A;A;(t))™Y). Here Ci(t) is the
shape parameter and D;(t) is the rate parameter of

the Gamma distribution. Let

Al =Tg+ Y xis)xi(s)"

seTi(t)

bi(t) = 0pa + Y xil5)ri(s)
S€T;(t)
where 1; is a d-dimensional identity matrix, 04x1
is a d-dimensional zero vector. Then the posterior
for A; is given by Gamma(C;(t +1), D;(t +1)), and
conditioned on A;, the posterior for u; is given by
NAi(t+1)71bi(t + 1), (LAt +1)7Y), where

Ci(t+1)=Ci(t) + %
Di(t +1) = Di(t)
+ %[—bi(t +D)TA;(E+1) 7t +1)

+bi(H)TA(H) T bi(t) + ri(4)]

Please refer to Appendix C for detailed
proof of Proposition 1. We can also obtain
the desired posterior distribution by applying
variational Bayes to Lasso regression model
(see Algorithm 2 in Tran et al. (2021)). Al-
gorithm 1 summarizes the posterior updat-
ing for the disjoint model. We now present
the Thompson sampling algorithm for the dis-
joint model in Algorithm 2. At each round

t, we generate a sample A;(t) from the distri-
bution Gamma(C;(t), Di(t)), set 7(t) = %(t),
and generate a sample (1;(f) from the distribu-
tion N(A;(t)"1bi(t), (A;Ai(+))™)) for each arm i.

Then we play the arm i that maximizes
MVi(t) = xi(t) Ri(t) - pTr ()

4. Regret Analysis

In this section, we present our regret bounds
and its derivation for a variant of the proposed
MVTS-D algorithm. We first make the follow-

ing assumptions.

Assumption 1 (i) n;(t) := ri(t) — x;(t) ", is

R-sub-Gaussian, i.e.,
A2R2
2

E[A exp(ni(t))] < exp( ),VA eR

(ii) ni(t)2 - 01.2 is R-sub-Gaussian, i.e., for all
AeR
A2R?
2

E[A exp(n;(t)* = o7)] < exp( )

(i) |l < Ll < 1 | xi()Tw -
xj(HTuj <1, | of - 0]2. |< 1, fori,j €
[K],i # j, forall t.

The first and second assumption in As-
sumption 1 are satisfied when the reward dis-
tribution is bounded. In case the positive
constants R in (i) and (ii) are different, we

take R to be the maximum of the two. The
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Algorithm 2: Mean-Variance Thompson Sampling for the Disjoint Model (MVTS-D)

1 initialization:

2 pull each arm i once at round 0 and observe rewards r;(0);
3 Ai(1) =1 + x;(0)x;(0)T, b;(1) = x;(0)r;(0), Ci(1) = %, D;(1) = 1(r;(0)? = x;(0)TA; (1) x;(0)), Ti (1) = {0};

4 fort=1,2,---,T do

5 observe K contexts x1(),--- , xx(t) € R%;

6 fori=1,2,--- ,Kdo

7 sample Ai(t) from distribution Gamma(C; (), Di(t)), set 512(1?) = ﬁ,‘
8 sample p;(t) from distribution N (A,'(t)’lbi(t), (X{(t)Ai(t))’l);

9 set MV(t) = x;() TRi(t) = pa2(t);
10 end
11 play arm a(t) = arg max;e[x| mi(t) with ties broken arbitrarily;
12 observe reward 7,()(t) ~ vyt (xa(t)(t)Tpu(t), Uﬂz(t));
13 update (A;(t), bi(t), Ci(t), D;(t)) according to Algorithm 1 for each arm i;
14 set Ty (t +1) = Ty (1) U{t}.

15 end

third assumption is required to make the regret
bound scale-free, and is standard in the litera-
ture (Agrawal and Goyal 2013). The norms
| - ||, unless stated otherwise, are [;-norms.
In case [[xi(Dl| < c1,llull < ez | xi(B) pi -
xi(H) Ty |< s, | 01.2 - a}z |< ¢4 for some con-
stants c1, c2, ¢3, c4 > 0, our regret bound would
increase by a factor of ¢ = max{c1, ¢z, c3, c4}.
Due to the technical difficulty, instead of
sampling the regret variance from the posterior
Gamma distribution, we propose to sample
the regret variance from a Gaussian distribu-
tion with a decaying variance term, where the
mean of the Gaussian distribution corresponds
to the mean of the Gamma distribution. Gaus-
sian sampling enables us to derive the desired
concentration and anti-concentration bounds,
which are crucial in the regret analysis. Also,
similar to Zhu and Tan (2020), we sample the
regret mean and regret variance from different
distributions independently. We summarize
this variant of the MVTS algorithm in Algo-
rithm 3 (see Appendix C for full algorithm)
and name it as MVTS-DN, since it samples

the regret variance from a normal distribution.

Compared to Algorithm 2, Algorithm 3

* replaces Line 7 by: sample 67(t) from
distribution N (25—8, %) ;
e replaces Line 8 by: sample p;(t) from dis-

tribution N (Ai(t)_lbi(t), UzAi(t)_l).

R,/%dln%K, u =

8R2%d In %\/; where 0 < 6 < 1 is the parame-

ter for confidence level (1—-0),and 0 < € < % is

In Algorithm 3, v =

the parameter that controls the prior variance
in the sampling process. A smaller € leads to a
larger prior variance, which encourages more
exploration. We first show the main result of
the theoretical analysis and discuss the proof

of the result later.

Theorem 1 Suppose Assumption 1 holds. For
the contextual MAB problem with T rounds, K
arms, d-dimensional contexts and linear reward
under the mean-variance criterion, the MVTS-
DN algorithm achieves a total regret of O((1 +
p+%)d InTIn %, [dKT1+2¢ In %%) that holds with
probability 1 — 6, forany 0 <e < 1,0 <6 < 1.
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Remark 1 Treating all parameters as constants ex-
cept the number of rounds T and €, we achieve a
regret bound of O(NT'*2€InT), which essentially
is the same as that in Agrawal and Goyal (2013).
However, when considering the number of arms K,
confidence level 6 and dimension d, compared with
Agrawal and Goyal (2013), here the regret bound
has additional terms In & and d. This is caused by
controlling the estimation error of regret variance,
which is more difficult than that of regret mean.
This can be seen in Lemma 2 and 3, in which we
obtain the constants I(T) and h(T) with different

orders of In % and d.

To prove Theorem 1, we follow a similar ap-
proach as in Agrawal and Goyal (2013). Com-
pared with the risk-neutral case in Agrawal
and Goyal (2013), the main difficulty of re-
gret analysis for this risk-averse case arises in
the estimation error control of the variance,
which appears in our mean-variance objective
for arm selection. This difficulty is overcome
by sampling the regret variance 57(t) from a
normal distribution instead of the Gamma dis-
tribution, as we have argued in the beginning
of this section. For ease of exposition, we in-
troduce and summarize some notations below
that are relevant to the proofs.

Let the mean parameter estimate be [1;(t) =
Ai(£)71b;(t), which is the weighted average of
the historical rewards for arm i up to rounds
t—1. Let the standard deviation of the estimate
xi(H)7pi(t) be si(t) = Vxi(H)TAi(H)xi(). In
the variance sampling, Ci(t) = 3#Ti(t), D;(t) =
3 e ri(s)* = bi(£)TAi(£) " bi(t)].  Let the

Di(t)

variance parameter estimate be 6?(1‘) =C0 =

mmm (Zsern 7i(s)? = bi(O)TA (1) bi(1)).

Definition 2 Define the following constants in
terms of T:

(T) :Rw/dlnTln% +1

h(T) = 4R?%d In %«/mT

g(T) = \4d InTVKd - v + €(T)
q(T) =uN2InT + h(T)

These constants are used throughout the

proof.

Definition 3 The saturated set S(t),
1
#Ti(t)

ot
#Ti(t)

An arm i is called saturated at round t if i € S(t),
and unsaturated if i ¢ S(t).

s(t) = {i € [K]: g(T)si(t) + pq(T)

< U(T)sprry(t) + ph(T)

For an saturated arm i, the standard devia-
tion s;(¢) is small and the number of pulls #T;(t)
is large. Hence, the estimates of the mean and
variance parameters constructed using the pre-
vious rewards are quite accurate. The algo-
rithm can easily tell whether it is optimal arm
or not. At last, let the filtration #;_1 be the

o-algebra generated by H; 1 U{xi(t)}ie[x]-

4.1 Proof Outline

We present the proof outline here. We first
derive confidence bands for mean and vari-
ance parameter estimates [1;(t), 6f(t), for all
i. Then we derive confidence bands for sam-
pled regret mean and sampled regret vari-
ance ;(t) and E?(t), for all i. Using these
bands and the triangle inequality, we have
MV (5 (H)=M Vi) (£) < MV oy () =MV g (1) +
(T)(sa(t)(t) + sar)(t)) + Pq(T)m- Since

a(t) is the arm with largest MV, the regret at
any time ¢ can be bounded by g(T)(s«)(t) +

sat(t)) + pq(T L+ L
an () + pq(T)( Vs T o
the four terms represent the confidence bands

), where
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for arm a*(t) and a(tf). Then, we can

bound the total regret if we can bound
T T T

Zt:1 Sa(t)(t)/ thl W, Zt:l Sa*(t)(f) and

I T

#T (1) (1)
terms, we have Zthl sa(t)(t) = O(VTdInT) and
Zthl m = O(VTInT). The challenge is

left to bound Zthl Sq+(r)(t) and Zthl m.

For this purpose, we define the saturated

, respectively. For the first two

and unsaturated arms at any time as in Defi-

nition 3. Then, if an arm a(t) ¢ S(f) is played
1
NG

multiplied by some fac-

at time ¢, we can bound s,:;)(t) and
1

VAT ()

tors according to the definition of unsaturated

by s,+)(t) and

arms. For saturated arms in S(t), we bound the
probability of playing such arms at any time ¢
by the probability of playing the optimal arm
at time f, a*(¢) multiplied by some factor, given
the filtration ¥;_1. This is helpful since again
we can shift those terms indexed with a*(f) to

terms indexed with a(t).

With all the observations, we establish a
super-martingale difference, Y;, with respect to
the regret as shown in Lemma 9. Applying the
Azuma-Hoeffding inequality for martingales

and along with Zthl Sat)(t) = O(VTdInT) and

T 1 _ . .
D1 ol O(VT InT), we obtain the high

probability regret bound in Theorem 1.

4.2 Formal Proof of Theorem 1

Lemma 1 (Abbasi et al. (2011), Theorem 1) Let
{Fi}i, be afiltration. Let {nt}:; be a real-valued
stochastic process such that n; is Fy-measurable and
1 is conditionally R-sub-Gaussian for some R > 0.
Let {m;}2, be R¥-valued stochastic process such

that my is F¢_1-measurable. For any t > 0, define

t t
Mt=1d+zmsm;r, 5t=27]sms
s=1 s=1

(ST

Then, for any 6 > 0, with probability at least 1 -0,
€l < 2R%log

forallt >0,
_ — Tag-1
where ”ét”M;l - \'Et Mt ét-

The first two lemmas, Lemma 2 and Lemma

det (V)
dettit)”

3, upper bound the probability of estimation
error of mean and variance around their true

value.

Lemma 2 (Agrawal and Goyal (2013), Lemma
1) Define EF(t) as the event that x;(t)" fi;(t) is

concentrated around its mean for any arm i, i.e.,

E#() = { | xi(t)" fui(t) = xi(5) " ua(t) |
< {(T)s(t), Vi € [K]}

Then with probability at least 1— 2, E¥(t) holds
true forall t and 0 < 6 < 1.

Lemma 3 Define E°(t) as the event that 62(t) is
concentrated around the true variance o for any

armi,i.e.,

E°(t) := {| 6%(t)—0? |< h(T) ,Vi € [K]}

i

Then with probability at least 1 — %, E°(t) holds
true forall t and 0 < 6 < 1.

Proof. Recall that bi(t) = Xer,p) xi(s)ri(s).
We have

G(t) - o?

=#Tl.(t) [ Z ri(s)? - bi(t)TAi(t)_lbi(t)] - giz
D)

:#Tl-(t) [ Z ri(s)’ ~ Z xi(s)Tri(s)A; ()7
l seTi(t) s€T;(t)

> xil)nits)] - o?
seTi(t)
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=%(t)[ Z (ri(s) = xi(s)T )? _01,2]
T SETi(n)
’ ﬁ[z D, o) i

SET,‘(i‘)
= D )
seTi(t)

1

] 3 e - x|

seTi(t)

A7 Y ) - w6 )|
seT;i(t)
2 ($)xs ()1
ol s%t)xl<s>xl(s)TAl<t)
> i) M
seTi(t)
1 _
ol sgzl(t)xi(s>xf(s>TAi(t) !

PREOONN &)

seTi(t)
Recall that A;(t) = Ij+X e, Xi(s)xi(s) . Then
_ (8)rs (-1
M= g el 2w~ Ao

seTi(t)

> xils)rits)]

seTi(t)

1 -
@ = T SeTZ(t>(xi(S)T#i>2 -l A
Z xi(s)xi(S)T.“i]
SETi(t)

Then we obtain
G(t) - o?

Sl DI CORRONTEETH B

S€T1'(t)

_ﬁ[ Z xi(s)(i’i(s)—xi(s)Tyi)]T

seTi(t)

a7 Y w6 - x| @

seTi(t)
2 [ T a1
e |7 i)

>, xie)ris) — xi(s) )| 6)

seTi(t)

LR O SR UpIe
+#Ti(t)#i Wi #T,‘(f)yi Ai(t) " i

Let the
filtration ", be the c-algebra generated by
Hir ULxi() ey U a(t). Let

To bound (3), we apply Lemma 1.

(ri(t) = xi()Tpi)? — o2, if a(t)=i
ni(t) = , .
0, if a(t)#i
Then 7;(t) is #,-measurable. Let
1, if a(t)=1
mi(t) = _ " .
0, if a(t)#i

Then m;(t) is ¥, ,-measurable. Let
T
Gl = ) miHmi(t)
s=1
= > 1) = xi(9) T i) = 07

seT;(t)

Lemma 1 implies that with probability at least

1-¢,
1 #T;(t)
i(t) |< Ry/In ——=
e |G 15 Ry

therefore we have

1 #T;(t)
3) < R
011 im0

(4) is bounded similarly using Lemma 1. Let

) i) = xi®) T, i a(t) =i
ni(t) —{ 0, ol e

) i),
m;(t) —{ 0,

&i(t)

if a(t)y=i
if a(t)y#i

I
1l M«..
—_

mi(£)ni(t)

S

Z xi(s)(ri(s) = xi(#)" i)
€Ti(t)

S
Note that det(A;(t)) < (Ti(t))?. Ford > 2,
Lemma 1 implies that with probability at least
1-0,
1 2
| (4)|= .00 (N4,

1 #T;(t)
< mde In (T)
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Similarly, we have

1G] < 4 (t) (G G

2 / #T;(t)
#T (t)R dln o’

For the last two terms, we have

|L T |<L
#Ti(t)“ BT

1
1() H1|5m

BT, (t)

Assume R > 1. Then with probability at least

1 -2, we have
) 2
| 0; () - o |
<—LRyIn #T"gt) +—R%dIn #Ti,(t)
VAT (1) o #T;(t) 0
, 2 [ AT 2
#T;(t) o’ #T;(t)

1 1
< 4R?d In gs/ln#Ti(t)
V#Ti(t)

Taking 0" =

4K,we have
-2 2
| o; (1) - 0; |

<1 4R%In ﬁ\/m#n(t)
VHT; () 0

< ! 4R%d1n g\/m | T|
VHT: (1) 0

:=h(T) !

VHT;(t)

Then with probability at least 1 —

& | 67(t) —

2 1 S . .
o7 |< h(T)\/M holds Vt > 1. Using a union
bound we obtain with probability atleast 1 ¢,
E°(t) holds V¢t > 1. [

Lemma 4 and Lemma 5 provide concentra-
tion bounds for the posterior samples of regret
mean and regret variance around their esti-

mates, respectively.

Lemma 4 (Agrawal and Goyal (2013), Lemma
1) Define EF(t) as the event that x;(t)T ;(t) is

concentrated around x;(t)" f1;(t) for any arm i, i.e.,
ER(t) = { x0T (1) = ()T ) |

< \4dInTVKd - v - s:(t), Vi € [K]}

Then P(ER(t) | Fi) 21— 4

Lemma 5 Define E°(t) as the event that 512(1‘) is

concentrated around 61.2(1?) forany arm i, ie.,
E°(t) = { | G7() = G7(1) |

< 24/In TVKu

Then P(E°(t) | F-1) > 1— 2.

———,VielK
e i e [K]}

Proof. A direct application of Lemma 5 in
Agrawal and Goyal (2013) gives:

(1 IO 20 a2 2 24T VR 1 714)

SL NN N exp(—ZlnT\/f) < L

V& 2\InTVK KT?

Hence EE(t) holds with probability at least 1 —

Kﬁ_l | |

With Lemma 2-5, we can derive the concen-
tration bounds for fi; and &7 around the true
value p; and 61.2, which is useful to bound the

and

regret in terms of s,(;)(t), Sa«()(£), #Tlm(t)

1

VAT ()

The next step is to bound the probability

of pulling an arm in the set S(t) as shown
in Lemma 8 by the probability of pulling an
optimal arm. To prove lemma 8, we first
present Lemma 6 and Lemma 7, which lower
bound the probability of sampling fi; such that
xi(t)T fi;(t) exceeding x[(t)u; by £(t)s;(t) and
sampling 61.2 less than 01.2 - h(T) \/#1?(”.

Lemma 6 Conditioned on E*(t), we have

B(xi(D (1) > xi(0) s + (T)si(t) | Fin)
1
- 2VmelnT - T€
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Proof. Given the event E*(t), we have

| xi(t) " i) — xi(t) " pi(t) [< €(T)si(t)

Since x;(t)" u;(t) is a Gaussian random vari-
able that has mean x;(t)" ;(t) and standard
deviation vs;(t). Using the anti-concentration
inequality in Lemma 5 in Agrawal and Goyal
(2013), we have

P(xiO) (1) = xi(0) s + (T)si(t) | Fi1)
_ p(OTED 50T
vs;i(t)
xi ()T i = xi(8) T ai(t) + £(T)s;(t)
vs;(t)
JOTE() = (BT ()
vs;(t)

]P’(x
N S
Vi zi+1/Z; OF

| Tt—l)

v

> 7; | Fi1)
2

t
)

v

where

| Z¢ | = Veln :@

xi(0) Ty = x; ()T i (t) + €(T)s;(t)

| vs;(t)

Therefore, we have

P(xi ()T Ei(D) 2 xi ()T g+ €D)si(t) | Fia |
S L 1 exp(—elnT)
~ VnVelnT +1/VelnT 2

Without loss of generality, we canseteInT > 1

for large T. Thus

B(xi(O (1) = xi(0) s + €T)si(t) | Fia)
1
- 2VnelnT - T€

Lemma 7 Conditioned on E°(t), we have

P(Gi (t) < o? - h(T)W | 7—;_1)
1
® WrelnT 1¢

Proof. The proof is similar to Lemma 6. []

Define shorthand notations

w(t) = x5y (E) " ey — i (1) T i
_ 2 2

[i(t) =07 - Toe(t)

Ai(t) = xi(t) T i — ,06712
Replacing u;, o; by their estimates f1;(t), 6i(t),
we have corresponding shorthand notations
for &(t), T;i(t) and Ai(t). Replacing [1;(t), 6:(t)
by their samples ;(t), ¢:(t), we have corre-

sponding shorthand notations for w(t), Ti(t)
and A;(t).
Lemma8 Given any filtration F;_1 such that event

EH(t) and E°(t) hold, we have

Plat) € 5(0) | i) <P(a() = ') | Fia) +

- 1
where p = gregarre-
Proof. Note that the algorithm chooses arm

a*(t) to pull at round ¢ if the following event

happens:
@;(t) + pTi(t) = 0,Vj # a'(t)
Therefore, we have

Pla(t) = a*(t) | Fi-1)
> B(@j(t) + pT;(t) = 0,Vj # a’(t) | Fiz1)
> P(Fi € S() : A (t) = A(t),
Ai(t) = Aj(t), V] #a'(t) | Fiaa)
> P(Vi € S(t), Ap((t) = Aoy (£)

h(T ~
\/#(T()t) > Ai(t),

Ji € (1), Ai(t) = Aj(),Vj # a*(t) | Fio1)
> P(Ag(n(t) = Age(ry(£) + E(T)s (1) (£)

L _PH@)

Vi#a'(t)| Fi-1)

—P({Vi € S(£), Ay (£) + E(T)s0(1) (1)

+ f(T)Su*(t)(t) +p

,3i € S(1), Ai(t) = Aj(t),
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. ph(T) > A (D)) We construct a super-martingale with re-
\HT e () (1) spect to the regret in Lemma 9, which is used
- P(Ka*(t)(t) > Aty (D) + €)1y (1) to bound the total regret later using Azuma-
h(T Hoeffding inequality.
+ p—() | ﬂ—l)
ATy (1) Lemma 9 Recall that the regret at round t is
(i € S(t), Ai(t) > Kj(t) Aqt)(t). Denote by 1{-} the indicator function.
4 = CALEH(F)Y - 14E0
Vj £ a0 | Fis) Let Aa(t)(t) Aqey(t) - T{E¥(t)} - 1{E’(t)}. Let
~P(3i € S(t), Ai(H) = Age(p)(t) Yo 2A () — 5 (E)o(T) 4 g(T)*  g(T)q(T)
ph(T) t a(t)() a(t)( )(g( ) f(T) ph(T) )
+U(T)sge (1) (t) + ——= | Fi-1) 1 ¢(T)q(T)
\HT () (1) - ———=(pg(T) +p o)
FTa()(1)
Since 2
T T
i +p B ) = s 10 = 0)
P(Age(t)(£) 2 Age(p) (1) + €(T)s g1 () 1 o(T)
h(T) - ———p——Hal) =a"(t)}
P F) J#Te® P
\/#Ta*(t)(t)
_ &M +pgq(T) (1402
> P(xg (1 () Har() 2 X (D) Har(r) pT? T2

+U(T)sqe(1)(t) | Fi-1)
h(T)

\[#Ta"(t)(t)

-P(Eﬁ*(t)(t) > aﬁ*(t) + | Fi-1)

S S
“ 4nelnT - T€
=p

Also note that when E#(t) () E°(t) holds true,
we have that Vi € 5(t),

Ai(t) < Ai(t) + g(T)si(t) + ph(T)

1
V#Ti(t)

< Ay (£) + 65000 (1) + p(T) ——e

VHT;(t)
Hence, we have
P(a(t) = a*(t) | Fi-1)
> p-P(3i € S(t), Ai(t) > K]'(t)’

Vj#a'(t) | Fi-1)

T2
> p-Pla(t) € S() | Fio1) -
Finally, we have
Pla(t) < 5 1 71-1) < SB(a) = ') | Fia) +

Then Y._, Ys is a super-martingale process with

respect to the filtration ¥.

Proof. To prove Y.!_; Y is a super-martingale
process, we need to show that forall1 <t < T
and a given filtration %;_1, E[Y; | Fi-1] < 0.
Conditioned on E*(t) and E(t), if both EF(t)
and E°(t) hold true, we have

wi(t) £ @i(t) + g(T)(sq+(£)() + 54(1)(1))
1 1

+ )
VAT (1) \/#Tﬂ*(t)(t)

Ti(t) < Ti(t) + pq(T)(

Observe that

E[A;(t)(t) | 7:l‘—l]
< g(TE[s(1)(t) | Fi-1]

4 (T)E[———— | Fi1]
T ()

+ g(Dsge(o(t) + pa(T) ———
“E[1{a(t) € S(} + Ha(t) & S()} | Fi1]
+(1+p)(1 —P(EF) + (1 + p)(1 — P(ET))

< g(TElsa)(t) | Fr-1]
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+ pq(T)E[; | Fi1] Now we start to prove the main result The-
V#Tan(*) orem 1.
1
+(8(T)sge()(t) + pyg (T)#T—) Proof. First observe that we can bound the ab-
* 2
o) solute value of Y; by 5(1+p+%)%. Therefore,
-P(a(t) € S(t) | Fi-1) (6) by the Azuma-Hoeffding inequality, we have
1 T
+E[(§(T)s(1)(8) + pg(T) ———=)
#Toe(1)(1) P(; Yizw)
2
“Ha(t) ¢ S()} | Fra] + (1 + P)ﬁ @) < exp ( _ w? ((T)? )
G +p+1/p)2q(T)*
Note that for (6), we have s
1 =3
(6) < (§(T)sgx(s)(t) + pq(T) )
V#T”*(t)(t) Thus we set w = 5(1 + p + 1/p)ﬂ, /2T In % 2
. [%P(u(t) =a’(t) | Fi-1) + pLTz] Then with probability at least 1 — 2, we have
T
< Sa*(t)(t)&]?(ﬂ(f) =a’(t) | Fr-1) T
A ()
q( ) 1 — a0
+p—Pat) =a’(t) | F1-1)——= t=1
#T (1) (1) < (g(T)+ g(T)> L 8Ma(M) | g(T))
8(T)  ps(T) “n  phM —p
T2 " T2 4 T)q(T)  g(T)?
: s Zsa(t (5) + p(g(T) + 8l 5()?5 . gh((T))
For (7), notice that when a(t) ¢ S(t), we have t=1
1 S (T) + pq(T)
8(Tsa(ry(t) + pq(T) ——= AN
V#Tan(®) ; #T, (t)(t) pT
1 2
> U(T)s g1y (t) + ph(T) —= q(T) 2
/#Ta*(t)(t) +5(1+p+1/p) i) 2T In 5
Rearrange the above inequality, we have Using Lemma 3 in Chu et al. (2011), we have
8(T) pa(M) 1 a K
t t _— — .
Sa) (D) < gy Sao ) + gy o ; at(®) 2; SE;T) si(t)
Also note that X
) e NG Z;S\/d#T () In#T;() < 5VAKT In T
i=

< =S () + ——
'#Ta*(t)(t) ph(T) h(T) #T () (1) i 1 i Z 1
Hence e o (t)—/
-1 #Ta(t)(t) i=1seTy(T) #Ta(t)(t)

(T)* . g(T)q(T) t
(7) < [(i)(T) +gph(qT) )Sa(e)(t) K o) y
(Pg(T)q(T) pq(T)Z) = ; SZ =<Ky ;2 #T;(t)

ar) (D)

=1
1 K #T(0)
Y/ Ft1 < 2K —2 = 2VKT
\[#Ta(t)(t) ] ; K

Putting all these together, we have #;_1, E[Y; |  Hence, with probability at least 1 — , we have

t . . T
< -
Fi-1] < 0, thus }._; Y5 is a super-martingale N (=01 +p + E)d Tl X /dKTHZf lnlgé)

process. | t=1
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Since E*(t) does not hold with probability at

most %T = % < g for T > 4, and E’(t) does

not hold with probability at most % Therefore,
both E#(t) and E“(t) holds for all + with prob-
ability atleast 1 - % Thus Ay(t) = A;(t)(t) for
all t with probability at least 1 - §. Hence with
probability at least 1 — 6, we have

T
A O _1 K K1

= T'ln — 1+2 -

Z a(t) = ((1+p+p)d1n lné dKTJrelnée)

t=1
|

5. Numerical Experiments
In the numerical experiment, we apply our
proposed TS algorithms to a portfolio selection

problem.

5.1 Contextual MAB Application to Fi-

nance
Application of the bandit algorithm to the port-
folio selection problem is not new. To name
a few, Shen et al. (2015) apply a UCB-type
bandit algorithm to derive the optimal port-
folio strategy that represents the combination
of passive and active investments according to
a risk-adjusted reward function. Huo and Fu
(2017) apply a UCB-type bandit algorithm to
the portfolio selection problem, under a risk-
averse criterion. Zhu et al. (2020) propose an
online portfolio selection method that also in-
corporates contextual information, based on
the Exp4 algorithm presented in Auer et al.
(2002). We adapt the portfolio selection model
in Huo and Fu (2017) to our contextual set-
ting and formally describe the problem setting

below.
Consider a financial market with a large

set of assets (for example, bonds, stocks and
other financial derivatives), from which the
portfolio manager selects to construct K port-
folios. Each portfolio consists of different
The indus-

tries are roughly divided into eleven sectors,

assets with different weights.

namely energy, materials, industrials, com-
munication services, consumer discretionary,
consumer staples, healthcare, financials, in-
formation technology, real estate, and utilities
(Nagy and Ormos 2018). At each round ¢,
the manager collects information about indus-
trial prosperity in those sectors, which makes
up the contexts x;(t) € [-1,1]? for each port-
folio i € [K], where d < 11 due to the pos-
sibility of being incapable to collect informa-
tion for every sector. A larger context x;(t)/
indicates a better market condition for the sec-
tor j € [d]. After observing the contexts, the
manager chooses one portfolio to invest and
receives the corresponding reward. For sim-
plicity, we assume the reward of portfolio i
follows an unknown distribution v; with mean
xi(t)" u; and variance 012. The unknown mean
parameter i; € R? can be viewed as the sensi-
tivity of the return to the industrial prosperity.
The manager is risk-averse with a risk toler-
ance p. The goal is to minimize the cumulative
regret over T rounds under the mean-variance

criterion.

5.2 Algorithms for Comparison
We empirically evaluate the following algo-

rithms in the portfolio selection problem.

¢ Our proposed MVTS-D algorithm (Algo-
rithm 2).

e A variant of the TS algorithm MVTS-DN
used in our regret analysis (Algorithm 3).

e TS algorithm originally designed for the
risk-neutral setting. We compare with
the TS algorithm from Agrawal and
Goyal (2013), referred to as TS-A.

* Algorithms that make no use of the con-
texts.

In particular, we compare with

the Thompson sampling algorithm with
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mean-variance criterion for the context-
free MAB setting (Algorithm MVTS in
Zhu and Tan (2020)).

* A uniform sampling algorithm that ran-
domly chooses an arm to pull at each

round.

To illustrate the necessity of taking into
account the risk of the reward, we compare
with the TS-A algorithm that works for a risk-
neutral setting. Ateachround ¢, the TS-A algo-
rithm samples 1;(¢) from the Gaussian distri-
bution N(i;(t), v?Ai(t)™!) foreacharm i € [K],
and plays the arm a(t) := arg maxx;(t) " ;(t).
Here [i;(t) = Ai(t)"'bi(t), the reward is as-
sumed to follow a R-sub-Gaussian distribu-
tion, parameter v = R,/ZdIn (1), where 6 €
(0,1) and € € (0,1) are two parameters used
by the algorithm. To illustrate the necessity of
making use of contexts that enables to learn
the mean and variance parameters over time,
we compare with the context-free MVTS algo-
rithm. We include the details of the TS-A algo-
rithm from Agrawal and Goyal (2013) and the
context-free MVTS algorithm in Zhu and Tan
(2020) in Appendix C.

All the algorithms are tested on the port-
folio selection problem over 100 replications.
In each replication, we execute the algorithms
and collect the total regrets over T rounds. Pa-
rameters setting are summarized as follows:
K =10,d =8, T =10000. All the implement-
ing details are included in Appendix B.

5.3 Experimental Results

Experiment 1: evaluation of total regrets with
different risk tolerances. In this experiment,
we evaluate the total regrets of different algo-
rithms associated with different risk tolerances

p =0.1,1,10. The reward distribution is Gaus-

sian. Results are reported in Figure 1.

Total Regret Averaged over 100 Replications (p = 0.1) with Gaussian Reward
— MVTSD

6000~ MVTS-DN
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5000- - - myTs

—— Uniform Sampling
4000-
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3000 -

2000 -

1000-

o-
0 2000 4000 6000 8000 10000
Rounds

Total Regret Averaged over 100 Replications (p=1) with Gaussian Reward
— MVTS-D
7000 MVTS-DN
6000- TS-A
5000- —— Uniform Sampling
@ 4000-
g
<3000 -

2000 -
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0-
o 2000 000 6000 o 10000
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Total Regret Averaged over 100 Replications (o= 10) with Gaussian Reward
T — mvTsD
MVTS-DN

35000

30000 -

000~ T T

20000 -

Regret
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Rounds

Figure 1 Total Regrets Comparison with Different Risk
Tolerances in the Portfolio Selection Problem

Averaged over 100 Replications

Figure 1 shows the mean (over 100 replica-
tions) of the total regrets over time under differ-
ent risk tolerances for our proposed MVTS-D
and MVTS-DN algorithms, along with three
benchmarks, namely TS-A, MVTS, and Uni-
form Sampling. The (95%) confidence band
across different replications is very narrow,
hence it is not reported in the figure. From

Figure 1, we have the following observations:

e Our proposed MVTS-D and MVTS-DN
algorithms achieve better regrets com-
pared to the three benchmarks in all the
cases (p = 0.1, 1, 10).

e As p approaches 0 (i.e., risk-neutral
case), our proposed MVTS-D and MVTS-
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DN algorithms behave similarly to TS-

A, which corresponds to the risk-neutral

case. As p increases, our proposed
MVTS-D and MVTS-DN algorithms have
similarly steady performance. As for TS-
A, it chooses the optimal arm according
to its mean performance while overlook-
ing the variance. As p increases, variance
tends to dominate the choice of the op-
timal arm. Hence, the performance of
TS-A deteriorates.

e In all cases (p = 0.1,1,10), MVTS and
Uniform Sampling behave much worse
than our proposed MVTS-D and MVTS-
DN algorithms, as they make no use of
the contexts and thus do not learn over

time.

Experiment 2: evaluation of total regrets
under different reward distributions. The re-
ward distributions are chosen to be Gaussian,
truncated normal, and uniform, respectively.

Results are reported in Figure 2.

Figure 2 shows the mean (over 100 replica-
tions) of the total regrets over time under dif-
ferent reward distributions for our proposed
MVTS-D and MVTS-DN algorithms, along
with three benchmarks, namely TS-A, MVTS,
and Uniform Sampling. From Figure 2, we

have the following observations:

® Our proposed MVTS-D and MVTS-DN
algorithms are robust to model mis-
specification, i.e., the assumed reward
distribution is different from the true one.
¢ Even though our regret analysis does not
work for the Gaussian distribution (as
the squared reward is sub-exponential
instead of sub-Gaussian), in practice

our proposed MVTS-DN algorithm still

Total Regret Averaged over 100 Replications (p=1) with Truncated Normal Reward

_— mvTsD
MVTS-DN

0 2000 4000 6000 8000 10000
Rounds

Total Regret Averaged over 100 Replications (p=1) with Uniform Reward
— MVTS-D
MVTS-DN
oo~ TSA
- WIS
5000 —— Uniform Sampling

0 2000 4000 6000 8000 10000
Rounds

Figure2 Total Regrets Comparison under Different
Reward Distributions in the Portfolio Selec-
tion Problem Averaged over 100 Replica-

tions. p =1

works well.

6. Conclusion

In this paper, we apply the Thompson sam-
pling algorithm to the contextual MAB prob-
lem under the mean-variance criterion. We
show a high probability regret bound for a
variant of the proposed TS algorithm. The
performances of the proposed algorithm and
its variant are empirically shown via a portfolio
selection example, with a wide range of reward
distributions. It could be an interesting future
direction to apply TS algorithm, or UCB-type
algorithm, to contextual MAB problem under

other risk measures, such as CVaR.

Appendix A Algorithms
See page 286-287.

Appendix B Implementation Details
For the portfolio selection problem, the true
mean and variance parameters are summa-

rized in Table 1. In each replication, a new
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Table1 True Mean Parameter {yi}?:l and Variance Parameter ¢ for all Ten Portfolios in the Portfolio Selection

Problem. True Means are Generated from Uniform Distribution with Low = —0.1 and High = 0.5. True

Variances are Generated from Uniform Distribution with Low = 0.1 and High = 1

t ) 13 s s te 7 us o
Portfoliol ~ 0.15 033 -0.10 008 -001 -0.04 001 011  0.89
Portfolio2 014 022 015 031 002 043 -0.08 030 0.6
Portfolio3  0.15 0.4  —0.02 002 038 048 009 032 078
Portfolio4 043 044  —0.05 -0.08 000 043 —0.04 015 041
Portfolio5 047 022 032 009 031 040 -0.09 035 034
Portfolio6 049 035 007 037 -004 0.17 045 008 091
Portfolio7 ~ 0.07  —0.02 -0.09 031 003 006 019 —0.07 049
Portfolio8 024  —0.01 025 032 -004 015 032 015 097
Portfolio9  —-0.07 022 030 021 047 025 044 -0.02 0.70
Portfolio 10 —-0.02 038 0.4 -0.00 046 011 035 033 066

set of contexts are generated and used by all
the algorithms. When the reward distribution
is truncated normal, we assume it is truncated
above -5 and below 5. It is worth noting that
when executing the TS-A algorithm in the risk-
neutral case, for a small € and 6, the parame-
ter v is computed so large that the total regret
grows linearly. This is due to the overly large
variance in the mean sampling. For meaning-
ful experiment, we set v = 1. For our proposed
MVTS-DN algorithm, we face the same situ-
ation. Therefore, in the experiments, we set
u = 1 and v = 1, which is different from their

theoretical values.

Appendix C Proof of Proposition 1
Proof. Let m;(t) = A;(t)"'b;(t). The prior dis-
tribution is given by:

P(ui, Ai) = P(ui | Ai)P(A:)
= N (mi(t), (AiAi($))™") - Gamma (C;(t), Di(1))

e \Trexp (- %(Hi — ()T Ailt)
(i — mi(t))) AT O exp (=Dj(t) ;)

Similarly, the likelihood of reward r;(t) is given

by:
-5 (7m0 -rw)’)

P(ri(t) | i, Ai) o< y/A; exp

Then the posterior distribution is computed as:

Ppi, Ai | 7i(8)) oc P(ui, Ay) - P(ri(t) | pi, A)
o /\fi(t) exp ( - %( (‘Lll‘ - mi(t))TAi(t)
(i = mi(8) + u] xi(B)xi ()" i
—2uTxi(B)ri(t) + (1) + 2Di(t)))

C0 exp - % (17 (At + xi(txiH)T)

—2u] (bi(t) + x;(t)ri(1))
BT A bi(8) + 2D4(8) + ri(t?))

=A

/\.
= exp ( - El(y;'—Ai(t + Dy —2u] Ayt +1)
Ci(t)

1

mi(t + 1)+ bi(H)TA;(1)"1b;(t) + 2D;(t) + ri(t)z))/\

= \Ajexp ( - %( (wi = mi(t +1)) T At +1)
(i = mi(t +1)) )) AApHED
o N(Ai(t + 1)1t +1), (A;A;(E+ 1))

-Gamma(C;(t + 1), D;(t + 1))

~exp(=D;(t + 1)A;)

| |
Endnote
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Algorithm 3: Mean-Variance Thompson Sampling for the Disjoint Model with Variance
of the Reward Sampled from Normal Distribution (MVTS-DN)

1 initialization:

2 fori=1,2,--- ,Kdo

3 pull each arm i once at round 0 and observe rewards 7;(0);

4 Ai(1) =11 + x;(0)x;(0)T, b; (1) = x;(0)r;(0), Ci(1) = 1, Di(1) = 1(;(0)? — x;(0)TA;(1) " x;(0)), Ti(1) = {0};
5 end

6 fort=1,2,---,T do

7 observe K contexts x1(t), -, xg(t) € RY;

8 fori=1,2,--- ,Kdo

9 sample E?(t) from distribution N (%’ %) ;

10 sample i;(t) from distribution N (A;(t)71b;(t), v2A;(t)71);
u set MV(t) = x;() TRi(t) = pa2(t);

12 end

13 play arm a(t) = arg max;e[x] 1\7[‘\'/i( t) with ties broken arbitrarily;

14 observe reward 7,(;)(t) ~ V(1) (xa(t)(t)Tpu(t), cruz(t));

15 update (A;(t), bi(t), Ci(t), D;(t)) according to Algorithm 1 for each arm i;
16 set Ta(t)(t +1) = Tu(t)(t) U{t}.

17 end

Algorithm 4: TS-A Algorithm from Agrawal and Goyal (2013)

1 initialization:

2 pull each arm i once at round 0 and observe rewards r;(0);
3 Aj(1) =1, +x;(0)x;(0)7, b; (1) = x;(0)r;(0), T:(1) = {0};

4 fort=1,2,---,T do

5 observe K contexts x1(f),--- , xx(t) € R%;

6 fori=1,2,--- ,Kdo

7 compute 1;(t) = Ai(O)71b(t);

8 sample i;(t) from distribution N (f;(t), 02A;(t)71);

9 end
10 play arm a(t) = arg max;ex; X;(t) " @1;(t) with ties broken arbitrarily;
11 observe reward 7,()(t) ~ V(1) (xa(t)(t)'rpa(t), ag(t));
12 update (A;(t), b;(t)) according to Line 4 and Line 5 in Algorithm 1 for each arm i;
13 set To(t +1) = To(£) ULt}

14 end

Algorithm 5: Posterior Updating in the MVTS Algorithm
input : prior parameters (fi;(t — 1), Ti(t = 1), a;(t = 1), ﬁi(t — 1)) and new reward sample 7;(t).

output: posterior parameters ([;(f), Ti(t), ai(b), ﬁf(t)).
N Ti(t-1)
update the mean: [1;(t) = Ti(lt(il)j—l ai(t=1)+ ﬁr,—(t);

[

N

update the number of samples: T;(t) = Ti(t — 1) + 1;

W

update the shape parameter: d;(t) = @;(f — 1) + %;
Tit=1)  (ry()-fi(t-1))?
Ti(t=1)+1 2 .

'S

update the rate parameter: f;(t) = fi(t — 1) +
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Algorithm 6: MVTS Algorithm in Zhu and Tan (2020)

1 initialization:
2 fori=1,2,--- ,Kdo

3 pull each arm i once at round 0 and observe rewards 7;(0);

s | [0 =1i(0),Ti(0) = 1,4(0) = 3, $i(0) = 3
5 end

6 fort=1,2,---,T do

7 fori=1,2,--- ,Kdo

8 sample 7;(t) from Gamma(&;(t — 1), f;(t — 1));
9 sample 0;(t) from N(f;(t —1), ﬁ);
10 end
11 play arm a(t) = arg max;e[x) 0i(t) — p/7i(t) and observe reward r,)(t);

12 update (fiq)(f = 1), Ta(t)(t = 1), @t = 1), B”(,)(t —1)) according to Algorithm 5.

13 end
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