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Abstract. In this paper we consider the contextual multi-armed bandit problem for linear payoffs under a

risk-averse criterion. At each round, contexts are revealed for each arm, and the decision maker chooses

one arm to pull and receives the corresponding reward. In particular, we consider mean-variance as the

risk criterion, and the best arm is the one with the largest mean-variance reward. We apply the Thompson

sampling algorithm for the disjoint model, and provide a comprehensive regret analysis for a variant of the

proposed algorithm. For T rounds, K actions, and d-dimensional feature vectors, we prove a regret bound

of O((1 + ρ +
1
ρ )d ln T ln K

δ

√
dKT1+2ε ln K

δ
1
ε ) that holds with probability 1 − δ under the mean-variance

criterion with risk tolerance ρ, for any 0 < ε < 1
2 , 0 < δ < 1. The empirical performance of our proposed

algorithms is demonstrated via a portfolio selection problem.
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1. Introduction

The multi-armed bandit (MAB) problem is a

classic online decision-making problem with

limited feedback. In the standard MAB prob-

lem, in each of T rounds, a decision maker

plays one of the K arms and receives a reward

(also called payoff) of that arm. It has a wide

variety of real-world applications, such as clin-

ical trials, online advertisement, and portfo-

lio selection. In certain situations, the deci-

sion maker may also be provided with contexts

(also known as covariates or side information).

For example, in personalized web services, the

decision maker also knows the demographic,

geographic, and behavioral information of the

user (Li et al. 2010), which may be useful to

infer the conditional average reward of an arm

and allows the decision maker to personalize

decisions for every situation and even improve

the average reward over time. In this paper,

we consider the contextual MAB problem. As

opposed to the standard MAB problem, before

making the choice of which arm to play, the de-

cision maker observes a d-dimensional context

xi associated with each arm i, and chooses an

arm to play in the current round based on the

rewards of the arms played in the past along

with the contexts. In this paper, we assume the

expected reward of each arm is linear in the

context, i.e., we assume there is an underlying

mean parameter μi ∈ Rd for each arm i, such

that the expected reward for each arm i takes

the form x�
i μi . A class of predictors is said to

be linear if each predictor predicts which arm

gives the best expected reward that is linear in

the observed context. The linear assumption

leads to a succinct and tractable representa-

tion and is enough for good real-world perfor-

mance (Li et al. 2010). The goal of the decision

maker is to minimize the so-called regret, with
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respect to the best linear predictor in hindsight,

who predicts exactly μi and pulls the arm with

the largest expected reward x�
i μi , i ∈ [K].

The MAB (or contextual MAB) problem es-

sentially seeks a trade-off between exploitation

(of the current information by playing the arm

with the highest estimated reward) and explo-

ration (by playing other arms to collect reward

information). The majority of the literature

balance this trade-off by designing algorithms

that maximize the expected total reward (or

equivalently, minimize the expected total re-

gret). However, in many real-world problems,

maximizing the expected reward is not always

the most desirable. For example, in the port-

folio selection problem, some portfolio man-

agers are risk-averse and prefer less risky port-

folios with low expected return rather than

highly risky portfolios with high expected re-

turn. In this case, the risk of the reward should

also be taken into consideration. Motivated

by such risk consideration in real-world prob-

lems, we take a risk-averse perspective on the

stochastic contextual MAB problem. Although

many risk measures have been used in the

risk-averse MAB problems, we focus on the

mean-variance paradigm (Markowitz 1952),

given its advantages in interpretability, com-

putation, and popularity among practitioners.

To the best of our knowledge, we are among

the first to consider the risk-averse contextual

MAB problem.

To solve risk-averse contextual MAB, we

propose algorithms based on Thompson sam-

pling (TS, see Thompson (1933)). TS is one

of the earliest heuristics for the MAB problems

via a Bayesian perspective. Intuitively speak-

ing, TS assumes a prior distribution on the un-

derlying parameters of the reward distribution

for each arm and updates the posterior distri-

butions after pulling the arms. At each round,

it samples from the posterior distribution for

each arm, and plays the arm that produces

the best sampled reward. Most of the exist-

ing literature that apply TS to the MAB prob-

lem does not care about the variance of the

reward distribution, as they intend to main-

tain a low expected regret. However, in the

risk-averse setting, the variance also plays a vi-

tal role in determining the best arm. Hence,

in addition to sampling the reward mean, we

also need to sample the reward variance. It

poses great challenges to the Bayesian updat-

ing of the parameters as well as the regret

analysis, as one also has to bound the devi-

ation of the sampled reward variance. We

then provide the theoretical analysis of a vari-

ant of the proposed algorithms and show a

O((1+ ρ+ 1
ρ )d ln T ln K

δ

√
dKT1+2ε ln K

δ
1
ε ) regret

bound with high probability 1− δ, under some

mild assumptions on the reward. The variant

has the same posterior updating rule but car-

ries out the sampling process differently, due

to the technical difficulty in the regret analysis.

1.1 Literature Review
The contextual MAB problem is widely stud-

ied for online decision making. Two princi-

pled approaches that balance the trade-off be-

tween exploitation and exploration in the con-

textual MAB problem are upper confidence

bound (UCB) and TS. The UCB algorithm ad-

dresses the problem from a frequentist per-

spective, which captures the uncertainty of the

reward distribution by the width of the confi-

dence bound. Most notably, Auer (2002) con-

siders the contextual MAB problem with lin-
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ear reward, and presents LinRel, a UCB-type

algorithm that achieves an Õ(√Td) high prob-

ability regret bound. Li et al. (2010) present

LinUCB, which utilizes ridge regression to es-

timate the mean parameters and is much eas-

ier to solve than LinRel. Chu et al. (2011)

later show an O
(√

Td ln3(KT ln(T)/δ)
)

regret

bound that holds with probability 1 − δ for a

variant of LinUCB. Abbasi et al. (2011) modify

the UCB algorithm in Auer (2002) and improve

the regret bound by a logarithmic factor.

On the other hand, TS is Bayesian ap-

proach to the same problem and is shown to

be competitive to or better than the UCB al-

gorithms (Chapelle and Li 2011). Most no-

tably, Agrawal and Goyal (2013) provide the

first theoretical guarantee for the TS algorithm

on the contextual MAB problem, and shows

an Õ(d3/2
√

T) (or Õ(d√
T log(K))) high prob-

ability regret bound. Note that in the regret

analysis of Agrawal and Goyal (2013), the re-

ward distribution is only assumed to be sub-

Gaussian, while the Bayesian updating of the

posterior parameters assumes a Gaussian like-

lihood with an unknown mean but known

variance. In this paper, we assume a Gaussian

likelihood, but with (unknown mean and) un-

known variance. It is well known that the con-

jugate prior (Schlaifer and Raiffa 1961) for the

Gaussian likelihood is normal-gamma. Later

in the paper we will show that the in case the

reward distribution is not Gaussian, we can

still choose to use the normal-gamma poste-

rior updating rule.

The aforementioned literature on the con-

textual MAB problem all assume the best arm

is chosen according to its expected perfor-

mance. In some applications, however, the risk

of the reward should also be taken into consid-

eration. The risk-aware (or risk-averse) MAB

problems have drawn increasing attention re-

cently. Sani et al. (2012) consider the mean-

variance risk criterion and present a UCB-type

algorithm (MV-UCB). Later, Vakili and Zhao

(2015) and Vakili and Zhao (2016) further

complete the regret analysis of the MV-UCB

algorithm. It should be noted that their defini-

tion of the regret is with respect to the mean-

variance over a given horizon, which does not

generalize to the contextual setting because the

mean of each arm also depends on the con-

text given at each round. Galichet et al. (2013)

consider the conditional value at risk (CVaR,

see Rockafellar and Uryasev (2000)) criterion

and present the multi-armed risk-aware ban-

dit (MaRaB), a UCB-type algorithm. However,

while they choose to pull the arm with the

largest empirical CVaR reward, they consider

the expected regret (rather than CVaR) and an-

alyze the regret under the assumption that the

confidence level α � 0 and that the CVaR and

average criteria coincide. Maillard (2013) con-

sider entropic risk measure and present RA-

UCB algorithm that achieves logarithmic re-

gret. Zimin et al. (2014) consider risk measures

as a continuous function of reward mean and

reward variance, and present a UCB-type al-

gorithm that achieves logarithmic regret. We

extend their regret definition to the contextual

setting, while one should note that the opti-

mal arm at each round may vary, depending

on the given contexts. Cassel et al. (2018) pro-

vide a more systematic approach to analyzing

general risk criteria within the stochastic MAB

formulation, and design a UCB-type algorithm

that reaches O
(√

T
)

regret bound. Liu et al.
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(2020) design a UCB-type algorithm for the

mean-variance MAB problem with Gaussian

rewards. Khajonchotpanya et al. (2021) de-

velop a UCB-based algorithm that maximizes

the expected empirical CVaR. On the other

hand, even though TS is empirically shown

in Baudry et al. (2021) to outperform UCB-

type algorithms that often suffer from non-

optimal confidence bounds, it has been con-

sidered only very recently for the risk-averse

setting, due to its lack of theoretical under-

standing and difficulty of analyzing the regret

bound. Chang et al. (2020) consider to mini-

mize the expected cost with CVaR constraint on

the cost (threshold constraint) using CVaR-TS

algorithm, which achieves improvements over

the compared UCB-based algorithms for Gaus-

sian bandits with finite variances. Zhu and Tan

(2020) design TS algorithms for Gaussian ban-

dits and Bernoulli bandits, with the optimiza-

tion objective being the mean-variance. Ang et

al. (2021) present a Thompson sampling algo-

rithm to minimize the entropic risk for Gaus-

sian MABs, using similar tricks in Zhu and Tan

(2020).

1.2 Contributions and Outlines
In this paper, we consider contextual MAB

problems with linear rewards under the mean-

variance risk criterion. Our contributions are

summarized as follows:

• We develop a TS algorithm, namely

mean-variance TS disjoint (MVTS-D) for

the disjoint model.

• We present the theoretical analysis of a

variant of the proposed algorithm un-

der some mild assumptions. The re-

gret analysis is a non-trivial extension

of the existing results in Agrawal and

Goyal (2013) to the risk-averse setting, as

the considered mean-variance criterion

greatly complicates the regret analysis.

• We carry out extensive sets of simula-

tions on different reward distributions to

demonstrate the performance of our pro-

posed algorithms in a portfolio selection

example.

The rest of the paper is organized as fol-

lows. Section 2 introduces the contextual MAB

problem under the mean-variance paradigm.

Section 3 presents the Thompson sampling al-

gorithm for the disjoint model. We then con-

duct the regret analysis for a variant of the

proposed algorithm in Section 4. Section 5

demonstrates the empirical performance of the

proposed algorithms with a portfolio selection

example. Section 6 concludes the paper.

2. Problem Setting
Consider a contextual MAB problem with K

arms. At each round t � 1, 2, · · · , T, a context

xi(t) ∈ Rd is revealed for each arm i ∈ K. The

contexts can be chosen arbitrarily. After ob-

serving the contexts, the decision maker plays

one of the K arms a(t) and receives the re-

ward ra(t)(t). We assume the reward for arm

i at round t is generated from an unknown

distribution νi(μi , σ2
i ) with mean xi(t)�μi and

variance σ2
i , where μi ∈ Rd is a fixed but un-

known mean parameter for the arm i, and σ2
i

is a fixed but unknown variance parameter for

the arm i. This model is called disjoint since

the mean parameter and variance parameter

are not shared among different arms. De-

fine the history Ht � {xi(τ), a(τ), ra(τ)(τ), i �

1, · · · , K; τ � 1, · · · , t}, which summarizes all

the information of contexts, pulled arms, and

corresponding rewards up to round t. All re-
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ward samples are independent conditioned on

the choice of the arm and the context, and thus

E[ra(t)(t) | {xi(t)}K
i�1 , a(t),Ht−1]

�E[ra(t)(t) | a(t), xa(t)(t)]
�xa(t)(t)�μa(t)

and similarly

Var[ra(t)(t) | {xi(t)}K
i�1 , a(t),Ht−1]

�Var[ra(t)(t) | a(t), xa(t)(t)]
�σ2

a(t)

Definition 1 The mean-variance of arm i at round
t with mean xi(t)�μi , variance σ2

i , referred to as
regret mean and regret variance, and risk tolerance
ρ, is denoted by MVi(t) :� xi(t)�μi − ρσ2

i .

It should be noted that different from the

traditional contextual MAB problem, the cri-

terion of choosing an optimal arm is based on

the mean-variance performance. The risk tol-

erance parameter reflects the risk attitude of

the decision maker. When ρ � 0, the deci-

sion maker is risk-neutral, and our problem

is reduced to the traditional contextual MAB

with a risk-neutral criterion. When ρ → ∞,

the decision maker hates the risk so much that

our problem turns to a variance minimization

problem, which can also be easily handled by

only sampling regret variance and choosing

the arm with the smallest sampled regret vari-

ance to pull. Hence, we focus on the more

interesting case 0 < ρ < ∞. As a final note,

our algorithm and analysis can also be easily

extended to the case ρ < 0, which means the

decision maker is risk-seeking.

A policy, or allocation strategy π, is an al-

gorithm that chooses at each round t, an arm

a(t) to pull, based on the history Ht−1 and

the context xi(t) for i ∈ [K]. Let a∗(t) de-

note the optimal arm to pull at round t un-

der the mean-variance criterion, i.e., a∗(t) :�

arg maxi∈[K] xi(t)�μi − ρσ2
i . Let Δi(t) denote

the difference between the mean-variances of

the optimal arm a∗(t) and arm i, i.e.,

Δi(t) � MVa∗(t)(t) − MVi(t)

The regret at round t is defined as R(t) �
Δa(t)(t), where a(t) is the arm to pull at round

t, determined by the algorithm π. The goal is

to minimize the total regret R(T) � ∑T
t�1 R(t),

or in other words, design an algorithm whose

regret increases as slowly as possible as T in-

creases. Note that the optimal action may not

be a single-arm action, since the optimal arm

at each round t is determined by the given con-

texts.

3. Thompson Sampling
In this section, we consider TS for the risk-

averse contextual MAB problem under the dis-

joint model. In case the true reward distribu-

tion is Gaussian, we use Gaussian likelihood

(for the rewards) and normal-gamma conju-

gate prior (for the mean and variance param-

eters) to design our Thompson sampling algo-

rithm. As for a more general reward distribu-

tion that may not be Gaussian, usually we can

take two approaches. On the one hand, we can

choose the same likelihood as the true reward

distribution and update the posterior distribu-

tion accordingly. The resulting posterior, how-

ever, is usually intractable. One can choose

to use Markov Chain Monte Carlo (MCMC) to

sample from the posterior, and use those sam-

pled parameters to choose the optimal arm.

The latest work along this line can be found in

Xu et al. (2022). On the other hand, we can still
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choose the Gaussian likelihood, even though

it is different from the true reward distribu-

tion, which is often refereed to as model mis-

specification. Then we apply the variational

Bayes (VB) technique to obtain a tractable ap-

proximate posterior. We show the details of

VB in the subsection below.

3.1 Variational Bayes under Model Mis-
specification

For ease of exposition, we first introduce some

notations and a simplified problem setting.

Denote the mean and variance parameters of

the true reward distribution by θ � (μ, σ2).
The reward y1 , · · · , yn are n data points in-

dependently and identically distributed (i.i.d.)

with a true density p0(·). The (Gaussian) like-

lihood is denoted by p(y | θ). The mean field

variational Bayes (MFVB) approximates the ex-

act posterior distribution (updated using the

likelihood) by a probability distribution with

density q(θ) belonging to some tractable fam-

ily of distributions Q that are factorizable, i.e.,

Q �
{

q(θ) : q(θ) � q1

(
μ
)

q2

(
σ2

)}
. The (opti-

mal) VB posterior q∗(θ) is then found by mini-

mizing the Kullback-Leibler (KL, see Kullback

and Leibler (1951)) divergence from the exact

posterior distribution p(θ | y), i.e.,

q∗(θ) �arg min
q(θ)∈Q

{
KL(q‖p(θ | y))

:�

∫
q(θ) log

q(θ)
p(θ | y)dθ

}
It is shown in Tran et al. (2021) that the VB

posterior takes the form of normal-gamma by

choosing a normal-gamma prior and the Gaus-

sian likelihood. It should be noted that the VB

posterior is an approximation to the exact pos-

terior. According to the Bernstein-Von Mises

theorem under the model mis-specification,

the exact posterior converges in distribution to

a point mass at θ∗ (Kleĳn et al. 2021), where

θ∗ is the value of θ that minimizes the KL di-

vergence between the assumed likelihood and

the true reward distribution, i.e.,

θ∗ � arg min
θ

KL
(
p0(y)‖p(y | θ))

and Wang and Blei (2019) later show that

the VB posterior also converges in distribution

to a point mass at θ∗, and the VB posterior

mean converges almost surely to θ∗. For ex-

ample, when the true reward is generated ac-

cording to a uniform distribution with lower

bound a and upper bound b, the VB posterior

mean θ̂ � (μ̂, σ̂2) converges almost surely to

θ∗ � ( a+b
2 ,

(b−a)2
12 ), which is the mean and vari-

ance of the uniform distribution. Since we con-

sider the mean-variance objective, we only care

about the accuracy of the mean and variance

estimates of the reward distribution. Hence,

the normal-gamma posterior updating is fair

and reasonable, even for the non-Gaussian re-

ward distribution. Hence, in the rest of the pa-

per, we consider the Gaussian likelihood with

a normal-gamma prior on the mean and vari-

ance parameters.

3.2 TS for the Disjoint Model
Suppose the likelihood of reward ri(t) for

arm i at round t, given the context xi(t), the

mean parameter μi and the precision param-

eter λi (reciprocal of the variance parame-

ter σ2
i ), were given by the probability density

function (p.d.f.) of the Gaussian distribution

N(xi(t)�μi , λ−1
i ). Let Ti(t) be the set of the

rounds that arm i has been pulled during the

first t − 1 rounds, whose cardinality is denoted

by #Ti(t). We show the Bayesian updating of

the parameters in the next proposition.

Proposition 1 Suppose the prior for λi at round t

is given by Gamma(Ci(t),Di(t)), and conditioned
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Algorithm 1: Posterior Updating for the Disjoint Model at Round t
input : prior parameters (Ai(t), bi(t), Ci(t),Di(t)), context xi(t), set of rounds that arm i has been pulled

during the first t − 1 rounds Ti(t); arm to play a(t); and reward sample ra(t)(t).
output: posterior parameters (Ai(t + 1), bi(t + 1), Ci(t + 1),Di(t + 1)) for each arm i.

1 for i � 1, 2, · · · , K, i � a(t) do
2 Ai(t + 1) � Ai(t), bi(t + 1) � bi(t),Ci(t + 1) � Ci(t),Di(t + 1) � Di(t);
3 end
4 Aa(t)(t + 1) � Aa(t)(t) + xa(t)(t)xa(t)(t)�;

5 ba(t)(t + 1) � ba(t)(t) + xa(t)ra(t)(t);
6 Ca(t)(t + 1) � Ca(t)(t) + 1

2 ;

7 Da(t)(t + 1) � Da(t)(t) + 1
2 [ba(t)(t)�Aa(t)(t)−1ba(t)(t) − ba(t)(t + 1)�Aa(t)(t + 1)−1ba(t)(t + 1) + ra(t)(t)2].

on λi , the prior for μi at round t is given by
N(Ai(t)−1bi(t), (λiAi(t))−1). Here Ci(t) is the
shape parameter and Di(t) is the rate parameter of
the Gamma distribution. Let

Ai(t) � Id +

∑
s∈Ti (t)

xi(s)xi(s)�

bi(t) � 0d×1 +

∑
s∈Ti (t)

xi(s)ri(s)

where Id is a d-dimensional identity matrix, 0d×1

is a d-dimensional zero vector. Then the posterior
for λi is given by Gamma(Ci(t+1),Di(t+1)), and
conditioned on λi , the posterior for μi is given by
N(Ai(t + 1)−1bi(t + 1), (λiAi(t + 1))−1), where

Ci(t + 1) � Ci(t) + 1

2

Di(t + 1) � Di(t)
+

1

2
[−bi(t + 1)�Ai(t + 1)−1bi(t + 1)

+ bi(t)�Ai(t)−1bi(t) + ri(t)2]

Please refer to Appendix C for detailed

proof of Proposition 1. We can also obtain

the desired posterior distribution by applying

variational Bayes to Lasso regression model

(see Algorithm 2 in Tran et al. (2021)). Al-

gorithm 1 summarizes the posterior updat-

ing for the disjoint model. We now present

the Thompson sampling algorithm for the dis-

joint model in Algorithm 2. At each round

t, we generate a sample λ̃i(t) from the distri-

bution Gamma(Ci(t),Di(t)), set σ̃2
i (t) �

1

λ̃i (t) ,
and generate a sample μ̃i(t) from the distribu-

tion N(Ai(t)−1bi(t), (λ̃iAi(t))−1) for each arm i.

Then we play the arm i that maximizes

M̃Vi(t) � xi(t)�μ̃i(t) − ρσ̃2
i (t)

4. Regret Analysis
In this section, we present our regret bounds

and its derivation for a variant of the proposed

MVTS-D algorithm. We first make the follow-

ing assumptions.

Assumption 1 (i) ηi(t) :� ri(t) − xi(t)�μi is
R-sub-Gaussian, i.e.,

E[λ exp(ηi(t))] ≤ exp(λ
2R2

2
), ∀λ ∈ R

(ii) ηi(t)2 − σ2
i is R-sub-Gaussian, i.e., for all

λ ∈ R
E[λ exp(ηi(t)2 − σ2

i )] ≤ exp(λ
2R2

2
)

(iii) ‖xi(t)‖ ≤ 1, ‖μ‖ ≤ 1, | xi(t)�μi −
xj(t)�μ j |≤ 1, | σ2

i − σ2
j |≤ 1, for i , j ∈

[K], i � j, for all t.

The first and second assumption in As-

sumption 1 are satisfied when the reward dis-

tribution is bounded. In case the positive

constants R in (i) and (ii) are different, we

take R to be the maximum of the two. The
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Algorithm 2: Mean-Variance Thompson Sampling for the Disjoint Model (MVTS-D)

1 initialization:

2 pull each arm i once at round 0 and observe rewards ri(0);
3 Ai(1) � Id + xi(0)xi(0)� , bi(1) � xi(0)ri(0), Ci(1) � 1

2 ,Di(1) � 1
2 (ri(0)2 − xi(0)�Ai(1)−1xi(0)), Ti(1) � {0};

4 for t � 1, 2, · · · , T do
5 observe K contexts x1(t), · · · , xK(t) ∈ Rd ;

6 for i � 1, 2, · · · , K do
7 sample λ̃i(t) from distribution Gamma(Ci(t),Di(t)), set σ̃2

i (t) � 1

λ̃i (t)
;

8 sample μ̃i(t) from distribution N
(
Ai(t)−1bi(t), (λ̃i(t)Ai(t))−1

)
;

9 set M̃Vi(t) � xi(t)� μ̃i(t) − ρσ̃2
i (t);

10 end
11 play arm a(t) � arg maxi∈[K] M̃Vi(t) with ties broken arbitrarily;

12 observe reward ra(t)(t) ∼ νa(t)
(
xa(t)(t)�μa(t) , σ2

a(t)
)
;

13 update (Ai(t), bi(t), Ci(t),Di(t)) according to Algorithm 1 for each arm i;

14 set Ta(t)(t + 1) � Ta(t)(t)
⋃{t}.

15 end

third assumption is required to make the regret

bound scale-free, and is standard in the litera-

ture (Agrawal and Goyal 2013). The norms

‖ · ‖, unless stated otherwise, are l2-norms.

In case ‖xi(t)‖ ≤ c1 , ‖μ‖ ≤ c2, | xi(t)�μi −
xj(t)�μ j |≤ c3, | σ2

i − σ2
j |≤ c4 for some con-

stants c1 , c2 , c3 , c4 > 0, our regret bound would

increase by a factor of c � max{c1 , c2 , c3 , c4}.
Due to the technical difficulty, instead of

sampling the regret variance from the posterior

Gamma distribution, we propose to sample

the regret variance from a Gaussian distribu-

tion with a decaying variance term, where the

mean of the Gaussian distribution corresponds

to the mean of the Gamma distribution. Gaus-

sian sampling enables us to derive the desired

concentration and anti-concentration bounds,

which are crucial in the regret analysis. Also,

similar to Zhu and Tan (2020), we sample the

regret mean and regret variance from different

distributions independently. We summarize

this variant of the MVTS algorithm in Algo-

rithm 3 (see Appendix C for full algorithm)

and name it as MVTS-DN, since it samples

the regret variance from a normal distribution.

Compared to Algorithm 2, Algorithm 3

• replaces Line 7 by: sample σ̃2
i (t) from

distribution N
(

Di (t)
Ci (t) ,

u2

#Ti (t)
)
;

• replaces Line 8 by: sample μ̃i(t) from dis-

tribution N (
Ai(t)−1bi(t), v2Ai(t)−1

)
.

In Algorithm 3, v � R
√

4
ε d ln 4K

δ , u �

8R2d ln 4K
δ

√
1
ε , where 0 < δ < 1 is the parame-

ter for confidence level (1− δ), and 0 < ε < 1
2 is

the parameter that controls the prior variance

in the sampling process. A smaller ε leads to a

larger prior variance, which encourages more

exploration. We first show the main result of

the theoretical analysis and discuss the proof

of the result later.

Theorem 1 Suppose Assumption 1 holds. For
the contextual MAB problem with T rounds, K

arms, d-dimensional contexts and linear reward
under the mean-variance criterion, the MVTS-
DN algorithm achieves a total regret of O((1 +

ρ+ 1
ρ )d ln T ln K

δ

√
dKT1+2ε ln K

δ
1
ε ) that holds with

probability 1 − δ, for any 0 < ε < 1
2 , 0 < δ < 1.
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Remark 1 Treating all parameters as constants ex-
cept the number of rounds T and ε, we achieve a
regret bound of O(√T1+2ε ln T), which essentially
is the same as that in Agrawal and Goyal (2013).
However, when considering the number of arms K,
confidence level δ and dimension d, compared with
Agrawal and Goyal (2013), here the regret bound
has additional terms ln K

δ and d. This is caused by
controlling the estimation error of regret variance,
which is more difficult than that of regret mean.
This can be seen in Lemma 2 and 3, in which we
obtain the constants l(T) and h(T) with different
orders of ln K

δ and d.

To prove Theorem 1, we follow a similar ap-

proach as in Agrawal and Goyal (2013). Com-

pared with the risk-neutral case in Agrawal

and Goyal (2013), the main difficulty of re-

gret analysis for this risk-averse case arises in

the estimation error control of the variance,

which appears in our mean-variance objective

for arm selection. This difficulty is overcome

by sampling the regret variance σ̃2
i (t) from a

normal distribution instead of the Gamma dis-

tribution, as we have argued in the beginning

of this section. For ease of exposition, we in-

troduce and summarize some notations below

that are relevant to the proofs.

Let the mean parameter estimate be μ̂i(t) �
Ai(t)−1bi(t), which is the weighted average of

the historical rewards for arm i up to rounds

t−1. Let the standard deviation of the estimate

xi(t)�μ̂i(t) be si(t) �
√

xi(t)�Ai(t)−1xi(t). In

the variance sampling, Ci(t) � 1
2#Ti(t), Di(t) �

1
2 [

∑
s∈Ti (t) ri(s)2 − bi(t)�Ai(t)−1bi(t)]. Let the

variance parameter estimate be σ̂2
i (t) � Di (t)

Ci (t) �
1

#Ti (t) (
∑

s∈Ti (t) ri(s)2 − bi(t)�Ai(t)−1bi(t)).
Definition 2 Define the following constants in
terms of T:


(T) � R

√
d ln T ln

4K
δ

+ 1

h(T) � 4R2d ln
4K
δ

√
ln T

g(T) �
√

4d ln T
√

Kd · v + 
(T)
q(T) � u

√
2 ln T + h(T)

These constants are used throughout the

proof.

Definition 3 The saturated set S(t),

S(t) :�
{
i ∈ [K] : g(T)si(t) + ρq(T) 1√

#Ti(t)
≤ 
(T)sa∗(t)(t) + ρh(T) 1√

#Ti(t)
}

An arm i is called saturated at round t if i ∈ S(t),
and unsaturated if i � S(t).

For an saturated arm i, the standard devia-

tion si(t) is small and the number of pulls #Ti(t)
is large. Hence, the estimates of the mean and

variance parameters constructed using the pre-

vious rewards are quite accurate. The algo-

rithm can easily tell whether it is optimal arm

or not. At last, let the filtration Ft−1 be the

σ-algebra generated by Ht−1
⋃{xi(t)}i∈[K].

4.1 Proof Outline
We present the proof outline here. We first

derive confidence bands for mean and vari-

ance parameter estimates μ̂i(t), σ̂2
i (t), for all

i. Then we derive confidence bands for sam-

pled regret mean and sampled regret vari-

ance μ̃i(t) and σ̃2
i (t), for all i. Using these

bands and the triangle inequality, we have

MVa∗(t)(t)−MVa(t)(t) ≤ M̃Va∗(t)(t)−M̃Va(t)(t)+
g(T)(sa∗(t)(t) + sa(t)(t)) + ρq(T) 1√

#Ta∗(t)(t)
. Since

a(t) is the arm with largest M̃V , the regret at

any time t can be bounded by g(T)(sa∗(t)(t) +
sa(t)(t)) + ρq(T)( 1√

#Ta∗(t)(t)
+

1√
#Ta(t)(t)

), where

the four terms represent the confidence bands
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for arm a∗(t) and a(t). Then, we can

bound the total regret if we can bound∑T
t�1 sa(t)(t), ∑T

t�1
1√

#Ta(t)(t)
,

∑T
t�1 sa∗(t)(t) and∑T

t�1
1√

#Ta∗(t)(t)
, respectively. For the first two

terms, we have
∑T

t�1 sa(t)(t) � O(√Td ln T) and∑T
t�1

1√
#Ta(t)(t)

� O(√T ln T). The challenge is

left to bound
∑T

t�1 sa∗(t)(t) and
∑T

t�1
1√

#Ta∗(t)(t)
.

For this purpose, we define the saturated

and unsaturated arms at any time as in Defi-

nition 3. Then, if an arm a(t) � S(t) is played

at time t, we can bound sa∗(t)(t) and 1√
#Ta∗(t)(t)

by sa(t)(t) and 1√
#Ta(t)(t)

multiplied by some fac-

tors according to the definition of unsaturated

arms. For saturated arms in S(t), we bound the

probability of playing such arms at any time t

by the probability of playing the optimal arm

at time t, a∗(t) multiplied by some factor, given

the filtration Ft−1. This is helpful since again

we can shift those terms indexed with a∗(t) to

terms indexed with a(t).
With all the observations, we establish a

super-martingale difference, Yt , with respect to

the regret as shown in Lemma 9. Applying the

Azuma-Hoeffding inequality for martingales

and along with
∑T

t�1 sa(t)(t) � O(√Td ln T) and∑T
t�1

1√
#Ta(t)(t)

� O(√T ln T), we obtain the high

probability regret bound in Theorem 1.

4.2 Formal Proof of Theorem 1
Lemma 1 (Abbasi et al. (2011), Theorem 1) Let
{Ft}∞t�0 be a filtration. Let

{
ηt

}∞
t�1

be a real-valued
stochastic process such that ηt is Ft-measurable and
ηt is conditionally R-sub-Gaussian for some R ≥ 0.
Let {mt}∞t�1 be Rd-valued stochastic process such
that mt is Ft−1-measurable. For any t ≥ 0, define

M̄t � Id +

t∑
s�1

ms m�
s , ξt �

t∑
s�1

ηs ms

Then, for any δ > 0, with probability at least 1− δ,
for all t ≥ 0,

‖ξt ‖2
M̄−1

t
≤ 2R2 log

���
det

(
M̄t

) 1
2

δ
���

where ‖ξt ‖M̄−1
t

�

√
ξT

t M̄−1
t ξt .

The first two lemmas, Lemma 2 and Lemma

3, upper bound the probability of estimation

error of mean and variance around their true

value.

Lemma 2 (Agrawal and Goyal (2013), Lemma
1) Define Eμ(t) as the event that xi(t)�μ̂i(t) is
concentrated around its mean for any arm i, i.e.,

Eμ(t) :� { | xi(t)�μ̂i(t) − xi(t)�μi(t) |
≤ 
(T)si(t), ∀i ∈ [K]}

Then with probability at least 1− δ4 , Eμ(t) holds
true for all t and 0 < δ < 1.

Lemma 3 Define Eσ(t) as the event that σ̂2
i (t) is

concentrated around the true variance σ2
i for any

arm i, i.e.,

Eσ(t) :� {| σ̂2
i (t)−σ2

i |≤ h(T) 1√
#Ti(t)

, ∀i ∈ [K]}

Then with probability at least 1 − δ
4 , Eσ(t) holds

true for all t and 0 < δ < 1.

Proof. Recall that bi(t) �
∑

s∈Ti (t) xi(s)ri(s).
We have

σ̂2
i (t) − σ2

i

�
1

#Ti(t)
[ ∑

s∈Ti (t)
ri(s)2 − bi(t)�Ai(t)−1bi(t)

]
− σ2

i

�
1

#Ti(t)
[ ∑

s∈Ti (t)
ri(s)2 −

∑
s∈Ti (t)

xi(s)�ri(s)Ai(t)−1

∑
s∈Ti (t)

xi(s)ri(s)
]
− σ2

i
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�
1

#Ti(t)
[ ∑

s∈Ti (t)
(ri(s) − xi(s)�μi)2 − σ2

i

]
+

1

#Ti(t)
[
2

∑
s∈Ti (t)

ri(s)xi(s)�μi

−
∑

s∈Ti (t)
(xi(s)�μi)2

]
− 1

#Ti(t)
[ ∑

s∈Ti (t)
xi(s)(ri(s) − xi(s)�μi)

]�
Ai(t)−1

[ ∑
s∈Ti (t)

xi(s)(ri(s) − xi(s)�μi)
]

− 2

#Ti(t)
[
μ�i

∑
s∈Ti (t)

xi(s)xi(s)�Ai(t)−1

∑
s∈Ti (t)

xi(s)ri(s)
]

(1)

+
1

#Ti(t)
[
μ�i

∑
s∈Ti (t)

xi(s)xi(s)�Ai(t)−1

∑
s∈Ti (t)

xi(s)xi(s)�μi

]
(2)

Recall that Ai(t) � Id+
∑

s∈Ti (t) xi(s)xi(s)�. Then

(1) �
2

#Ti(t)
[
μ�i

∑
s∈Ti (t)

xi(s)ri(s) − μ�i Ai(t)−1

∑
s∈Ti (t)

xi(s)ri(s)
]

(2) �
1

#Ti(t)
[
μ�i

∑
s∈Ti (t)

(xi(s)�μi)2 − μ�i Ai(t)−1

∑
s∈Ti (t)

xi(s)xi(s)�μi

]
Then we obtain

σ̂2
i (t) − σ2

i

�
1

#Ti(t)
[ ∑

s∈Ti (t)
(ri(s) − xi(s)�μi)2 − σ2

i

]
(3)

− 1

#Ti(t)
[ ∑

s∈Ti (t)
xi(s)(ri(s) − xi(s)�μi)

]�
Ai(t)−1

[ ∑
s∈Ti (t)

xi(s)(ri(s) − xi(s)�μi)
]

(4)

+
2

#Ti(t)
[
μ�i Ai(t)−1∑

s∈Ti (t)
xi(s)(ri(s) − xi(s)�μi)

]
(5)

+
1

#Ti(t)μ
�
i μi − 1

#Ti(t)μ
�
i Ai(t)−1μi

To bound (3), we apply Lemma 1. Let the

filtration F ′
t−1

be the σ-algebra generated by

Ht−1
⋃{xi(t)}i∈[K]

⋃
a(t). Let

ηi(t) �
{

(ri(t) − xi(t)�μi)2 − σ2
i , if a(t) � i

0, if a(t) � i

Then ηi(t) is F ′
t -measurable. Let

mi(t) �
{

1, if a(t) � i

0, if a(t) � i

Then mi(t) is F ′
t−1

-measurable. Let

ζi(t) �
�∑

s�1

mi(t)ηi(t)

�

∑
s∈Ti (t)

[(ri(s) − xi(s)�μi)2 − σ2
i ]

Lemma 1 implies that with probability at least

1 − δ′,
1√

#Ti(t)
| ζi(t) |≤ R

√
ln

#Ti(t)
δ′2

therefore we have

| (3) |≤ 1√
#Ti(t)

R

√
ln

#Ti(t)
δ′2

(4) is bounded similarly using Lemma 1. Let

ηi(t) �
{

ri(t) − xi(t)�μi , if a(t) � i

0, if a(t) � i

mi(t) �
{

xi(t), if a(t) � i

0, if a(t) � i

ξi(t) �
t∑

s�1

mi(t)ηi(t)

�

∑
s∈Ti (t)

xi(s)(ri(s) − xi(t)�μi)

Note that det (Ai(t)) ≤ (Ti(t))d . For d ≥ 2,

Lemma 1 implies that with probability at least

1 − δ′,

| (4) | � 1

#Ti(t) ‖ξi(t)‖2
Ai (t)−1

≤ 1

#Ti(t)R2d ln

(
#Ti(t)
δ′

)
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Similarly, we have

| (5) | ≤ 2

#Ti(t)
��μi(t)

��2

Ai (t)−1 ‖ξi(t)‖2
Ai (t)−1

≤ 2

#Ti(t)R

√
d ln

#Ti(t)
δ′

For the last two terms, we have

| 1

#Ti(t)μ
�
i μi | ≤ 1

#Ti(t)
| 1

#Ti(t)μ
�
i Ai(t)−1μi | ≤ 1

#Ti(t)
Assume R ≥ 1. Then with probability at least

1 − 2δ′, we have

| σ̂2
i (t) − σ2

i |

≤ 1√
#Ti(t)

R

√
ln

#Ti(t)
δ′2

+
1

#Ti(t)R2d ln
#Ti(t)
δ′

+
2

#Ti(t)R

√
d ln

#Ti(t)
δ′ +

2

#Ti(t)
≤ 1√

#Ti(t)
4R2d ln

1

δ′
√

ln #Ti(t)

Taking δ′ � δ
4K , we have

| σ̂2
i (t) − σ2

i |
≤ 1√

#Ti(t)
4R2d ln

4K
δ

√
ln #Ti(t)

≤ 1√
#Ti(t)

4R2d ln
4K
δ

√
ln | T |

:�h(T) 1√
#Ti(t)

Then with probability at least 1 − δ
4K , | σ̂2

i (t) −
σ2

i |≤ h(T) 1√
#Ti (t)

holds ∀t ≥ 1. Using a union

bound we obtain with probability at least 1− δ4 ,

Eσ(t) holds ∀t ≥ 1. �

Lemma 4 and Lemma 5 provide concentra-

tion bounds for the posterior samples of regret

mean and regret variance around their esti-

mates, respectively.

Lemma 4 (Agrawal and Goyal (2013), Lemma
1) Define Eμ̃(t) as the event that xi(t)�μ̃i(t) is

concentrated around xi(t)�μ̂i(t) for any arm i, i.e.,

Eμ̃(t) :�
{
| xi(t)�μ̃i(t) − xi(t)�μ̂i(t) |

≤
√

4d ln T
√

Kd · v · si(t), ∀i ∈ [K]
}

Then P(Eμ̃(t) | Ft−1) ≥ 1 − 1
T2 .

Lemma 5 Define Eσ̃(t) as the event that σ̃2
i (t) is

concentrated around σ̂2
i (t) for any arm i, i.e.,

Eσ̃(t) :� { | σ̃2
i (t) − σ̂2

i (t) |

≤ 2

√
ln T

√
Ku

1√
#Ti(t)

, ∀i ∈ [K]}

Then P(Eσ̃(t) | Ft−1) ≥ 1 − 1
T2 .

Proof. A direct application of Lemma 5 in

Agrawal and Goyal (2013) gives:

P

(
|
√

#Ti(t)
u

(σ̃2
i (t) − σ̂2

i (t)) |≥ 2

√
ln T

√
K | Ft−1

)
≤ 1√
π

· 1

2
√

ln T
√

K
exp(−2 ln T

√
K) ≤ 1

KT2

Hence Eσ̃(t) holds with probability at least 1 −
K · 1

KT2 � 1 − 1
T2 . �

With Lemma 2-5, we can derive the concen-

tration bounds for μ̃i and σ̃2
i around the true

value μi and σ2
i , which is useful to bound the

regret in terms of sa(t)(t), sa∗(t)(t), 1√
#Ta(t)(t)

and

1√
#Ta∗(t)(t)

.

The next step is to bound the probability

of pulling an arm in the set S(t) as shown

in Lemma 8 by the probability of pulling an

optimal arm. To prove lemma 8, we first

present Lemma 6 and Lemma 7, which lower

bound the probability of sampling μ̃i such that

xi(t)ᵀ μ̃i(t) exceeding xᵀi (t)μi by 
(t)si(t) and

sampling σ̃2
i less than σ2

i − h(T) 1√
#Ti (t)

.

Lemma 6 Conditioned on Eμ(t), we have

P

(
xi(t)�μ̃i(t) ≥ xi(t)�μi + 
(T)si(t) | Ft−1

)
≥ 1

2
√
πε ln T · Tε
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Proof. Given the event Eμ(t), we have

| xi(t)�μ̂i(t) − xi(t)�μi(t) |≤ 
(T)si(t)

Since xi(t)�μ̃i(t) is a Gaussian random vari-

able that has mean xi(t)�μ̂i(t) and standard

deviation vsi(t). Using the anti-concentration

inequality in Lemma 5 in Agrawal and Goyal

(2013), we have

P

(
xi(t)�μ̃i(t) ≥ xi(t)�μi + 
(T)si(t) | Ft−1

)
� P

( xi(t)�μ̃i(t) − xi(t)�μ̂i(t)
vsi(t) ≥

xi(t)�μi − xi(t)�μ̂i(t) + 
(T)si(t)
vsi(t) | Ft−1

)
≥ P

( xi(t)�μ̃i(t) − xi(t)�μ̂i(t)
vsi(t) ≥ Zt | Ft−1

)
≥ 1√
π

1

Zt + 1/Zt
exp(−Z2

t
2
)

where

| Zt | � √
ε ln T �

2
(T)
v

≥| xi(t)�μi − xi(t)�μ̂i(t) + 
(T)si(t)
vsi(t) |

Therefore, we have

P

(
xi(t)�μ̃i(t) ≥ xi(t)�μi + 
(T)si(t) | Ft−1

)
≥ 1√
π

1√
ε ln T + 1/√ε ln T

exp(− ε ln T
2

)

Without loss of generality, we can set ε ln T ≥ 1

for large T. Thus

P

(
xi(t)�μ̃i(t) ≥ xi(t)�μi + 
(T)si(t) | Ft−1

)
≥ 1

2
√
πε ln T · Tε

�

Lemma 7 Conditioned on Eσ(t), we have

P

(
σ̃2

i (t) ≤ σ2
i − h(T) 1√

#Ti(t)
| Ft−1

)
≥ 1

2
√
πε ln T · Tε

Proof. The proof is similar to Lemma 6. �

Define shorthand notations

ω(t) � xa∗(t)(t)�μa∗(t) − xi(t)�μi

Γi(t) � σ2
i − σ2

a∗(t)
Λi(t) � xi(t)�μi − ρσ2

i

Replacing μi , σi by their estimates μ̂i(t), σ̂i(t),
we have corresponding shorthand notations

for ω̂(t), Γ̂i(t) and Λ̂i(t). Replacing μ̂i(t), σ̂i(t)
by their samples μ̃i(t), σ̃i(t), we have corre-

sponding shorthand notations for ω̃(t), Γ̃i(t)
and Λ̃i(t).
Lemma 8 Given any filtrationFt−1 such that event
Eμ(t) and Eσ(t) hold, we have

P
(
a(t) ∈ S(t) | Ft−1

) ≤ 1

p
P
(
a(t) � a∗(t) | Ft−1

)
+

2

pT2

where p �
1

4πε ln T·Tε .

Proof. Note that the algorithm chooses arm

a∗(t) to pull at round t if the following event

happens:

ω̃ j(t) + ρΓ̃ j(t) ≥ 0, ∀ j � a∗(t)

Therefore, we have

P
(
a(t) � a∗(t) | Ft−1

)
≥ P(ω̃ j(t) + ρΓ̃ j(t) ≥ 0, ∀ j � a∗(t) | Ft−1

)
≥ P(∃i ∈ S(t) : Λ̃a∗(t)(t) ≥ Λ̃i(t),
Λ̃i(t) ≥ Λ̃ j(t), ∀ j � a∗(t) | Ft−1

)
≥ P(∀i ∈ S(t), Λ̃a∗(t)(t) ≥ Λa∗(t)(t)

+ 
(T)sa∗(t)(t) + ρ h(T)√
#Ti(t)

≥ Λ̃i(t),

∃i ∈ S(t), Λ̃i(t) ≥ Λ̃ j(t), ∀ j � a∗(t) | Ft−1

)
≥ P(Λ̃a∗(t)(t) ≥ Λa∗(t)(t) + 
(T)sa∗(t)(t)

+
ρh(T)√
#Ta∗(t)(t)

, ∃i ∈ S(t), Λ̃i(t) ≥ Λ̃ j(t),

∀ j � a∗(t) | Ft−1

)
− P({∀i ∈ S(t),Λa∗(t)(t) + 
(T)sa∗(t)(t)
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+
ρh(T)√
#Ta∗(t)(t)

≥ Λ̃i(t)}c )
� P

(
Λ̃a∗(t)(t) ≥ Λa∗(t)(t) + 
(T)sa∗(t)(t)

+
ρh(T)√
#Ta∗(t)(t)

| Ft−1
)

· P(∃i ∈ S(t), Λ̃i(t) ≥ Λ̃ j(t),
∀ j � a∗(t) | Ft−1

)
− P(∃i ∈ S(t), Λ̃i(t) ≥ Λa∗(t)(t)

+ 
(T)sa∗(t)(t) +
ρh(T)√
#Ta∗(t)(t)

| Ft−1
)

Since

P
(
Λ̃a∗(t)(t) ≥ Λa∗(t)(t) + 
(T)sa∗(t)(t)

+
ρh(T)√
#Ta∗(t)(t)

| Ft−1
)

≥ P(xa∗(t)(t)�μ̃a∗(t) ≥ xa∗(t)(t)�μa∗(t)
+ 
(T)sa∗(t)(t) | Ft−1

)
· P(σ̃2

a∗(t)(t) ≥ σ2
a∗(t) +

h(T)√
#Ta∗(t)(t)

| Ft−1
)

≥ 1

4πε ln T · Tε

:� p

Also note that when Eμ̃(t)⋂ Eσ̃(t) holds true,

we have that ∀i ∈ S(t),

Λ̃i(t) ≤ Λi(t) + g(T)si(t) + ρh(T) 1√
#Ti(t)

≤ Λa∗(t)(t) + 
(T)sa∗(t)(t) + ρq(T) 1√
#Ti(t)

Hence, we have

P
(
a(t) � a∗(t) | Ft−1

)
≥ p · P(∃i ∈ S(t), Λ̃i(t) ≥ Λ̃ j(t),

∀ j � a∗(t) | Ft−1
) − 2

T2

≥ p · P(a(t) ∈ S(t) | Ft−1
) − 2

T2

Finally, we have

P
(
a(t) ∈ S(t) | Ft−1

) ≤ 1

p
P
(
a(t) � a∗(t) | Ft−1

)
+

2

pT2

�

We construct a super-martingale with re-

spect to the regret in Lemma 9, which is used

to bound the total regret later using Azuma-

Hoeffding inequality.

Lemma 9 Recall that the regret at round t is
Δa(t)(t). Denote by 1{·} the indicator function.
Let Δ′a(t)(t) � Δa(t)(t) · 1{Eμ(t)} · 1{Eσ(t)}. Let

Yt �Δ
′
a(t)(t) − sa(t)(t)

(
g(T) + g(T)2


(T) +
g(T)q(T)
ρh(T)

)
− 1√

#Ta(t)(t)
(
ρq(T) + ρ g(T)q(T)


(T)

+ ρ
q(T)2
h(T)

) − sa∗ (t) g(T)
p

1{a(t) � a∗(t)}

− 1√
#Ta∗(t)(t)

ρ
q(T)

p
1{a(t) � a∗(t)}

− g(T) + ρq(T)
pT2

− (1 + ρ) 2

T2

Then
∑t

s�1 Ys is a super-martingale process with
respect to the filtration Ft .

Proof. To prove
∑t

s�1 Ys is a super-martingale

process, we need to show that for all 1 ≤ t ≤ T
and a given filtration Ft−1, E[Yt | Ft−1] ≤ 0.

Conditioned on Eμ(t) and Eσ(t), if both Eμ̃(t)
and Eσ̃(t) hold true, we have

ωi(t) ≤ ω̃i(t) + g(T)(sa∗(t)(t) + sa(t)(t))
Γi(t) ≤ Γ̃i(t) + ρq(T)( 1√

#Ti(t)
+

1√
#Ta∗(t)(t)

)

Observe that

E[Δ′a(t)(t) | Ft−1]
≤ g(T)E[sa(t)(t) | Ft−1]
+ q(T)E[ 1√

#Ta(t)(t)
| Ft−1]

+ g(T)sa∗(t)(t) + ρq(T) 1√
#Ta∗(t)(t)

· E[1{a(t) ∈ S(t)} + 1{a(t) � S(t)} | Ft−1]
+ (1 + ρ)(1 − P(Eμ̃)) + (1 + ρ)(1 − P(Eσ̃))

≤ g(T)E[sa(t)(t) | Ft−1]
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+ ρq(T)E[ 1√
#Ta(t)(t)

| Ft−1]

+
(
g(T)sa∗(t)(t) + ρq(T) 1√

#Ta∗(t)(t)
)

· P(a(t) ∈ S(t) | Ft−1) (6)

+ E
[ (

g(T)sa∗(t)(t) + ρq(T) 1√
#Ta∗(t)(t)

)
· 1{a(t) � S(t)} | Ft−1

]
+ (1 + ρ) 2

T2
(7)

Note that for (6), we have

(6) ≤ (
g(T)sa∗(t)(t) + ρq(T) 1√

#Ta∗(t)(t)
)

· [ 1

p
P(a(t) � a∗(t) | Ft−1) + 1

pT2

]
≤ sa∗(t)(t)

g(T)
p
P(a(t) � a∗(t) | Ft−1)

+ ρ
q(T)

p
P(a(t) � a∗(t) | Ft−1) 1√

#Ta∗(t)(t)

+
g(T)
pT2

+
ρg(T)
pT2

For (7), notice that when a(t) � S(t), we have

g(T)sa(t)(t) + ρq(T) 1√
#Ta(t)(t)

> 
(T)sa∗(t)(t) + ρh(T) 1√
#Ta∗(t)(t)

Rearrange the above inequality, we have

sa∗(t)(t) <
g(T)

(T) sa(t)(t) +

ρq(T)

(T)

1√
#Ta(t)(t)

Also note that
1√

#Ta∗(t)(t)
<

g(T)
ρh(T) sa(t)(t) +

q(T)
h(T)

1√
#Ta(t)(t)

Hence

(7) ≤E
[ ( g(T)2

(T) +

g(T)q(T)
ρh(T)

)
sa(t)(t)

+
( ρg(T)q(T)

(T) +

ρq(T)2
h(T)

)
· 1√

#Ta(t)(t)
| Ft−1

]
Putting all these together, we have Ft−1, E[Yt |
Ft−1] ≤ 0, thus

∑t
s�1 Ys is a super-martingale

process. �

Now we start to prove the main result The-

orem 1.

Proof. First observe that we can bound the ab-

solute value of Yt by 5(1+ρ+ 1
ρ ) q(T)2

(T) . Therefore,

by the Azuma-Hoeffding inequality, we have

P(
T∑

t�1

Yt ≥ w)

≤ exp
(
− w2
(T)2

(5(1 + ρ + 1/ρ))2q(T)4
)

:�
δ
2

Thus we set w � 5(1 + ρ + 1/ρ) q(T)2

(T)

√
2T ln 2

δ .

Then with probability at least 1 − δ2 , we have

T∑
t�1

Δ′a(t)(t)

≤ (
g(T) + g(T)2


(T) +
g(T)q(T)
ρh(T) +

g(T)
p

)
·

T∑
t�1

sa(t)(t) + ρ
(
g(T) + g(T)q(T)


(T) +
g(T)2
h(T)

+
q(T)

p
) · T∑

t�1

1√
#Ta∗(t)(t)

+
g(T) + ρq(T)

pT

+ 5(1 + ρ + 1/ρ) q(T)2

(T)

√
2T ln

2

δ

Using Lemma 3 in Chu et al. (2011), we have

T∑
t�1

sa(t)(t) �
K∑

i�1

∑
s∈Ti (T)

si(t)

≤
K∑

i�1

5
√

d#Ti(t) ln #Ti(t) ≤ 5
√

dKT ln T

T∑
t�1

1√
#Ta(t)(t)

�

K∑
i�1

∑
s∈Ti (T)

si(t) 1√
#Ta(t)(t)

�

K∑
i�1

#Ti (t)∑
s�1

1√
s
≤ K

1

K

K∑
i�1

2
√

#Ti(t)

≤ 2K

√√√ K∑
i�1

#Ti(t)
K

� 2
√

KT

Hence, with probability at least 1− δ2 , we have

T∑
t�1

Δ′a(t)(t) � O((1 + ρ +
1

ρ
)d ln T ln

K
δ

√
dKT1+2ε ln

K
δ

1

ε
)
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Since Eμ(t) does not hold with probability at

most δ
T2 T �

δ
T ≤ δ

4 for T ≥ 4, and Eσ(t) does

not hold with probability at most δ4 . Therefore,

both Eμ(t) and Eσ(t) holds for all t with prob-

ability at least 1− δ2 . Thus Δa(t)(t) � Δ′a(t)(t) for

all t with probability at least 1− δ2 . Hence with

probability at least 1 − δ, we have

T∑
t�1

Δa(t)(t) � O((1 + ρ +
1

ρ
)d ln T ln

K
δ

√
dKT1+2ε ln

K
δ

1

ε
)

�

5. Numerical Experiments
In the numerical experiment, we apply our

proposed TS algorithms to a portfolio selection

problem.

5.1 Contextual MAB Application to Fi-
nance

Application of the bandit algorithm to the port-

folio selection problem is not new. To name

a few, Shen et al. (2015) apply a UCB-type

bandit algorithm to derive the optimal port-

folio strategy that represents the combination

of passive and active investments according to

a risk-adjusted reward function. Huo and Fu

(2017) apply a UCB-type bandit algorithm to

the portfolio selection problem, under a risk-

averse criterion. Zhu et al. (2020) propose an

online portfolio selection method that also in-

corporates contextual information, based on

the Exp4 algorithm presented in Auer et al.

(2002). We adapt the portfolio selection model

in Huo and Fu (2017) to our contextual set-

ting and formally describe the problem setting

below.
Consider a financial market with a large

set of assets (for example, bonds, stocks and

other financial derivatives), from which the

portfolio manager selects to construct K port-

folios. Each portfolio consists of different

assets with different weights. The indus-

tries are roughly divided into eleven sectors,

namely energy, materials, industrials, com-

munication services, consumer discretionary,

consumer staples, healthcare, financials, in-

formation technology, real estate, and utilities

(Nagy and Ormos 2018). At each round t,

the manager collects information about indus-

trial prosperity in those sectors, which makes

up the contexts xi(t) ∈ [−1, 1]d for each port-

folio i ∈ [K], where d ≤ 11 due to the pos-

sibility of being incapable to collect informa-

tion for every sector. A larger context xi(t) j

indicates a better market condition for the sec-

tor j ∈ [d]. After observing the contexts, the

manager chooses one portfolio to invest and

receives the corresponding reward. For sim-

plicity, we assume the reward of portfolio i

follows an unknown distribution νi with mean

xi(t)�μi and variance σ2
i . The unknown mean

parameter μi ∈ Rd can be viewed as the sensi-

tivity of the return to the industrial prosperity.

The manager is risk-averse with a risk toler-

ance ρ. The goal is to minimize the cumulative

regret over T rounds under the mean-variance

criterion.

5.2 Algorithms for Comparison
We empirically evaluate the following algo-

rithms in the portfolio selection problem.

• Our proposed MVTS-D algorithm (Algo-

rithm 2).

• A variant of the TS algorithm MVTS-DN

used in our regret analysis (Algorithm 3).

• TS algorithm originally designed for the

risk-neutral setting. We compare with

the TS algorithm from Agrawal and

Goyal (2013), referred to as TS-A.

• Algorithms that make no use of the con-

texts. In particular, we compare with

the Thompson sampling algorithm with
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mean-variance criterion for the context-

free MAB setting (Algorithm MVTS in

Zhu and Tan (2020)).

• A uniform sampling algorithm that ran-

domly chooses an arm to pull at each

round.

To illustrate the necessity of taking into

account the risk of the reward, we compare

with the TS-A algorithm that works for a risk-

neutral setting. At each round t, the TS-A algo-

rithm samples μ̃i(t) from the Gaussian distri-

butionN(μ̂i(t), v2Ai(t)−1) for each arm i ∈ [K],
and plays the arm a(t) :� arg max xi(t)�μ̃i(t).
Here μ̂i(t) � Ai(t)−1bi(t), the reward is as-

sumed to follow a R-sub-Gaussian distribu-

tion, parameter v � R
√

24
ε d ln

(
1
δ

)
, where δ ∈

(0, 1) and ε ∈ (0, 1) are two parameters used

by the algorithm. To illustrate the necessity of

making use of contexts that enables to learn

the mean and variance parameters over time,

we compare with the context-free MVTS algo-

rithm. We include the details of the TS-A algo-

rithm from Agrawal and Goyal (2013) and the

context-free MVTS algorithm in Zhu and Tan

(2020) in Appendix C.

All the algorithms are tested on the port-

folio selection problem over 100 replications.

In each replication, we execute the algorithms

and collect the total regrets over T rounds. Pa-

rameters setting are summarized as follows:

K � 10, d � 8, T � 10000. All the implement-

ing details are included in Appendix B.

5.3 Experimental Results
Experiment 1: evaluation of total regrets with
different risk tolerances. In this experiment,

we evaluate the total regrets of different algo-

rithms associated with different risk tolerances

ρ � 0.1, 1, 10. The reward distribution is Gaus-

sian. Results are reported in Figure 1.

Figure 1 Total Regrets Comparison with Different Risk

Tolerances in the Portfolio Selection Problem

Averaged over 100 Replications

Figure 1 shows the mean (over 100 replica-

tions) of the total regrets over time under differ-

ent risk tolerances for our proposed MVTS-D

and MVTS-DN algorithms, along with three

benchmarks, namely TS-A, MVTS, and Uni-

form Sampling. The (95%) confidence band

across different replications is very narrow,

hence it is not reported in the figure. From

Figure 1, we have the following observations:

• Our proposed MVTS-D and MVTS-DN

algorithms achieve better regrets com-

pared to the three benchmarks in all the

cases (ρ � 0.1, 1, 10).

• As ρ approaches 0 (i.e., risk-neutral

case), our proposed MVTS-D and MVTS-
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DN algorithms behave similarly to TS-

A, which corresponds to the risk-neutral

case. As ρ increases, our proposed

MVTS-D and MVTS-DN algorithms have

similarly steady performance. As for TS-

A, it chooses the optimal arm according

to its mean performance while overlook-

ing the variance. As ρ increases, variance

tends to dominate the choice of the op-

timal arm. Hence, the performance of

TS-A deteriorates.

• In all cases (ρ � 0.1, 1, 10), MVTS and

Uniform Sampling behave much worse

than our proposed MVTS-D and MVTS-

DN algorithms, as they make no use of

the contexts and thus do not learn over

time.

Experiment 2: evaluation of total regrets
under different reward distributions. The re-

ward distributions are chosen to be Gaussian,

truncated normal, and uniform, respectively.

Results are reported in Figure 2.

Figure 2 shows the mean (over 100 replica-

tions) of the total regrets over time under dif-

ferent reward distributions for our proposed

MVTS-D and MVTS-DN algorithms, along

with three benchmarks, namely TS-A, MVTS,

and Uniform Sampling. From Figure 2, we

have the following observations:

• Our proposed MVTS-D and MVTS-DN

algorithms are robust to model mis-

specification, i.e., the assumed reward

distribution is different from the true one.

• Even though our regret analysis does not

work for the Gaussian distribution (as

the squared reward is sub-exponential

instead of sub-Gaussian), in practice

our proposed MVTS-DN algorithm still

Figure 2 Total Regrets Comparison under Different

Reward Distributions in the Portfolio Selec-

tion Problem Averaged over 100 Replica-

tions. ρ � 1

works well.

6. Conclusion
In this paper, we apply the Thompson sam-

pling algorithm to the contextual MAB prob-

lem under the mean-variance criterion. We

show a high probability regret bound for a

variant of the proposed TS algorithm. The

performances of the proposed algorithm and

its variant are empirically shown via a portfolio

selection example, with a wide range of reward

distributions. It could be an interesting future

direction to apply TS algorithm, or UCB-type

algorithm, to contextual MAB problem under

other risk measures, such as CVaR.

Appendix A Algorithms
See page 286-287.

Appendix B Implementation Details
For the portfolio selection problem, the true

mean and variance parameters are summa-

rized in Table 1. In each replication, a new
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Table 1 True Mean Parameter {μi}8
i�1

and Variance Parameter σ for all Ten Portfolios in the Portfolio Selection

Problem. True Means are Generated from Uniform Distribution with Low = −0.1 and High = 0.5. True

Variances are Generated from Uniform Distribution with Low = 0.1 and High = 1

μ1 μ2 μ3 μ4 μ5 μ6 μ7 μ8 σ2

Portfolio 1 0.15 0.33 −0.10 0.08 −0.01 −0.04 0.01 0.11 0.89

Portfolio 2 0.14 0.22 0.15 0.31 0.02 0.43 −0.08 0.30 0.66

Portfolio 3 0.15 0.24 −0.02 0.02 0.38 0.48 0.09 0.32 0.78

Portfolio 4 0.43 0.44 −0.05 −0.08 0.00 0.43 −0.04 0.15 0.41

Portfolio 5 0.47 0.22 0.32 0.09 0.31 0.40 −0.09 0.35 0.34

Portfolio 6 0.49 0.35 0.07 0.37 −0.04 0.17 0.45 0.08 0.91

Portfolio 7 0.07 −0.02 −0.09 0.31 0.03 0.06 0.19 −0.07 0.49

Portfolio 8 0.24 −0.01 0.25 0.32 −0.04 0.15 0.32 0.15 0.97

Portfolio 9 −0.07 0.22 0.30 0.21 0.47 0.25 0.44 −0.02 0.70

Portfolio 10 −0.02 0.38 0.14 −0.00 0.46 0.11 0.35 0.33 0.66

set of contexts are generated and used by all

the algorithms. When the reward distribution

is truncated normal, we assume it is truncated

above −5 and below 5. It is worth noting that

when executing the TS-A algorithm in the risk-

neutral case, for a small ε and δ, the parame-

ter v is computed so large that the total regret

grows linearly. This is due to the overly large

variance in the mean sampling. For meaning-

ful experiment, we set v � 1. For our proposed

MVTS-DN algorithm, we face the same situ-

ation. Therefore, in the experiments, we set

u � 1 and v � 1, which is different from their

theoretical values.

Appendix C Proof of Proposition 1
Proof. Let mi(t) � Ai(t)−1bi(t). The prior dis-

tribution is given by:

P(μi , λi) � P(μi | λi)P(λi)
� N (

mi(t), (λiAi(t))−1
) · Gamma (Ci(t),Di(t))

∝
√
λi exp

(
− λi

2
(μi − mi(t))�Ai(t)

(μi − mi(t))
)
· λCi (t)−1

i exp (−Di(t)λi)
Similarly, the likelihood of reward ri(t) is given

by:

P(ri(t) | μi , λi) ∝
√
λi exp

(
−λi

2

(
μ�i xi(t) − ri(t)

)2
)

Then the posterior distribution is computed as:

P(μi , λi | ri(t)) ∝ P(μi , λi) · P(ri(t) | μi , λi)
∝ λCi (t)

i exp
(
− λi

2

( (
μi − mi(t)

)� Ai(t)(
μi − mi(t)

)
+ μ�i xi(t)xi(t)�μi

− 2μ�i xi(t)ri(t) + ri(t)2 + 2Di(t)
) )

� λCi (t)
i exp

(
− λi

2

(
μ�i

(
Ai(t) + xi(t)xi(t)�

)
μi

− 2μ�i (bi(t) + xi(t)ri(t))
+ bi(t)�Ai(t)−1bi(t) + 2Di(t) + ri(t)2

))
� exp

(
− λi

2

(
μ�i Ai(t + 1)μi − 2μ�i Ai(t + 1)

mi(t + 1) + bi(t)�Ai(t)−1bi(t) + 2Di(t) + ri(t)2
) )
λCi (t)

i

�

√
λi exp

(
− λi

2

( (
μi − mi(t + 1))� Ai(t + 1)(

μi − mi(t + 1)) ) ) · λCi (t+1)−1
i · exp(−Di(t + 1)λi)

∝ N(Ai(t + 1)−1bi(t + 1), (λiAi(t + 1))−1)
· Gamma(Ci(t + 1),Di(t + 1))

�
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Algorithm 3: Mean-Variance Thompson Sampling for the Disjoint Model with Variance

of the Reward Sampled from Normal Distribution (MVTS-DN)

1 initialization:

2 for i � 1, 2, · · · , K do
3 pull each arm i once at round 0 and observe rewards ri(0);
4 Ai(1) � Id + xi(0)xi(0)� , bi(1) � xi(0)ri(0), Ci(1) � 1

2 ,Di(1) � 1
2 (ri(0)2 − xi(0)�Ai(1)−1xi(0)), Ti(1) � {0};

5 end
6 for t � 1, 2, · · · , T do
7 observe K contexts x1(t), · · · , xK(t) ∈ Rd ;

8 for i � 1, 2, · · · , K do

9 sample σ̃2
i (t) from distribution N

(
Di (t)
Ci (t) ,

u2

#Ti (t)
)
;

10 sample μ̃i(t) from distribution N (
Ai(t)−1bi(t), v2Ai(t)−1

)
;

11 set M̃Vi(t) � xi(t)� μ̃i(t) − ρσ̃2
i (t);

12 end
13 play arm a(t) � arg maxi∈[K] M̃Vi(t) with ties broken arbitrarily;

14 observe reward ra(t)(t) ∼ νa(t)
(
xa(t)(t)�μa(t) , σ2

a(t)
)
;

15 update (Ai(t), bi(t), Ci(t),Di(t)) according to Algorithm 1 for each arm i;

16 set Ta(t)(t + 1) � Ta(t)(t)
⋃{t}.

17 end

Algorithm 4: TS-A Algorithm from Agrawal and Goyal (2013)

1 initialization:

2 pull each arm i once at round 0 and observe rewards ri(0);
3 Ai(1) � Id + xi(0)xi(0)� , bi(1) � xi(0)ri(0), Ti(1) � {0};
4 for t � 1, 2, · · · , T do
5 observe K contexts x1(t), · · · , xK(t) ∈ Rd ;

6 for i � 1, 2, · · · , K do
7 compute μ̂i(t) � Ai(t)−1bi(t);
8 sample μ̃i(t) from distribution N (

μ̂i(t), v2Ai(t)−1
)
;

9 end
10 play arm a(t) � arg maxi∈[K] xi(t)� μ̃i(t) with ties broken arbitrarily;

11 observe reward ra(t)(t) ∼ νa(t)
(
xa(t)(t)�μa(t) , σ2

a(t)
)
;

12 update (Ai(t), bi(t)) according to Line 4 and Line 5 in Algorithm 1 for each arm i;

13 set Ta(t)(t + 1) � Ta(t)(t)
⋃{t}.

14 end

Algorithm 5: Posterior Updating in the MVTS Algorithm

input : prior parameters (μ̂i(t − 1), T̂i(t − 1), α̂i(t − 1), β̂i(t − 1)) and new reward sample ri(t).
output: posterior parameters (μ̂i(t), T̂i(t), α̂i(t), β̂i(t)).

1 update the mean: μ̂i(t) � T̂i (t−1)
T̂i (t−1)+1

μ̂i(t − 1) + 1
T̂i (t−1)+1

ri(t);
2 update the number of samples: T̂i(t) � T̂i(t − 1) + 1;

3 update the shape parameter: α̂i(t) � α̂i(t − 1) + 1
2 ;

4 update the rate parameter: β̂i(t) � β̂i(t − 1) + T̂i (t−1)
T̂i (t−1)+1

· (ri (t)−μ̂i (t−1))2
2 .
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Algorithm 6: MVTS Algorithm in Zhu and Tan (2020)

1 initialization:

2 for i � 1, 2, · · · , K do
3 pull each arm i once at round 0 and observe rewards ri(0);
4 μ̂i(0) � ri(0), T̂i(0) � 1, α̂i(0) � 1

2 , β̂i(0) � 1
2 ;

5 end
6 for t � 1, 2, · · · , T do
7 for i � 1, 2, · · · , K do
8 sample τi(t) from Gamma(α̂i(t − 1), β̂i(t − 1));
9 sample θi(t) from N(μ̂i(t − 1), 1

T̂i (t−1) );
10 end
11 play arm a(t) � arg maxi∈[K] θi(t) − ρ/τi(t) and observe reward ra(t)(t);
12 update (μ̂a(t)(t − 1), T̂a(t)(t − 1), α̂a(t)(t − 1), β̂a(t)(t − 1)) according to Algorithm 5.

13 end
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