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Abstract
Tree training systems for temperate fruit have been developed throughout history by

pomologists to improve light interception, fruit yield, and fruit quality. These train-

ing systems direct crown and branch growth to specific configurations. Quantifying

crown architecture could aid the selection of trees that require less pruning or that

naturally excel in specific growing/training system conditions. Regarding peaches

[Prunus persica (L.) Batsch], access tools such as branching indices have been devel-
oped to characterize tree-crown architecture. However, the required branching data

(BD) to develop these indices are difficult to collect. Traditionally, BD have been

collected manually, but this process is tedious, time-consuming, and prone to human

error. These barriers can be circumnavigated by utilizing terrestrial laser scanning

(TLS) to obtain a digital twin of the real tree. TLS generates three-dimensional (3D)

point clouds of the tree crown, wherein every point contains 3D coordinates (x, y,
z). To facilitate the use of these tools for peach, we selected 16 young peach trees

scanned in 2021 and 2022. These 16 trees were then modeled and quantified using

the open-source software TreeQSM. As a result, “in silico” branching and biomet-

ric data for the young peach trees were calculated to demonstrate the capabilities

of TLS phenotyping of peach tree-crown architecture. The comparison and analy-

sis of field measurements (in situ) and in silico BD, biometric data, and quantitative

structural model branch uncertainty data were utilized to determine the reconstruc-

tive model’s reliability as a source substitute for field measurements. Mean average

deviation when comparing young tree (YT) height was approx. 5.93%, with crown

volume was approx. 13.26% across both 2021 and 2022. All point clouds of the YTs

in 2022 showed residuals lower than 12 mm to cylinders fitted to all branches, and

mean surface coverage greater than 40% for both the trunk and primary branching

orders.
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1 INTRODUCTION

Nearly all fruit tree breeding programs focus on traditional
complex traits, such as fruit yield, fruit quality, disease
resistance, and freezing prevention/chilling requirements.
However, tree-crown architectural traits that could be used
to optimize physiological processes and tree training are less
understood (Carrillo-Mendoza et al., 2010). This point is
especially true for deciduous fruit trees, such as peach [Prunus
persica (L.) Batsch].
Tree-crown architecture (here referred to simply as tree

architecture) can be used as a term that encompasses the
dynamic changes in morphology and growth exhibited by a
tree throughout its life span (Hallé et al., 1978; Tomlinson,
1983). Being a dynamic process, tree architecture is inher-
ently a highly adaptive and plastic trait, influenced greatly by
resource availability (e.g., phytonutrients, water, and light).
This results in a wide variety of architectural forms occurring
in nature and being optimized around diverse environmental
pressures (Farnsworth et al., 1995). Advances in molecular
genetics and more accessible genome sequencing technolo-
gies have led to an increased focus on identifying the genetic
origins of these tree-crown architecture variations (Busov
et al., 2008; Groover, 2005). However, many of these archi-
tectural forms are not conducive to planned agriculture and
orchard management, possessing innate architectures that are
too vigorous or crown architectures that inhibit production
(Lauri et al., 1997). This problem can be addressed by several
approaches, either by direct human intervention in the form
of coordinated pruning and shaping (tree training systems;
Lauri, 2002), or by reducing/controlling the innate archi-
tectures common in modern cultivars (dwarfing rootstocks;
Pilcher et al., 2008; Reighard et al., 2011).
Tree training systems have been developed to control the

innate architecture of trees. Training systems have proven
effective and are utilized in nearly all commercial orchard
settings. Nevertheless, these systems are not without their lim-
itations. Establishing a successful training system is laborious
and requires the trees to undergo regular pruning. Research
that prioritizes an improved understanding of tree architec-
ture, leading to a reduction of pruning costs, has become a
priority (Carrillo-Mendoza et al., 2010; Rosati et al., 2013).
Unfortunately, conducting research into tree architecture has
been challenging due to the physical limits regarding collect-
ing branching data (BD; Bucksch, 2014). Advances in TLS
technology provide solutions for these limitations and moti-
vate the use of automated three-dimensional (3D) modeling
pipelines (Sadeghian et al., 2022).
Algorithms to compute and quantify BD have been con-

stantly improved over the past decade (Bucksch et al., 2010;
Paturkar et al., 2021). Recording BD (for our study, the num-
ber of branching orders [BOs] in a tree, and the number of
branches per BO) via manual methods is prone to human error

Core Ideas
∙ Tree training systems were quantified with terres-
trial laser scanning.

∙ The use of TreeQSM was introduced to the horti-
culture community.

∙ The authors developed a fast way to discover
phenotypes of tree-crown architectures.

and is exceedingly time-consuming. Therefore, developing a
new way to record BD without the difficulties of manual col-
lection could lead to breakthroughs in fruit tree physiology
and breeding. Studies with access to reliable and readily avail-
able BD could focus on quantifying specific traits associated
with tree architecture (Barthélémy & Caraglio, 2007). The
main focus of our study is to evaluate the use of terrestrial
laser scanning (TLS; terrestrial LiDAR) to collect BD from
peach trees (Shihua et al., 2016; Lau et al., 2018). This data-
retrieval approach is then assessed by analyzing ground-truth
data against the original point cloud to validate the in silico
results. Finally, the in silico results are compared with the in
situ field measurements.
TLS technology was utilized to generate 3D point cloud

data of peach trees. The utilization of 3D TLS data paired with
3D modeling in orchard settings has been receiving increased
attention, due to their potential to assist in the parameteriza-
tion of plants and to reduce the human labor required (Méndez
et al., 2016; Nguyen et al., 2016; Nielsen et al., 2012; Escolà
et al., 2017). Point clouds can be used in modeling soft-
ware to characterize specific phenotypic characteristics of tree
structure and architecture (Burt et al., 2013; Li et al., 2017).
The TreeQSM software has been used to reconstruct tree

architecture as quantitative structural models (QSMs) from
digitized trees (Åkerblom, 2017; Bohn Reckziegel et al.,
2022; Raumonen, 2020). These QSMs provide biometric data
and BD (Lau et al., 2018), which are vital for branching
indices or any other method used to quantify tree architecture
(Carrillo-Mendoza et al., 2010). TreeQSM employs the given
TLS-derived point clouds of individual trees to generate quan-
tifiable cylinder approximations of the branches forming the
tree architecture (Bohn Reckziegel et al., 2021). These quan-
tifications can then be used as traits characterizing the tree
architecture phenotype.
The goal of our study was to successfully model the tree

branch structure of peach trees with TreeQSM and vali-
date it with ground measurements. Parameters in TreeQSM
are often optimized for each input point cloud (Raumonen,
2020). However, as our young trees (YTs) are grown under
the same training system design, parameters were optimized
specifically for young peach trees grown in an open-vase
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training system. For all new point cloud generated data, tree
models require the optimization of QSM-input parameters as
each project will have many sources of variation (i.e., tree
structure, sampling with TLS, and processing). Therefore, our
study demonstrates the impact TLS has as a quick and rel-
atively cost-effective method for employing high-throughput
plant phenotyping (HTPP) in horticultural research and breed-
ing. The cost-effectiveness of TLS stems from the reduced
need for labor to collect BD. From our experience, one hour
of TLS data collection with one person compares to an entire
day and several workers recording BD manually. Eventually,
we hope to use the results from TreeQSM to help supplement
future research in genomics, agrobotics, and HTPP (Rau-
monen, 2020). While evaluating the uses of TreeQSM as a
potential HTPP tool for peaches, this study also investigates
potential differences in tree architecture among peach trees
planted on two commercial rootstocks “Guardian” (Gd) and
“MP29.” These rootstocks have different effects on peach
tree vigor, as well as a possible effect on tree architecture
(Beckman et al., 2012).

2 METHODS

2.1 Field location and plant material

Our experiment was conducted at UGA Griffin Campus,
Peach Research and Extension Orchard, located at Dempsey
Farm, University of Georgia, Griffin, GA, USA (33˚24′85″N,
84˚30′06″W). The peach trees in our study are of the culti-
var “Julyprince” grafted onto rootstocks MP29 and Gd. These
YTs were produced by growing the rootstocks in a greenhouse
setting and budding them on June–July 2019. Plants were
grown in one-gallon containers until the following spring and
then transplanted to the orchard in April 2020. The soil at
the Peach Research and Extension Orchard is a Cecil sandy
loam. Eighty YTs were planted, with a spacing of 4.5 m
between individual trees and 6 m between rows (Magar et al.,
2022). These were equally divided between the Gd and MP29
rootstocks (40/rootstock) across five rows containing 16 trees
each in a split-plot randomized complete block design (Thapa
Magar et al., 2022). The trees were pruned into an open-vase
training system after planting, following the recommended
guidelines (Smith et al., 2016). The resulting trees primarily
consisted of a short trunkwith approximately four or fivemain
leaders or “scaffolds” per tree. For our study, 16 YTs (here on
referenced as YT; YTs) were selected for scanning in both
2021 and 2022: YTs 17–24, 29–32, and 41–44. Of these 16
trees, YTs 17–20 and 41–44 were grafted on MP29 rootstock,
whereas YTs 21–24 and 29–31 were grafted on Gd rootstock.
These trees were selected from multiple areas of the desig-
nated split-plot field. Selection for which trees to include in
this study was based on availability of scans from both the

years 2021 and 2022, where in 2021 only various parts of the
split-plot field were fully scanned (Supporting Information 1).

2.2 Biometric and branching data

2.2.1 In situ data

Biometric field measurements have been collected at multi-
ple time points every year, since the trees were transplanted.
These measurements included tree height, crown width
(within and across row), and trunk diameter. From the in situ
crown width measurements, crown volume (crV) was calcu-
lated. Likewise, in situ BD were also collected for the trees
in February 2021. Tree height was collected in the field by
using a long-pole measuring stick, with a minimum unit of
measure of 1 cm. The crV was calculated as described by
Thapa Magar et al. (2022), wherein other biometric measure-
ments, such as crown diameter (both in- and across row) and
tree height, were employed. Furthermore, the methods for col-
lecting the various other biometric measurements are defined
in Thapa Magar et al. (2020).
In situ BDwere collected by counting the number of respec-

tive BOs per tree, as well the as the number of branches per
BO. The determination and counting of BOs were conducted
in a fashion consistent with TreeQSM, with the first BO of
every tree being the trunk. As our trees are trained in an open-
vase configuration, each individual scaffold can be considered
a primary branch (i.e., first-order branch). Subsequent bifur-
cations from these primary branches resulted in secondary
branches, with the process repeating until no further bifur-
cations were observed. The number of branches recorded as
first-, second-, or another BO were then totaled to provide a
measurement of branches per BO. This process of denoting
BOs is also utilized by TreeQSM and is illustrated in Figure 1.

2.2.2 In silico data

The YTs were scanned in February 2021 and February
2022, when they were dormant (under leaf-off conditions and
before winter pruning). The terrestrial laser scanner FARO
Focus3D X 330 (FARO Technologies, Lake Mary, FL, USA)
was used to scan the trees from multiple scan locations,
with a scan time of 11 min and 29 s being kept constant
throughout each sampling campaign. Basic laser settings used
when scanning with the FARO Focus3D scanner were a
scan size of 10,240 × 4267, color settings enabled, exposure
metering = horizon weighted, selected sensors: inclinome-
ter, compass, altimeter, and GPS, and scanner lens height at
142 cm. Six or more spherical targets were used during the
scanning campaigns (200 mm diameter spheres), whereas a
minimum of three spheres remained in place from one scan to
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F IGURE 1 Individual tree point clouds of young tree (YT) 19 and YT 30 from 2021 to 2022, respectively. Branches are colorized and denoted
by their corresponding branching order. On the far left shows the relative height in meters.

the next to maintain points of reference for scan registrations.
The average distance between scan locations was approxi-
mately 4.5 m, as the scans were taken between the respective
YTs, approximately 3.8 m away from the tree trunk. When
moving from one row to the next, the average distance was
closer to approx. 6 m, corresponding to the distance between
the young-tree rows.
The software FARO SCENE v2022. 1.0 (FARO Technolo-

gies, Lake Mary, FL, USA) was used to process the raw
scans and conduct the point cloud co-registration. The scans
were separated into the respective projects according to year.
Processing the scans for both seasons included options to
remove stray points, edge and scan artifacts, and a distance
filter. These options were selected, with no modifications
being made from the parameters suggested in SCENE. The
option dark-point processing, which removes points if under
a specified lumen reflectance, was excluded due to the over-
cast weather conditions during both scanning periods. The
stray-point filter option checks distances between nearby scan
points to establish a uniform 2D grid cell among the processed
scans.
Scan registration was first conducted with pre-aligned

scans to achieve faster convergence of the automatic registra-
tion procedure provided by FARO SCENE. The pre-aligned
registration also involved manually verifying the identifica-
tion of the spherical scan targets between scans. At times of
misregistration by SCENE, manual correspondence was used
to force identification between two known targets. Following
the pre-aligned registration, a second cloud–cloud registration
was conducted to minimize distances between estimated cen-
ter points of the spherical targets. Mean point error for the
2021 registration was 6.7 mm, and in 2022 the mean point
error was 11.8 mm. Lastly, point clouds of each YT were
manually segmented from the registered point cloud for both
project years, using the auto-clipping box tool in SCENE. The
data were exported for reconstruction with TreeQSM in the
xyz format.

2.2.3 Tree architecture

Similar to other literature sources that have utilized Tree-
QSM for tree architecture reconstruction, the procedure we
employed followed three distinct objectives after scan pro-
cessing and registration (Jin et al., 2022; Lau et al., 2018).
These steps were as follows: (a) exporting and cubical down-
sampling individual tree point clouds; (b) optimizing the
TreeQSM input parameters for the 3D reconstruction (for
peach trees grown in an open-vase training system); and (c)
analyzing the QSMs in silico data and determination of model
reliability. The selected trees were exported and processed
in CloudCompare (v2.12 alpha, 2020), for nonwoody points,
such as ground and extraneous vegetation. A noise-free tree
point cloud is necessary for TreeQSM to produce accurate
models (Raumonen, 2020). Cubical down-sampling is when a
voxel grid is used to reduce the density of the 3D point cloud.
We down-sampled the individual tree point clouds at a uni-
form density with cubic voxels of side length 1.7 cm. This was
done to ensure the homogenization of the point cloud data,
with the side length of 1.7 cm being selected based on previ-
ous literature and adjusted for our younger peach trees (Bohn
Reckziegel et al., 2022).

2.3 QSM reconstruction

2.3.1 TreeQSM input parameters

Although TreeQSM has previously been used to model other
temperate fruit crops such as apple trees (Zhang et al., 2020),
no work has been conducted to the same extent regarding
peaches. To remedy this deficiency, TreeQSM input parame-
ters first needed to be optimized for the acquired point clouds
to provide accurate in silico models, and thus accurate data.
The modeling approach has several input parameters to define
the cylinder reconstruction of a QSM, with TreeQSM v2.4
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TABLE 1 Parameters used for young peach trees in 2021 and
2022, respectively.

Year
PatchDiam1
(m)

PatchDiam
2Min (m)

PatchDiam
2Max (m)

2021 0.12 0.02 0.06

2022 0.15 0.02 0.07

(Raumonen, 2020) specifically denoting three input param-
eters to be optimized: PatchDiam1, PatchDiam2Min, and
PatchDiam2Max (Kunz et al., 2017; Raumonen, 2020). Patch-
Diam1 is responsible for the initial cover-set fitting of the
3D model. This initial fitting defines the trunk and the rough
outline of the tree’s branching structure. The PatchDiam2
Min and Max parameters are arguably the most important
regardingmodel fitting, as they determine the second cover-fit
accuracy and heavily influence primary and higher BO struc-
ture. The initial and final cover fittings are constructed around
randomly generated voxels that replace the original cloud
points for branch segmentation. These three input parameters
directly affect the size of these voxels. TreeQSM constructs
patches of branch surfaces from these voxels as an initial cover
set. A second reconstruction process computes cylinders from
the cover set to represent in situ branch limbs. In silico bio-
metric data, such as tree height and crV, are then derived from
the least-squares fitted cylinders.
Input parameters were optimized for each individual point

cloud of the two peach trees, for both years of data collection,
following the optimization guidelines of TreeQSM’s manual
(Raumonen, 2020). Three reasonable values were selected for
each key input parameter, and a simple grid search tested
the resulting 27 unique combinations of model parameters,
with over 20 unique models generated for each combination
(a total of 540 models per tree point cloud). The QSM-derived
tree parameters were compared to the measurements from
the point cloud data. The point-cylinder distance was used
as a suitable metric to select the optimal model input param-
eters. The cylinder distance compares the distance between
the fitted cylinders and the original point cloud, whereas
the lowest mean cylinder distance value defines the optimal
QSM, and the optimal parameters, see Table 1. After opti-
mization, we computed 40 QSM replications per individual
tree. This was done as means to overcome randomization
elements of the TreeOSM algorithms, with the trait measure-
ments of each individual tree then being averaged across the
40 digital replicates. TreeQSM is inherently stochastic in its
modeling process. Our trials revealed that 40 modeling rep-
etitions yielded an acceptable amount of variation between
replicates. Furthermore, these replicates were selected only
from models that fit the open-vase training system BO (1
trunk, 3–7 scaffolds).

2.3.2 Data comparison and validation

As the QSMs are generated, quantitative data are collected
following the geometric reconstruction process. Although the
scope of in silico data generated after the cylinder fittings is
wide ranging, focus was placed on collecting and analyzing
biometric data (i.e., tree height and crV) and BD. For the 16
YTs in this study, 40 digital replicates with optimal parame-
ters were executed for each tree for both years. The respective
averages and standard deviations were calculated from the 40
replications for the tree height, crV, and BD.Outliers were dis-
carded before initial calculations, that is, models that did not
fit the open-vase training system BO, until the 40 replications
reflected the open-vase model reconstruction.
After estimating the tree parameters with QSMs (in silico

measurements), the in situ data collected were used as ref-
erence when comparing the data (ground truth). The mean
absolute deviation (MAD) percentage scores were calculated
to describe the error of estimation between the in silico and
in situ data. This process was conducted for the biometric
data for MP29 YTs 18 and 19 and Gd YTs 30 and 31 for
both years, as well for the BD from all trees in 2021. Utiliz-
ing MAD scores to validate computational models has been
reported previously. The MAD score is defined as Jin et al.
(2022) as follows:

𝑀𝐴𝐷 =
|
|
|
|

𝑄 − 𝑅

𝑅

|
|
|
|

× 100%,

where Q is the mean of the in silico generated biometric data
BD, and R is the collected in situ ground truth data.

2.3.3 Examining uncertainty in QSM
reconstruction

TreeQSM includes metrics to quantify the quality of the
QSMs by comparing biometric statistics between the com-
puted cylinder models and the tree point clouds. Two of these
metrics are point–cylinder distance, which is used to deter-
mine the optimal parameters for model generation, and the
average surface coverage (%) of the cylindrical model (regard-
ing the origin point cloud). Both metrics were calculated
following the model creation and included results for the tree
architecture segments: trunk, branch, 1branch, and 2branch.
These segments correspond to measurements from the tree
trunk, all BOs of the tree (excluding the trunk), first-order
branches, and second-order branches. The mean values for
both cylinder distance and average surface coverage were cal-
culated from the 40 individual tree models and were analyzed
as another metric to reveal model reliability (Knapp-Wilson
et al., 2021).
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2.4 Analysis of rootstock effects on
architecture

Utilizing BD generated from QSMs of all YTs 2022 point
cloud data, a preliminary analysis was conducted to investi-
gate potential effects different rootstocks may impart on the
branch morphology of the trees. This investigation included
the analysis of the avg. number of branches per tree, branches
per BO, and BOs per tree, all as a function of their respective
rootstocks. BD collection was gathered and averaged among
the 40 replicates per YT. The BDwere collected from the gen-
erated QSMs, which utilized the optimized parameters listed
earlier. A one-way analysis of variance (ANOVA) was also
done to determine the statistical significance of the findings
from this preliminary analysis.

3 RESULTS

3.1 Initial 3D model reconstructions

In situ BD proved much easier to collect from younger trees in
2021 than in 2022. The less-intricate tree architecture of the
2021 trees enabled us to measure the entire architecture and
branching structure accurately by hand. Therefore, in situ BD
were only collected during 2021. This point is evident in the
treemodels generated from the 2022 point clouds, as they pos-
sessed more complex tree architecture overall. This difference
in crown complexity is especially noticeable when consider-
ing that the YTs have been in the field for only 1 year between
scanning campaigns (Figure 1). This resulted in numerous
model replications to achieve the correct designation of BOs.
However, after 1 year in the field the complexities in their
tree architecture increased and noticeable differences between
rootstocks were visually apparent. Drastic changes in tree
architecture should be expected from vigorous scion/rootstock
combinations, such as Julyprince/Gd (as seen in YT 30).
However, more branches in the crown resulted in a slower con-
vergence of digital replications constructed via the TreeQSM
modeling process. We also observed that a higher surface
density of the point cloud results in fewer modeling errors.
When surface density was lower, a wider range of extreme
outliers were recorded, such as with the scans taken during
2021.

3.2 Analysis and comparison of in situ and
in silico data

3.2.1 Biometric data

The in silico data (average 40 model replications) of YTs 18,
19, 30, and 31 from 2021 and 2022 were calculated. The dif-

ferences in the MAD scores between the in situ and in silico
data were noted for tree height and crV. The differences were
minimal, with the largest MAD difference percentage score
(est. of error) being for YT 18 and YT 31 regarding crV in
2021, being 25.15% and 31.56% for the years 2021, respec-
tively; see Table 2. The reasons for the observed variation are
differences between the time points when size measurements
were taken and the first pruning of the YTs. For 2021, the
average crV MAD percentages were the highest out of both
categories for both years (18.97%).
Another source of this difference could be attributed to

the 2021 scans not correctly recording all the thin, still-
growing branches during field measurements. Typically,
objects smaller than 0.5 cm in diameter are difficult for TLS
scanners to detect accurately (Hackenberg et al., 2015). The
YTs during this period were still juvenile; perhaps, smaller
branches could have been included in field measurements,
affecting crownwidth. This under-sampling of branches could
explain the decrease in MAD scores from 2021 to 2022 for all
YTs across both crV and tree height.

3.2.2 Branching data

The models generated from our YT scans during 2021 were
used to gather in silico BD and compared with in situ BD
from the field. TheMAD scores were generated for all BOs for
four of the YTs in our study (2 MP29, 2 Gd; Table 3). These
MAD scores essentially compare the number of recorded
branches found in the field with the number generated from
TreeQSM across the 40 model replications. The MAD scores
for four of the YT models shown in Table 3 had a MAD
of >1 branch at the first BO, and a MAD of >4 branches
at the second BO. At subsequently higher BOs (third and
fourth), the MAD scores comparing the in situ BD and the
in silico BD were also found to be >4 branches (except for
YT 19 at the third BO). However, the MAD percentages
were much greater at higher BOs. The average MAD per-
centages were found to climb as BOs increased. The MAD
percentage difference between the second and third BOs
was approx. 15%. However, even with the MAD percent-
age error above 50% at higher BOs, this does not translate
into large differences in the expected number of branches.
Examining the MAD scores, which list the expected vari-
ability of branches from the reference (in situ) field data,
the differences at these higher BOs do not exceed an aver-
age of 2.41 branches at the third BO and 2.03 branches at the
fourth BO.
The MAD values and scores are partitioned across the four

main BOs for four selected YTs in 2021. The MAD scores
here specifically refer to the number of branches, with the
MAD percentages corresponding to the percentage difference
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KNAPP-WILSON ET AL. 7 of 15

TABLE 2 Comparisons of tree height and crown volume of reconstructed peach trees.

YT18 (MP29) YT19 (MP29)
Metric Variable Unit 2021 2022 2021 2022
Tree height Mean (in

silico)
m 0.99 1.80 1.74 1.84

Reference (in
situ)

m 1.04 1.82 1.83 1.8

MAD m 0.06 0.03 0.10 0.05

MAD score % 5.43 1.67 5.25 2.71

crV Mean m3 0.16 2.14 0.65 2.67

Reference m3 0.21 2.35 0.71 2.86

MAD m3 0.05 0.22 0.07 0.21

MAD score % 25.15 9.38 10.36 7.17

YT30 (Gd) YT31 (Gd)
Metric Variable Unit 2021 2022 2021 2022
Tree height Mean (in

silico)
M 1.77 2.52 1.71 2.47

Reference (in
situ)

M 1.91 2.25 1.80 2.70

MAD M 0.14 0.27 0.09 0.23

MAD score % 7.11 11.91 5.01 8.37

crV Mean m3 0.79 6.47 0.76 5.33

Reference m3 0.86 6.67 1.11 5.91

MAD m3 0.08 0.26 0.35 0.58

MAD score % 8.81 3.84 31.56 9.78

Abbreviations: crV, crown volume; Gd, guardian; MAD, mean absolute deviation.

TABLE 3 Branching data comparison for four trees measured in 2021.

Metric Tree Unit First BO Second BO Third BO Fourth BO
MAD branch YT19 Branch no. 0.20 3.60 5.20 2.55

YT20 Branch no. 0.55 2.15 1.75 1.10

YT29 Branch no. 0.40 3.05 1.15 3.30

YT30 Branch no. 0.20 1.90 1.55 1.15

AVG Branch 0.34 2.68 2.41 2.03

MAD score YT19 % 5.00 18.95 52.00 51.00

YT20 % 13.75 10.24 25.00 27.50

YT29 % 8.00 9.84 7.19 55.00

YT30 % 5.00 7.92 22.14 23.00

AVG % 7.94 11.74 26.58 39.13

Abbreviations: BO, branching order; MAD, mean absolute deviation.

between the reference data (in situ) and the computational data
(in silico).
Reviewing 2021 data in Table 2 reveals a difference

between the YT19 (grown on an MP29 rootstock) and YT30
(grown on Gd rootstock) rates of growth. The differences
regarding the number of branches between in situ and in
silico sources lie within a standard deviation of the reference

data, that being the in situ values. These are seen from both
the MP29 and Gd rootstocks (Figure 2). In 2022, however, the
differences between the two rootstocks grew substantially. Gd
rootstocks are known to be a high-vigor rootstock, with an
approximate difference of 110 branches between in silico Gd
and MP29 in the cumulative BD from 2022, shown later in
Figure .
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8 of 15 KNAPP-WILSON ET AL.

F IGURE 2 Comparison of in silico (bottom, solid color) and in situ (top, patterned) branching data from young trees (YTs) 19, 20, 29, and 30.
Trees 19 and 20 are Julyprince varieties grafted on the MP29 rootstock, whereas trees 29 and 30 are also Julyprince but grafted onto guardian (Gd)
rootstock.

3.3 Analysis of the in situ branching data
and residual metrics

After successfully generating models for all the YTs and
optimizing the QSM parameters, the results from the QSM
reconstruction of the specified YTs include biometric data,
BD, and QSM branch uncertainty metrics, which as refer-
enced previously, are cylinder distance (mm) and cylinder

surface coverage (%). These two metrics were compiled from
the 40 digital replications in TreeQSM for the YT 2021 scans.
The values from these metrics are displayed in Figure 3. The
categories that TreeQSM delineates the residual data into are
based on the BOs for each tree: trunk, all branch, first branch,
and second branch. These metrics have been used previously
to derive modeling and data accuracy from QSM cylinder
recreation (Knapp-Wilson et al., 2021). The difference in
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KNAPP-WILSON ET AL. 9 of 15

F IGURE 3 TreeQSM input optimization metrics from the 2022 young trees (YTs), represented as the cylinder distance (avg. distance between
the original point cloud data and the resulting quantitative structural model (QSM) cylindrical reconstruction, top), and the surface coverage average
(bottom). All the averages were computed from 40 digital replications for each tree, with standard error visualized with error bars. These metrics can
also be used as measurements of QSM uncertainty during branch reconstruction.

vigor between the two rootstocks is already perceivable at this
early stage of development.
This is illustrated in Figure 3, which shows that all the

trees from 2022 (YT 17–24, 29–32, 41–44) had cylinder
surface coverages for both trunk and first-order branches

above 40%, and the more complicated second-order branches
had a surface coverage above 35%. The YTs with Gd root-
stocks (21–24, 29–32) showed better results when compared
with MP29 rootstocks (17–20, 41–44) in terms of cylin-
der coverage fitting. The Gd rootstock trees showed that the
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10 of 15 KNAPP-WILSON ET AL.

highest point cylinder surface area averages for all metrics,
with the higher cylinder coverage metrics, might be related
to the more vigorous branching nature that Gd rootstocks
possess. Increased vigor, which leads to more robust archi-
tecture, results in a greater surface density in the point cloud
data of Gd trees when scanned. The larger point density
then results in an informed small-cover-set generation dur-
ing initial reconstruction in TreeQSM. Although the more
informed small-cover generation might result in greater cylin-
der coverage percentages, the denser cloud point density can
also lead to a higher distance between the point cloud and
the 3D cylinder segmentations created during the geometric
reconstruction process (Figure 3).
In addition to cylinder coverage, the cylinder distance mea-

surements of the reconstructed cylindrical models were below
12 mm for all metrics, with trees only having their “All
Branch” and “2nd Branch” categories going above 10 mm.
Overall, the mean surface coverage average % for all BOs,
from all trees in 2022, was found to be slightly over 40%
(40.56%). All trees also had their trunk surface coverage
>60% (63.76%), with the mean “first branch” metric almost
hitting 50% among all 2022 tree scans (48.83%). Both of these
QSM branch uncertainty metric values are consistent with
previous findings for TLS reconstructive models, especially
in peach trees (Hackenberg et al., 2015; Knapp-Wilson et al.,
2021).4

3.4 Subsequent BD and emerging trends

In silico BD were collected in addition to QSM branch uncer-
tainty metrics, with the results from all the YTs scanned
during 2022 illustrated later. The BD presented in Figure 4
were obtained from QSMs that were generated from the
beforementioned optimized input parameters. Analysis of
the BD reveals noticeable architectural differences emerging
between the Gd and MP29 rootstocks. Differences in branch
number and branching morphology can be seen clearly in
Figure 4. In the 2021 point cloud data, the YTs were under
2 years old, still in the early stages of tree growth. In 2022,
the differences in total branches, vigor, and tree architecture—
quantified by the difference in second- and third-order branch
numbers between the two trees—have increased. Producing in
silico 3D models of peach trees that reveal differences of even
one to five branches at higher BOs might still be useful for
supplying larger, aggregate BD that can be used in genomic
studies regarding tree architecture. Another note of interest is
the different rates at which the YTs develop, depending on
which rootstock they were grafted upon (Figure 1).
The trees with the Gd rootstock not only experienced con-

siderable increases across all BOs but also possessed the most
branches within the third BO: approx. 25 more branches than
the next largest BO. In contrast, trees grafted on the MP29

TABLE 4 Analysis of variance (ANOVA) of branch number per
branching order (BO) as a function of rootstock for all 2022 young trees
(YTs).

Independent
variable

Response
variable F statistic p value

Rootstock (Gd,
MP29)

First BO 0.287 0.599

Second BO 21.87 2.53e − 4

Third BO 75.44 1.88e − 7

Fourth BO 46.33 4.21e − 6

Fifth BO 24.03 1.59e − 4

Sixth BO 13.88 0.00184

Total branch no. 51.28 2.26e − 6

Abbreviation: Gd, guardian.

rootstocks had relatively minimal growth between 2021 and
2022. The growth that occurred was mainly around the third
BO, with an approx. average of 15 more branches than in
2021. TheMP29 trees also experiencedmore growth in higher
BOs, producing fifth and sixth BOs, when none were recorded
in 2021. The major difference between the two rootstocks is
that the largest number of branches in the MP29 trees still
appeared within the second BO, which contrasts with the Gd
trees where the largest number of branches were found in the
third BO. Whether this phenomenon is a result of slow third
BO growth, an effect of the training system, or a trend that
will remain consistent remains to be tested and will need to
include a larger pool of samples.
A statistical ANOVA was done in order to test the signifi-

cance of the effect the respective rootstocks, Gd or MP29, had
on the number of branches shown in Figure 4. This was bro-
ken down as analysis done for the total number of branches per
tree, as well as number of branches per BO. Like in Figure 4,
all YT 2022 BD were used for this analysis, in addition to the
mean values collected for all Gd andMP29 trees, respectively.
The results of the variance analysis are seen in Table 4. The
first BO in this analysis can be seen as a control, wherein all
trees have the same 4–5 scaffolds as per the open-vase train-
ing system. The same bound where used during modeling as
well, with model replicates being accepted if having a first
BO number between 3 and 6. As such, the first BO reported
a p-value of 0.599, above the traditionally accepted alpha of
0.05. The subsequent BOs however all reported p-values far
less than 0.05, with the smallest value being recorded for the
third and fourth BOs, respectively.

4 DISCUSSION AND CONCLUSIONS

In our study, we evaluated the accuracy of in silico data to
quantify branching geometry in peach trees using TLS. The
QSM-derived tree parameters were compared with previously
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KNAPP-WILSON ET AL. 11 of 15

F IGURE 4 Three different histograms graphs representing the averages for all trees in this study, being grouped by guardian (Gd) (top)
rootstock, MP29 (bottom) rootstock, and the averages for both Gd and MP29 compared against each other. The differences in the number of branches
between the branching orders (BOs) and the structure of BOs can be visibly identified here.

collected in situ data from the field. Altogether, the find-
ings from this study encourage future investigation and study
of quantitative modeling approaches regarding peach and its
potential agronomic uses. The presented QSM branch uncer-
tainty metrics (cylinder distance and cylinder coverage) are

consistent with previous findings and followed results as out-
lined in the TreeQSM manual (Raumonen, 2017). The MAD
scores (Tables 1 and 2) varied between the biometric data and
the BDbutwere overall consistent with previous literature that
has reported similar margins of error (Jin et al., 2022). The

 25782703, 2023, 1, D
ow

nloaded from
 https://acsess.onlinelibrary.w

iley.com
/doi/10.1002/ppj2.20073 by U

niversity O
f A

rizona Library, W
iley O

nline Library on [13/06/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



12 of 15 KNAPP-WILSON ET AL.

results from our comparisons of in situ, in silico, and QSM
branch uncertainty metrics suggest that TreeQSM can pro-
duce useful quantitative models for peach trees in an orchard
setting. These QSMs can be utilized as an automated replace-
ment for field data measurements and future research into tree
architecture.
Our study also showcased the attributes of TLS, which,

combined with quantitative modeling, may be of future agro-
nomic use in horticulture. The methodology we employed in
this study represents an effective, time-efficient, and com-
paratively less-laborious approach to phenotyping orchard
trees. As our approach removes the human error and labor
barrier of manually collecting BD, it is now possible to
standardize the collection and recording of such data. In
addition, the removal of extraneous human labor means this
approach rapidly decreases the time constraints and efficiency
of collecting BD. Using TLS as a quick HTPP tool is also
economically scalable and easy to learn. A more involved
and thorough procedural manual could be released to help
facilitate familiarity with the tools and systems. From our
experience, BD are most effectively collected during winter
months, when the trees have no leaves. During the off-leaf
period, one person can efficiently operate TLS scanners to
collect dense, point cloud data of the crown architecture. In the
future, an online platform could be established, which allows
for automated processing and registration of point cloud data.
The construction of such an interface would enable grow-
ers and researchers to quickly receive quantitative data from
their raw point clouds. Examples of such online platforms
already exist for root phenotyping (Bonelli et al., 2022), and
notable researchers in the tree modeling community have like-
wise begun calling for the establishment of similar online
resources (Hackenberg et al., 2022). Such an online platform
could reduce the time and physical resources needed to collect
BD, improve the reproducibility of measurements, and create
an open-access interface which would open the possibilities
of 3D modeling to far more researchers.
Furthermore, research into the areas of tree architecture

will become increasingly important, as the need for automa-
tion grows, as well as orchard management styles that can
accommodate such changes (e.g., high-density orchards, fruit-
ing wall configurations; Medeiros et al., 2017; Nielsen et al.,
2012; Wu et al., 2019; Mu et al., 2018). Therefore, the selec-
tion of new scion cultivars possessing traits more amenable
to these high-density orchard systems will be in greater
demand (Hill & Hollender, 2019). The tools demonstrated in
our study can be utilized to begin collecting the necessary
data.
Similarly, future trends for our research will focus more

on the potentially notable difference in branching structure
between Gd and MP29 rootstocks. Quantified by the differ-
ence in branch numbers and new growth in BOs between the
2021 and 2022 scans, Gd and MP29 rootstocks may have a

stronger effect on tree architecture than previously known.
At the juvenile stage of development, both the Gd and MP29
rootstocks displayed similar trends in biometric data and BD.
When examining tree architecture on the branch level, the
majority of branches for the Gd and MP29 trees were found
in the second BO. The subsequent BOs with the highest num-
ber of branches followed a descending order, with the third
and fourth BOs having comparatively fewer branches. This
decreasing trend noticeably shifted, however, as evident in the
2022 in situ BD in Figure 4. This shift highlights a potential
architectural difference that was largely, if not solely, influ-
enced by the two rootstocks examined in this study. Although
it is known that the MP29 rootstock can strongly affect tree
vigor, there is no literature available on how these dwarf-
ing rootstocks affect tree architecture (Beckman et al., 2012).
In species such as pear and apple, field trials and genomic
studies have been conducted to investigate this very question
(Friend et al., 2020; Petersen &Krost, 2013; Seleznyova et al.,
2008). Many aspects concerning the nature of rootstock/scion
interaction and their effects and each other’s subsequent archi-
tectures (i.e., root and crown architecture) have yet to be
investigated. Even less research has been conducted regarding
peach trees (Migicovsky et al., 2019; Williams et al., 2021).
Therefore, this study might act as a starting point for fur-
ther field trials, computational modeling, and genomic studies
into this area of research for peach. Our data show that the
effect of dwarfing rootstocks significantly (p < 0.00184 at
largest value) reduces the number of branches at all higher
level BOs (>first BO) when compared to higher vigor root-
stocks. This was shown in Figure 4 and Table 4, where the
statistical analysis of the data was also shown to support these
findings.
To summarize, our QSMs were found to have a MAD score

of approx. 5.93% in regards to tree height, and aMAD score of
approx. 13.26% when comparing the in situ and in silico crV
data from both 2021 and 2022. For just biometric data from
2022, MAD scores of approximately 6.17% and 7.54% were
recorded for tree height and crV, respectively. The observed
difference between 2021 and 2022 scores could be the result
of the first pruning during 2021 and/or the technical limits of
the TLS scanner resolution that causes under-sampling on the
fine branches of the YTs. In 2022, the YT point cloud data
showed the cylinder distance was <12 mm at nearly BOs,
as well as a mean surface coverage >40% across all BOs.
Although younger tree scans are more difficult to accurately
characterize at higher BOs, first and second BOs were shown
to have MAD <8% and <12%, respectively, in 2021 scans. In
addition, our 2022 BD showed that dwarfing rootstocks not
only result in reduced number of branches per tree but also
result in a reduced number of branches at all higher level BOs.
Nonetheless, this BD are vital; event at higher BOs, in the
process of utilizing TLS technology and QSMs to phenotype
peach tree architecture in an automated and reliable manner.
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As such, the presented work burgeons the possibility to dis-
cover and functionally characterize previously unknown tree
architecture phenotypes.
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