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Abstract: Diversification models describe the random growth of

evolutionary trees, modeling the historical relationships of species

through speciation and extinction events. One class of such mod-

els allows for independently changing traits, or types, of the species

within the tree, upon which speciation and extinction rates depend.

Although identifiability of parameters is necessary to justify parame-

ter estimation with a model, it has not been formally established for

these models, despite their adoption for inference. This work estab-

lishes generic identifiability up to label swapping for the parameters

of one of the simpler forms of such a model, a multitype pure birth

model of speciation, from an asymptotic distribution derived from

a single tree observation as its depth goes to infinity. Crucially for
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applications to available data, no observation of types is needed at

any internal points in the tree, nor even at the leaves.

1 Introduction

Species diversification models are used in Biology to make inferences about

historical speciation and extinction rates over the time since a group of species,

or taxa, evolved from a common ancestor. By providing information on rates

of speciation and extinction, inference with these models seeks to give insight

into the evolutionary dynamics leading to the present diversity of life. These

models have a long history, starting with the constant-rate pure-birth model of

Yule (1925), and a fairly large literature has developed.

Diversification models describe a process beginning with a single lineage at

some time in the past, which as time progresses may speciate or go extinct.

When a speciation occurs the edge bifurcates into two edges, with the number

of lineages increasing by 1. When an extinction occurs, the lineage ends, and

the number of lineages decreases by 1. After either event, the process continues

forward, independently on all lineages, producing a growing tree structure until

the present time is reached. This tree, which has both topological and metric

structure, constitutes an observation. (In applications, it may be necessary to

consider the reconstructed tree, which is obtained by removing all tree edges

with no descendents at the present (Nee et al., 1994; Harvey et al., 1994).)

Two basic sorts of these models have found common use in empirical stud-

ies. In the first, the speciation and extinction rates are functions of time, and

apply to all taxon lineages present at any moment. This can be thought of as

modeling exogenous factors, such as environmental conditions, that affect all

taxa in the tree identically. Since all lineages behave in the same probabilistic

way at any moment, it is not hard to show that the exact branching pattern
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of the tree-structure is irrelevant, with all the information in a tree observation

being captured by the number of lineages as a function of time. Thus the work

on time-dependent birth-death models by Kendall (1948) is foundational.

In the second sort of diversification model, which we call the multitype birth-

death tree model, lineages are assigned one of a finite number of types at each

moment, with the model’s speciation and extinction rates dependent only on

the type. Over time, however, species may change types at fixed switching

rates. This models endogenous factors, such as a particular biological trait a

taxon may possess, including, for instance, a morphological feature, behavior,

or whether a particular gene is present and active in an organism. A given type

might correlate with faster or slower speciation than another, and/or affect the

extinction rate. For these models the branching structure of a tree observation

does matter, as taxa present at a given time may each have different types, and

thus different tendencies to speciate or go extinct.

The Binary State-specific Speciation and Extinction (BiSSE) model of Mad-

dison et al. (2007) formalized the multitype framework for biological appli-

cations. Multitype (MuSSE) and quantitative-type (QuaSSE) variants of the

model were subsequently proposed by FitzJohn (2012). Although these works

assumed the type is observed for the extant taxa at the leaves of a tree, we

consider the multitype birth-death tree model with no type information observ-

able for any lineage at any time, as type observations are unnecessary for our

results. Indeed, the usefulness of these models to infer correlation between ob-

served types and diversification rates from data with type information for extant

taxa has been called into question (Rabosky and Goldberg, 2015).

Many other diversification models have been proposed, combining or ex-

tending these basic frameworks, with Stadler (2013) offering one review. New

variants continue to be developed, (e.g., Cantalapiedra et al., 2014; Maliet et al.,
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2019; Stadler, 2019; Rasmussen and Stadler, 2019; Barido-Sottani et al., 2020).

When these models are used for inference, the data is taken as a single tree

assumed to show the true evolutionary relationships of the taxa. (In practice,

this tree itself must be inferred, usually from sequence data using phylogenetic

and/or phylogenomic methods which we do not discuss here.) Multiple trees

which one can reasonably hypothesize were generated with the same parameter

values are simply not available. If the tree is sufficiently large, researchers hope

it provides enough information to infer the speciation and extinction parameters

reasonably well. More precisely, it has been implicitly assumed that the infer-

ence is statistically consistent, in the sense that as the number of taxa increases

toward infinity (i.e., the tree grows larger), the probability of inferring model

parameters arbitrarily close to the generating ones approaches 1. Establishing

such a result, however, requires showing identifiability of the model parame-

ters: A distribution derived from an observation of a single tree has a limit, as

the number of taxa approaches infinity, that uniquely determines all parameter

values.

Of course a full proof of the statistical consistency of a particular estima-

tor requires additional arguments. For instance, the standard results on the

consistency of maximum likelihood assume the availability of multiple indepen-

dent samples, and therefore cannot be applied. Leroux’s result (Leroux, 1992)

on the consistency of maximum likelihood inference from a single sequence of

observation from a Hidden Markov Model is analogous to what is need for ap-

plications of these diversification models. Nonetheless, establishing parameter

identifiability is the first step toward this goal.

Recent work has shown that the first type of diversification model, with

time-dependent rates, does not in fact have identifiable parameters (Louca and

Pennell, 2020), calling into question the conclusions of many empirical studies.
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This non-identifiability result, which holds even if one allows for identification

to be based on arbitrarily many independent tree observations with the same

underlying rate parameters, was compellingly illustrated by construction of ex-

amples of wildly different rate functions producing identical tree distributions.

An instance of this lack of identifiability had in fact appeared earlier, in an

argument in which speciation rates were modified and extinction rates set to

zero without changing the model distribution (Nee et al., 1994).

Little work, however, has addressed identifiability questions for multitype

birth-death tree models. The strongest results on parameter identifiability for

a pure birth model focus on a tree’s topological features but assume the types

of both leaf nodes and their parents are observed (Popovic and Rivas, 2016). In

biological applications, however, the type of a leaf of the tree may be observable,

but the type of the parent nodes is virtually never known. Thus no identifiability

result relevant to typical data analyses has been produced. A recent paper

of O’Meara and Beaulieu (2021), which broadly discusses current issues with

diversification models in evolutionary biology in light of the Louca and Pennell

(2020) result, argues that multitype birth-death tree models are likely to be

identifiable — provided their rates are time-independent — but is careful to

indicate this has not yet been established. And as the community has seen for

time-dependent models, formal mathematical analysis is essential to settle the

question.

One might hope that the analysis of multitype birth-death tree models would

be simpler than for a time-dependent rate model, as its parameter space is finite

dimensional. On the other hand, while trees produced by the time-dependent

rate models can be summarized by the counts of lineages through time with

no loss, this is not true for the multitype models, where the full tree structure

carries additional information. Effectively extracting information from a tree
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with both topological and metric structure requires a new approach.

In this paper, we investigate parameter identifiability of the multiype pure-

birth tree (MPBT) model with any finite number of types. We thus restrict

extinction rates for all classes to be zero. This model has also been called the

multitype Yule model (Popovic and Rivas, 2016). We assume only that the met-

ric tree is observable, with no information on the types either at points internal

to the tree or at the leaves. More formally, we establish generic identifiability

of parameters up to label swapping. “Generic” means the result holds if we ex-

clude parameters lying in a measure-zero subset of the parameter space. We

give an explicit characterization of such a measure-zero exceptional set, as the

zero set of a certain polynomial. “Up to label swapping” means that there are

certain symmetries of the parameter space, arising from interchanging types so

that their corresponding speciation and switching rates are also interchanged,

that have no effect on the model’s behavior. Generic identifiability up to la-

bel swapping is often the strongest form of identifiability that holds in models

with hidden variables (Allman et al., 2009), and since we treat the types as

unobservable, its appearance here is not surprising.

Our explicit generic conditions are stated as four assumptions throughout

the paper, as need for each arises for specific arguments. Briefly, they are

that speciation rates for all types are positive and distinct (Assumptions 1 and

4), all switching rates between types are positive (Assumption 2), and that a

certain matrix with entries in the speciation and switching rates is nonsingular

(Assumption 3). The first few of these are intuitive and plausible assumptions.

Although the meaning of the last condition is less clear outside the setting of

the formal mathematical proof, we illustrate that in a few special cases it also

imposes a natural condition.

Our arguments draw on several earlier studies. The first is the work of
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Athreya (1968) on Multitype Continuous Time Markov Branching Processes.

In fact, these models and the MPBT model have the same underlying structure.

But much of the classical branching process literature allows only for observing

type counts over time, and not for observing the tree structure indicating the

branching of specific lineages. The MPBT model, in contrast, treats the tree

structure as observable, with type information hidden. Thus while providing

an important tool in this work, the results of Athreya are not immediately

applicable to the MPBT model.

The second result crucial to our work is a general theorem on identifiability

up to label swapping of parameters of a mixture model of product distributions

(Allman et al., 2009). In applying this to the MPBT model, we consider the

joint distribution of edge lengths around a node on a uniformly-at-random cho-

sen edge of a random tree, as the random tree grows arbitrarily large. Due to

conditional independence of edge lengths, conditioned on the type of the shared

node, this joint distribution takes the form of a mixture distribution (over types)

of product distributions. Although additional work is necessary to show param-

eter identifiability, this theorem is a crucial ingredient in our argument.

Although we do not address the multitype birth-death tree model with non-

zero extinction rates here, we believe that our approach provides a pathway

toward a more general result.

Some applications of multitype birth-death models also attempt to choose

an appropriate number of types based on the data, with several Bayesian soft-

ware packages supporting this, (e.g. Rabosky, 2014; Barido-Sottani et al., 2020).

While this is an important element of some data analyses, it is not addressed

in this work, where we fix the number of types. Choosing the number of types

amounts to choosing among a family of nested models, each with generically

identifiable parameters, where one may expect any finite data set to be naively
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better fit with each increase in the number of types. While in the theoretical

world of exact distributions one could choose the smallest number of types giv-

ing an exact fit, the finiteness of data necessitates the use of more sophisticated

approaches to model adequacy.

This paper is structured as follows. In Section 2 we provide a more formal

definition of the MPBT model, and begin its analysis by deriving formulas

related to the generation of a single edge in the tree in Section 3. Section 4 uses

the results of Athreya (1968) to obtain asymptotic results on the distribution of

types across lineages in the tree at times increasingly distant from the root of

the tree. Then, in Section 5, we bring these ingredients together, and apply the

theorem of Allman et al. (2009) to obtain our main results. Concluding remarks

appear in Section 6.

2 Model definition

In this section we formalize the Multitype Pure-Birth Tree model, in a form

useful for our analysis.

Let m be a positive integer denoting the number of types, and denote the

set of types by [m] = {1, 2, . . . ,m}.

The parameter space of the MBDT model with m types is all 3-tuples

(π,λ, S) described as follows:

A root distribution π = (π1, π2, . . . , πm), with πi ≥ 0,
∑
i πi = 1 gives proba-

bilities πi of type i being chosen for the tree root. A vector λ = (λ1, λ2, . . . , λm)

with non-negative entries gives speciation rates λi for type i. An m×m matrix

S = (sij) with non-negative off-diagonal entries and rows summing to 0 gives

scalar type switching rates sij from type i to type j, i 6= j. Note that S is

determined by the m2 −m independent scalar switching rates.
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2.1 The edge process model

We first describe how an edge of a tree is produced under the model. As edges

of the tree are produced independently conditioned on their starting types, a

description of a single edge is sufficient.

We view an edge as growing with time, randomly changing the type of its

leading point as it does so. At any time the edge may speciate, at a rate λi

determined by its current type i. When speciation occurs, the edge ceases to

grow, and in the full model two new edge processes are started for its descendent

edges. However, in formalizing the edge process we describe the speciation of an

edge as the process entering an absorbing state, for mathematical convenience.

For each type i ∈ [m], define two states i−, i+. At any time, state i− indicates

that the current leading point of the edge has type i and that the edge has not

yet speciated. The absorbing state i+ represents that a speciation has occurred

and at the time of speciation the leading point had type i. The parameter sij ,

i 6= j, is thus a rate of change from state i− to state j−, while λi is the rate of

change from state i− to i+. No other instantaneous state changes are allowed.

Definition 1. The m-type pure-birth edge process Eτ = Eτ (π̃,λ, S) with π̃i ≥ 0,∑
i π̃i = 1, is the 2m-state continuous-time Markov process over τ ∈ [0,∞) with

states

1−, 2−, . . . ,m−, 1+, 2+, . . . ,m+,

initial state distribution (π̃,0) ∈ R2m, and 2m× 2m transition rate matrix

Q :=

S − diag(λ) diag(λ)

0 0

 ,
where the rows and columns of Q are ordered by states as above. Here 0 is a

vector or matrix of 0s, and diag(λ) is the diagonal matrix formed from vector
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λ.

The transition probability matrix associated to Eτ is

P (τ) = exp(Qτ),

with Pij(τ) giving the probability that an edge is in state j at time τ given that

it was in state i at time 0.

Definition 2. The speciation time T associated to Eτ (π̃,λ, S) is the [0,∞]-

valued random variable

T = inf ({τ ≥ 0 | Eτ ∈ {1+, 2+, . . . ,m+}} ∪∞) .

A realization of the edge process that reaches a “+” state is viewed as an

edge of length T , the time at which a speciation occurs. Each point (time τ)

along the edge is “colored” by type i if the process is in state i− (or state i+

at its endpoint) at that time. Under mild assumptions, the edge length is finite

with probability 1, as is shown below. Although for the MPBT model colors on

edges are ultimately hidden, they play an important role in our arguments.

The terminal edges of the tree are produced by terminating edge processes at

a specific time, before they may have reached an absorbing state. Formally defin-

ing such a truncated edge process and the colored edge it produces, is straight-

forward.

Due to the time-homogeneous Markov formulation of the edge process, we

may equivalently produce an edge either from a single process reaching a “+”

state, or by starting the process, truncating it before it enters a “+” state,

starting a new process in the final state of the truncated one, and then conjoining

the edges produced. Likewise, to produce an edge from the truncated process,

we may allow the process to continue to a later time, and then truncate the
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edge that was produced to an initial segment.

2.2 The multitype pure-birth tree model

We now define the MPBT model, as a generative model producing a tree. Let

T > 0 be the depth (length of all paths from root to any tip) of the tree to be

sampled.

1. The process begins with a root node. With parameters (π,λ, S), generate

from an edge process a colored descendent edge from the root to a node

of type i, the only current tip of the tree.

If the length of this edge is ≥ T , truncate it to length T , and go to Step

4.

Otherwise, at this node attach two descendent edges of length 0, with

points on them colored by i. The tree now has 2 tips.

2. If the tree currently has k tips, for each tip generate a descendent edge

via independent edge processes with parameters (ei,λ, S), where i is the

type of the tip and ei the standard basis vector in Rm. Truncate all edge

processes at the time τ when the first reaches a “+” state. The colored

edges for each tip are conjoined to the edges (possibly of length 0) leading

to the tip.

If the path length from the root to a tip of the tree is ≥ T , truncate all

terminal edges so that all paths from root to leaves have length T , and go

to Step 4.

Otherwise, at the tip that arose from reaching state j+, we attach two

descendent edges of length 0 with points on them colored by j.

3. Go to step 2.
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4. Uncolor all edges to obtain a sampled tree.

An example simulation of a colored tree from a binary-type model is shown

in Figure 1, with the color hidden in Figure 2.

Remark. Inherent in the model are several notions of time. For an individual

edge process, τ is a time variable, with τ = 0 at the parental node in the edge.

For the tree generation process overall, we use t as the time variable, with t = 0

at the root. If the edge process starting at the root enters a “+” state at time

τ = T0, then that root edge has length ` = T0 and at its child node t = T0. Then

if the edge process for an edge descending from the first speciation produces an

edge of length T1, then at its child node t = T0 + T1. In general, a point on any

edge e at time τ has

t = τ +
∑

ẽ above e

Tẽ.

We can thus view a random tree as growing with time t, as its terminal edges

lengthen while changing type, and speciate.

Remark. While we have defined the MPBT model as starting with a single edge

descending from the root node, it is equally common to define diversification

model starting at a bifurcating root. The modifications to the definition that

are necessary to do so are straightforward, and working in that context would

have no substantive impact on the arguments which follow.

Remark. Even if T → ∞, a single observed tree does not allow for the iden-

tification of π, so we focus on identifying the pair (λ, S). This factor of the

parameter space can be identified with the non-negative orthant of Rm2

.
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Figure 1: A finite-length colored tree generated by the binary-type pure birth
tree model, before colors are hidden. Here black represents type 1 and red type
2, with λ1 = 0.1, λ2 = 0.5, s12 = 0.1, s21 = 0.2. Only the uncolored tree is
observed.

3 The edge process

For parameters (λ, S), let D = diag(λ) and U = S−D, so that the edge process

Eτ has Markov rate matrix

Q =

U D

0 0

 .
Lemma 1. The transition probability matrix for Eτ is

P (τ) =

exp(Uτ) f(Uτ)Dτ

0 I

 ,
where f(A) =

∑∞
n=0

1
(n+1)!A

n satisfies f(A)A = exp(A)− I.

Proof. For n ≥ 1

Qn =

Un Un−1D

0 0

 ,
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so

P (τ) = I +
∞∑
n=1

1

n!

Un Un−1D

0 0

 τn =

∑∞n=0
1
n!U

nτn
∑∞
n=1

1
n!U

n−1Dτn

0 I

 .

For technical reasons we impose the following assumption, which is also

biologically plausible.

Assumption 1. The speciation rates λi are positive for all i.

Lemma 2. Let (λ, S) be parameters for a MPBT edge process satisfying As-

sumption 1. Then U is non-singular and all eigenvalues of U have negative real

part.

Proof. The assumption implies that U is strictly diagonally dominant, that is,

the absolute value of each diagonal entry is strictly greater than the sum of the

absolute values of all other entries in its row. Thus U is non-singular (Horn and

Johnson, 2012). Since the diagonal entries are also negative, by the Gershgorin

Circle Theorem every eigenvalue of U will have negative real part.

Proposition 3. Let Fi denote the cdf of the speciation time T conditioned on

E0 = i−, and 1 be the vector of 1s. Then Fi is given by the i-th entry of

1− exp(Uτ)1.

Moreover, under Assumption 1, T is finite with probability 1.

Proof. Since T is the time Eτ first enters any of the absorbing states j+, Fi is

the sum across the i− row of the upper right m×m block of P (τ). From Lemma
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1, using that D1 = −U1, the column vector of the Fis is therefore given by

f(Uτ)Dτ1 = −f(Uτ)Uτ1 = 1− exp(Uτ)1.

Under Assumption 1, by Lemma 2 the eigenvalues of U have negative real

parts, so limτ→∞ exp(Uτ) = 0. Thus limτ→∞ Fi(τ) = 1 for each i, implying

that T is finite with probability 1.

Proposition 4. Let Pi−,j+ = limτ→∞ Pi−,j+(τ) denote the asymptotic proba-

bility of transition to j+ conditioned on E0 = i−. Then under Assumption 1,

Pi−,j+ is the (i, j)-entry of −U−1D.

Proof. The matrix P−,+(τ) with entries Pi−,j+(τ) is the upper right m × m

block of P (τ), so by Lemma 1,

P−,+(τ) = f(Uτ)Dτ = (exp(Uτ)− I)U−1D,

using that U is non-singular by Lemma 2. But limτ→∞ exp(Uτ) = 0 because

U ’s eigenvalues have negative real parts. Thus

P−,+ = lim
τ→∞

(exp(Uτ)− I)U−1D = (0− I)U−1D = −U−1D.

4 Type Counting Process

Another ingredient of our approach to establishing the identifiability of MPBT

model parameters is an analysis of an associated classical branching process, in

which only the type counts are observed. More specifically, it records the number

of edges of the tree which have each type as a function of time, but retains no
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information on the topology of the tree. We call this the type counting process,

and in this section use established results to determine the asymptotic behavior

of the relative frequencies of each type.

Definition 5. For i ∈ [m], let N i
t denote the number of edges in a colored random

tree arising from the colored MPBT model that exist at time t and are of type i

at that moment. The type counting process Nt is the (Z≥0)m-valued continuous-

time stochastic process over [0,∞) defined by Nt := (N1
t , N

2
t , . . . , N

m
t ). The

relative frequency process is Rt = Nt/(
∑m
i=1N

i
t ), provided the denominator is

non-zero.

The asymptotics of the relative frequencies follow from results of Athreya

(1968) on multitype continuous-time Markov branching processes, specifically

Theorems 1 and 2 of that work, which are paraphrased below as Theorem 7.

Such a model can be described as a process where individuals of type i live an

exponentially-distributed length of time (whose rate only depends on type) and

on death may be replaced by individuals of any type according to a distribution

over (Z≥0)m.

To place the type counting process of the MPBT model into this framework,

both speciation and change in type are viewed as deaths. Speciation results in

replacement by 2 individuals of the same type, and change in type results in

replacement by an individual of a different type. Since a speciation “death”

of a type i individual occurs with rate λi, and a type change “death” of a

type i individual followed by replacement with type j occurs with rate sij , the

combined rate of death for type i is λi +
∑
j 6=i sij . When a death occurs, it is

a speciation with probability

λi
λi +

∑
j 6=i sij

,
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and a change to type j with probability

sij
λi +

∑
j 6=i sij

Basic properties of the type counting process are summarized in the follow-

ing.

Lemma 3. The type counting process Nt of the MPBT model is a strong

Markov, continuous-time, m-type branching process, where each type i death

has an offspring distribution defined by the multivariable probability generating

function

hi(x1, x2, . . . , xm) =
λi

λi +
∑
j 6=i sij

x2i +
∑
j 6=i

sij
λi +

∑
j 6=i sij

xj .

We introduce yet another matrix defined in terms of the MPBT model pa-

rameters, as its leading eigenvalue and corresponding eigenvector plays a large

role in the counting process’s behavior.

Definition 6. Given parameters (λ, S) of the MPBT model, let

A = S +D.

A leading eigenvalue of A is an eigenvalue, ω, with the largest real part, and a

normalized leading left eigenvector of A, is a left eigenvector for ω with
∑
i ui =

1.

The matrix A is the infinitesimal generator of the conditional expectation of

the Nis. More precisely,

exp(At) = Mt = (mij(t))
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with

mij(t) = E
[
N j
t |N0 = ei

]
,

where ei is the i-th standard basis vector.

We will shortly show ω and u are uniquely determined, under an additional

assumption.

Assumption 2. The off-diagonal entries of S are positive, i.e., sij > 0 for i 6= j .

Lemma 4. For parameters (λ, S) of the MPBT model satisfying Assumption

2,

1. Mt = exp(At) has positive entries for t > 0.

2. A has a unique leading eigenvalue ω, which is both simple and real. More-

over the corresponding normalized left eigenvector u can be chosen to have

all positive components.

Proof. Fix t > 0. Then, using Assumption 2, A has positive off-diagonal entries,

so there is a real k such that B = At + kI has positive entries. Since B, kI

commute, it follows that eAt = eB−kI = e−keB . Since B has positive entries,

eB does as well. Thus, eAt has positive entries.

The Perron-Frobenius Theorem applied to B shows it has a unique dominant

(i.e., of maximal absolute value) eigenvalue ω which is also positive and simple,

with a unique normalized left eigenvector u whose components are all positive.

Since A has the same eigenvectors, and eigenvalues shifted by −k and scaled by

1/t, the second claim follows.

Key properties of the counting process follow from the following more general

theorem on classical branching processes.

Theorem 7. (Athreya, 1968) Let Xt be a strong Markov, continuous-time, m-

type branching process over [0,∞) which takes values in (Z≥0)k. Let Mt =
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exp(At) be the conditional expectation matrix. Let hi(x1, ..., xk) be the offspring

probability generating function for type i.

If Mt0 has positive entries for some t0 > 0, and hi(s) is of degree > 1 for

all i, then as t→∞,

Xte
−ωt a.s.−−→Wu,

where W is a non-negative random variable, ω is the leading eigenvalue of A,

and u is the positive normalized left eigenvector of A associated with ω.

Moreover, if ξi = (ξij) are random variables with generating functions hi,

then

E
[
ξij log(ξij)

]
<∞ (1)

for all i, j if and only if for all i

P(W = 0 | X0 = ei) = P(Xt = 0 for some t | X0 = ei).

Corollary 8. Consider the counting process associated to the MPBT model for

parameters (π,λ, S). Then under Assumptions 1 and 2,
∑
N i
t is non-zero and

as t→∞,

Rt
a.s.−−→ u,

where u is the positive normalized leading left eigenvector of A.

Proof. Using the assumptions and Lemmas 3 and 4, the hypotheses of Theorem

7 are met, including inequality (1). Thus

Nte
−ωt a.s.−−→Wu,

where ω is the leading eigenvalue of A, u is its positive normalized left eigen-

vector, and W is a non-negative random variable.
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Since the random variable
∑
N i
t is non-decreasing, the probability of extinc-

tion is zero:

P(Nt = 0 for some t | N0 = ei) = 0.

Thus we find P(W = 0 | X0 = ei) = 0, implying P(W = 0) = 0 regardless of π.

Then by the continuous mapping theorem,

Rit =
N i
t∑
iN

i
t

=
N i
t e
−ωt∑

iN
i
t e
−ωt

a.s.−−→ Wui
W

= ui

for each i.

Remark. In studying diversification models with a single type but time-dependent

rates of speciation and extinction, it is common to consider the random func-

tion giving the the number of lineages through time in a tree. This loses no

information on parameters from the full tree, as each change in its value (spe-

ciation or extinction) is equally likely to have occurred on any lineage, and the

growth of this function is thus highly informative on parameter values. For the

multitype pure-birth model, however, the function
∑
iN

i
t should not capture all

information in the tree, as speciation may not be equally likely on all lineages.

Corollary 8 indicates its growth is determined only by ω, the largest eigenvalue

of A.

5 Identifiability of the MPBT model

Using the distributions of edge lengths and relative frequencies of each type

of edge in a tree at a given time found in Sections 3 and 4, we are ready to

establish identifiability of the MPBT parameters. To do so, we consider an

asymptotic joint distribution of the lengths of 3 edges around a common node

in the tree (see Figure 2). We seek to show that from this distribution the model
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t T

Figure 2: The uncolored tree of Figure 1, of depth T , generated by the binary-
type pure birth model. The blue line at t determines several highlighted triples
of edges whose lengths are possible draws from the probability distribution Gt
of Definition 10 of Section 5.

parameters (λ, S) can be determined, up to label swapping.

Due to the conditional independence of the lengths of three edges sharing a

common node, given that node’s type, this distribution is a mixture of product

distribution, with the mixing distribution and the components of the products

closely related to distributions previously computed. This structure allows for

the application of the following theorem, to obtain unmixed distributions of edge

lengths conditioned on the type of the parental node. Thus even though we have

no observation of type at any point in the tree, we can extract a distribution

that is conditioned on type.

The following is a variant of Theorem 8 of Allman et al. (2009), with the

hypotheses modified as discussed on p. 3116 of that paper.
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Theorem 9. (Allman et al., 2009) For 1 ≤ i ≤ m, let

µi =
3∏
k=1

µki

be a product of 3 independent, absolutely continuous distributions µki on R. With

πi > 0, let (π1, π2, . . . , πm) be a distribution on [m]. For each k, suppose the

set of distributions {µki }mi=1 has the property that every subset of rk elements is

linearly independent, and that

r1 + r2 + r3 ≥ 2m+ 2.

Then, up to label swapping in i, the µki and πi are determined by the mixture

distribution

P =

m∑
i=1

πiµi =

m∑
i=1

πi

3∏
k=1

µki .

More precisely, P determines distributions νki and (p1, p2, . . . , pm) such that for

some permutation σ of the set [m],

µki = νkσ(i) and πi = pσ(i).

To apply this theorem, we make a further technical assumption, denoting

the vector of 1s by 1.

Assumption 3. Parameters (λ, S) are such that the m×m matrix

M = M(λ, S) =

(
1 U1 U21 . . . Um−11

)

is non-singular.

While the role of this assumption in our arguments will be clear in our proofs

of Lemma 6 and Theorem 12 below, to understand its implications concretely,
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consider first the case m = 2. Then

U =

−s12 − λ1 s12

s21 −s21 − λ2

 ,

so

M =

1 −λ1

1 −λ2

 .

The non-singularity of M thus is equivalent to λ1 6= λ2. That these speciation

rates would need to be different for parameters to be identifiable is intuitively

clear, since otherwise type changes governed by S would have no impact on the

structure of the uncolored tree.

For general m, Assumption 3 is equivalent to the non-vanishing of detM , a

degree
∑m−1
i=1 i =

(
m
2

)
polynomial in the m2 independent entries of λ, S. Its non-

vanishing thus excludes an algebraic variety of codimension 1, a set of Lebesque

measure 0 in the unrestricted parameter space. An explicit calculation in the

m = 3 case shows the polynomial to be an irreducible polynomial in the λi and

sij , i 6= j.

The non-vanishing of detM always requires that the vector λ = −U1 not

be a multiple of 1 (so that the first two columns of M are linearly independent),

and hence that not all λi are the same. However, the additional restrictions

it imposes on the parameters are more opaque to intuition without considering

special cases.

For instance, when m = 3, if all the sij are equal, so the type switching

behavior is identical for all types, the polynomial simplifies considerably, and

factors as

(λ1 − λ2)(λ2 − λ3)(λ3 − λ1).

Non vanishing of the polynomial, then requires that the three λi be distinct, as
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one would expect is needed for identifiability, for otherwise several types would

behave identically. However, for other choices of the sij , two of the λi can be

equal without the polynomial vanishing.

Next, we define the joint edge length distribution for several edges of a tree.

Definition 10. For some t < T , consider the following three random variables:

Sample an (uncolored) tree of depth T under the MPBT model. From among

the edges of the tree existing at time t choose one uniformly at random. Then

with tb ∈ (t, T ), the time at which that edge speciates, let `0t = tb − t denote

the time interval until it speciates, and let `1t and `2t , respectively denote the

lengths of the immediate descendent edges (where the edges are designated 1,2

uniformly at random). Then the joint distribution of these three variables `0t ,

`1t , and `2t is

GT,t(τ0, τ1, τ2) := P
(
`0t ≤ τ0, `1t ≤ τ1, `2t ≤ τ2 | `1t , `2t < T − t− `0t

)
.

We call GT,t the joint distribution of edge lengths around a node.

The three edge lengths used in the definition of GT,t are depicted in Figure 2,

for t = T/2. The conditioning in the definition of GT,t ensures it only considers

edges in which the edge process has led to speciation, that is, the edge processes

for the parental and child edges are not truncated.

Lemma 5. Under Assumptions 1 and 2, as T → ∞, the joint distribution

GT,T/2 at time T/2 of edge lengths around a node on a tree of depth T converges

to

G∞ =
∑
i

∑
j

uiPi−,j+(τ0)Fj(τ1)Fj(τ2), (2)

where Fj, Pi−,j+ , and ui are defined in Propositions 3, 4, and Lemma 4, respec-

tively.
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Proof. Note that the event E which is conditioned upon in the definition of

GT,T/2 excludes edge lengths resulting from truncated edge processes, so that

all edge lengths under consideration are in fact speciation times T . Thus

lim
T→∞

GT,T/2(τ0, τ1, τ2)

= lim
T→∞

P(T 0
T/2 ≤ τ0, T

1
T/2 ≤ τ1, T

2
T/2 ≤ τ2 | T

1
T/2, T

2
T/2 < T/2− T 0

T/2)

= lim
T→∞

(
P(T 0

T/2 ≤ τ0, T
1
T/2 ≤ τ1, T

2
T/2 ≤ τ2) + εT (τ0, τ1, τ2)

)
,

where the function εT is the difference of the conditional and non-conditional

probabilities above. But since the probability of E → 1 as T → ∞, it follows

that εT → 0. We henceforth focus on P(T 0
T/2 ≤ τ0, T

1
T/2 ≤ τ1, T

2
T/2 ≤ τ2) rather

than GT,T/2.

Letting Ai denote the event that the uniformly-at-random chosen edge is of

type i at time T
2 and Bj denote the event that that edge speciates in color j, and

recalling that edge processes around a node are independent when conditioned

on the type of that node, we have

P(T 0
T/2 ≤ τ0,T

1
T/2 ≤ τ1, T

2
T/2 ≤ τ2)

=
∑
i

∑
j

P(T 0
T/2 ≤ τ0, T

1
T/2 ≤ τ1, T

2
T/2 ≤ τ2 | Ai, Bj)P(Ai, Bj)

=
∑
i

∑
j

P(T 0
T/2 ≤ τ0, Bj | Ai)P(T 1

T/2 ≤ τ1 | Bj)P(T 2
T/2 ≤ τ2 | Bj)P(Ai)

=
∑
i

∑
j

Pi−,j+(τ0)Fj(τ1)Fj(τ2)P(Ai).

In this last expression, the only dependence on T is in P(Ai). But by Corollary

8, P(Ai) = E[RiT/2]→ ui as T →∞, yielding equation (2).

Remark. While the specific time T/2 is used in this Lemma, our arguments
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would be essentially unchanged if this were replaced by any function f(T ) with

f(T ) and T − f(T )→∞ as T →∞.

This immediately gives that G∞ is a finite mixture of product distributions.

Corollary 11. The asymptotic joint distribution of edge lengths around a node,

G∞ can be expressed as a m-component mixture of products of 3 univariate

distributions:

G∞ =
m∑
j=1

πj

3∏
k=1

µkj ,

where πj =
∑
i Pi−,j+ui, µ

1
j =

∑
i Pi−,j+

(τ)ui∑
i Pi−,j+

ui
, µ2

j = µ3
j = Fj(τ), and Pi−,j+ is

as defined in Proposition 4.

In order to apply Theorem 9 to G∞, we need to verify that some of the

univariate distributions in its decomposition above are linearly independent.

To do so, the following lemma is needed.

We now introduce an additional assumption, which holds for generic param-

eters.

Assumption 4. The speciation parameters satisfy λi 6= λj for all i 6= j.

Lemma 6. Suppose Assumption 1,2, 3, and 4 hold, and consider the sets of

univariate distributions {µkj }mj=1 defined in Corollary 11. For k = 1, every pair

of functions in this set is linearly independent, while for k = 2, 3 the full set is

linearly independent.

Proof. Since {µ2
j}j = {µ3

j}j , we need only consider the cases k = 1, 2.

Consider first the case k = 2. Consider the vector F of functions µ2
j = Fj .

Then by Proposition 3,

F = 1− exp(Uτ)1.

Suppose cTF = 0 for some vector c. Since dn

dτnF (0) = −Un1, it follows that

cTM = 0 where M is defined in Assumption 3. Since M is non-singular, c = 0,
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so the entries of F are independent.

For k = 1, it is enough to show the independence of each pair of functions

νj(τ) = (
∑
i

Pi−,j+ui)µ
1
j =

∑
i

Pi−,j+(τ)ui.

From Lemma 1 the vector G of all νj is given by

G(τ)T = uT
∞∑
n=1

1

n!
Un−1Dτn.

Suppose G(τ)T c = 0 for some vector c. Since dn

dτnG(0)T = uTUn−1D, it follows

that

uTUn−1Dc = 0 for n ≥ 1.

In particular, for n = 1 we find uTDc = 0. For n = 2, since U = A − 2D and

uTA = ωuT , we have

uTUDc = uT (ωI − 2D)Dc = 0.

To show every pair of the νjs is independent, consider c all of whose entries

except possibly two are zero. Without loss of generality suppose the exceptions

are c1, c2. Then the n = 1, 2 equations become

 u1λ1 u2λ2

u1(ω − 2λ1)λ1 u2(ω − 2λ2)λ2


c1
c2

 = 0

Using u1, u2, λ1, λ2 > 0, λ1 6= λ2, computing the determinant of this matrix

shows it is non-singular, and hence c1 = c2 = 0.

We now arrive at our main result.
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Theorem 12. Under the explicit generic Assumptions 1, 2 3, and 4, the pa-

rameters (λ, S) of the uncolored Multitype Pure-birth Tree model are identifiable

up to label swapping from the asymptotic distribution G∞ of edge lengths around

a node.

Proof. Suppose two parameter choices, (π,λ, S) and (π∗,λ∗, S∗), induce the

same asymptotic distribution G∞. Denoting the various distributions of con-

ditional branching times, asymptotic transition probabilities, eigenvectors of

matrices, etc. associated to parameters (π,λ, S) as earlier in this work, we use

the same notation with a “∗” appended to denote the corresponding entities

associated to parameters (π∗,λ∗, S∗).

By Theorem 9, Corollary 11, and Lemma 6 the distributions πi, µ
k
i , for

1 ≤ i ≤ m, 1 ≤ k ≤ 3 are determined from G∞ = G∗∞, up to label swapping in

i. Thus F ∗i (τ) = Fσ(i)(τ) for some permutation σ.

Using Proposition 3 the equations F ∗i (τ) = Fσ(i)(τ) for all j can be repre-

sented in matrix form as

1− eU
∗τ1 = Σ(1− eUτ1), (3)

where Σ is the permutation matrix representing σ. Equating coefficients of the

MacLauren series yields for n = 1, 2, 3, . . . that

(U∗)n1 = ΣUn1. (4)

Using equation (4) and the definition of M,M∗ in Assumption 3 shows

M∗ = ΣM. (5)
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Equation (4) further implies

U∗M∗ =

(
U∗1 (U∗)21 (U∗)31 . . . (U∗)m1

)
=

(
ΣU1 ΣU21 ΣU31 . . . ΣUm1

)
= ΣUM.

Using equation (5) then yields

U∗ΣM = ΣUM,

and since M is non-singular,

U∗Σ = ΣU.

Since U = S−D and each row of S adds to 0, multiplying the last equation

by 1 on the right gives λ∗ = Σλ. Since this implies D∗Σ = ΣD, it follows that

S∗ = ΣSΣT as well. Thus the parameters differ only up to label swapping.

Remark. Theorem 12 establishes that an asymptotic distribution, as tree depth

→ ∞ associated to the MPBT model yields parameter identifiability. This

suggests that with a sample of many trees of arbitrarily large size, there is

potential for statistically consistent inference, where “consistency” would mean

as both the number of trees and the tree depth go to infinity. However, this is

not the framework in which data analysis with this model is performed, since

while a tree may be large, only one tree observation is available (Maddison et al.,

2007).

Fortunately, a minor modification to the proofs above again yields identi-

fiability of parameters from an asymptotic distribution derived from a single

observation, as the depth of the tree goes to infinity. Indeed, modify Definition

10 so that Gt is the distribution of edge lengths around a node from single
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growing tree. The proof of Lemma 5, then, is modified only in its last line, as

P(Ai) = RiT/2, a random variable rather than its expected value. Nonetheless,

by Corollary 8, we again find P(Ai)→ ui, so the conclusion is unchanged.

6 Discussion

Theorem 12, and Remark 5, show that parameters (λ, S) of the MPBT model

can be identified from an asymptotic distribution as the tree depth grows,

whether or not the number of sampled trees grows. Although this is not suffi-

cient to conclude that estimation of parameters by maximum likelihood (ML)

from a single tree, as suggested by Maddison et al. (2007), is statistically con-

sistent, it does at least indicate that is a possibility. A similar question on

ML inference of parameters for a hidden Markov model from a single sequence

of observations was addressed by Leroux (1992), with the consistency of ML

estimation established as the sequence length goes to infinity.

For applications, it would be highly desirable to extend our identifiability

result to a model incorporating constant extinction rates for each type. In most

biological settings, the obtainable “data,” however is not the tree with edges

stopping at extinction events, but rather the pruned tree in which all edges

with no extant descendants are removed.

For a single type, parameter identifiability of a model with pruning was

essentially considered by Nee et al. (1994), where it was shown that the lineages-

through-time function’s rate of change allowed the speciation and extinction

rates to be determined, by separately considering the time regimes much earlier

than the tree tips, and near the tree tips. An analysis combining the insight

from Nee et al. (1994) with the mixture distribution framework used in this

work might be successful in showing parameters can be recovered from a single

large tree observation for the multitype birth-death model.
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We emphasize that our work here in no way suggests that a multitype model

incorporating arbitrary time-dependence in its rates will have identifiable pa-

rameters. Indeed, the issues that Louca and Pennell (2020) raised are likely to

only be compounded in such a setting, unless the time-dependence is restricted

to some specific form. Results such as those of Legried and Terhorst (2022a,b)

in the single-type case, which show identifiabiilty for piecewise constant and

polynomial time-dependent rates, can be expected to generalize to more types.

Another interesting identifiability question for multitype tree models con-

cerns what information on parameters is contained in the tree topology alone,

or from weaker metric information than precise branch lengths. While our anal-

ysis depends heavily on metric features of the tree, that of Popovic and Rivas

(2016) required no metric information. However, it did use type observations at

the tips of the tree, and at their parental nodes. While types at tree tips may

be observed in some biological studies, types of the parental nodes are generally

not observable, as data is generally collected only from the taxa extant at the

present. Even if ancient DNA or other trait data from earlier times is available,

it is unlikely to be from the time of the last speciation.
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