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Abstract: Diversification models describe the random growth of
evolutionary trees, modeling the historical relationships of species
through speciation and extinction events. One class of such mod-
els allows for independently changing traits, or types, of the species
within the tree, upon which speciation and extinction rates depend.
Although identifiability of parameters is necessary to justify parame-
ter estimation with a model, it has not been formally established for
these models, despite their adoption for inference. This work estab-
lishes generic identifiability up to label swapping for the parameters
of one of the simpler forms of such a model, a multitype pure birth
model of speciation, from an asymptotic distribution derived from

a single tree observation as its depth goes to infinity. Crucially for
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applications to available data, no observation of types is needed at

any internal points in the tree, nor even at the leaves.

1 Introduction

Species diversification models are used in Biology to make inferences about
historical speciation and extinction rates over the time since a group of species,
or taza, evolved from a common ancestor. By providing information on rates
of speciation and extinction, inference with these models seeks to give insight
into the evolutionary dynamics leading to the present diversity of life. These
models have a long history, starting with the constant-rate pure-birth model of
Yule (1925), and a fairly large literature has developed.

Diversification models describe a process beginning with a single lineage at
some time in the past, which as time progresses may speciate or go extinct.
When a speciation occurs the edge bifurcates into two edges, with the number
of lineages increasing by 1. When an extinction occurs, the lineage ends, and
the number of lineages decreases by 1. After either event, the process continues
forward, independently on all lineages, producing a growing tree structure until
the present time is reached. This tree, which has both topological and metric
structure, constitutes an observation. (In applications, it may be necessary to
consider the reconstructed tree, which is obtained by removing all tree edges
with no descendents at the present (Nee et al., 1994; Harvey et al., 1994).)

Two basic sorts of these models have found common use in empirical stud-
ies. In the first, the speciation and extinction rates are functions of time, and
apply to all taxon lineages present at any moment. This can be thought of as
modeling exogenous factors, such as environmental conditions, that affect all
taxa in the tree identically. Since all lineages behave in the same probabilistic

way at any moment, it is not hard to show that the exact branching pattern



of the tree-structure is irrelevant, with all the information in a tree observation
being captured by the number of lineages as a function of time. Thus the work

on time-dependent birth-death models by Kendall (1948) is foundational.

In the second sort of diversification model, which we call the multitype birth-
death tree model, lineages are assigned one of a finite number of types at each
moment, with the model’s speciation and extinction rates dependent only on
the type. Over time, however, species may change types at fixed switching
rates. This models endogenous factors, such as a particular biological trait a
taxon may possess, including, for instance, a morphological feature, behavior,
or whether a particular gene is present and active in an organism. A given type
might correlate with faster or slower speciation than another, and/or affect the
extinction rate. For these models the branching structure of a tree observation
does matter, as taxa present at a given time may each have different types, and

thus different tendencies to speciate or go extinct.

The Binary State-specific Speciation and Extinction (BiSSE) model of Mad-
dison et al. (2007) formalized the multitype framework for biological appli-
cations. Multitype (MuSSE) and quantitative-type (QuaSSE) variants of the
model were subsequently proposed by FitzJohn (2012). Although these works
assumed the type is observed for the extant taxa at the leaves of a tree, we
consider the multitype birth-death tree model with no type information observ-
able for any lineage at any time, as type observations are unnecessary for our
results. Indeed, the usefulness of these models to infer correlation between ob-
served types and diversification rates from data with type information for extant

taxa has been called into question (Rabosky and Goldberg, 2015).

Many other diversification models have been proposed, combining or ex-
tending these basic frameworks, with Stadler (2013) offering one review. New

variants continue to be developed, (e.g., Cantalapiedra et al., 2014; Maliet et al.,
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2019; Stadler, 2019; Rasmussen and Stadler, 2019; Barido-Sottani et al., 2020).

When these models are used for inference, the data is taken as a single tree
assumed to show the true evolutionary relationships of the taxa. (In practice,
this tree itself must be inferred, usually from sequence data using phylogenetic
and/or phylogenomic methods which we do not discuss here.) Multiple trees
which one can reasonably hypothesize were generated with the same parameter
values are simply not available. If the tree is sufficiently large, researchers hope
it provides enough information to infer the speciation and extinction parameters
reasonably well. More precisely, it has been implicitly assumed that the infer-
ence is statistically consistent, in the sense that as the number of taxa increases
toward infinity (i.e., the tree grows larger), the probability of inferring model
parameters arbitrarily close to the generating ones approaches 1. Establishing
such a result, however, requires showing identifiability of the model parame-
ters: A distribution derived from an observation of a single tree has a limit, as
the number of taxa approaches infinity, that uniquely determines all parameter

values.

Of course a full proof of the statistical consistency of a particular estima-
tor requires additional arguments. For instance, the standard results on the
consistency of maximum likelihood assume the availability of multiple indepen-
dent samples, and therefore cannot be applied. Leroux’s result (Leroux, 1992)
on the consistency of maximum likelihood inference from a single sequence of
observation from a Hidden Markov Model is analogous to what is need for ap-
plications of these diversification models. Nonetheless, establishing parameter
identifiability is the first step toward this goal.

Recent work has shown that the first type of diversification model, with

time-dependent rates, does not in fact have identifiable parameters (Louca and

Pennell, 2020), calling into question the conclusions of many empirical studies.



This non-identifiability result, which holds even if one allows for identification
to be based on arbitrarily many independent tree observations with the same
underlying rate parameters, was compellingly illustrated by construction of ex-
amples of wildly different rate functions producing identical tree distributions.
An instance of this lack of identifiability had in fact appeared earlier, in an
argument in which speciation rates were modified and extinction rates set to

zero without changing the model distribution (Nee et al., 1994).

Little work, however, has addressed identifiability questions for multitype
birth-death tree models. The strongest results on parameter identifiability for
a pure birth model focus on a tree’s topological features but assume the types
of both leaf nodes and their parents are observed (Popovic and Rivas, 2016). In
biological applications, however, the type of a leaf of the tree may be observable,
but the type of the parent nodes is virtually never known. Thus no identifiability
result relevant to typical data analyses has been produced. A recent paper
of O’Meara and Beaulieu (2021), which broadly discusses current issues with
diversification models in evolutionary biology in light of the Louca and Pennell
(2020) result, argues that multitype birth-death tree models are likely to be
identifiable — provided their rates are time-independent — but is careful to
indicate this has not yet been established. And as the community has seen for
time-dependent models, formal mathematical analysis is essential to settle the

question.

One might hope that the analysis of multitype birth-death tree models would
be simpler than for a time-dependent rate model, as its parameter space is finite
dimensional. On the other hand, while trees produced by the time-dependent
rate models can be summarized by the counts of lineages through time with
no loss, this is not true for the multitype models, where the full tree structure

carries additional information. Effectively extracting information from a tree
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with both topological and metric structure requires a new approach.

In this paper, we investigate parameter identifiability of the multiype pure-
birth tree (MPBT) model with any finite number of types. We thus restrict
extinction rates for all classes to be zero. This model has also been called the
multitype Yule model (Popovic and Rivas, 2016). We assume only that the met-
ric tree is observable, with no information on the types either at points internal
to the tree or at the leaves. More formally, we establish generic identifiability
of parameters up to label swapping. “Generic” means the result holds if we ex-
clude parameters lying in a measure-zero subset of the parameter space. We
give an explicit characterization of such a measure-zero exceptional set, as the
zero set of a certain polynomial. “Up to label swapping” means that there are
certain symmetries of the parameter space, arising from interchanging types so
that their corresponding speciation and switching rates are also interchanged,
that have no effect on the model’s behavior. Generic identifiability up to la-
bel swapping is often the strongest form of identifiability that holds in models
with hidden variables (Allman et al., 2009), and since we treat the types as

unobservable, its appearance here is not surprising.

Our explicit generic conditions are stated as four assumptions throughout
the paper, as need for each arises for specific arguments. Briefly, they are
that speciation rates for all types are positive and distinct (Assumptions 1 and
4), all switching rates between types are positive (Assumption 2), and that a
certain matrix with entries in the speciation and switching rates is nonsingular
(Assumption 3). The first few of these are intuitive and plausible assumptions.
Although the meaning of the last condition is less clear outside the setting of
the formal mathematical proof, we illustrate that in a few special cases it also

imposes a natural condition.

Our arguments draw on several earlier studies. The first is the work of



Athreya (1968) on Multitype Continuous Time Markov Branching Processes.
In fact, these models and the MPBT model have the same underlying structure.
But much of the classical branching process literature allows only for observing
type counts over time, and not for observing the tree structure indicating the
branching of specific lineages. The MPBT model, in contrast, treats the tree
structure as observable, with type information hidden. Thus while providing
an important tool in this work, the results of Athreya are not immediately

applicable to the MPBT model.

The second result crucial to our work is a general theorem on identifiability
up to label swapping of parameters of a mixture model of product distributions
(Allman et al., 2009). In applying this to the MPBT model, we consider the
joint distribution of edge lengths around a node on a uniformly-at-random cho-
sen edge of a random tree, as the random tree grows arbitrarily large. Due to
conditional independence of edge lengths, conditioned on the type of the shared
node, this joint distribution takes the form of a mixture distribution (over types)
of product distributions. Although additional work is necessary to show param-

eter identifiability, this theorem is a crucial ingredient in our argument.

Although we do not address the multitype birth-death tree model with non-
zero extinction rates here, we believe that our approach provides a pathway

toward a more general result.

Some applications of multitype birth-death models also attempt to choose
an appropriate number of types based on the data, with several Bayesian soft-
ware packages supporting this, (e.g. Rabosky, 2014; Barido-Sottani et al., 2020).
While this is an important element of some data analyses, it is not addressed
in this work, where we fix the number of types. Choosing the number of types
amounts to choosing among a family of nested models, each with generically

identifiable parameters, where one may expect any finite data set to be naively
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better fit with each increase in the number of types. While in the theoretical
world of exact distributions one could choose the smallest number of types giv-
ing an exact fit, the finiteness of data necessitates the use of more sophisticated

approaches to model adequacy.

This paper is structured as follows. In Section 2 we provide a more formal
definition of the MPBT model, and begin its analysis by deriving formulas
related to the generation of a single edge in the tree in Section 3. Section 4 uses
the results of Athreya (1968) to obtain asymptotic results on the distribution of
types across lineages in the tree at times increasingly distant from the root of
the tree. Then, in Section 5, we bring these ingredients together, and apply the
theorem of Allman et al. (2009) to obtain our main results. Concluding remarks

appear in Section 6.

2 Model definition

In this section we formalize the Multitype Pure-Birth Tree model, in a form

useful for our analysis.

Let m be a positive integer denoting the number of types, and denote the
set of types by [m] ={1,2,...,m}.

The parameter space of the MBDT model with m types is all 3-tuples
(m, A, S) described as follows:

A root distribution ™ = (71,72, ..., Tpy), with m; > 0, Y. m; = 1 gives proba-
bilities m; of type 7 being chosen for the tree root. A vector A = (A1, g, ..., \p)
with non-negative entries gives speciation rates A; for type i. An m x m matrix
S = (si;) with non-negative off-diagonal entries and rows summing to 0 gives
scalar type switching rates s;; from type i to type j, i # j. Note that S is

determined by the m? — m independent scalar switching rates.
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2.1 The edge process model

We first describe how an edge of a tree is produced under the model. As edges
of the tree are produced independently conditioned on their starting types, a
description of a single edge is sufficient.

We view an edge as growing with time, randomly changing the type of its
leading point as it does so. At any time the edge may speciate, at a rate \;
determined by its current type i. When speciation occurs, the edge ceases to
grow, and in the full model two new edge processes are started for its descendent
edges. However, in formalizing the edge process we describe the speciation of an

edge as the process entering an absorbing state, for mathematical convenience.

For each type i € [m], define two states i_,iy. At any time, state i_ indicates
that the current leading point of the edge has type ¢ and that the edge has not
yet speciated. The absorbing state i represents that a speciation has occurred
and at the time of speciation the leading point had type ¢. The parameter s;;,
1 # j, is thus a rate of change from state i_ to state j_, while \; is the rate of

change from state i_ to i;.. No other instantaneous state changes are allowed.

Definition 1. The m-type pure-birth edge process E, = E. (7, X, S) with 7; > 0,
>, T = 1, is the 2m-state continuous-time Markov process over 7 € [0, 00) with
states

1_,2_,...,m_,1+,2+,...,m+,

initial state distribution (7r,0) € R?™, and 2m x 2m transition rate matrix

_ S — diag(X) diag(A)

0 0

where the rows and columns of @) are ordered by states as above. Here 0 is a

vector or matrix of 0s, and diag(A) is the diagonal matrix formed from vector
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The transition probability matrix associated to E; is

P(r) = exp(Qr),

with P;;(7) giving the probability that an edge is in state j at time 7 given that

it was in state ¢ at time 0.

Definition 2. The speciation time T associated to E,(m,A,S) is the [0, 0]

valued random variable

T=1nf({TZO‘ET €{1+,2+,...,m+}}UOO).

A realization of the edge process that reaches a “+” state is viewed as an
edge of length T, the time at which a speciation occurs. Each point (time 7)
along the edge is “colored” by type i if the process is in state i_ (or state i
at its endpoint) at that time. Under mild assumptions, the edge length is finite
with probability 1, as is shown below. Although for the MPBT model colors on
edges are ultimately hidden, they play an important role in our arguments.

The terminal edges of the tree are produced by terminating edge processes at
a specific time, before they may have reached an absorbing state. Formally defin-
ing such a truncated edge process and the colored edge it produces, is straight-
forward.

Due to the time-homogeneous Markov formulation of the edge process, we
may equivalently produce an edge either from a single process reaching a “+”
state, or by starting the process, truncating it before it enters a “+” state,
starting a new process in the final state of the truncated one, and then conjoining
the edges produced. Likewise, to produce an edge from the truncated process,

we may allow the process to continue to a later time, and then truncate the
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edge that was produced to an initial segment.

2.2 The multitype pure-birth tree model

We now define the MPBT model, as a generative model producing a tree. Let
T > 0 be the depth (length of all paths from root to any tip) of the tree to be

sampled.

1. The process begins with a root node. With parameters (7, A, S), generate
from an edge process a colored descendent edge from the root to a node

of type i, the only current tip of the tree.

If the length of this edge is > T, truncate it to length T', and go to Step
4.

Otherwise, at this node attach two descendent edges of length 0, with

points on them colored by i. The tree now has 2 tips.

2. If the tree currently has k tips, for each tip generate a descendent edge
via independent edge processes with parameters (e;, A, S), where i is the
type of the tip and e; the standard basis vector in R™. Truncate all edge
processes at the time 7 when the first reaches a “+” state. The colored
edges for each tip are conjoined to the edges (possibly of length 0) leading

to the tip.

If the path length from the root to a tip of the tree is > T, truncate all
terminal edges so that all paths from root to leaves have length T, and go

to Step 4.

Otherwise, at the tip that arose from reaching state ji, we attach two

descendent edges of length 0 with points on them colored by j.

3. Go to step 2.



12 2 MODEL DEFINITION

4. Uncolor all edges to obtain a sampled tree.

An example simulation of a colored tree from a binary-type model is shown

in Figure 1, with the color hidden in Figure 2.

Remark. Inherent in the model are several notions of time. For an individual
edge process, T is a time variable, with 7 = 0 at the parental node in the edge.
For the tree generation process overall, we use t as the time variable, with ¢ =0
at the root. If the edge process starting at the root enters a “+” state at time
7 = Tp, then that root edge has length ¢ = 7 and at its child node ¢t = 7y. Then
if the edge process for an edge descending from the first speciation produces an
edge of length 77, then at its child node t = 7o+ 71. In general, a point on any

edge e at time 7 has

t=7+ Z Te.

€ above e

We can thus view a random tree as growing with time ¢, as its terminal edges

lengthen while changing type, and speciate.

Remark. While we have defined the MPBT model as starting with a single edge
descending from the root node, it is equally common to define diversification
model starting at a bifurcating root. The modifications to the definition that
are necessary to do so are straightforward, and working in that context would

have no substantive impact on the arguments which follow.

Remark. Even if T — oo, a single observed tree does not allow for the iden-
tification of 7, so we focus on identifying the pair (X, S). This factor of the

parameter space can be identified with the non-negative orthant of R™.
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Figure 1: A finite-length colored tree generated by the binary-type pure birth
tree model, before colors are hidden. Here black represents type 1 and red type
2, with Ay = 0.1, Ay = 0.5, s12 = 0.1, s9;7 = 0.2. Only the uncolored tree is
observed.

3 The edge process

For parameters (X, 5), let D = diag(A) and U = S— D, so that the edge process

FE. has Markov rate matrix

O
|

Lemma 1. The transition probability matrix for E. is

Plr) = exp(Ur) f(Ur)Dr 7
0 I

where f(A) =300 L A" satisfies f(A)A = exp(A) — 1.

n=0 (n+1)!

Proof. Forn > 1
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SO

> 1 (U U™'D o Lyngm 2 Lyn-ipgn
P(T):[+E _ . 2:7On! 27171!
n'
n=1"| 0 0 0 I

For technical reasons we impose the following assumption, which is also

biologically plausible.

Assumption 1. The speciation rates \; are positive for all 7.

Lemma 2. Let (A, S) be parameters for a MPBT edge process satisfying As-
sumption 1. Then U is non-singular and all eigenvalues of U have negative real

part.

Proof. The assumption implies that U is strictly diagonally dominant, that is,
the absolute value of each diagonal entry is strictly greater than the sum of the
absolute values of all other entries in its row. Thus U is non-singular (Horn and
Johnson, 2012). Since the diagonal entries are also negative, by the Gershgorin

Circle Theorem every eigenvalue of U will have negative real part. O

Proposition 3. Let F; denote the cdf of the speciation time T conditioned on

Ey=1i_, and 1 be the vector of 1s. Then F; is given by the i-th entry of

1 —exp(UT)1.

Moreover, under Assumption 1, T is finite with probability 1.

Proof. Since T is the time E; first enters any of the absorbing states ji, F; is

the sum across the i_ row of the upper right m xm block of P(7). From Lemma
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1, using that D1 = —U1, the column vector of the F;s is therefore given by
fUT)D7t1l = —f(Un)Utl =1 — exp(UT)1.

Under Assumption 1, by Lemma 2 the eigenvalues of U have negative real
parts, so lim, o, exp(Ur) = 0. Thus lim, , F;(7) = 1 for each 4, implying

that 7 is finite with probability 1. O

Proposition 4. Let P;_; = lim,_, P;_;, (7) denote the asymptotic proba-
bility of transition to ji conditioned on Ey = i_. Then under Assumption 1,

P is the (i,7)-entry of —U~'D.

—J+
Proof. The matrix P_ (1) with entries P;_; (7) is the upper right m x m
block of P(7), so by Lemma 1,

P_ (1) = f(UT)D7 = (exp(Ut) — 1)U ' D,

using that U is non-singular by Lemma 2. But lim,_,., exp(UT) = 0 because

U’s eigenvalues have negative real parts. Thus

P_ . = lim (exp(Ur) - U 'D=(0-NHU'D=-U"'D.
T—>00

4 Type Counting Process

Another ingredient of our approach to establishing the identifiability of MPBT
model parameters is an analysis of an associated classical branching process, in
which only the type counts are observed. More specifically, it records the number

of edges of the tree which have each type as a function of time, but retains no
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information on the topology of the tree. We call this the type counting process,
and in this section use established results to determine the asymptotic behavior

of the relative frequencies of each type.

Definition 5. For i € [m], let N} denote the number of edges in a colored random
tree arising from the colored MPBT model that exist at time ¢ and are of type i
at that moment. The type counting process Ny is the (Z=°)"-valued continuous-
time stochastic process over [0,00) defined by Ny := (N}, N2,...,N/™). The
relative frequency process is Ry = N¢/(> i, N}), provided the denominator is

non-zero.

The asymptotics of the relative frequencies follow from results of Athreya
(1968) on multitype continuous-time Markov branching processes, specifically
Theorems 1 and 2 of that work, which are paraphrased below as Theorem 7.
Such a model can be described as a process where individuals of type i live an
exponentially-distributed length of time (whose rate only depends on type) and
on death may be replaced by individuals of any type according to a distribution

over (Z=%)™,

To place the type counting process of the MPBT model into this framework,
both speciation and change in type are viewed as deaths. Speciation results in
replacement by 2 individuals of the same type, and change in type results in
replacement by an individual of a different type. Since a speciation “death”
of a type ¢ individual occurs with rate \;, and a type change “death” of a
type ¢ individual followed by replacement with type j occurs with rate s;;, the
combined rate of death for type i is A; + > i Sig- When a death occurs, it is

a speciation with probability

)‘i+2j7&isij,
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and a change to type j with probability

Sij
Ai Dk Sig
Basic properties of the type counting process are summarized in the follow-

ing.

Lemma 3. The type counting process N; of the MPBT model is a strong
Markov, continuous-time, m-type branching process, where each type i death
has an offspring distribution defined by the multivariable probability generating
function

Sij o
Ai + Zj;éi sij

Ai

2
Ai + Zj;ﬁi Sij Z

J#i

hi(Z1, @2, T

We introduce yet another matrix defined in terms of the MPBT model pa-
rameters, as its leading eigenvalue and corresponding eigenvector plays a large

role in the counting process’s behavior.

Definition 6. Given parameters (A, S) of the MPBT model, let

A=S+D.

A leading eigenvalue of A is an eigenvalue, w, with the largest real part, and a
normalized leading left eigenvector of A, is a left eigenvector for w with >, u; =

1.

The matrix A is the infinitesimal generator of the conditional expectation of

the N;s. More precisely,

exp(At) = My = (m;(t))
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with

mis(t) =B [N{|No = ei]

where e; is the i-th standard basis vector.
We will shortly show w and u are uniquely determined, under an additional

assumption.

Assumption 2. The off-diagonal entries of S are positive, i.e., s;; > 0 for i # j .

Lemma 4. For parameters (A, S) of the MPBT model satisfying Assumption
2,

1. M; = exp(At) has positive entries for t > 0.

2. A has a unique leading eigenvalue w, which is both simple and real. More-
over the corresponding normalized left eigenvector u can be chosen to have

all positive components.

Proof. Fixt > 0. Then, using Assumption 2, A has positive off-diagonal entries,
so there is a real k such that B = At + kI has positive entries. Since B, kIl

commute, it follows that et = ¢B—+!

= e %e¢B. Since B has positive entries,
eP does as well. Thus, e has positive entries.

The Perron-Frobenius Theorem applied to B shows it has a unique dominant
(i.e., of maximal absolute value) eigenvalue w which is also positive and simple,
with a unique normalized left eigenvector u whose components are all positive.

Since A has the same eigenvectors, and eigenvalues shifted by —k and scaled by

1/t, the second claim follows. O

Key properties of the counting process follow from the following more general

theorem on classical branching processes.

Theorem 7. (Athreya, 1968) Let X; be a strong Markov, continuous-time, m-

type branching process over [0,00) which takes values in (ZZ°)*. Let M; =
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exp(At) be the conditional expectation matriz. Let h;(x1, ..., 1) be the offspring

probability generating function for type i.

If My, has positive entries for some to > 0, and h;(s) is of degree > 1 for
all i, then as t — oo,

Xie @t 225 W,

where W is a non-negative random variable, w is the leading eigenvalue of A,

and u is the positive normalized left eigenvector of A associated with w.

Moreover, if & = (5;) are random variables with generating functions h;,

then

E [¢;log(&])] < o0 (1)

for alli,j if and only if for all i
P(W =0]| Xo =e;) =P(X; =0 for some t | Xo = e;).

Corollary 8. Consider the counting process associated to the MPBT model for
parameters (w, X, S). Then under Assumptions 1 and 2, Y N} is non-zero and
ast — oo,

Rt a'5~> u,

where u is the positive normalized leading left eigenvector of A.

Proof. Using the assumptions and Lemmas 3 and 4, the hypotheses of Theorem

7 are met, including inequality (1). Thus
Nye @t 225 W,

where w is the leading eigenvalue of A, u is its positive normalized left eigen-

vector, and W is a non-negative random variable.
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Since the random variable > N/ is non-decreasing, the probability of extinc-
tion is zero:

P(N; = 0 for some ¢t | Ng =€;) = 0.

Thus we find P(W =0 | Xo = e;) = 0, implying P(W = 0) = 0 regardless of .
Then by the continuous mapping theorem,
N} Niet .. Wu;

Ri = - = a2y =
! Y NP o Niemwt w !

for each 1. O

Remark. In studying diversification models with a single type but time-dependent
rates of speciation and extinction, it is common to consider the random func-
tion giving the the number of lineages through time in a tree. This loses no
information on parameters from the full tree, as each change in its value (spe-
ciation or extinction) is equally likely to have occurred on any lineage, and the
growth of this function is thus highly informative on parameter values. For the
multitype pure-birth model, however, the function ), N} should not capture all
information in the tree, as speciation may not be equally likely on all lineages.
Corollary 8 indicates its growth is determined only by w, the largest eigenvalue

of A.

5 Identifiability of the MPBT model

Using the distributions of edge lengths and relative frequencies of each type
of edge in a tree at a given time found in Sections 3 and 4, we are ready to
establish identifiability of the MPBT parameters. To do so, we consider an
asymptotic joint distribution of the lengths of 3 edges around a common node

in the tree (see Figure 2). We seek to show that from this distribution the model
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t T

Figure 2: The uncolored tree of Figure 1, of depth T, generated by the binary-
type pure birth model. The blue line at ¢ determines several highlighted triples
of edges whose lengths are possible draws from the probability distribution G
of Definition 10 of Section 5.

parameters (A, S) can be determined, up to label swapping.

Due to the conditional independence of the lengths of three edges sharing a
common node, given that node’s type, this distribution is a mixture of product
distribution, with the mixing distribution and the components of the products
closely related to distributions previously computed. This structure allows for
the application of the following theorem, to obtain unmixed distributions of edge
lengths conditioned on the type of the parental node. Thus even though we have
no observation of type at any point in the tree, we can extract a distribution

that is conditioned on type.

The following is a variant of Theorem 8 of Allman et al. (2009), with the

hypotheses modified as discussed on p. 3116 of that paper.
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Theorem 9. (Allman et al., 2009) For 1 <i <m, let
3
i = H Hf
k=1

be a product of 3 independent, absolutely continuous distributions pf onR. With
m; > 0, let (m1,ma,...,mm) be a distribution on [m]. For each k, suppose the
set of distributions {pf}:il has the property that every subset of ri elements is

linearly independent, and that
ri+1ro+r3>2m+ 2.

Then, up to label swapping in i, the u¥ and m; are determined by the mizture

distribution
m m 3
P mn=Son T
i=1 i=1 k=1
More precisely, P determines distributions Vf and (p1,p2, - -, Pm) Such that for

some permutation o of the set [m],
i = :(i) and T = Po ;)

To apply this theorem, we make a further technical assumption, denoting

the vector of 1s by 1.

Assumption 3. Parameters (A, .S) are such that the m x m matrix
M =M, S) = (1 Ui U1 ... Um11)

is non-singular.

While the role of this assumption in our arguments will be clear in our proofs

of Lemma 6 and Theorem 12 below, to understand its implications concretely,
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consider first the case m = 2. Then

—S12 — A1 S12
U= ,
S921 —821 — A2
SO
1 -\
M =
1 =X

The non-singularity of M thus is equivalent to A\; # Ao. That these speciation
rates would need to be different for parameters to be identifiable is intuitively
clear, since otherwise type changes governed by S would have no impact on the

structure of the uncolored tree.

For general m, Assumption 3 is equivalent to the non-vanishing of det M, a
degree Z;’;l 1= (7;) polynomial in the m? independent entries of A, S. Its non-
vanishing thus excludes an algebraic variety of codimension 1, a set of Lebesque
measure 0 in the unrestricted parameter space. An explicit calculation in the
m = 3 case shows the polynomial to be an irreducible polynomial in the A\; and
Sij, © F# J.

The non-vanishing of det M always requires that the vector A = —U1 not
be a multiple of 1 (so that the first two columns of M are linearly independent),
and hence that not all \; are the same. However, the additional restrictions

it imposes on the parameters are more opaque to intuition without considering
special cases.

For instance, when m = 3, if all the s;; are equal, so the type switching
behavior is identical for all types, the polynomial simplifies considerably, and

factors as

(A = A2) (A2 — A3) (A3 — A\q).

Non vanishing of the polynomial, then requires that the three A; be distinct, as
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one would expect is needed for identifiability, for otherwise several types would
behave identically. However, for other choices of the s;;, two of the A; can be

equal without the polynomial vanishing.

Next, we define the joint edge length distribution for several edges of a tree.

Definition 10. For some t < T, consider the following three random variables:
Sample an (uncolored) tree of depth T under the MPBT model. From among
the edges of the tree existing at time ¢ choose one uniformly at random. Then
with t, € (¢,T), the time at which that edge speciates, let ) = t, — t denote
the time interval until it speciates, and let £} and ¢, respectively denote the
lengths of the immediate descendent edges (where the edges are designated 1,2
uniformly at random). Then the joint distribution of these three variables 9,

(;, and 7 is
GT’t(To,Tl,TQ) :P(fg < To,E% < Tl,E? <7 | g%,f? < T—t—fto),

We call G, the joint distribution of edge lengths around a node.

The three edge lengths used in the definition of G, are depicted in Figure 2,
for t = T/2. The conditioning in the definition of G+ ensures it only considers
edges in which the edge process has led to speciation, that is, the edge processes

for the parental and child edges are not truncated.

Lemma 5. Under Assumptions 1 and 2, as T — oo, the joint distribution
G2 at time T/2 of edge lengths around a node on a tree of depth T' converges

to
G = ZZUi-lji_,j+(7_0)Fj(7—l)Fj(7—2)a (2)

where Fy, P;_ ;. , and u; are defined in Propositions 3, 4, and Lemma 4, respec-

tively.
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Proof. Note that the event E which is conditioned upon in the definition of
G7,1/2 excludes edge lengths resulting from truncated edge processes, so that

all edge lengths under consideration are in fact speciation times 7. Thus

lim G 1/2(70, 71, 72)
T—o0

= lim P(,]TTO/Q < 7—077—71/2 < 7—177—’1%/2 < T2 | 7—’]1/277—’1%/2 < T/2 - 7"1"0/2)

T—o0

= lim (P(7~,I(‘]/2 S 7'0,7711/2 S 7-17732/2 S TQ) +€T(T07T17T2)> ’

T—o0

where the function e is the difference of the conditional and non-conditional
probabilities above. But since the probability of £ — 1 as T — oo, it follows
that e — 0. We henceforth focus on IP’(TTO/2 < TO,TT1/2 <, T]%/Q < 75) rather
than GT,T/Z‘

Letting A; denote the event that the uniformly-at-random chosen edge is of
type ¢ at time % and B; denote the event that that edge speciates in color j, and
recalling that edge processes around a node are independent when conditioned

on the type of that node, we have

P(T%)/z < 7077-T1/2 < 7—177-72/2 < 73)

= E E P(T70 < 70, Tre < 71, Tye < 72 | Ai, Bj)P(A;, Bj)
(]

=Y D P(TR2 <70, Bj | A)P(T3y, < 71 | Bj)B(T7)s < 7 | Bj)P(A))
(]

=2 X P s (BT (P,

In this last expression, the only dependence on T is in P(A;). But by Corollary

8, P(A;) = E[R%/Q] — u; as T — 00, yielding equation (2). O

Remark. While the specific time T'/2 is used in this Lemma, our arguments
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would be essentially unchanged if this were replaced by any function f(7T") with
f(Mand T — f(T) = 0o as T — 0.

This immediately gives that G is a finite mixture of product distributions.

Corollary 11. The asymptotic joint distribution of edge lengths around a node,
Goo can be expressed as a m-component mizture of products of 3 univariate

distributions:

3
Goo = Zﬂ'j Hﬂ?,
k=1

Jj=1

_ Zq P _ 2J4 (T)ut 2

e . ) — 3 = F. .
where m; = >, Pi j ui, pi; = SR M == Fj(t), and P;_ j, is

as defined in Proposition 4.

In order to apply Theorem 9 to G, we need to verify that some of the
univariate distributions in its decomposition above are linearly independent.
To do so, the following lemma is needed.

We now introduce an additional assumption, which holds for generic param-

eters.

Assumption 4. The speciation parameters satisfy A; # A; for all 7 # j.

Lemma 6. Suppose Assumption 1,2, 3, and 4 hold, and consider the sets of
univariate distributions {uf}gnzl defined in Corollary 11. For k =1, every pair
of functions in this set is linearly independent, while for k = 2,3 the full set is

linearly independent.

Proof. Since {u?}j = {M?}j, we need only consider the cases k = 1, 2.
Consider first the case k = 2. Consider the vector F' of functions ,u? = Fj.
Then by Proposition 3,
F=1-—exp(Ur)1.

Suppose ¢ F = 0 for some vector c. Since jT—W;LF(O) = —U"1, it follows that

¢’ M = 0 where M is defined in Assumption 3. Since M is non-singular, ¢ = 0,
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so the entries of F' are independent.

For k =1, it is enough to show the independence of each pair of functions

Vj(T) = (Z P'ﬂjJruZ‘)/jJ} = ZP‘ﬂjJr(T)ui.
From Lemma 1 the vector G of all v; is given by

=1
G(T)T =ul Z HU’%IDT".

n=1

Suppose G(7)T'c = 0 for some vector c. Since %G(O)T =ulTU""1D, it follows
that

u'U" 'De =0 forn > 1.

In particular, for n = 1 we find u”Dc = 0. For n = 2, since U = A — 2D and

uTA = wu”, we have
u’UDc = u” (wl — 2D)Dc = 0.

To show every pair of the v;s is independent, consider c all of whose entries
except possibly two are zero. Without loss of generality suppose the exceptions

are c1,c2. Then the n = 1,2 equations become

UL A1 U A2 C1

ul(w — 2)\1))\1 'LLQ((U — 2)\2))\2 Co

Using uy, u2, A1, A2 > 0,A\; # Ao, computing the determinant of this matrix

shows it is non-singular, and hence ¢; = ¢5 = 0.

We now arrive at our main result.
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Theorem 12. Under the explicit generic Assumptions 1, 2 8, and 4, the pa-
rameters (X, S) of the uncolored Multitype Pure-birth Tree model are identifiable
up to label swapping from the asymptotic distribution G, of edge lengths around

a node.

Proof. Suppose two parameter choices, (m,A,S) and (7*, A\*,5*), induce the
same asymptotic distribution G,. Denoting the various distributions of con-
ditional branching times, asymptotic transition probabilities, eigenvectors of
matrices, etc. associated to parameters (7, A, S) as earlier in this work, we use

the same notation with a “x” appended to denote the corresponding entities

associated to parameters (7*, A", S*).

By Theorem 9, Corollary 11, and Lemma 6 the distributions 7%#5, for
1<i<m,1<k <3 are determined from Go, = G%,, up to label swapping in

i. Thus F} (1) = F,(;)(7) for some permutation o.

Using Proposition 3 the equations F;*(7) = Fy(;)(7) for all j can be repre-

sented in matrix form as

1-eVT1=%(1-¢""1), (3)

where X is the permutation matrix representing o. Equating coefficients of the

MacLauren series yields for n =1,2,3,... that

(U*)"1 = SU™L. (4)

Using equation (4) and the definition of M, M* in Assumption 3 shows

M* =M. (5)
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Equation (4) further implies

UM = <U*1 (U*)?1  (U*)31 ... (U*)m1>
= <ZU1 U XUt ... EUml)
=XUM.

Using equation (5) then yields

U'SM =XUM,

and since M is non-singular,

Uy =%U.

Since U = S — D and each row of S adds to 0, multiplying the last equation
by 1 on the right gives A* = L. Since this implies D*% = XD, it follows that

S* = NSYT as well. Thus the parameters differ only up to label swapping. [

Remark. Theorem 12 establishes that an asymptotic distribution, as tree depth
— oo associated to the MPBT model yields parameter identifiability. This
suggests that with a sample of many trees of arbitrarily large size, there is
potential for statistically consistent inference, where “consistency” would mean
as both the number of trees and the tree depth go to infinity. However, this is
not the framework in which data analysis with this model is performed, since
while a tree may be large, only one tree observation is available (Maddison et al.,
2007).

Fortunately, a minor modification to the proofs above again yields identi-
fiability of parameters from an asymptotic distribution derived from a single
observation, as the depth of the tree goes to infinity. Indeed, modify Definition

10 so that G; is the distribution of edge lengths around a node from single
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growing tree. The proof of Lemma 5, then, is modified only in its last line, as
P(4;) = R /25 @ random variable rather than its expected value. Nonetheless,

by Corollary 8, we again find P(A;) — u;, so the conclusion is unchanged.

6 Discussion

Theorem 12, and Remark 5, show that parameters (X, .S) of the MPBT model
can be identified from an asymptotic distribution as the tree depth grows,
whether or not the number of sampled trees grows. Although this is not suffi-
cient to conclude that estimation of parameters by maximum likelihood (ML)
from a single tree, as suggested by Maddison et al. (2007), is statistically con-
sistent, it does at least indicate that is a possibility. A similar question on
ML inference of parameters for a hidden Markov model from a single sequence
of observations was addressed by Leroux (1992), with the consistency of ML
estimation established as the sequence length goes to infinity.

For applications, it would be highly desirable to extend our identifiability
result to a model incorporating constant extinction rates for each type. In most
biological settings, the obtainable “data,” however is not the tree with edges
stopping at extinction events, but rather the pruned tree in which all edges
with no extant descendants are removed.

For a single type, parameter identifiability of a model with pruning was
essentially considered by Nee et al. (1994), where it was shown that the lineages-
through-time function’s rate of change allowed the speciation and extinction
rates to be determined, by separately considering the time regimes much earlier
than the tree tips, and near the tree tips. An analysis combining the insight
from Nee et al. (1994) with the mixture distribution framework used in this
work might be successful in showing parameters can be recovered from a single

large tree observation for the multitype birth-death model.
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We emphasize that our work here in no way suggests that a multitype model
incorporating arbitrary time-dependence in its rates will have identifiable pa-
rameters. Indeed, the issues that Louca and Pennell (2020) raised are likely to
only be compounded in such a setting, unless the time-dependence is restricted
to some specific form. Results such as those of Legried and Terhorst (2022a,b)
in the single-type case, which show identifiabiilty for piecewise constant and
polynomial time-dependent rates, can be expected to generalize to more types.

Another interesting identifiability question for multitype tree models con-
cerns what information on parameters is contained in the tree topology alone,
or from weaker metric information than precise branch lengths. While our anal-
ysis depends heavily on metric features of the tree, that of Popovic and Rivas
(2016) required no metric information. However, it did use type observations at
the tips of the tree, and at their parental nodes. While types at tree tips may
be observed in some biological studies, types of the parental nodes are generally
not observable, as data is generally collected only from the taxa extant at the
present. Even if ancient DNA or other trait data from earlier times is available,

it is unlikely to be from the time of the last speciation.
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