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Abstract

In a world of big data and computational resources, there has been a growing interest in further validating

computational models of decision making by subjecting them to more rigorous constraints. One prominent

area of study is model-based cognitive neuroscience, where measures of neural activity are explained and

interpreted through the lens of a cognitive model. Although some early work has developed the statistical

framework for exploiting the covariation between brain and behavior through factor analysis linking functions,

current methods are still far from providing parsimonious accounts of high-dimensional (e.g., voxel-level)

data. In this article, we contribute to this endeavor by investigating the fidelity of regularization methods such

as the Lasso. Here, a combination of local and global penalty terms are applied to pressure elements of the

factor loading matrix toward zero, reducing the false alarm rate. Such penalties facilitate the emergence of

parsimonious network structure in the study of neural activation, giving way to clearer interpretations of

high-dimensional data. We show through a set of three simulation studies and one application to real data that

the Lasso can be an effective regularization method in the context of linking complex patterns of brain data

to theoretical explanations of decisions. Although our analyses are specific to linking brain to behavior, the

structure of the model is invariant to the type of high-dimensional data under investigation.

Translational Abstract

There has been a recent surge of interest in further validating the assumptions of computational models of

decision making by examining how well they simultaneously explain data from both behavior and neurosci-

entific measures. Although some early work has developed statistical methods for evaluating the plausibility

of computational models in this context, current methods are still far from providing parsimonious accounts

of such high-dimensional (e.g., voxel-level) data. In this article, we contribute to this endeavor by investigating

the fidelity of regularization methods such as the Lasso. We show through a set of three simulation studies and

one application to real data that the Lasso is an effective regularization method, where parsimonious structures

of brain-behavior connections emerge from their application. Although our analyses are specific to linking

brain to behavior, the structure of the model is invariant to the type of high-dimensional data under

investigation.
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The field of cognitive science is faced with two primary options

for studying how experimentally derived variables are related to

the dynamics of cognitive processes. In the first approach, care-

fully constructed experimental designs map levels of an indepen-

dent variable onto changes in brain activation, as measured

through functional MRI (fMRI), the electroencephalogram (EEG),

or other modalities. Systematic changes in brain measurements as

a function of important stimulus properties are meant to substan-

tiate claims about the functional role of the associated brain

regions. In the second approach, cognitive operations are ab-

stracted away and treated as a set of statistical or mathematical

processes, whose underlying dynamics are controlled by latent

parameters. Once fit to data, the parameter estimates can be

compared across the levels of the independent variable, where

changes in the parameters are taken as an indicator that the

associated cognitive processes have changed.

Both approaches have considerable strengths. In the first ap-

proach, identifying subcomponents of the organ housing mental

operations that correspond to specific properties of stimuli facili-

tates localized interpretations of how the brain processes informa-

tion. However, the localization of brain areas does not, by itself,

permit interpretations of the functional role of those brain areas.

There are potentially many reasons why a brain region would

respond to a particular stimulus in a particular context. In the

second approach, abstracting away complicated neural dynamics

allows researchers to focus on high-level interpretations of how

mechanisms and processes change in response to changes in the

experimental design (e.g., instruction, stimuli). However, one can

argue that the power of abstraction is also a curse: Because the
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model is not sufficiently specified to reflect the biology of the

system, one lacks the constraint that would permit an analysis of

the associations between the mechanisms of the model and the

supposed origins of those mechanisms in the brain.

Given the strengths and limitations of each approach, a growing

number of researchers have advocated for the advancement of

cognitive neuroscience by blending cognitive models with neuro-

physiology. The goal is to use the abstractions provided by com-

putational models of cognition to “steer” the interpretation of brain

function. Although there are now many different ways of linking

brain dynamics to model parameters (Forstmann & Wagenmakers,

2015; Turner, Forstmann, et al., 2017), in this article, we will focus

on the joint modeling framework because it most naturally lends

itself to the application of dimensionality reduction techniques,

which is the primary focus of our research. In the joint modeling

framework, fluctuations in neural data are statistically mapped to

fluctuations in the parameters of a cognitive model. There are

many types of statistical or mathematical maps that can be formed

(see Turner, Palestro, et al., 2019, for a review), and typically the

map follows a parametric form (Turner, Forstmann, et al., 2019),

although nonparametric functional forms are also possible (Bahg

et al., 2020). Predominantly, the probabilistic map that is used is a

multivariate normal distribution (Palestro et al., 2018; Turner,

Forstmann, et al., 2013; Turner et al., 2015; Turner et al., 2016;

Turner, Wang, et al., 2017). The multivariate normal distribution is

a convenient choice because it allows every brain region to be

associated with every model parameter in a pairwise fashion

through the covariance matrix. However, as one might expect,

such exhaustive associative techniques become computationally

prohibitive as the number of brain areas increases, as it would

when investigating activity at the voxel rather than region level.

A first attempt at reducing the dimensionality of probabilistic

linking functions was considered in Turner, Wang, et al. (2017),

where the covariance matrix between brain regions and model

parameters was decomposed through a factor analysis linking

function. This reduction technique dramatically altered the scal-

ability of the joint models they investigated, such that increases in

the number of brain regions had only a linear effect on the

complexity of the covariance matrix, compared with a quadratic

effect in the standard approach. Despite this advancement, the

linking functions used in Turner, Wang, et al. (2017) are most

appropriate for problems of a confirmatory nature; that is, they are

best suited for modeling brain-behavior dynamics when the pattern

of factor loadings can be roughly prescribed prior to the analysis.

However, in many cases, because we do not know the set of brain

regions that will connect to each cognitive mechanism, we end up

estimating every possible factor loading. What is needed is a

technique that will allow us to unveil a simple structure of the links

between brain and behavior at an affordable cost.

The goal of this article is to develop and apply dimensionality

reduction techniques to factor analysis linking functions, with

applications focused on the types of linking functions used in

cognitive neuroscience. The method we focus on is the Lasso (least

absolute shrinkage and selection operator), which pushes weak

associations between cognitive model parameters and brain re-

gions toward zero, and allows strong associations to remain strong.

We show, through three simulation studies and one application to

real data, that such a regularization method allows for simple

linking structures to emerge, while preserving the essential pat-

terns of factor loadings induced in the simulations.

The outline of this article is as follows. First, we review regu-

larization methods, and discuss the many ways in which the Lasso

has been applied. We then discuss the effects that the Lasso can

have on the estimated factor loadings, namely that its shrinkage

effect can detect and remove small and unimportant loadings and

accentuate the specific pattern of factor loadings. Next, we discuss

the factor analysis linking function and the cognitive model used in

Turner, Wang, et al. (2017), and then discuss how the Bayesian

Lasso can be applied to such a model. We then explore the utility

of the Lasso technique in a set of three simulation studies. Here,

we compare a model that uses no Lasso with one that does in a

variety of factor-loading structures ranging from simple to com-

plex. Finally, we apply the Lasso method to data from a real

experiment and show that simpler structures are found when using

the Lasso that may facilitate clearer interpretations of the links

between brain and behavior.

Review of Regularization Methods

In this section, we review relevant statistical regularization

methods while focusing our presentation on the Lasso method.

Lasso in Linear Regression Literature

The Lasso was first proposed by Tibshirani (1996) as a regu-

larization method for a linear regression model

y � X� � �,

where y is an (N � 1) vector of observations of a single dependent

variable, X is an (N � (p � 1)) matrix of independent variables, �

is a ((p � 1) � 1) vector of regression coefficients, and � is an

(N � 1) vector of residuals assumed to follow a normal distribu-

tion with mean zero and variance �2. When using either ordinary

least squares (OLS) or maximum likelihood estimation (MLE),

parameters such as � and �2 are estimated by minimizing the

following objective function, known as the sum of squared errors

(SSE):

S(�) � (y � X�)T(y � X�) (1)

Under some assumptions, Equation 1 can be solved analytically

to produce estimates for the regression coefficients:1

�̂ � (XTX)�1XTy.

In regularization methods—including the Lasso—the objective

function in Equation 1 is modified to

S(�) � (y � X�)T(y � X�) � � � � �r
r, (2)

where an additional term

� � �r � ��
j�1

p

| �j | r�
1

r

penalizes the SSE, based on the number and magnitudes of coef-

ficients in the model. The intuition is that although adding more

1 Note that this is the estimate without any constraint on the parameter
space.
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coefficients to a regression model can decrease the SSE, the

decrease must be larger than the increase in the penalization term

on the right to justify the increase in the number of parameters. To

allow flexibility in the regularization, the penalty term is further

scaled by the parameter �. When � � 0, no penalty is applied, and

so the estimates would be equivalent to the OLS (or MLE) esti-

mates. As � increases, the penalty term has a larger shrinkage

effect on the parameter estimates, and in some regularization

methods, this yields fewer large coefficients. Because the value of

the SSE depends on the data, it is difficult to specify the penalty

parameter � a priori. In practice, � is tuned by a cross-validation

(e.g., leave-one-out cross-validation) procedure to reduce general-

ization error. For this reason, the parameter is also called the

“tuning” parameter.

The penalty term can be interpreted as applying a constraint

on the coefficient parameter space. The penalty term is defined

as a r-norm of regression coefficients, which defines a subspace

within the parameter space. Different values of r correspond to

the restricted regions of different shapes. As examples, when

setting r � 1, the Lasso regression is applied (Tibshirani, 1996),

whereas if r � 2, the Ridge regression is applied (Hoerl &

Kennard, 1970a, 1970b). Figure 1 illustrates how these two

different settings of r adjust the OLS estimates. The left-most

panel shows a standard estimation problem for two coefficients,

�1 (x-axis) and �2 (y-axis). The contours show the shape of the

OLS objective function, with the best estimate appearing in the

center. The middle and left columns illustrate the effects of the

Ridge and Lasso penalization terms, where the top row shows

the influence of only the penalty term, and the bottom row

shows the same penalty terms in the context of the OLS

problem on the left. In the Lasso regression, the shape of this

constraint is a diamond (right panel), whereas in the Ridge

regression, the shape is circular. In each of the joint component

plots (bottom middle and right), the best parameter estimate is

represented as the black dot. In the Ridge regression, the

location of the estimate would be any point such that the two

circles meet, whereas in the Lasso regression, the estimate is

likely to be found at the corner of the restricted region because

the region is diamond-shaped. In this example, the Lasso esti-

mate of the second regression coefficient �2 is “shrunk” to zero

(i.e., the vertical axis), effectively removing it from the result-

ing model. By removing unnecessary variables—that is, vari-

ables that do not contribute substantially to the model’s fit to

data—the Lasso ensures that the most parsimonious model is

procured for a given phenomenon of interest. In this way,

regularization methods simultaneously provide parameter esti-

mates, selection among variables, and model selection.

Another strength of regularization methods is that their re-

sulting estimates have smaller mean squared errors (MSE) and

prediction errors (PE; Friedman et al., 2001; Tibshirani, 1996).

Suppose �̂ is an estimate of a regression coefficient �. The MSE

of �̂ is defined as

MSE(�̂) � E[(�̂ � �)2] � Var(�̂) � (E(�̂) � �)2. (3)

Here, MSE is defined as a measure of the distance between the

estimate and the true coefficient value, which can be decomposed

in Equation 3 to show that the MSE represents unbiasedness and

stability of an estimator.

The OLS estimator of a regression coefficient is known as the

best linear unbiased estimator (BLUE; Ravishanker & Dey,

2001), which achieves the minimum variance among the unbi-

ased estimators. Due to shrinkage, the estimators of the regu-

larization methods deviate from the OLS estimator, and thus

they have a bias (i.e., they underestimate coefficients). How-

ever, by allowing this small bias, the shrinkage estimators can

reduce variance to a large extent and achieve a smaller MSE. A

similar statement holds for the PE as it can be shown that

PE(�̂) � MSE(�̂) � �2 (Friedman et al., 2001; Tibshirani,

1996). Hence, regularization methods can provide more stable

estimators with lower MSE and PE.

Although Equation 2 uses only a single penalty parameter,

different regularization methods may have more than one penalty

parameters in the objective function. For example, Elastic Net

regularization (Zou & Hastie, 2005) uses two penalty parameters,

one of which corresponds to the Ridge penalty and the other

corresponds to the Lasso penalty. The technical details and differ-

ences among different regularization methods are beyond the

scope of this article, and so we refer the interested readers to van

Erp et al. (2019). The regularization methods have been applied to

other models such as multivariate regression (Li et al., 2015; Peng

et al., 2010; Price & Sherwood, 2018; Rothman et al., 2010), factor

analysis (Choi et al., 2010; Hirose & Konishi, 2012; Hirose &

Yamamoto, 2015; Jung & Takane, 2008; Ning & Georgiou, 2011),

structural equation modeling (Jacobucci et al., 2016), and item

response theory modeling (Houseman et al., 2007; Magis et al.,

2015).

Our final note about regularization methods is their Bayesian

interpretation (Park & Casella, 2008; Tibshirani, 1996). Within the

Bayesian framework, parameters can be constrained by specifying

a priori information about them, and this specification comes in the

form of a prior distribution on the model parameters. For example,

the constraint enforced by the Lasso can be represented by the

following Laplace prior:

f(�j) �
�
2

exp(�� | �j | ). (4)

Based on this interpretation, the Lasso has been extended to

Bayesian models including linear regression and latent variable

modeling, which are reviewed in the following sections.

Bayesian Lasso

As Tibshirani (1996) pointed out, the regularization penalty

imposed by the Lasso regression is related to a Laplace prior on the

regression coefficients, and this relationship has motivated several

implementations of the Lasso when doing Bayesian linear regres-

sion (Bae & Mallick, 2004; Figueiredo, 2003; Park & Casella,

2008; Yuan & Lin, 2006). A notable example is Park and Casella’s

(2008) method in which they proposed to use a conditional

Laplace prior of the following form:

�(� | �2) � �
j�1

p
�

2��2
e�� | �j | ⁄��2

. (5)

Conditioning on the residual variance �2 plays an important role

as it ensures that the posterior distribution of � is unimodal. When

this is the case, the posterior will have a unique maximum, which
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facilitates clear interpretations of the coefficients. Based on the

normal scale mixture representation of the Laplace distribution,

Park and Casella (2008) derived the hierarchical representation of

the Bayesian Lasso regression model. Namely,

y | 	, X, �, �2 � Nn(	1n � X�, �2In),

� | �2, 
1
2, . . . , 
p

2 � Np(0p, �2D
), D
 � diag�
1
2, . . . , 
p

2	, and

�2, 
1
2, . . . , 
p

2 � �(�2)d�2�
j�1

p

�2

2
e�2
j

2⁄2d
j
2, �2, 
1

2, . . . , 
p
2 � 0.

(6)

Park and Casella (2008) also derived the full conditional distri-

bution of the model parameters so that estimation can be done

using Gibbs sampler. In the above expression, new parameters �1
2,

. . . , �p
2 are introduced to connect the regression coefficients � to

the tuning parameter �. As different regression coefficients have

different values of �j
2, these parameters modulate the penalizing

effect of � on the corresponding regression coefficients. To find

the best value of �, one can again use cross-validation methods,

but in the Bayesian context, such procedures will be remarkably

more computationally demanding than in the frequentist case. As

alternatives, Park and Casella (2008) proposed to use either an

empirical Bayes method or a gamma distribution hyperprior for �2.

Imposing a gamma prior for �2 results in a conjugate posterior,

meaning that the model parameters can be efficiently estimated

using Gibbs sampling techniques.

Bayesian Regularized Latent Variable Modeling

Park and Casella’s (2008) hierarchical framework for the Bayes-

ian Lasso and other regularization methods have been extended to

latent variable models in a variety of applications (Feng et al.,

2017a, 2017b; Guo et al., 2012; Song et al., 2014; Wang et al.,

2013). For example, Guo et al. (2012) proposed the Bayesian

Lasso for the semiparametric structural equation model (SEM).

The SEM consists of a measurement model (a factor analysis

model for the measurement of latent variables) and a structural

model (a set of regression models of latent variables models) and

Guo et al. (2012) applied Park and Casella’s (2008) method to the

structural model but not to the measurement model (cf., Lu et al.,

2016). Guo et al. (2012) used separate penalty parameters (i.e.,

multiple � parameters) for endogenous independent variables and

nonparametric functions of exogenous variables. Thus, the pro-

posed method is closer to the group Lasso (Yuan & Lin, 2006) in

which a predetermined group of regression coefficients is penal-

ized by a common penalty term and different groups are penalized

by different penalty terms. Furthermore, Guo et al. (2012) allowed

different penalty parameters for different endogenous latent vari-

ables so that regression coefficients for different dependent vari-

ables in the model are penalized by different penalty terms. This is

different from the frequentist approach to multivariate regression

and SEM in which the same penalty term is applied to all model

equations for different dependent variables (Jacobucci et al., 2016;

Li et al., 2015; Peng et al., 2010; Price & Sherwood, 2018;

Figure 1

Constraints Imposed by Regularization

Note. The left-most panel illustrates a parameter estimation problem for two parameter coefficients (axes), and the shape of the

ordinary least squares solution (OLS) is represented as contours. The next columns illustrate the influence of regularization methods

on the OLS, where the marginal (top row) and joint (bottom row) components show the Ridge (second column) and Lasso (third

column) terms, respectively. Within the joint component plots, the black dot shows the best estimate of the model coefficients when

regularization is applied. See the online article for the color version of this figure.
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Rothman et al., 2010). Having different penalty terms for different

groups of parameters can be useful when the groups should be

penalized by different degrees. However, when Park and Casella’s

(2008) hierarchical representation of the Bayesian Lasso is ap-

plied, multiple penalty terms may not be required due to the effect

of � parameters, which will be described in detail in the next

section. In contrast to Guo et al.’s (2012) approach, the Bayesian

Lasso will be applied to the measurement model with a single �

parameter in our method.

Similarly to Guo et al.’s (2012) proposal, Bayesian regulariza-

tion methods have been extended to models with latent variables

including semiparametric SEM (the Elastic net and the fused

Lasso, Wang et al., 2013), univariate and bivariate nonparametric

functions of latent variables (the Lasso, Song et al., 2014), uni-

variate ordinal regression (the adaptive Lasso, Feng et al., 2017a),

and multivariate generalized latent variable models (the adaptive

Lasso, Feng et al., 2017b). In all of these cases, different penalty

terms have been used for different dependent variables.

Global and Local Shrinkage

In the hierarchical representation of the Bayesian Lasso, addi-

tional parameters, usually denoted as �, are introduced. These

parameters produce an interesting difference from the frequentist

regularization methods in that they modulate the penalizing effect

of the global penalty term � on each of the regression coefficients.

Polson and Scott (2011, 2012) studied a group of shrinkage priors

with such parameterization, which they called global and local

shrinkage priors. Under these priors, estimation of regression

coefficients depends on both global and local shrinkage parame-

ters. The global parameter controls a general magnitude of penal-

ization on all regression coefficients within a model, just as the

penalty parameter � does in the frequentist regularization methods

(e.g., Equation 2). The local parameters, each of which corre-

sponds to a single regression coefficient, modulate the effect of

global penalization on each coefficient. In other words, the mag-

nitude of the shrinkage effect differs by coefficient when global

and local shrinkage priors are used.

Ideally, small coefficients will be greatly penalized, and large

coefficients will be only weakly penalized. This pattern will ensure

that small coefficients will be removed from the model whereas

the estimates for large coefficients will be less biased by the

penalization terms. In this sense, the global and local priors are

advantageous in that they find a sparse model while simultane-

ously estimating large coefficients with less bias compared with

the frequentist methods. The same advantage might be manufac-

tured in the frequentist method by allowing many tuning param-

eters (e.g., the group Lasso and the adaptive Lasso), but it would

be more difficult to update all tuning parameters via cross-

validation. By contrast, global and local shrinkage parameters are

just a part of a Bayesian hierarchical model, and can be estimated

via standard sampling methods when performing Bayesian estima-

tion. Furthermore, many of the global and local shrinkage priors

have conjugate posteriors, which facilitates estimation.

The Bayesian Lasso proposed by Park and Casella (2008) uses

the same parameterization and enjoys the global-local shrinkage

effect (Polson & Scott, 2011). Figure 2 illustrates how the Bayes-

ian Lasso modulates shrinkage of the regression coefficients. Data

were simulated with sample size of N � 500 and p � 100

covariates. We randomly sampled values for the regression coef-

ficients from a uniform distribution on the interval (	0.5, 1.5).

Although the precise interval was arbitrarily selected, our main

goal was to cover zero with a reasonable amount of overlap. We

then constructed a dependent variable by multiplying the regres-

sion coefficients with the simulated data, and then adding random

noise from a normal distribution with mean zero and standard

deviation of 2. We then fit the Bayesian Lasso regression model to

the simulated data.

Figure 2 shows the estimated regression coefficient � (x-axis)

against the corresponding local penalty parameters � (y-axis). The

global penalty parameter was estimated to be � � 2.447. However,

its effect is modulated by different values of the local parameters.

Figure 2 shows that the local penalty parameters are large for large

coefficients, but are small for small coefficients. This particular

pattern makes the posterior variances of the regression coefficients

smaller as the coefficients are estimated to be nearer to zero (see

Equation 6). As a result, smaller coefficients will shrink to zero

whereas only weak shrinking effects will be imposed on larger

coefficients.

The Factor Analysis Neural Drift Diffusion Model

Turner, Wang, et al. (2017) proposed the factor analysis neural

drift diffusion model (FA NDDM) as an extension of the previ-

ously proposed multivariate normal neural drift diffusion model

(MVN NDDM). Both are considered joint models (Palestro et al.,

2018) in which behavioral data B and neural data N are analyzed

simultaneously by connecting the parameters of appropriate sta-

tistical or computational models. For example, one may assume a

computational model with parameters � for the behavioral data,

and a statistical model with parameters � for the neural data. In

both the FA and MVN NDDMs, a standard statistical model is

Figure 2

Modulation of the Shrinkage Effect Under a Global-Local

Prior

Note. The Bayesian Lasso regression (Park & Casella, 2008) is fit to

simulated data and the estimated regression coefficients � (x-axis) are

shown along with their corresponding local penalty parameters �2 (y-

axis). The global penalty parameter was estimated to be � � 2.447. See

the online article for the color version of this figure.
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used to analyze the pattern of neural data, and a diffusion decision

model (Ratcliff, 1978; Ratcliff & McKoon, 2008) is used to

explain both choice and response time from a psychological ex-

periment involving a simple two-choice perceptual task. To com-

plete the model, the joint relationship between � and � must be

specified. In both the FA and MVN NDDMs, a multivariate

normal distribution with mean � and covariance matrix � is

assumed to create a linking function for the parameters � and �,

such that

(�i, �i) � MVN(�, �),

where the subscript i indicates the i-th subject or i-th trial.

While the mean � is freely estimated in both of the FA and

MVN NDDMs, the two models differ in how the covariance

matrix � is structured. The MVN NDDM assumes a full rank

covariance matrix �, where each element is estimated when fit to

data. As shown in Turner, Wang, et al. (2017), the complexity of

such a model grows quadratically with increases in the number of

neural features, which prohibits being able to fit the model to

neural data at the voxel level, for example. By contrast, in the FA

NDDM, the covariance matrix (�) is decomposed by a factor

analysis model

� � �	�T � 
,

where � is a factor loading matrix, 	 is a factor variance-

covariance matrix, and 
 is a diagonal matrix of residual vari-

ances. Parameters for these matrices are freely estimated except for

those on which constraints are imposed. With the factor analytic

structure, elements within the matrix � are not freely estimated as

they are now functions of the factor loadings, factor variances and

covariances, and residual variances. The dimensions of the matri-

ces and the multivariate normal distribution in the NDDM models

are determined by the number of behavioral and neural parameters.

Mathematically, the FA NDDM can be fully expressed as

bi | a, ti, zi, di � Dif fusion(a, ti, zi, di),

�log(ti), logit�zi

a	, di, ni
T	T

� MVNp�q(�, �), � � �	�T � 
,

where �� 
 Iq

�p�q
* � and 
 � 
 0q 0q�p

0p�q 
p
* �.

(7)

where bi is a (2 � 1) vector of choice and reaction time (RT) in the

i-th trial, ni is a (p � 1) vector of all p neural covariate in the i-th

trial, Iq is the q-dimensional identity matrix and 0q and 0q � p are

matrices of zeroes of size (q�q) and (q � p), respectively. “Dif-

fusion” indicates the probability density function of the Wiener

diffusion process, which is a popular model in psychology for

explaining the joint distribution of choice and response time (dif-

fusion decision model or DDM; Ratcliff, 1978; Ratcliff & McK-

oon, 2008; Wabersich & Vandekerckhove, 2014). For example,

subjects may be asked to decide which direction most of the dots

are moving within a cloud of randomly moving dots. The Wiener

process model assumes that, when a stimulus is presented, a

subject starts to accumulate evidence at a starting point zi at a mean

rate of di over time. This evidence continues to accumulate until it

reaches one of two boundaries, each of which represents a choice

option (e.g., “left” and “right”). At this time, a choice Ci is made.

The separation between these two boundaries is represented as a.

The time at which the process terminates determines a decision

time (DTi). The model also assumes the presence of nondecision

processes such as visual encoding time and motor response time,

which are captured by the nondecision time parameter ti. Hence,

the model’s predicted response time is RTi � DTi � ti. The

parameters represent cognitive components of decision-making

processes. The drift rate di represents the quality of evidence

accumulation and the decision threshold a measures the amount of

information required to make a decision. Also, the starting point zi

is a measure of an initial bias toward one of the two choice options.

Nondecision processes can be collectively represented by the

nondecision time ti.

Because the diffusion model is used as the behavioral submodel

within the FA NDDM, the behavioral parameters � include all the

diffusion model parameters across trials, such that � � (a, t, z, d),

where t, z, and d are the vectors of nondecision times, starting

points, and drift rates over all trials, respectively. Because the

nondecision time cannot be negative, and the starting point is

bounded between 0 and a, they are first transformed to match the

support of the multivariate normal distribution and then associated

with the neural part of the FA NDDM via the overarching linking

function. While any neural model can be used for the neural data,

it is also possible to directly link the neural features to behavioral

parameters so that neural sources can be mapped directly to

components of a cognitive process (e.g., the diffusion model

parameters in this example). We adopt the latter approach and in

this case, the neural parameters � are just set equal to the neural

features (i.e., � � N). With this specification, the number of latent

variables in the linking function for the i-th trial is q � 3, and the

number of neural sources p is equal to the number of neural

features.

By imposing the factor structure on the covariance matrix, the

FA NDDM provides a remarkable reduction in the total number of

parameters that needs to be estimated, going from
1

2
�p � q	�p �

q � 1	 in the MVN structure to pq �
1

2
q�q � 1	 � p � �p �

1

2
q	�q � 1	 in the FA structure. Because the number of manifest

variables p is usually large (e.g., 32, 64, or 128 if the neural data

are from EEG recording) while the number of factors q is much

smaller (e.g., three in both the previous NDDM approaches in

Turner et al., 2015, and Turner, Wang, et al., 2017), the total

number of parameters is greatly reduced in the FA NDDM.

A further strength of the FA NDDM is that it allows for a

systematic study of how a brain network is related to the factors

employed in the model. Factor loadings represent the strength of

linkage between corresponding factors and manifest variables. If a

neural feature has a high factor loading for one factor but not for

the others, then it can be concluded that the brain region measured

by that neural feature is largely related to the factor with the high

loading. In the FA NDDM, the latent variables are single-trial

diffusion model parameters (i.e., drift rate, starting point, and

nondecision time). Thus, the FA NDDM promotes the identifica-

tion of which brain regions are related to cognitive constructs such

as the quality of evidence accumulation, a state of initial activa-

tion, and nondecision processes such as stimulus encoding and

response production, via factor loadings. Furthermore, if some of

the brain regions are collectively related to a given factor, we can

consider it model-based evidence for the functional connectivity of

those regions. For example, if several neural features load highly

on the drift rate factor, we could conclude that those features are
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components in the brain network engaged in evidence accumula-

tion during decision-making tasks. Although both the MVN

NDDM and FA NDDM can be used to identify brain networks, the

latter method can provide a simpler way to investigate networks

through the factor structure whereas the former requires that all

variances and covariances be estimated before a network analysis

can be performed.

Equation 7 shows that the FA NDDM is a hybrid of confirma-

tory and exploratory factor analysis. On the one hand, it is con-

firmatory because the factors in the model are fixed to be the

theoretical components of the DDM (i.e., nondecision time, bias,

and drift rate). Given that the first three rows of the factor loading

matrix comprise the behavioral model parameters, Turner, Wang,

et al. (2017) imposed the constraint that the first q � 3 rows of the

factor loading matrix should be fixed to an identity matrix (Iq), and

that the residual variances for the first three rows should be zero

(0q on the upper-left side of 
). On the other hand, the model is

exploratory in the sense that all other factor loadings linking the

factors and the manifest variables (i.e., neural features) can be

freely estimated (�p�q
* ). In addition, the corresponding factor

variances, covariances, and residual variances in 	 and 
 are also

freely estimated. This approach differs from other hybrid ap-

proaches (e.g., Lu et al., 2016) in which only minimal identifica-

tion constraints are imposed on a CFA factor loading matrix to

identify factors, while others are estimated freely as in EFA.

Instead, the factors used within the FA NDDM are presupposed to

be mechanisms assumed by the DDM and well constrained by

choice and response time data.

Factor Loading Constraints

As the FA NDDM is typically fit in a Bayesian framework, an

issue arises during posterior sampling called the “sign-switching”

problem. Because a factor does not have a specific scale, the sign

of the factor loading is also arbitrary. In the estimated results, the

signs of the estimated factor loadings can be reversed in a column-

wise manner because reversing the signs of the factor scores and

those of the corresponding factor loadings does not change the

model fit result. However, the instability in the signs of the factor

loadings can be problematic when a sampling method is applied to

estimate posterior distributions because the signs of the factor

loadings can oscillate throughout the sampling process; for exam-

ple, if the true posterior mean is 1, chains may oscillate be-

tween 	1 and 1 or some of the chains can be centered at 1 while

the other can be centered at 	1. Thus, sometimes an estimated

posterior distribution of a specific factor loading can be bimodal

even when the true posterior distribution is unimodal.

When performing exploratory factor analyses with q factors in

the Bayesian framework, it has been shown that constraining the

signs of q diagonal elements in the factor loading matrix to be

positive can address the sign-switching problem, and fixing at least

q(q 	 1)/2 upper diagonal loadings to zero can resolve the rota-

tional indeterminacy of latent variables (Erosheva & Curtis, 2017;

Geweke & Zhou, 1996).

In the FA NDDM, the first q rows of the factor loading matrix

are set to be an identity matrix (Equation 7) and it may appear as

though this constraint addresses both of the sign-switching prob-

lem and the rotational indeterminacy. However, it can be deduced

that the identity matrix in the factor loading structure only ad-

dresses the rotational indeterminacy and a solution to the sign-

switching problem is required for the estimation of the FA NDDM.

From Equation 7, it can be derived that:

�log(ti), logit�zi

a	, di	T

� �1:q � Iq�i � �1:q � �i (8)

where �1:q represents the first q elements of the mean vector of the

multivariate normal distribution with q � 3 for the specification of

the FA NDDM in the current study, and �i is a vector of factor

scores for the i-th trial (see also the Appendix of Turner, Wang, et

al., 2017). This formula shows that the latent variables in the FA

NDDM are set equal to the mean-centered and transformed single-

trial diffusion model parameters. The main role of this formula is

to link the behavioral model parameters to the factor analysis

model implemented for the neural data. By defining the meaning

of the latent variables, the formula successfully removes the rota-

tional indeterminacy issue.

Little can be said about the sign-switching problem with only

Equation 8. If the single-trial diffusion model parameters and their

means can be fully determined by the diffusion model fit to the

behavioral data, the signs of �i can also be determined. While the

means of transformed nondecision time, transformed starting

point, and drift rate can be estimated from the choice and RT data

across all the trials, choice and RT for a single trial are not

sufficient to fully constrain the single-trial parameters. In fact, the

estimation and measurement of �i rely heavily on the factor

analysis model applied to the neural data, which is specified by the

bottom p rows of the factor loading matrix and the bottom-right

(p � p) submatrix of the residual variance matrix (�p�q
* and 
p

* in

Equation 7). As all factor loadings of neural features on q latent

variables should be estimated, the estimation of these loadings can

suffer from the sign-switching problem and some appropriate

solution should be applied.

Turner, Wang, et al. (2017) proposed two solutions for the FA

NDDM to address the sign-switching problem. The first solution is

a column-wise solution in which we specify the sign of some

predetermined factor loadings (Ghosh & Dunson, 2009). For ex-

ample, if one can assume that the j-th manifest variable is posi-

tively related to the k-th factor, we may take the constraint 
j,k
* � 0

as a reference for the k-th column of the factor loading matrix.

During a Bayesian sampling procedure, samples of 
j,k
* are then

monitored such that negative posterior draws result in a reversal of

the sign of the factor loadings in the k-th column of the matrix.

Thus, given a positive assertion on 
j,k
* , the sampling algorithm

would run with the following constraint:


1:p,k
* ��
1:p,k

* if 
j,k
* � 0,

�
1:p,k
* if 
j,k

* � 0.
(9)

To avoid the sign-switching problem while estimating the joint

posterior distribution, q constraints should be applied, one for each

factor. In Turner, Wang, et al. (2017), this solution is combined

with giving the rescaled Beta prior 
j,k
* � Beta�1, 1, �1,1	 to all

the factor loadings (except for those in the first three rows) where

the first two hyperparameters are shape parameters and the last two

hyperparameters are lower and upper bounds of the distribution.

Other priors that are well-suited to represent the support of the

factor loading values can also be used within this solution.

The second solution is an element-wise solution in which the

sign of all the factor loadings are collectively constrained. For
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example, by imposing 
j,k
* � Beta�1, 1, 0, 1	 for all j and k, all the

factor loadings are constrained to have positive signs. Although

this is an unlikely case for many real-world problems, it is worth

considering as an option for estimation of the joint posterior

distribution. It is also possible to use different priors for different

factor loadings. For example, if it is reasonable to assume that


j,k
* � 0 while 
j,l

* � 0, we may give 
j,k
* � Beta�1, 1, 0, 1	 and


j,l
* � Beta�1, 1, �1, 0	, respectively, as in Turner, Wang, et al.’s

(2017) application. However, this is not plausible without a strong

theoretical background to predetermine the signs of all factor

loadings.

Estimating the FA NDDM Using Conjugate Priors

Although not covered in Turner, Wang, et al. (2017), it is also

possible to implement conjugate priors on the factor analysis

parameters in the FA NDDM to estimate the joint posterior dis-

tribution. For example, we can specify the following prior distri-

butions as used in Hoff (2009) and Song and Lee (2012):

� � MVNp�q(�0, 
0),

��j
�1 � Gamma(�0�j, �0�j), j � (q � 1), (q � 2), . . . , (q � p),

�j | ��j � MVNq(�0j, ��jH0j), and

	 � IWq(R0
�1, �0)

(10)

where p is the number of manifest variables (neural features in the

current application), �j is the j-th row of the factor loading matrix,


�j is the residual term in the j-th measurement equation, and 	 is

the factor covariance matrix. The quantities with the subscript 0

(�0, �0�j, �0�j, �0j, 
0, and positive definite matrices 
0, H0j, and

R0) are hyperparameters for the prior distributions. Given these

priors, the conditional posterior distributions are:

� | Y, �, 	, 
 � MVNp�q(�n, 
n),

�n � 
n�
0
�1�0 � n��1y�	, 
n � �
0

�1 � n��1	�1,

��j
�1 | yj, � � Gamma(�n�j, �n�j), j � (q � 1), (q � 2), . . . , (q � p),

�n�j � �0�j �
n
2

, �n�j � �0�j �
1
2
�yj

Tyj � �0j
T H0j

�1�0j � �nj
T Hnj

�1�nj	,

�j | yj, �, ��j � MVNq(�nj, ��jHnj),

�nj � Hnj�H0j
�1�0j � �yj	, Hnj � �H0j

�1 � ��T	�1, and

	 | � � IWq�R0
�1 � ��T, n � �0	.

(11)

where n is the number of observations, yj be a vector of all n

observations of the j-th manifest variable, and Y is a matrix of all

observations. � is a matrix of all factor scores and � is the implied

covariance matrix of the factor analysis model, calculated from

the posterior samples during a sampling procedure (Equation 7).

The quantities with the subscript n (�n, �n�j, �n�j, �nj, and positive

definite matrices 
n and Hnj) represent the parameters for the

posterior distributions updated by the n observations of the data.

These conditional posterior can be applied to Equation 7. Due to

the constraints to link the single-trial diffusion model parameters

and the factor analysis model, the conditional posterior distribu-

tions of factor loadings should be applied to �p�q
* , the bottom p

rows of the whole factor loading matrix in Equation 7, because the

first q rows should be an identity matrix as constraints. Similarly,

the conditional posterior distributions of residual variances should

be applied to 
p
*, the bottom right p � p submatrix of the whole

residual variance matrix. For these two sets of posterior distribu-

tions, yj � Nj in Equation 11 where Nj is a vector of the j-th neural

covariate containing all n observations (over trials or subjects). To

update � for all p � q variates in Equation 7, Y in Equation 11

should be replaced by a matrix of �log�ti	, logit�zi

a	, di, ni
T	T

con-

taining all observations over i � 1, . . . , n.

A prior for � needs not be specified because the factor scores

are defined based on the single-trial diffusion model parameters.

As shown in Equation 8, they are set to be equal to the transformed

single-trial diffusion model parameters centered by the corre-

sponding means in � (Appendix in Turner, Wang, et al., 2017).

Thus, the factors are measured by neural data (the factor analysis)

and constrained again by the behavioral data (the diffusion model).

This is another strength of the joint modeling framework in that an

integrative analysis of multiple data modalities (e.g., behavioral

and neural data) provides more information on the latent construct

of interest. Although the conjugate approach reduces the compu-

tational burden of posterior sampling to a large extent, it does not,

by itself, solve the sign-switching problem. This method should be

accompanied by an appropriate sign-switching solution. Equation

9 can be easily implemented during the conjugate posterior sam-

pling.

The diffusion model parameters (a, ti, zi, and di) do not have

conjugate priors and thus their posterior distributions should be

estimated by Monte Carlo sampling methods. The prior and like-

lihood of these parameters are from the multivariate normal dis-

tribution implemented as the overarching linking function and the

diffusion model likelihood, respectively, as stated in Equation 7.

Due to potentially high correlations among the parameters in the

behavioral model, we recommend techniques that can manage said

parameter dependencies such as Differential Evolution Markov

Chain Monte Carlo (DE-MCMC; Ter Braak, 2006; Turner, Sed-

erberg, et al., 2013). The central idea of this method is to allow sets

of chains to approximate the shape of the target distribution (e.g.,

the posterior) by calculating differences among the chains. These

differences are used to create a vector that defines movement

within the parameter space, from which proposal parameter values

can be generated. For example, one can calculate the difference

between two randomly selected chains, and scale this difference by

a tuning parameter � � U(0.5, 1). As the sampling process

progresses, this difference vector naturally resembles the shape of

the target distribution, and so it can be used to generate a candidate

proposal by simply adding it—along with some small amount of

random noise—to the chain that is being currently updated (see

Steps 22–24 and 35–37 in Figure 3). The standard Metropolis-

Hastings acceptance probability of the target distribution is calcu-

lated by combining the likelihood function and prior distribution to

determine if the new proposal should be accepted or rejected

(Steps 25 and 38 in Figure 3). As presented in Equation 7, because

the decision threshold parameter (a) only depends on the behav-

ioral data, it is updated separately from the parameters that are

used in the factor analysis component of the model. The other

diffusion model parameters depend on both aspects of the data, and

so acceptance probabilities should be calculated using the likeli-

hood functions of both the diffusion model and the factor analysis

model. A detailed, algorithmic description of the sampling proce-
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dure is shown in Figure 3. Although this figure includes details of

how to apply the Lasso to the FA NDDM, we will save discussion

of the Lasso until the next section.

In the FA NDDM, all factor loadings except for those in the first

q rows are freely estimated which is an exploratory aspect of the

model. Although this enables us to study a factor structure of the

manifest variables, this approach will produce complex structures,

whereas often parsimonious solutions are desired to facilitate

interpretations of the factor structure. In a typical EFA, rotation

techniques are applied to find a simple structure by minimizing a

complexity function. The central focus of our article is that statis-

tical regularization can also be applied to remove small and un-

important factor loadings, while detecting important loadings

(Choi et al., 2010; Hirose & Konishi, 2012; Hirose & Yamamoto,

2015; Lu et al., 2016; Muthén & Asparouhov, 2012; Ning &

Georgiou, 2011). Given the conjugate priors and posteriors we

reviewed, it is straightforward to apply the hierarchical represen-

tation of the Bayesian Lasso (Park & Casella, 2008) to the FA

NDDM, mirroring previous studies of the structural component

within SEM (Feng et al., 2017a, 2017b; Guo et al., 2012; Wang et

al., 2013).

Applying the Bayesian Lasso to the FA NDDM

In this section, we extend the FA NDDM to the Lasso FA

NDDM by applying the hierarchical representation of the Bayesian

Lasso proposed by Park and Casella (2008). The priors and pos-

teriors for intercepts, residual variances, and factor covariance

matrix remain the same as in Equation 10 and Equation 11. For the

factor loadings, the following hierarchical priors are applied to

implement shrinkage effects.

�j | ��j, �j � MVNq(�0j, ��jH0j),

H0j � diag(�j), �j � �
j1
2 , . . . , 
jq

2 	T,

�(
j | �2) � �
k�1

q
�2

2
exp���2
jk

2 ⁄ 2	,

�2�Gamma(�0�, �0�).

(12)

As a global and local shrinkage prior, � controls the global

shrinkage effect on all the factor loadings �j, j � 1, . . . , p, but the

effect is modulated by �j. Also, usually �0j � 0 in regularization

methods. To implement the Lasso to the FA NDDM, this prior

should be applied to �p�q
* in Equation 7, the bottom p rows of the

factor loading matrix.

Given Nj, a vector of the j-th neural covariate containing all n

observations, the corresponding conjugate posterior distributions

are

�j | Nj, �, ��j, �j � MVNq(�nj, ��jHnj),

�nj � Hnj�H0j
�1�0j � �Nj	, Hnj � �H0j

�1 � ��T	�1,

�1 ⁄ 
jk
2 	 | 
jk, ��j, �2 � IG(	
jk

, �2), 	
jk
�
 �2

(
jk � 
0jk)
2
��j,

�2 | �1, . . . , �p � Gamma(�n�, �n�),

�n� � �0� � qk, �n� � �0� �
1
2�

j

p

�
k

q


jk
2 .

(13)

where �jk and �0jk are (j, k) elements of � and �0, respectively,

and IG indicates an inverse Gaussian distribution:

f(x | 	, �2) � � �2

2�x3�
1

2 exp���2(x � 	)2

2	2x
�. (14)

With the full conditional distributions for factor loadings, inter-

cepts, residual variances, and factor covariance matrix, and the

sampling method for the diffusion model parameters, the full joint

posterior distributions can be estimated. The algorithm to estimate

the joint posterior distribution of the parameters in the FA NDDM

with the Lasso is shown in Figure 3. The sampling method in the

algorithm is a combination of the conditional posterior sampling

and the DE-MCMC sampling.

The Bayesian model proposed here differs from the previous

Bayesian Lasso applications to latent variable models (Feng et al.,

2017a, 2017b; Guo et al., 2012; Song et al., 2014; Wang et al.,

2013). First, the Bayesian Lasso is applied to the factor analysis

model (i.e., the measurement model in the SEM) in the current

approach, whereas previous studies applied regularization methods

to the structural model of the SEM. In doing so, the model is able

to explore a factor structure of the manifest variables regarding the

latent variables defined based on the cognitive components in the

behavioral model employed in the joint modeling framework. As

the Lasso FA NDDM exploratorily estimates factor loadings, the

solution in Equation 9 should be implemented during the posterior

sampling to address the sign-switching problem. Second, a single

global parameter � is used in the proposed prior, whereas this

parameter is allowed to vary by different dependent variables in

the previous studies. If we were to allow multiple global param-

eters in the current approach, the model should simultaneously

update �1, . . . , �p, one for each dependent (manifest) variable,

instead of a single � which exerts its effect on all of the variables.

In this case, each global parameters �j, j � 1, . . . , p and corre-

sponding local shrinkage parameters �j1, . . . , �jq would be updated

on the basis of only the q � 3 latent variables of the DDM. Having

only a little information to constrain penalty parameters would

severely limit our ability to estimate all model parameters, and so

Figure 3 (opposite). Note. The pseudocode here can be used to draw samples from the joint posterior distribution of the factor analysis neural drift

diffusion model with the Lasso application. Except where stated, the last posterior sample in the chain should be used in all calculations above. Although

not specified, prior distributions should be taken into account when calculating the acceptance probability pA (as defined in Metropolis-Hasting algorithms)

in Steps 25 and 38. Some calculations can be grouped, or the order of updating steps may be rearranged to increase computational efficiency. n � number

of trials; p � number of neural covariates; q � number of behavioral factors; K � number of chains; S � number of iterations; � � vector of all parameters;

b � small noise parameter for the crossover step (e.g., b � 0.005); pA � acceptance probability.
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we chose to explore only a single global penalty parameter in this

article.

Simulation Study

In this section, we present three simulation studies meant to

systematically examine the effectiveness of the Bayesian Lasso in

three factor loading settings: simple, overlapping, and complex

structures. In each simulation, we generated data by assuming

there are p � 128 neural features, and the number of trials was N �

300 as in Turner, Wang, et al. (2017). We set the number of factors

equal to q � 3, representing each of the single-trial DDM param-

eters (i.e., nondecision time, bias, and drift rate). To induce dif-

ferent complexities, we specified three different settings of the

factor loading matrix (reported below).

After generating data in each simulation, we fit the FA NDDM

and the Lasso FA NDDM to the simulated data. We used a

combination of the conditional posterior sampling (for the factor

analysis parameters) and the DE-MCMC (Ter Braak, 2006;

Turner, Sederberg, et al., 2013) sampling (for single-trial DDM

parameters). Each time, the algorithm was run for 20,000 iterations

with 12 chains. The first 2,000 samples were treated as the burn-in

period and were discarded, resulting in 216,000 samples. The R

codes to fit the proposed model (with a toy example) can be found

in the supplementary materials (https://github.com/MbCN-lab/

LassoFANDDM).

Simulation 1: Simple Structure

In Simulation 1, we assumed a factor loading matrix with a

simple structure, such that each observed variable loaded onto a

single factor. Except for the first three rows, which were con-

strained to be diagonal as discussed above, the true factor loading

matrix had the following form

� �
�1 0 0

0 �2 0

0 0 �3

�
where �1, �2, and �3 are (q1 � 1), (q2 � 1), and (q3 � 1) vectors

of factor loadings, respectively, and qk, (k � 1, 2, 3) indicates the

number of manifest variables related to the k-th factor. To generate

the factor loading shape, we set q1 � 64, q2 � 32, and q3 � 32,

respectively. We based this decision on Turner, Wang, et al.’s

(2017) factor loading results from real data analysis, where the

nondecision time factor typically had more large factor loadings

than the other two factors.

Following the simulation study in Turner, Wang, et al. (2017),

we randomly generated parameter values for the FA NDDM

according to the following specifications:

• �jk � TN(0.5, 0.2, 0, �)

• 
j � U(0.03, 0.3)

• 	: �jj � 1 and �jk � 0.3

• �1:3 � (	0.5, 0.1, 1.5) and �4:131 � N(0.3, 0.05)

• a � 2

When fitting the FA NDDM to the data, regardless of the factor

loading structure, we initialized all factor loadings by randomly

sampling values from Unif(0.2, 0.8). The goal of the simulation

study was to assess whether or not the Lasso FA NDDM could

detect and shrink factor loadings with zero true values while

estimating the other loadings well.

Results

The top panels of Figure 4 show the parameter recovery

results for the factor loading matrix. On the left, the maximum

a posteriori (MAP) estimates of the factor loadings whose true

values are nonzero are plotted on the x-axis with their true

values plotted on the y-axis. On the right, the histogram shows

the estimates of the factor loadings whose true values are zero

(i.e., zero loadings). On each panel, the Lasso estimates (blue)

and plain FA NDDM estimates (orange) are plotted together for

comparison.

For the factor loadings with nonzero true values, the Pearson

correlation between the true values and their estimates is 0.994

in the Lasso FA NDDM and 0.964 in the FA NDDM. Although

the correlation is high in both methods, the factor loadings are

slightly overestimated in the plain FA NDDM result which is

consistent with Turner, Wang, et al.’s (2017) result. By con-

trast, there is no systematic bias in the Lasso result. It can be

speculated that the overestimation of the nonzero factor load-

ings is corrected due to the shrinkage effect of the Lasso. For

factor loadings with zero true values, estimates are near zero in

both methods. However, the Lasso tends to produce estimates

that are nearer to zero than the plain FA. Unlike the frequentist

Lasso, the Bayesian Lasso cannot produce zero estimates ex-

actly as it estimates the posterior distributions of the coeffi-

cients. To examine the false alarm rate of the Lasso and plain

FA NDDMs, we can specify an arbitrary criterion to determine

if the estimated factor loadings are meaningfully large. A cutoff

of 0.1 is used following the previous studies (Feng et al., 2017a,

2017b; Guo et al., 2012; Hoti & Sillanpää, 2006) and thus if

MAP estimates of the factor loadings fall within the cutoff

region | �jk | � 0.1, they are considered too small to be mean-

ingful (“unimportant”). If the MAP estimates fall outside of the

cutoff region (| �jk | � 0.1), they are considered large and

meaningful. Under the simple structure, all of the Lasso esti-

mates corresponding to the 256 truly zero loadings fall under

this cutoff value (they range between [	0.062, 0.081]), pro-

ducing a false alarm rate of zero. For the plain FA NDDM, 44

of 256 estimates are detected as large, and thus the false alarm

rate is 0.172. The Lasso application increases the miss rate from

0.008 to 0.016, but this effect is relatively minor compared with

the improvement of the false alarm rate. These results demon-

strate that applying the Lasso to the FA NDDM can be useful in

better discriminating large meaningful factor loadings from

small and unimportant ones.

Figure 5 provides another look at the parameter recovery for the

factor loading matrix. In each panel, a matrix is shown whose

elements are colored according to the legend on the right-hand

side. The left panel shows the true factor loading matrix used to

generate the data. Here, the simple structure is evident, as each

element (e.g., neural feature) loads onto only a single factor

(columns). The second panel shows how each parameter was

initialized when fitting the models to data. The third and fourth

panels show the recovery results obtained when fitting the Lasso

FA NDDM and FA NDDM to the generated data, respectively.

The right two panels show two principle results. First, they illus-
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trate that the estimates are clearly different from their initialized

values, suggesting that the fitting algorithm is not biasing our

results. Second, they both illustrate accurate recovery of the true,

data-generating factor structure used to generate the data. Com-

paring across the two rightmost panels, Figure 5 shows that the

Lasso FA NDDM provides more accurate parameter estimates

compared to the FA NDDM.

The bottom panels of Figure 4 show the parameter recovery

results for residual variances (
) and intercepts (�), whereas

Figure 6 shows the results for factor variances and covariances

(	). For the residual variances, the Pearson correlations between

the true values and the estimates are 0.879 and 0.877, and for the

intercepts, the correlations are 0.821 and 0.822, in the Lasso FA

NDDM and in the plain FA NDDM, respectively. In this recovery,

factor variances are underestimated and residual variances are

overestimated, whereas intercepts do not show any systematic

bias. Comparing the Lasso and plain FA NDDM, the factor vari-

ance for nondecision time (�1) is estimated similarly while the

variances for the other diffusion model parameters (�2 and �3) are

better estimated when the Lasso is implemented. Biases in the

estimation result are due to the systematic relationship that exists

among the parameters. In factor analysis, the model estimates

parameters by reducing the discrepancy between a sample cova-

riance matrix S and a model-predicted covariance matrix �̂ �

�̂	̂�̂T � 
̂ (i.e., implied covariance matrix). Given a fixed

amount of common variances explained by the factor model

(�̂	̂�̂T), overestimation of the factor loading matrix is accompanied

by underestimation of the factor variances. Also, if the common

variances are obtained smaller than the optimum, the residual vari-

ances (
̂) should be overestimated to better match the sample cova-

riance matrix. The FA NDDM tends to overestimate the factor load-

ings and the bias propagates to the factor variances so that they are

underestimated. The Lasso FA NDDM corrects the overestimation

bias in the factor loading estimates and thus the variances can also be

better estimated. One might expect that the shrinkage effect of the

Lasso or other regularization methods will reduce the common vari-

ances and increase the residual variances. However, estimates for

residual variances remain almost the same even though the regular-

ization is applied. Thus, it can be concluded that the Lasso does not

change the total amount of variances that can be explained by the

single-trial diffusion model parameters. Instead, the Lasso exerts its

shrinkage effect by modulating values of factor loadings and factor

variances.

Figure 7 shows the parameter recovery results for the single-trial

DDM parameters. Nondecision time (ti), bias (zi), and drift rate (di)

Figure 4

Structural Recovery Results, Simple Structure
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FA NDDM � factor analysis neural drift diffusion model. See the online article for the color

version of this figure.
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are plotted in the left, middle, and right panels, respectively. The MAP

estimates are shown on the x-axis whereas the true values are shown

on the y-axis. In each panel, estimates obtained from the Lasso FA

NDDM are shown in green, whereas estimates of the FA NDDM are

shown in red. In general, the parameter estimates are accurate, with

the most inaccurate estimates occurring at the most extreme values of

the parameter ranges. This is a typical result in a Bayesian framework

due to shrinkage effects that occur in hierarchical modeling (Turner et

al., 2015; Turner, Wang, et al., 2017). The underestimation bias in the

FA NDDM result is the reason for the factor loadings being overes-

timated. One interesting effect is that the Lasso FA NDDM reduces

this shrinkage effect, at least for the bias and drift rate parameters

(middle and right panels). This is consistent with the finding that the

Lasso corrects the overestimation bias in the factor loadings. The

Pearson correlations between the true values and the estimates are

0.995 and 0.994 for nondecision time, 0.991 and 0.989 for bias, 0.988

and 0.948 for drift rate, in the Lasso FA NDDM and in the FA

NDDM, respectively.

Simulation 2: Overlapping Structure

Although the simple structure from the previous section is

useful from a pedagogical perspective, it is very unlikely that

such a simple structure would emerge in real-world data. It is

also unlikely that every feature will load onto any factor. For

example, Turner, Wang, et al. (2017) analyzed data from an

experiment and showed that (a) many features were sparse in

the sense that they did not have large loadings onto any factor,

and (b) several features loaded largely onto more than one

factor. Given this possibility, Simulation 2 was designed to

evaluate the ability of the Lasso to (a) identify features whose

factor loading overlaps across factors, and (b) identify features

who exhibit small and trivial factor loading structure. Also,

unlike in Simulation 1, nonzero factor loadings were scattered

across the matrix rather than being organized according to the

simple structure. The left panel of Figure 8 illustrates the true

factor loading matrix we used to generate the data. In this

Figure 5

Factor Loading Recovery Results, Simple Structure
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Note. The left panel shows the true factor loading structure used to generate the data. The second panel shows how both the Lasso FA and FA NDDMs

were initialized with random starting values. The third and fourth panels show the recovered factor loading matrix when using the Lasso FA NDDM and

FA NDDM, respectively. FA NDDM � factor analysis neural drift diffusion model. See the online article for the color version of this figure.
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figure, the rows of the factor loading matrices are sorted for

visual clarity (see the row numbers). Figure 8 shows a more

complex pattern of factor loadings where features can load onto

either zero, one, two, or three factors. All other details of this

simulation study, unless otherwise noted, were identical to

those presented in Simulation 1.

Results

The top panels of Figure 9 show the parameter recovery for

the factor loading matrix. As in Figure 4, the left panel shows

the MAP estimates for the nonzero loadings whereas the right

panel shows the histogram of zero loadings. In general, the

results are similar to those in Simulation 1. For the factor

loadings with nonzero true values, the Pearson correlation be-

tween the true values and their estimates is 0.974 in the Lasso

FA NDDM and 0.803 in the FA NDDM. As in Simulation 1, the

FA NDDM overestimates some factor loading but the degree of

bias becomes larger due to the overlapping structure. These

positive biases disappear when the Lasso is applied. For the

factor loadings with zero true values, the FA NDDM without

Figure 6

Factor Variance Estimates, Simple Structure
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Note. Each panel shows the estimated posterior distributions for each element of the factor variance matrix

obtained by either the Lasso FA NDDM (blue) or the plain FA NDDM (orange). The red vertical lines indicate

the true values. FA NDDM � factor analysis neural drift diffusion model. See the online article for the color

version of this figure.

Figure 7

Single-Trial Parameter Estimates, Simple Structure
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the Lasso produces more variable MAP estimates and many of

the values are highly negative. As a result, 49 out of 256 zero

loadings fall outside of the cutoff region (| �jk | � 0.1). In

contrast, the Lasso estimates the zero loadings fairly close to

zero and 253 of the loadings are identified as too small to be

meaningful. The false alarm rates are 0.191 and 0.012 for the

plain FA NDDM and the proposed method, respectively, which

demonstrates that implementing the Lasso can help the FA

NDDM improve its performance in identifying meaningful

brain-behavior relations. The shrinkage effect induced by the

Lasso increases the miss rate from 0 (in the FA NDDM) to

0.023 (in the Lasso), which is a minor difference compared with

the effect on the false alarm rate.

Figure 8 shows another view of the factor loading structure

recovery. In each panel, the values of the factor loadings are

color coded according to the legend on the far right-hand side.

Although the nonzero factor loadings were randomly arranged

within the true factor loading matrix, they are sorted in this

figure for visual clarity (see the index on the left side of the

panels for the original row numbers). As in Simulation 1, both

the Lasso and plain FA NDDMs performed well in retrieving

the true structure of the factor loading matrix. However, the

plain model produces some high negative values for the zero

loadings, many of which are diagnosed as large and meaningful

according to our criterion. Furthermore, many of the nonzero

loadings are estimated as having higher factor loadings com-

pared to their true values. By contrast, MAP estimates from the

Lasso FA NDDM are generally closer to the true values. Al-

though there are some truly zero loadings that are estimated as

having small negative loadings (i.e., the pale cyan blocks), most

of these estimated loadings are too small to be considered

meaningful according to our criterion.

The bottom two panels of Figure 9 and Figure 10 show the

parameter recovery for the residual variances, intercepts, and fac-

tor variances and covariances. The MAP estimates for residual

variances and intercepts are consistent with the previous simula-

Figure 8

Factor Loading Recovery Results, Overlapping Structure
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tion and the FA NDDM with and without the Lasso produce very

similar results. The Pearson correlations between the true values

and the estimates are 0.913 and 0.914 for the residual variances,

and 0.785 and 0.786 for the intercepts, in the Lasso FA NDDM and

in the FA NDDM, respectively. The factor variances have negative

biases in the FA NDDM results as in Simulation 1. When the

Lasso is applied, these biases are reduced and the posterior distri-

butions of the variance terms are centered more closely to their

corresponding true values.

The parameter recovery results for the single-trial DDM parameters

are very similar to those in Simulation 1 (with correlations ranging

from 0.98 to 0.99). As such, we do not present those results here;

instead, the recovery plot can be found in the supplementary materials

(https://github.com/MbCN-lab/LassoFANDDM).

Simulation 3: Complex Structure

In the two previous simulation studies, all factor loadings with

nonzero true values were generated from a truncated normal dis-

tribution with the same mean and standard deviation. However, the

distribution of factor loadings can exhibit considerable variance

and multimodality, in practice. Also, even if there is no strong and

meaningful relationship between a manifest variable and a factor,

their corresponding factor loading may have some nonzero value

due to noise. For the final simulation, we vary factor loading value

to a large degree and test the Lasso’s ability to detect different

degrees of factor loadings. From the buildup of simulation com-

plexity, we consider Simulation 3 to be a realistic case that

matches patterns of factor loadings we might expect to see in our

real-world application below.

For this simulation, we used the same (overlapping) factor

loading structure as in Simulation 2, but varied factor loading

values. Nonzero factor loadings were sampled from two truncated

normal distributions with different means and standard deviations:

• �jk � TN(0.8, 0.2; 0.6, 1.0) for high loadings

• �jk � TN(0.2, 0.1; 0.15, 0.3) for low loadings

Figure 9

Structural Recovery Results, Overlapping Structure
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This produced a pattern of bimodal factor loadings such that

some loadings had high values, whereas others were low.

After the loadings were sampled, we added some small pertur-

bation noise by sampling random deviates from the normal distri-

bution with mean zero and standard deviation equal to 0.05 and

adding these deviates to the factor loading matrix. Although the

amount of noise was not large, it further blended the pattern of

loadings from the structural constraints such that high factor load-

ings, low factor loadings, and zero factor loadings would be

difficult to discern. In other words, this additional variability

allowed us to assess whether the Lasso can discriminate small but

meaningful loadings from noise. All other settings and procedures

were identical to the previous simulations.

Results

Figure 11 shows the parameter recovery results for the factor

loading matrix. The left panel shows MAP estimates for the large

Figure 10

Factor Variance Estimates, Overlapping Structure
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Figure 11

Structural Recovery Results, Complex Structure
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factor loadings, the middle panel shows MAP estimates for the

small loadings, and the right panel shows the histogram of MAP

estimates for factor loadings centered at zero. Because of the

additional noise added to the true values, the distribution of pa-

rameter estimates in the right panel vary more than those in the

previous simulations. For the high and low factor loadings, the

recovery result is similar to the results from previous simulations.

The Pearson correlation between the true values and their esti-

mates is 0.968 in the Lasso FA NDDM but 0.587 in the FA

NDDM. The large decrease in the FA NDDM is because the factor

loadings corresponding to bias and drift rate are largely overesti-

mated. In contrast, the Lasso FA NDDM exhibits no systematic

bias and correctly estimates the loadings. Despite the noise, the

Lasso still performs well in detecting unimportant loadings. Given

our cutoff of 0.1, 238 out of 256 zero loadings are determined as

small and unimportant, resulting in a false alarm rate of 0.070. By

contrast, the plain model excludes 181 zero factor loadings and so

its false alarm rate is 0.293. Although the false alarm rates are

slightly higher in this simulation compared to the previous ones,

the reduction of the false alarm rate due to the Lasso is remarkable

as the miss rate does not change that much across the two methods

(0.016 and 0.008 for the FA NDDM with and without the Lasso,

respectively). Therefore, we conclude that the noise decreases the

accuracy of detecting zero loadings in both methods, but the Lasso

FA NDDM is robust and it outperforms the plain model.

Figure 12 shows the recovery of the factor loading structure.

The factor loadings are sorted in the same way as in Simulation 2

for visual clarity. The pale yellow and cyan colors in the true factor

loading matrix represent factor loadings due to noise. The result is

consistent with those of the previous simulations: the Lasso FA

NDDM outperforms the plain model as the MAP estimates with

the Lasso reproduce the true values well whereas those without the

Lasso suffer from biases.

The parameter recovery results for the other parameters (residual

variances, intercepts, factor variances and covariances, and single-trial

DDM parameters) are very similar to the previous simulations and the

Figure 12

Factor Loading Recovery Results, Complex Structure
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corresponding plots can be found in the supplementary materials

(https://github.com/MbCN-lab/LassoFANDDM). Despite the large

variability in the factor loading values and the perturbation noise, the

Lasso FA NDDM performs similarly well in this simulation, further

demonstrating the robustness of the proposed method.

Evaluation of the Estimation

As discussed in Section Lasso in Linear Regression Literature,

regularization methods can decrease the MSE of estimators by

reducing the variances at the expense of some biases. Because this

is a simulation study, we know the true values of the parameters

that generated data, and so we can compare the estimates obtained

by FA NDDM and the Lasso FA NDDM on the basis of their

relative amounts of bias. Similarly, we can evaluate the standard

errors of the factor loading estimates by calculating the posterior

standard deviations. Although we could have calculated these

quantities in the previous two simulation studies, for brevity, we

only report the standard errors and MSE for Simulation 3.

Figure 13 shows the standard errors (left) calculated from the

standard deviations of the estimated factor loading posterior dis-

tributions, and the MSEs (right) calculated from Equation 3 for the

FA NDDM (y-axis) and the Lasso FA NDDM (x-axis). In each

panel, the gray-shaded area designates regions in which the Lasso

FA NDDM outperforms the plain FA NDDM. As expected, every

standard error of the factor loading estimate is smaller when the

Lasso is applied. In addition, the MSE is considerably smaller

when the Lasso is applied. Specifically, of the factor loadings with

truly zero, small, and large values, 98.4%, 95.3%, and 100% of the

estimates, respectively, have smaller MSEs when the Lasso is

applied. This pattern of results emerges because the original FA

NDDM tends to overestimate the factor loadings and the Lasso

corrects this bias (see the structural recovery results in Figure 4, 8,

and 11). Hence, unlike what is typically expected from regular-

ization methods, the Lasso FA NDDM estimates of the factor

loadings have smaller biases despite the shrinkage induced by the

Lasso. The reduction of the MSE combined with the reduced

standard error leads us to the conclusion that the Lasso FA NDDM

produces better estimates of the factor loadings.

Effective Sample Size and Convergence

In our simulation study, we ran a combination of the conditional

posterior sampling and the DE-MCMC sampling (see Figure 3) for

20,000 iterations (the first 2,000 discarded as burn-in) with 12

chains. Having such large numbers of samples is recommended

because the number of parameters of the model can easily be large

as we attempt to jointly model multiple data modalities and esti-

mate single-trial parameters. Also, some parameters have high

autocorrelations due to the complex structure of the behavioral

models used in psychology. Specifically, it is often found that the

values of parameters in accumulator models trade off with one

another, which results in a highly correlated parameter space

(Turner, Sederberg, et al., 2013).

As a consequence of the high autocorrelations, the effective

sample sizes (ESSs) are not expected to be large relative to the

product of the number of iterations and chains. In the current

study, the ESSs vary largely across different parameters. The

factor loadings, which are of our main interest, have ESSs of

3315.9–199142.5 in the most complex condition (Simulation 3:

Complex structure). In our result, the high autocorrelations and

some small ESSs do not signal a convergence issue of the Markov

chains of the Bayesian samples. Figure 14 shows the posterior

densities of factor loadings with different ESSs. The posterior

Figure 13

Standard Errors and Mean Squared Errors, Complex Structure

Note. The left panel shows the estimated standard errors and the right panel shows the estimated mean squared

errors for the FA NDDM with (x-axis) and without (y-axis) the Lasso. The gray-shaded area represents regions

in which the Lasso FA NDDM outperforms the plain FA NDDM. The estimates are colored according to the

corresponding factor loading estimates from the Lasso FA NDDM. FA NDDM � factor analysis neural drift

diffusion model. See the online article for the color version of this figure.
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densities of a single factor loading were estimated by individual

chains and then plotted in the same panel to check the convergence

of the chains. The factor loading is displayed along with its

associated ESS on the top of each panel. The top left and bottom

right panels show the posterior densities of the factor loadings with

the minimum and maximum ESSs, respectively. Across all ranges

of the ESSs, the posterior densities are well centered around the

true values of the factor loadings which are indicated by the red

vertical lines. This shows that the chains converged well and the

high autocorrelations resulted from the correlated parameter space,

not from any convergence issue. In general, the factor loadings

with large true values are loosely constrained and so their posterior

densities vary more while those with small and unimportant true

values have highly constrained posterior densities. This is due to

the main feature of the global and local shrinkage priors (Section

Global and Local Shrinkage). Convergence of the other parameters

were assessed with their posterior samples in the same manner.

Also, the estimated values of Gelman-Rubin convergence diagnos-

tic (R̂) were smaller than 1.1 for all parameters (Gelman, 1996;

Gelman et al., 2013).

Application: Brain Networks Under the

Speed–Accuracy Trade-Off

Having assured ourselves of the performance of the Lasso under

a variety of complexity circumstances, we now apply the Lasso FA

NDDM to fMRI data from a perceptual decision making task. The

data are first reported in van Maanen et al. (2011), and they consist

of choice and response time from a simple, two-choice decision-

making task. The fMRI data are obtained in an 8-s scan that

preceded the stimulus presentation, because the scanning protocol

was designed to assess off-task behavior, and because decisions

within the task were typically far faster than the temporal resolu-

tion of the blood oxygenated level dependent response used in

fMRI. The task was a random dot motion task where subjects were

presented with 120 dots in a display, 60 of which move to the left

or to the right while the others move in random directions. The

subject was instructed to report the direction that most of the dots

were moving toward. Additionally, the instructions were manipu-

lated to either emphasize speed or accuracy by telling subjects to

either respond “as quickly as possible” or “as accurately as pos-

sible”. In the reported data, there were 17 subjects (seven female,

mean age � 23.1 SD age � 3.1) who participated in the task. More

details of the experiments, procedures, and preprocessing of the

fMRI data can be found in Turner, Wang, et al. (2017) and van

Maanen et al. (2011).

For the purposes of comparison, we fit both the Lasso FA

NDDM and the FA NDDM separately to trials involving a speed

emphasis and those involving an accuracy emphasis. The purpose

of fitting the models to separate data streams was to examine

whether brain networks exhibited different functional properties

when processing stimuli for speed rather than accuracy. We fit

them separately because, despite many theoretical arguments that

only a threshold should change across instruction, recent evidence

suggested that other parameters may also change as a function of

Figure 14

Posterior Densities of Factor Loadings

Note. Some factor loadings with different effective sample sizes (ESSs) are selected for the plotting purpose. Their posterior densities are calculated by

individual chains separately and then plotted in the same panel. The factor loading plotted and its ESS are displayed on top of each panel. The red vertical

lines indicate the true values of the factor loadings. See the online article for the color version of this figure.
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task instruction (Rae et al., 2014). Because we wanted to avoid any

undue specification of which parameters should change across task

instruction, we chose to allow all parameters to vary. In each of the

four fits (i.e., model by instruction), we specified the same prior

distributions for each model parameter, and used a combination of

conjugate posterior sampling and DE-MCMC sampling to sample

from their joint posterior distribution. We ran this algorithm for

20,000 iterations with 18 chains, and discarded the first 5,000

samples as a burn-in period. Hence, our parameter estimates are

based on 270,000 samples of the joint posterior distribution.

As discussed in the introduction, fitting either FA NDDM model

to data requires a constraint to prevent the factor loadings from

switching their signs. Turner, Wang, et al. (2017) used an element-

wise constraint by specifying a uniform prior from zero to one. By

doing so, all the loadings were constrained to be positive, circum-

venting the sign-switching problem altogether. A possible side

effect of this constraint is that, if some factor loadings have true

values outside of [0, 1], they cannot be estimated close to the

true values, resulting in some biases. As previously explained,

these biases can propagate to other factor loadings or variances as

the FA NDDM attempts to find a set of estimates that can best

approximate the covariance structure in the data.

To avoid these issues, we fit both the Lasso FA NDDM and the

FA NDDM using the conjugate prior distributions derived in

Equation 10, and the column-wise constraint suggested in Turner,

Wang, et al. (2017; and discussed above). Here, the solution relies

on our ability to fix the sign of one factor loading in each column,

resulting in three constraints for the FA NDDM. Fortunately,

considerable progress has been made in the field of model-based

cognitive neuroscience in mapping parameters of the DDM to

regions of the brain (Forstmann & Wagenmakers, 2015; Keuken et

al., 2014; Mulder et al., 2014; Turner et al., 2015; Turner, Wang,

et al., 2017). According to Turner, Wang, et al.’s (2017) result,

nondecision time, bias, and drift rate had high positive loadings for

brain regions of interest (ROIs) 33, 59, and 57, respectively, in the

speed condition (Figure 7 in Turner, Wang, et al., 2017). Hence,

we fixed the signs of the corresponding factor loadings to be

positive when fitting both models to data. The same constraints

were imposed on ROIs 39, 24, and 33 for nondecision time, bias,

and drift rate, respectively, in the accuracy condition.

Figure 15 shows the MAP estimates for the factor loading

matrices from the plain FA NDDM (the left two panels) and the

Lasso FA NDDM (the right two panels) for the accuracy (the first

and third panels) and speed (the second and fourth panels) condi-

tions. The MAP estimates are color-coded according to the legend

on the right-hand side. There are several—but not many—esti-

mated factor loadings with values larger than one, but they are

color-coded as if their loadings are exactly one for visual clarity.

In each matrix panel, the rows correspond to brain ROIs whereas

the columns correspond to the factors of nondecision time, bias,

and drift rate, respectively.

Figure 15 allows us to compare the factor loadings across the

two instruction conditions, as well as compare the estimates ob-

tained from the FA NDDM with those from the Lasso FA NDDM.

In comparing the two methods, Figure 15 shows that several ROIs

have high connectivity with the three single-trial parameters. To

more specifically examine the difference between the two meth-

ods, we applied a threshold of 0.6 to the factor loading values as

used in Turner, Wang, et al. (2017). In the FA NDDM results, 59

and 24 factor loadings are higher than the threshold in the accuracy

and speed conditions, respectively. The application of the Lasso

further simplifies this result, producing 32 and 20 large factor

loadings in those two conditions, respectively. Also, small load-

ings are estimated much closer to zero by the Lasso (more whitish

cells in Figure 15). Thus, the Lasso produces a more parsimonious

structure, allowing us to clearly explore meaningfully related brain

networks.

In the Lasso FA NDDM result, there are 17, 10, and 5 ROIs with

large loadings on the nondecision time, bias, and drift rate, respec-

tively, in the accuracy condition. Specifically, the ROIs with high

factor loadings on the nondecision time factor include the calcarine

sulcus (ROIs 1, 3, 21), cerebellum (eight), precuneus (31, 33, 55,

56), splenium (31), posterior intraparietal sulcus (38), thalamus

(45), superior frontomedian cortex (47), cingulate sulcus (51),

rolandic operculum (57), superior temporal gyrus (58), and medial

temporal gyrus (60). For the bias factor, ROIs such as the cere-

bellum (8, 13), medial temporal gyrus (22), superior frontomedian

cortex (34), posterior intraparietal sulcus (38), cingulate gyrus

(41), anterior insula (52), and frontopolar cortex (53, 59) have high

factor loadings. The drift rate factor has high loadings for the

following ROIs: precuneus (33), thalamus (45), parahippocampus

(46), superior frontomedian cortex (47), and frontopolar (59).

In the speed condition, a number of regions changes their

activation compared with the accuracy condition and there are 3, 8,

and 9 ROIs with large loadings on the nondecision time, bias, and

drift rate, respectively. For the nondecision time factor, ROIs such

as calcarine (21), ventromedial orbitofrontal cortex/precuneus

(24), and fusiform gyrus (28) have high factor loadings. Some

areas such as the middle frontal gyrus (ROI 39), superior fronto-

median cortex (47), midoccipital gyrus (48), cingulate sulcus (51),

precuneus (55), rolandic operculum (57), and superior temporal

gyrus (58) have high factor loadings on the bias factor. For the drift

rate factor, areas including the calcarine sulcus (three), cerebellum

(8, 13), thalamus (30, 45), precuneus (33, 56), superior frontome-

dian cortex (34), and cingulate gyrus (41) have high factor load-

ings.

Together, our results imply that some brain regions are highly

related to more than one or all cognitive components of interest,

whereas others do not show a noticeable relationship with them.

For example, precuneus has high factor loading values on the

nondecision time and drift rate in the accuracy condition. In

contrast, superior temporal gyrus (ROIs 18 and 19) does not have

large factor loadings across all the conditions in both methods.

Furthermore, the activation pattern changes considerably across

the conditions. For example, posterior intraparietal sulcus (38)

does not have high factor loadings in the speed condition, while it

does for the nondecision time and bias factors in the accuracy

condition. The two ROIs related to cerebellum, ROIs 8 and 13,

have high factor loadings in the accuracy condition, but their

activation switches to the drift rate in the speed condition. Some

differences in the activated areas between the current and Turner,

Wang, et al. (2017) results can be attributed to the choice of the

boundary constraints of the factor loading values: The parameter

range was [0, 1] in the previous study whereas there is no boundary

in the current analysis.

The regularization results may depend on the global penalty

parameter �, and thus different prior specifications for � can
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produce considerably different MAP estimates of the factor load-

ing matrix. In the sensitivity analysis (see the Appendix), it turned

out that our results are robust to the different choices for hyper-

parameters of �.

Discussion

In this article, we have demonstrated that dimensionality reduc-

tion techniques such as the Lasso can be combined with recent

endeavors of simultaneously modeling high-dimensional neural

data and computational theories of behavioral data. We have

illustrated the benefits of using our approach in the context of

identifying brain networks that correlate with model mechanisms,

such as the drift rate, starting point, and nondecision time param-

eters assumed by the diffusion decision model. We have shown

that the Lasso was successful in decreasing the false alarm rate and

producing a sparse composition of brain regions without compro-

mising the miss rate. Although the application of the Lasso has

been successful here, there are a few issues that merit further

discussion.

Alternative Regularization Techniques

Although the current article focused on the Lasso technique,

there are many other regularization methods that could be applied

to arrive at more parsimonious brain networks. Luckily, many of

these methods can be applied using the same framework presented

here by simply altering the priors within the Bayesian hierarchical

model. For example, Lu et al. (2016) proposed to use the slab-

and-spike prior (Mitchell & Beauchamp, 1988) in Bayesian factor

analysis. This prior is a discrete mixture of an uninformative

normal distribution (the slab), and either the Dirac delta function

concentrated at zero or a normal distribution with small variance

centered around zero (the spike; Lu et al., 2016; van Erp et al.,

2019). The slab-and-spike prior works to remove small factor

loadings by shifting their corresponding estimates toward zero

Figure 15

Factor Loading Matrices for Experimental Data

FA (Accuracy) FA (Speed) Lasso (Accuracy) Lasso (Speed)
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Note. The left and right panels show the factor loading matrices estimated for the FA NDDM (left two) and the Lasso FA NDDM (right two) after fit to

data from van Maanen et al. (2011). Here, the rows represent different brain regions of interest, whereas the columns correspond to mechanisms of the

diffusion decision model (left to right: nondecision time, bias, and drift rate). Each element within the factor loading matrices is color coded according

to the legend on the right-hand side. See the online article for the color version of this figure.
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(i.e., the spike), and retaining large factor loadings by shifting

them toward the part of the prior containing the slab. When using

the Dirac delta function instead of the mixture of normals, it is

possible to completely eliminate coefficients with small and un-

important factor loadings (Lu et al., 2016). Eliminating features

can be advantageous in the case of uncertainty about the estimated

factor loading values. For example, in our applications we applied

an arbitrary criterion of 0.1 (although this value has been widely

accepted; Feng et al., 2017a, 2017b; Guo et al., 2012; Hoti &

Sillanpää, 2006), but setting the criterion to zero would avoid the

arbitrary nature of choosing a criterion. In summary, many other

regularization methods could be investigated using the model

structure presented here by simply adjusting the prior appropri-

ately. The proposed Lasso application should be understood as a

first attempt to apply a shrinkage estimation technique to the joint

modeling approach of linking brain and behavior, and we look

forward to further applications of other regularization methods.

The Paradoxical Advantage of Shrinkage

In the Bayesian hierarchical modeling, shrinkage is the tendency

for a parameter to more closely resemble the prior information

imposed by the upper-level structure rather than that of the like-

lihood. Of course, an ideal method of inference would allow the

data to speak prominently in the parameter estimation process, and

so shrinkage due to the hierarchical structure would appear to be a

negative aspect of our research. However, hierarchical methods

allow the data to control the prior through the hyperstructure that

is informed by jointly estimating all model parameters. Hence,

while shrinkage may appear to be problematic at the level of an

individual subject, it is statistically optimal when considering the

full set of subjects, and the relative importance of different levels

of the hierarchical model (e.g., subject- vs. group-level effects).

Regularization methods that exploit shrinkage trade a small

amount of bias and a large standard error to obtain a large reduc-

tion in the MSE. Hence, regularization methods generally produce

more stable and reliable estimators with reasonably small biases.

The Lasso method in this article lowered the MSE to a large extent

compared with the FA NDDM without the Lasso. This was an

expected outcome. However, it was unexpected that the Lasso FA

NDDM would also have smaller biases and smaller standard errors

in the factor loading estimates. This result occurs because the

original FA NDDM imposed shrinkage effects on the single-trial

diffusion model parameters (i.e., factor scores) from the model’s

hierarchical structure. The shrinkage of these model parameters

then propagated to the factor loading estimates, biasing the results.

Applying the Lasso to the FA NDDM seems to correct the biases

of the factor loading estimates. Although this result may be limited

to the current study, it is possible that regularization methods can

remedy the bias that shrinkage causes within the hierarchical

models. We save the formalization of a precise statistical and

mathematical mechanism that explains this result for future re-

search.

Generalization of Lasso FA NDDM

Although the present article considers the use of regularization

techniques on the identification of brain networks, this particular

application was only a case study. In general, any type of covariate

can be used within the FA NDDM, and the Lasso method can also

be applied. Furthermore, the application of FA NDDM is not

restricted to a single covariate. For example, Turner et al. (2016)

used a joint model to simultaneously model EEG, fMRI, and

choice response time data from an intertemporal choice task.

Although Turner et al.’s (2016) approach did not use a factor

structure, such modeling efforts are now well within reach. As

another example, subjects’ personal attributes and clinical mea-

sures could also be exploited to further constrain the model (e.g.,

dysphoria and tendency to ruminate, Vandekerckhove, 2014). Be-

cause linking more data sets requires more complex models to deal

with information from multiple sources, it is possible that these

other sources could obscure networks of interesting variables,

hindering our understanding of the underlying latent processes.

The Lasso method proposed here should be a useful tool to help

identify important features of psychological phenomena from

noisy conglomerates of data.

Conclusions

There is a tremendous amount of data in the fields of psychol-

ogy and neuroscience, but very little theory that can be used to

explain why patterns of (especially neural) data are dramatically

altered across experimental conditions, individual subjects, or even

across time. Until such a unified theory of the brain exists, we can

use computational models to examine how experimental manipu-

lations affect neural and behavioral data. In the field of mathemat-

ical psychology, the DDM (and other sequential sampling models)

has provided the theoretical groundwork necessary to explain how

differences in behavioral data emerge as a function of individual

differences, intelligence quotients, or experimental manipulations.

Our goal was to build a computational framework that would

enable such a model to transcend behavioral data and establish

context when interpreting complicated patterns in high-

dimensional neural data. Such a framework should help to isolate

the aforementioned effects and build toward a unified theory of

brain-behavior dynamics.
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Appendix

Robustness Check for Different Prior Specifications of the Global Penalty Parameter

The effectiveness of the Lasso depends on the global penalty

parameter �, and different priors for � can produce considerably

different MAP estimates of the factor loading matrix. To ensure

that our results in the application section were not overly sensitive

to the specification for the prior on �, we also conducted a

sensitivity analysis by specifying four different priors for �, and

refitting the Lasso FA NDDM. In the previous applications (Feng

et al., 2017a, 2017b; Guo et al., 2012; Song et al., 2014; Wang et

al., 2013), a gamma prior has been used successfully such that �2 �

Gamma(�0�, �0�), where �0� is commonly set to 1 as a means to

specify an uninformative prior. Previous sensitivity results have

examined the role of �0� by setting it to the following values: 0.1,

0.05, 0.01, and 0.005.

Figure A1 shows the estimated factor loading matrices under

four different settings for �0� in the gamma prior: �0� � {0.1,

0.05, 0.01, 0.005}. As in previous figures, each value of the

factor loading matrix is color coded according to the legend on

the right-hand side. Across all settings for �0�, Figure A1 shows

that the estimated factor loading matrices are quite similar. In

large part, these factor loading results are due to only small

differences in the MAP estimates obtained for �, which were

5.603 (�0� � 0.1), 5.393 (�0� � 0.05), 5.320 (�0� � 0.01), and

5.301 (�0� � 0.005). These results assure us that our conclu-

sions are insensitive to our choice of prior, and that the estimate

of the penalty term � is determined largely from the data rather

than the prior.

(Appendix continues)
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Figure A1

Effects of Penalty Hyperparameters

� = 1, � = 0.1 � = 1, � = 0.05 � = 1, � = 0.01 � = 1, � = 0.005
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Note. Each panel shows the estimated factor loading matrix obtained from the accuracy condition under four different hyperparameter settings for the

penalty term. See the online article for the color version of this figure.
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