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Abstract

In a world of big data and computational resources, there has been a growing interest in further validating
computational models of decision making by subjecting them to more rigorous constraints. One prominent
area of study is model-based cognitive neuroscience, where measures of neural activity are explained and
interpreted through the lens of a cognitive model. Although some early work has developed the statistical
framework for exploiting the covariation between brain and behavior through factor analysis linking functions,
current methods are still far from providing parsimonious accounts of high-dimensional (e.g., voxel-level)
data. In this article, we contribute to this endeavor by investigating the fidelity of regularization methods such
as the Lasso. Here, a combination of local and global penalty terms are applied to pressure elements of the
factor loading matrix toward zero, reducing the false alarm rate. Such penalties facilitate the emergence of
parsimonious network structure in the study of neural activation, giving way to clearer interpretations of
high-dimensional data. We show through a set of three simulation studies and one application to real data that
the Lasso can be an effective regularization method in the context of linking complex patterns of brain data
to theoretical explanations of decisions. Although our analyses are specific to linking brain to behavior, the
structure of the model is invariant to the type of high-dimensional data under investigation.

Translational Abstract

There has been a recent surge of interest in further validating the assumptions of computational models of
decision making by examining how well they simultaneously explain data from both behavior and neurosci-
entific measures. Although some early work has developed statistical methods for evaluating the plausibility
of computational models in this context, current methods are still far from providing parsimonious accounts
of such high-dimensional (e.g., voxel-level) data. In this article, we contribute to this endeavor by investigating
the fidelity of regularization methods such as the Lasso. We show through a set of three simulation studies and
one application to real data that the Lasso is an effective regularization method, where parsimonious structures
of brain-behavior connections emerge from their application. Although our analyses are specific to linking
brain to behavior, the structure of the model is invariant to the type of high-dimensional data under

investigation.
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The field of cognitive science is faced with two primary options
for studying how experimentally derived variables are related to
the dynamics of cognitive processes. In the first approach, care-
fully constructed experimental designs map levels of an indepen-
dent variable onto changes in brain activation, as measured
through functional MRI (fMRI), the electroencephalogram (EEG),
or other modalities. Systematic changes in brain measurements as
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a function of important stimulus properties are meant to substan-
tiate claims about the functional role of the associated brain
regions. In the second approach, cognitive operations are ab-
stracted away and treated as a set of statistical or mathematical
processes, whose underlying dynamics are controlled by latent
parameters. Once fit to data, the parameter estimates can be
compared across the levels of the independent variable, where
changes in the parameters are taken as an indicator that the
associated cognitive processes have changed.

Both approaches have considerable strengths. In the first ap-
proach, identifying subcomponents of the organ housing mental
operations that correspond to specific properties of stimuli facili-
tates localized interpretations of how the brain processes informa-
tion. However, the localization of brain areas does not, by itself,
permit interpretations of the functional role of those brain areas.
There are potentially many reasons why a brain region would
respond to a particular stimulus in a particular context. In the
second approach, abstracting away complicated neural dynamics
allows researchers to focus on high-level interpretations of how
mechanisms and processes change in response to changes in the
experimental design (e.g., instruction, stimuli). However, one can
argue that the power of abstraction is also a curse: Because the
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model is not sufficiently specified to reflect the biology of the
system, one lacks the constraint that would permit an analysis of
the associations between the mechanisms of the model and the
supposed origins of those mechanisms in the brain.

Given the strengths and limitations of each approach, a growing
number of researchers have advocated for the advancement of
cognitive neuroscience by blending cognitive models with neuro-
physiology. The goal is to use the abstractions provided by com-
putational models of cognition to “steer” the interpretation of brain
function. Although there are now many different ways of linking
brain dynamics to model parameters (Forstmann & Wagenmakers,
2015; Turner, Forstmann, et al., 2017), in this article, we will focus
on the joint modeling framework because it most naturally lends
itself to the application of dimensionality reduction techniques,
which is the primary focus of our research. In the joint modeling
framework, fluctuations in neural data are statistically mapped to
fluctuations in the parameters of a cognitive model. There are
many types of statistical or mathematical maps that can be formed
(see Turner, Palestro, et al., 2019, for a review), and typically the
map follows a parametric form (Turner, Forstmann, et al., 2019),
although nonparametric functional forms are also possible (Bahg
et al., 2020). Predominantly, the probabilistic map that is used is a
multivariate normal distribution (Palestro et al., 2018; Turner,
Forstmann, et al., 2013; Turner et al., 2015; Turner et al., 2016;
Turner, Wang, et al., 2017). The multivariate normal distribution is
a convenient choice because it allows every brain region to be
associated with every model parameter in a pairwise fashion
through the covariance matrix. However, as one might expect,
such exhaustive associative techniques become computationally
prohibitive as the number of brain areas increases, as it would
when investigating activity at the voxel rather than region level.

A first attempt at reducing the dimensionality of probabilistic
linking functions was considered in Turner, Wang, et al. (2017),
where the covariance matrix between brain regions and model
parameters was decomposed through a factor analysis linking
function. This reduction technique dramatically altered the scal-
ability of the joint models they investigated, such that increases in
the number of brain regions had only a linear effect on the
complexity of the covariance matrix, compared with a quadratic
effect in the standard approach. Despite this advancement, the
linking functions used in Turner, Wang, et al. (2017) are most
appropriate for problems of a confirmatory nature; that is, they are
best suited for modeling brain-behavior dynamics when the pattern
of factor loadings can be roughly prescribed prior to the analysis.
However, in many cases, because we do not know the set of brain
regions that will connect to each cognitive mechanism, we end up
estimating every possible factor loading. What is needed is a
technique that will allow us to unveil a simple structure of the links
between brain and behavior at an affordable cost.

The goal of this article is to develop and apply dimensionality
reduction techniques to factor analysis linking functions, with
applications focused on the types of linking functions used in
cognitive neuroscience. The method we focus on is the Lasso (least
absolute shrinkage and selection operator), which pushes weak
associations between cognitive model parameters and brain re-
gions toward zero, and allows strong associations to remain strong.
We show, through three simulation studies and one application to
real data, that such a regularization method allows for simple

linking structures to emerge, while preserving the essential pat-
terns of factor loadings induced in the simulations.

The outline of this article is as follows. First, we review regu-
larization methods, and discuss the many ways in which the Lasso
has been applied. We then discuss the effects that the Lasso can
have on the estimated factor loadings, namely that its shrinkage
effect can detect and remove small and unimportant loadings and
accentuate the specific pattern of factor loadings. Next, we discuss
the factor analysis linking function and the cognitive model used in
Turner, Wang, et al. (2017), and then discuss how the Bayesian
Lasso can be applied to such a model. We then explore the utility
of the Lasso technique in a set of three simulation studies. Here,
we compare a model that uses no Lasso with one that does in a
variety of factor-loading structures ranging from simple to com-
plex. Finally, we apply the Lasso method to data from a real
experiment and show that simpler structures are found when using
the Lasso that may facilitate clearer interpretations of the links
between brain and behavior.

Review of Regularization Methods

In this section, we review relevant statistical regularization
methods while focusing our presentation on the Lasso method.

Lasso in Linear Regression Literature

The Lasso was first proposed by Tibshirani (1996) as a regu-

larization method for a linear regression model
y=XBte,

where y is an (N X 1) vector of observations of a single dependent
variable, X is an (N X (p + 1)) matrix of independent variables, 3
isa ((p + 1) X 1) vector of regression coefficients, and € is an
(N X 1) vector of residuals assumed to follow a normal distribu-
tion with mean zero and variance o®>. When using either ordinary
least squares (OLS) or maximum likelihood estimation (MLE),
parameters such as B and o are estimated by minimizing the

following objective function, known as the sum of squared errors
(SSE):

SB) = — XB)'(y — XB) ()]
Under some assumptions, Equation 1 can be solved analytically
to produce estimates for the regression coefficients:'

B =X"X)"'XTy.
In regularization methods—including the Lasso—the objective
function in Equation 1 is modified to

SB) =@ —XB)'»y—XB) + x| BII. (2)
where an additional term
o\
IBIl.= (E IB,-I’)
j=1

penalizes the SSE, based on the number and magnitudes of coef-
ficients in the model. The intuition is that although adding more

! Note that this is the estimate without any constraint on the parameter
space.
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coefficients to a regression model can decrease the SSE, the
decrease must be larger than the increase in the penalization term
on the right to justify the increase in the number of parameters. To
allow flexibility in the regularization, the penalty term is further
scaled by the parameter k. When k = 0, no penalty is applied, and
so the estimates would be equivalent to the OLS (or MLE) esti-
mates. As k increases, the penalty term has a larger shrinkage
effect on the parameter estimates, and in some regularization
methods, this yields fewer large coefficients. Because the value of
the SSE depends on the data, it is difficult to specify the penalty
parameter k a priori. In practice, k is tuned by a cross-validation
(e.g., leave-one-out cross-validation) procedure to reduce general-
ization error. For this reason, the parameter is also called the
“tuning” parameter.

The penalty term can be interpreted as applying a constraint
on the coefficient parameter space. The penalty term is defined
as a r-norm of regression coefficients, which defines a subspace
within the parameter space. Different values of r correspond to
the restricted regions of different shapes. As examples, when
setting r = 1, the Lasso regression is applied (Tibshirani, 1996),
whereas if r = 2, the Ridge regression is applied (Hoerl &
Kennard, 1970a, 1970b). Figure 1 illustrates how these two
different settings of r adjust the OLS estimates. The left-most
panel shows a standard estimation problem for two coefficients,
B, (x-axis) and B, (y-axis). The contours show the shape of the
OLS objective function, with the best estimate appearing in the
center. The middle and left columns illustrate the effects of the
Ridge and Lasso penalization terms, where the top row shows
the influence of only the penalty term, and the bottom row
shows the same penalty terms in the context of the OLS
problem on the left. In the Lasso regression, the shape of this
constraint is a diamond (right panel), whereas in the Ridge
regression, the shape is circular. In each of the joint component
plots (bottom middle and right), the best parameter estimate is
represented as the black dot. In the Ridge regression, the
location of the estimate would be any point such that the two
circles meet, whereas in the Lasso regression, the estimate is
likely to be found at the corner of the restricted region because
the region is diamond-shaped. In this example, the Lasso esti-
mate of the second regression coefficient 3, is “shrunk” to zero
(i.e., the vertical axis), effectively removing it from the result-
ing model. By removing unnecessary variables—that is, vari-
ables that do not contribute substantially to the model’s fit to
data—the Lasso ensures that the most parsimonious model is
procured for a given phenomenon of interest. In this way,
regularization methods simultaneously provide parameter esti-
mates, selection among variables, and model selection.

Another strength of regularization methods is that their re-
sulting estimates have smaller mean squared errors (MSE) and
prediction errors (PE; Friedman et al., 2001; Tibshirani, 1996).
Suppose B is an estimate of a regression coefficient 3. The MSE
of B is defined as

MSER) =E[B — BY1 = Var®) + E@®) - B> ()

Here, MSE is defined as a measure of the distance between the

estimate and the true coefficient value, which can be decomposed

in Equation 3 to show that the MSE represents unbiasedness and
stability of an estimator.

KANG, YI, AND TURNER

The OLS estimator of a regression coefficient is known as the
best linear unbiased estimator (BLUE; Ravishanker & Dey,
2001), which achieves the minimum variance among the unbi-
ased estimators. Due to shrinkage, the estimators of the regu-
larization methods deviate from the OLS estimator, and thus
they have a bias (i.e., they underestimate coefficients). How-
ever, by allowing this small bias, the shrinkage estimators can
reduce variance to a large extent and achieve a smaller MSE. A
similar statement holds for the PE as it can be shown that
PE(B) = MSE(B) + o2 (Friedman et al., 2001; Tibshirani,
1996). Hence, regularization methods can provide more stable
estimators with lower MSE and PE.

Although Equation 2 uses only a single penalty parameter,
different regularization methods may have more than one penalty
parameters in the objective function. For example, Elastic Net
regularization (Zou & Hastie, 2005) uses two penalty parameters,
one of which corresponds to the Ridge penalty and the other
corresponds to the Lasso penalty. The technical details and differ-
ences among different regularization methods are beyond the
scope of this article, and so we refer the interested readers to van
Erp et al. (2019). The regularization methods have been applied to
other models such as multivariate regression (Li et al., 2015; Peng
et al., 2010; Price & Sherwood, 2018; Rothman et al., 2010), factor
analysis (Choi et al., 2010; Hirose & Konishi, 2012; Hirose &
Yamamoto, 2015; Jung & Takane, 2008; Ning & Georgiou, 2011),
structural equation modeling (Jacobucci et al., 2016), and item
response theory modeling (Houseman et al., 2007; Magis et al.,
2015).

Our final note about regularization methods is their Bayesian
interpretation (Park & Casella, 2008; Tibshirani, 1996). Within the
Bayesian framework, parameters can be constrained by specifying
a priori information about them, and this specification comes in the
form of a prior distribution on the model parameters. For example,
the constraint enforced by the Lasso can be represented by the
following Laplace prior:

fB) = Jexp(=xIB;). )

Based on this interpretation, the Lasso has been extended to
Bayesian models including linear regression and latent variable
modeling, which are reviewed in the following sections.

Bayesian Lasso

As Tibshirani (1996) pointed out, the regularization penalty
imposed by the Lasso regression is related to a Laplace prior on the
regression coefficients, and this relationship has motivated several
implementations of the Lasso when doing Bayesian linear regres-
sion (Bae & Mallick, 2004; Figueiredo, 2003; Park & Casella,
2008; Yuan & Lin, 2006). A notable example is Park and Casella’s
(2008) method in which they proposed to use a conditional
Laplace prior of the following form:

e—K‘le/\/;' (5)

I
K
w(Blo’) =11
=12V a2
Conditioning on the residual variance o plays an important role
as it ensures that the posterior distribution of 3 is unimodal. When

this is the case, the posterior will have a unique maximum, which
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Figure 1
Constraints Imposed by Regularization
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Note. The left-most panel illustrates a parameter estimation problem for two parameter coefficients (axes), and the shape of the
ordinary least squares solution (OLS) is represented as contours. The next columns illustrate the influence of regularization methods
on the OLS, where the marginal (top row) and joint (bottom row) components show the Ridge (second column) and Lasso (third
column) terms, respectively. Within the joint component plots, the black dot shows the best estimate of the model coefficients when
regularization is applied. See the online article for the color version of this figure.

facilitates clear interpretations of the coefficients. Based on the
normal scale mixture representation of the Laplace distribution,
Park and Casella (2008) derived the hierarchical representation of
the Bayesian Lasso regression model. Namely,

yll-L’X, B’ 0'2 -~ Nn(Ml,,+XB,O'21,,),
Blot, ... .7 N,0,,0°D,), D,=diag(s}, ... ,73), and
L)
ot T, ~ q-r(oz)d(rZH %e"z*fz‘/zdﬂr]z, o’ ..., >0.
j=1

©)

Park and Casella (2008) also derived the full conditional distri-
bution of the model parameters so that estimation can be done
using Gibbs sampler. In the above expression, new parameters 1,

., 72 are introduced to connect the regression coefficients B to
the tuning parameter k. As different regression coefficients have
different values of 77, these parameters modulate the penalizing
effect of k on the corresponding regression coefficients. To find
the best value of k, one can again use cross-validation methods,
but in the Bayesian context, such procedures will be remarkably
more computationally demanding than in the frequentist case. As
alternatives, Park and Casella (2008) proposed to use either an
empirical Bayes method or a gamma distribution hyperprior for k2.
Imposing a gamma prior for k? results in a conjugate posterior,
meaning that the model parameters can be efficiently estimated
using Gibbs sampling techniques.

Bayesian Regularized Latent Variable Modeling

Park and Casella’s (2008) hierarchical framework for the Bayes-
ian Lasso and other regularization methods have been extended to
latent variable models in a variety of applications (Feng et al.,
2017a, 2017b; Guo et al., 2012; Song et al., 2014; Wang et al.,
2013). For example, Guo et al. (2012) proposed the Bayesian
Lasso for the semiparametric structural equation model (SEM).
The SEM consists of a measurement model (a factor analysis
model for the measurement of latent variables) and a structural
model (a set of regression models of latent variables models) and
Guo et al. (2012) applied Park and Casella’s (2008) method to the
structural model but not to the measurement model (cf., Lu et al.,
2016). Guo et al. (2012) used separate penalty parameters (i.e.,
multiple k parameters) for endogenous independent variables and
nonparametric functions of exogenous variables. Thus, the pro-
posed method is closer to the group Lasso (Yuan & Lin, 2006) in
which a predetermined group of regression coefficients is penal-
ized by a common penalty term and different groups are penalized
by different penalty terms. Furthermore, Guo et al. (2012) allowed
different penalty parameters for different endogenous latent vari-
ables so that regression coefficients for different dependent vari-
ables in the model are penalized by different penalty terms. This is
different from the frequentist approach to multivariate regression
and SEM in which the same penalty term is applied to all model
equations for different dependent variables (Jacobucci et al., 2016;
Li et al., 2015; Peng et al., 2010; Price & Sherwood, 2018;
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Rothman et al., 2010). Having different penalty terms for different
groups of parameters can be useful when the groups should be
penalized by different degrees. However, when Park and Casella’s
(2008) hierarchical representation of the Bayesian Lasso is ap-
plied, multiple penalty terms may not be required due to the effect
of 7 parameters, which will be described in detail in the next
section. In contrast to Guo et al.’s (2012) approach, the Bayesian
Lasso will be applied to the measurement model with a single k
parameter in our method.

Similarly to Guo et al.’s (2012) proposal, Bayesian regulariza-
tion methods have been extended to models with latent variables
including semiparametric SEM (the Elastic net and the fused
Lasso, Wang et al., 2013), univariate and bivariate nonparametric
functions of latent variables (the Lasso, Song et al., 2014), uni-
variate ordinal regression (the adaptive Lasso, Feng et al., 2017a),
and multivariate generalized latent variable models (the adaptive
Lasso, Feng et al., 2017b). In all of these cases, different penalty
terms have been used for different dependent variables.

Global and Local Shrinkage

In the hierarchical representation of the Bayesian Lasso, addi-
tional parameters, usually denoted as 7, are introduced. These
parameters produce an interesting difference from the frequentist
regularization methods in that they modulate the penalizing effect
of the global penalty term k on each of the regression coefficients.
Polson and Scott (2011, 2012) studied a group of shrinkage priors
with such parameterization, which they called global and local
shrinkage priors. Under these priors, estimation of regression
coefficients depends on both global and local shrinkage parame-
ters. The global parameter controls a general magnitude of penal-
ization on all regression coefficients within a model, just as the
penalty parameter k does in the frequentist regularization methods
(e.g., Equation 2). The local parameters, each of which corre-
sponds to a single regression coefficient, modulate the effect of
global penalization on each coefficient. In other words, the mag-
nitude of the shrinkage effect differs by coefficient when global
and local shrinkage priors are used.

Ideally, small coefficients will be greatly penalized, and large
coefficients will be only weakly penalized. This pattern will ensure
that small coefficients will be removed from the model whereas
the estimates for large coefficients will be less biased by the
penalization terms. In this sense, the global and local priors are
advantageous in that they find a sparse model while simultane-
ously estimating large coefficients with less bias compared with
the frequentist methods. The same advantage might be manufac-
tured in the frequentist method by allowing many tuning param-
eters (e.g., the group Lasso and the adaptive Lasso), but it would
be more difficult to update all tuning parameters via cross-
validation. By contrast, global and local shrinkage parameters are
just a part of a Bayesian hierarchical model, and can be estimated
via standard sampling methods when performing Bayesian estima-
tion. Furthermore, many of the global and local shrinkage priors
have conjugate posteriors, which facilitates estimation.

The Bayesian Lasso proposed by Park and Casella (2008) uses
the same parameterization and enjoys the global-local shrinkage
effect (Polson & Scott, 2011). Figure 2 illustrates how the Bayes-
ian Lasso modulates shrinkage of the regression coefficients. Data
were simulated with sample size of N = 500 and p = 100

KANG, YI, AND TURNER

Figure 2
Modulation of the Shrinkage Effect Under a Global-Local
Prior
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Note. The Bayesian Lasso regression (Park & Casella, 2008) is fit to
simulated data and the estimated regression coefficients 3 (x-axis) are
shown along with their corresponding local penalty parameters 72 (y-
axis). The global penalty parameter was estimated to be k = 2.447. See
the online article for the color version of this figure.

covariates. We randomly sampled values for the regression coef-
ficients from a uniform distribution on the interval (—0.5, 1.5).
Although the precise interval was arbitrarily selected, our main
goal was to cover zero with a reasonable amount of overlap. We
then constructed a dependent variable by multiplying the regres-
sion coefficients with the simulated data, and then adding random
noise from a normal distribution with mean zero and standard
deviation of 2. We then fit the Bayesian Lasso regression model to
the simulated data.

Figure 2 shows the estimated regression coefficient 3 (x-axis)
against the corresponding local penalty parameters T (y-axis). The
global penalty parameter was estimated to be k = 2.447. However,
its effect is modulated by different values of the local parameters.
Figure 2 shows that the local penalty parameters are large for large
coefficients, but are small for small coefficients. This particular
pattern makes the posterior variances of the regression coefficients
smaller as the coefficients are estimated to be nearer to zero (see
Equation 6). As a result, smaller coefficients will shrink to zero
whereas only weak shrinking effects will be imposed on larger
coefficients.

The Factor Analysis Neural Drift Diffusion Model

Turner, Wang, et al. (2017) proposed the factor analysis neural
drift diffusion model (FA NDDM) as an extension of the previ-
ously proposed multivariate normal neural drift diffusion model
(MVN NDDM). Both are considered joint models (Palestro et al.,
2018) in which behavioral data B and neural data N are analyzed
simultaneously by connecting the parameters of appropriate sta-
tistical or computational models. For example, one may assume a
computational model with parameters @ for the behavioral data,
and a statistical model with parameters & for the neural data. In
both the FA and MVN NDDMs, a standard statistical model is
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used to analyze the pattern of neural data, and a diffusion decision
model (Ratcliff, 1978; Ratcliff & McKoon, 2008) is used to
explain both choice and response time from a psychological ex-
periment involving a simple two-choice perceptual task. To com-
plete the model, the joint relationship between 0 and & must be
specified. In both the FA and MVN NDDMs, a multivariate
normal distribution with mean p and covariance matrix % is
assumed to create a linking function for the parameters 0 and o,
such that

(8;,8) ~ MVN(p, %),

where the subscript i indicates the i-th subject or i-th trial.

While the mean p is freely estimated in both of the FA and
MVN NDDMs, the two models differ in how the covariance
matrix ¥ is structured. The MVN NDDM assumes a full rank
covariance matrix 2, where each element is estimated when fit to
data. As shown in Turner, Wang, et al. (2017), the complexity of
such a model grows quadratically with increases in the number of
neural features, which prohibits being able to fit the model to
neural data at the voxel level, for example. By contrast, in the FA
NDDM, the covariance matrix (X) is decomposed by a factor
analysis model

Y =ADPAT+ W,

where A is a factor loading matrix, ® is a factor variance-
covariance matrix, and W is a diagonal matrix of residual vari-
ances. Parameters for these matrices are freely estimated except for
those on which constraints are imposed. With the factor analytic
structure, elements within the matrix ¥ are not freely estimated as
they are now functions of the factor loadings, factor variances and
covariances, and residual variances. The dimensions of the matri-
ces and the multivariate normal distribution in the NDDM models
are determined by the number of behavioral and neural parameters.
Mathematically, the FA NDDM can be fully expressed as

b:|la,t,z,d. ~ Diffusion(a,t,z;,d;),
. T .
(log(t,-), logit(%),di,n,r) ~ MVN,, (. 2), 3 =APAT+ W,
I 0, 0,,
where A= [ J }a.nd‘l':[o ! qx*’ }
Aqu PXq 11'p

()]

where b, is a (2 X 1) vector of choice and reaction time (RT) in the
i-th trial, n; is a (p X 1) vector of all p neural covariate in the i-th
trial, I, is the g-dimensional identity matrix and 0, and 0, .. , are
matrices of zeroes of size (¢gXq) and (¢ X p), respectively. “Dif-
fusion” indicates the probability density function of the Wiener
diffusion process, which is a popular model in psychology for
explaining the joint distribution of choice and response time (dif-
fusion decision model or DDM; Ratcliff, 1978; Ratcliff & McK-
oon, 2008; Wabersich & Vandekerckhove, 2014). For example,
subjects may be asked to decide which direction most of the dots
are moving within a cloud of randomly moving dots. The Wiener
process model assumes that, when a stimulus is presented, a
subject starts to accumulate evidence at a starting point z, at a mean
rate of d; over time. This evidence continues to accumulate until it
reaches one of two boundaries, each of which represents a choice
option (e.g., “left” and “right”). At this time, a choice C; is made.
The separation between these two boundaries is represented as a.
The time at which the process terminates determines a decision
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time (DT;). The model also assumes the presence of nondecision
processes such as visual encoding time and motor response time,
which are captured by the nondecision time parameter ¢, Hence,
the model’s predicted response time is R7;, = DT, + t. The
parameters represent cognitive components of decision-making
processes. The drift rate d; represents the quality of evidence
accumulation and the decision threshold a measures the amount of
information required to make a decision. Also, the starting point z;
is a measure of an initial bias toward one of the two choice options.
Nondecision processes can be collectively represented by the
nondecision time #,.

Because the diffusion model is used as the behavioral submodel
within the FA NDDM, the behavioral parameters 0 include all the
diffusion model parameters across trials, such that @ = (a, t, z, d),
where ¢, z, and d are the vectors of nondecision times, starting
points, and drift rates over all trials, respectively. Because the
nondecision time cannot be negative, and the starting point is
bounded between 0 and a, they are first transformed to match the
support of the multivariate normal distribution and then associated
with the neural part of the FA NDDM via the overarching linking
function. While any neural model can be used for the neural data,
it is also possible to directly link the neural features to behavioral
parameters so that neural sources can be mapped directly to
components of a cognitive process (e.g., the diffusion model
parameters in this example). We adopt the latter approach and in
this case, the neural parameters & are just set equal to the neural
features (i.e., ® = N). With this specification, the number of latent
variables in the linking function for the i-th trial is ¢ = 3, and the
number of neural sources p is equal to the number of neural
features.

By imposing the factor structure on the covariance matrix, the
FA NDDM provides a remarkable reduction in the total number of
parameters that needs to be estimated, going from %(p +q)p +
g + 1) in the MVN structure to pg + %q(q +1)+p= (p +
%q)(q + 1) in the FA structure. Because the number of manifest
variables p is usually large (e.g., 32, 64, or 128 if the neural data
are from EEG recording) while the number of factors ¢ is much
smaller (e.g., three in both the previous NDDM approaches in
Turner et al., 2015, and Turner, Wang, et al., 2017), the total
number of parameters is greatly reduced in the FA NDDM.

A further strength of the FA NDDM is that it allows for a
systematic study of how a brain network is related to the factors
employed in the model. Factor loadings represent the strength of
linkage between corresponding factors and manifest variables. If a
neural feature has a high factor loading for one factor but not for
the others, then it can be concluded that the brain region measured
by that neural feature is largely related to the factor with the high
loading. In the FA NDDM, the latent variables are single-trial
diffusion model parameters (i.e., drift rate, starting point, and
nondecision time). Thus, the FA NDDM promotes the identifica-
tion of which brain regions are related to cognitive constructs such
as the quality of evidence accumulation, a state of initial activa-
tion, and nondecision processes such as stimulus encoding and
response production, via factor loadings. Furthermore, if some of
the brain regions are collectively related to a given factor, we can
consider it model-based evidence for the functional connectivity of
those regions. For example, if several neural features load highly
on the drift rate factor, we could conclude that those features are
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components in the brain network engaged in evidence accumula-
tion during decision-making tasks. Although both the MVN
NDDM and FA NDDM can be used to identify brain networks, the
latter method can provide a simpler way to investigate networks
through the factor structure whereas the former requires that all
variances and covariances be estimated before a network analysis
can be performed.

Equation 7 shows that the FA NDDM is a hybrid of confirma-
tory and exploratory factor analysis. On the one hand, it is con-
firmatory because the factors in the model are fixed to be the
theoretical components of the DDM (i.e., nondecision time, bias,
and drift rate). Given that the first three rows of the factor loading
matrix comprise the behavioral model parameters, Turner, Wang,
et al. (2017) imposed the constraint that the first ¢ = 3 rows of the
factor loading matrix should be fixed to an identity matrix (I,,), and
that the residual variances for the first three rows should be zero
(0, on the upper-left side of W). On the other hand, the model is
exploratory in the sense that all other factor loadings linking the
factors and the manifest variables (i.e., neural features) can be
freely estimated (A:X o) In addition, the corresponding factor
variances, covariances, and residual variances in ® and W are also
freely estimated. This approach differs from other hybrid ap-
proaches (e.g., Lu et al., 2016) in which only minimal identifica-
tion constraints are imposed on a CFA factor loading matrix to
identify factors, while others are estimated freely as in EFA.
Instead, the factors used within the FA NDDM are presupposed to
be mechanisms assumed by the DDM and well constrained by
choice and response time data.

Factor Loading Constraints

As the FA NDDM is typically fit in a Bayesian framework, an
issue arises during posterior sampling called the “sign-switching”
problem. Because a factor does not have a specific scale, the sign
of the factor loading is also arbitrary. In the estimated results, the
signs of the estimated factor loadings can be reversed in a column-
wise manner because reversing the signs of the factor scores and
those of the corresponding factor loadings does not change the
model fit result. However, the instability in the signs of the factor
loadings can be problematic when a sampling method is applied to
estimate posterior distributions because the signs of the factor
loadings can oscillate throughout the sampling process; for exam-
ple, if the true posterior mean is 1, chains may oscillate be-
tween —1 and 1 or some of the chains can be centered at 1 while
the other can be centered at —1. Thus, sometimes an estimated
posterior distribution of a specific factor loading can be bimodal
even when the true posterior distribution is unimodal.

When performing exploratory factor analyses with ¢ factors in
the Bayesian framework, it has been shown that constraining the
signs of ¢ diagonal elements in the factor loading matrix to be
positive can address the sign-switching problem, and fixing at least
q(g — 1)/2 upper diagonal loadings to zero can resolve the rota-
tional indeterminacy of latent variables (Erosheva & Curtis, 2017;
Geweke & Zhou, 1996).

In the FA NDDM, the first ¢ rows of the factor loading matrix
are set to be an identity matrix (Equation 7) and it may appear as
though this constraint addresses both of the sign-switching prob-
lem and the rotational indeterminacy. However, it can be deduced
that the identity matrix in the factor loading structure only ad-
dresses the rotational indeterminacy and a solution to the sign-

switching problem is required for the estimation of the FA NDDM.
From Equation 7, it can be derived that:

. (% T _ _
(lOg(li), lOglt(;), dl) = WPy + Iqmi = Ry + w; (8)

where p ., represents the first g elements of the mean vector of the
multivariate normal distribution with ¢ = 3 for the specification of
the FA NDDM in the current study, and o; is a vector of factor
scores for the i-th trial (see also the Appendix of Turner, Wang, et
al., 2017). This formula shows that the latent variables in the FA
NDDM are set equal to the mean-centered and transformed single-
trial diffusion model parameters. The main role of this formula is
to link the behavioral model parameters to the factor analysis
model implemented for the neural data. By defining the meaning
of the latent variables, the formula successfully removes the rota-
tional indeterminacy issue.

Little can be said about the sign-switching problem with only
Equation 8. If the single-trial diffusion model parameters and their
means can be fully determined by the diffusion model fit to the
behavioral data, the signs of w; can also be determined. While the
means of transformed nondecision time, transformed starting
point, and drift rate can be estimated from the choice and RT data
across all the trials, choice and RT for a single trial are not
sufficient to fully constrain the single-trial parameters. In fact, the
estimation and measurement of w, rely heavily on the factor
analysis model applied to the neural data, which is specified by the
bottom p rows of the factor loading matrix and the bottom-right
(p X p) submatrix of the residual variance matrix (A;X g and 1I’; in
Equation 7). As all factor loadings of neural features on ¢ latent
variables should be estimated, the estimation of these loadings can
suffer from the sign-switching problem and some appropriate
solution should be applied.

Turner, Wang, et al. (2017) proposed two solutions for the FA
NDDM to address the sign-switching problem. The first solution is
a column-wise solution in which we specify the sign of some
predetermined factor loadings (Ghosh & Dunson, 2009). For ex-
ample, if one can assume that the j-th manifest variable is posi-
tively related to the k-th factor, we may take the constraint )\_j’k >0
as a reference for the k-th column of the factor loading matrix.
During a Bayesian sampling procedure, samples of )\;k are then
monitored such that negative posterior draws result in a reversal of
the sign of the factor loadings in the k-th column of the matrix.
Thus, given a positive assertion on )\;k, the sampling algorithm
would run with the following constraint:

. Npx N >0,
)\l:p,k =

_)\lip,k lf)\j,k<0' ( )

To avoid the sign-switching problem while estimating the joint
posterior distribution, ¢ constraints should be applied, one for each
factor. In Turner, Wang, et al. (2017), this solution is combined
with giving the rescaled Beta prior )\_;k ~ Beta(1, 1, —1,1) to all
the factor loadings (except for those in the first three rows) where
the first two hyperparameters are shape parameters and the last two
hyperparameters are lower and upper bounds of the distribution.
Other priors that are well-suited to represent the support of the
factor loading values can also be used within this solution.

The second solution is an element-wise solution in which the
sign of all the factor loadings are collectively constrained. For
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example, by imposing )\;k ~ Beta(l, 1,0, 1) for all j and %, all the
factor loadings are constrained to have positive signs. Although
this is an unlikely case for many real-world problems, it is worth
considering as an option for estimation of the joint posterior
distribution. It is also possible to use different priors for different
factor loadings. For example, if it is reasonable to assume that
)\;’k > (0 while )\;’, < 0, we may give )\;k ~ Beta(l, 1,0, 1) and
)\;’, ~ Beta(l, 1, — 1, 0), respectively, as in Turner, Wang, et al.’s
(2017) application. However, this is not plausible without a strong
theoretical background to predetermine the signs of all factor
loadings.

Estimating the FA NDDM Using Conjugate Priors

Although not covered in Turner, Wang, et al. (2017), it is also
possible to implement conjugate priors on the factor analysis
parameters in the FA NDDM to estimate the joint posterior dis-
tribution. For example, we can specify the following prior distri-
butions as used in Hoff (2009) and Song and Lee (2012):

[ L MVNp+q(v09 Ay,
Ug' ~  Gamma(ogg, Bo)s J=(q+ D, (g+2), ... . (g+p),
MVN(Agj, beHy), and

® ~ IW(R;', po)
(10)

where p is the number of manifest variables (neural features in the
current application), A; is the j-th row of the factor loading matrix,
s, is the residual term in the j-th measurement equation, and ® is
the factor covariance matrix. The quantities with the subscript 0
(Vg Q> Boej» Agj» Po» and positive definite matrices A, H,y;, and
R,) are hyperparameters for the prior distributions. Given these
priors, the conditional posterior distributions are:

RIY,A O W~ MVN,, ,(v,,A,),
v,=A,(8 v +n27), A=A+
Uy, @ ~ Gamma(a,e, Byep)s  j=(q+1),(g+2), ....(q+p),
Qej = g T g Bnej = B()Ej + %(.Y,’Tyj' + AngleA()j - A;jH;lenj)v
Ajl Y Qg ~ MVN(A,;, bgH,).
A, =H,(Hy' Ay + Qy), H,; = (H;' + Q)" and
®| @~ W, (Ry' + QO n+py).

an

where n is the number of observations, y; be a vector of all n
observations of the j-th manifest variable, and Y is a matrix of all
observations. € is a matrix of all factor scores and 3, is the implied
covariance matrix of the factor analysis model, calculated from
the posterior samples during a sampling procedure (Equation 7).
The quantities with the subscript n (v,,, &, B,.cj» A,,;» and positive
definite matrices A, and H,) represent the parameters for the
posterior distributions updated by the n observations of the data.

These conditional posterior can be applied to Equation 7. Due to
the constraints to link the single-trial diffusion model parameters
and the factor analysis model, the conditional posterior distribu-
tions of factor loadings should be applied to A;Xq, the bottom p
rows of the whole factor loading matrix in Equation 7, because the
first g rows should be an identity matrix as constraints. Similarly,
the conditional posterior distributions of residual variances should

be applied to W, the bottom right p X p submatrix of the whole

P

residual variance matrix. For these two sets of posterior distribu-
tions, y; = N; in Equation 11 where N, is a vector of the j-th neural
covariate containing all n observations (over trials or subjects). To
update w for all p + ¢ variates in Equation 7, Y in Equation 11
should be replaced by a matrix of (log(ti), logit(f—l'), d;, n,T)T con-
taining all observations overi = 1, ..., n.

A prior for £ needs not be specified because the factor scores
are defined based on the single-trial diffusion model parameters.
As shown in Equation 8, they are set to be equal to the transformed
single-trial diffusion model parameters centered by the corre-
sponding means in p (Appendix in Turner, Wang, et al., 2017).
Thus, the factors are measured by neural data (the factor analysis)
and constrained again by the behavioral data (the diffusion model).
This is another strength of the joint modeling framework in that an
integrative analysis of multiple data modalities (e.g., behavioral
and neural data) provides more information on the latent construct
of interest. Although the conjugate approach reduces the compu-
tational burden of posterior sampling to a large extent, it does not,
by itself, solve the sign-switching problem. This method should be
accompanied by an appropriate sign-switching solution. Equation
9 can be easily implemented during the conjugate posterior sam-
pling.

The diffusion model parameters (a, ¢, z;, and d;) do not have
conjugate priors and thus their posterior distributions should be
estimated by Monte Carlo sampling methods. The prior and like-
lihood of these parameters are from the multivariate normal dis-
tribution implemented as the overarching linking function and the
diffusion model likelihood, respectively, as stated in Equation 7.
Due to potentially high correlations among the parameters in the
behavioral model, we recommend techniques that can manage said
parameter dependencies such as Differential Evolution Markov
Chain Monte Carlo (DE-MCMC; Ter Braak, 2006; Turner, Sed-
erberg, et al., 2013). The central idea of this method is to allow sets
of chains to approximate the shape of the target distribution (e.g.,
the posterior) by calculating differences among the chains. These
differences are used to create a vector that defines movement
within the parameter space, from which proposal parameter values
can be generated. For example, one can calculate the difference
between two randomly selected chains, and scale this difference by
a tuning parameter y ~ U(0.5, 1). As the sampling process
progresses, this difference vector naturally resembles the shape of
the target distribution, and so it can be used to generate a candidate
proposal by simply adding it—along with some small amount of
random noise—to the chain that is being currently updated (see
Steps 22-24 and 35-37 in Figure 3). The standard Metropolis-
Hastings acceptance probability of the target distribution is calcu-
lated by combining the likelihood function and prior distribution to
determine if the new proposal should be accepted or rejected
(Steps 25 and 38 in Figure 3). As presented in Equation 7, because
the decision threshold parameter (a) only depends on the behav-
ioral data, it is updated separately from the parameters that are
used in the factor analysis component of the model. The other
diffusion model parameters depend on both aspects of the data, and
S0 acceptance probabilities should be calculated using the likeli-
hood functions of both the diffusion model and the factor analysis
model. A detailed, algorithmic description of the sampling proce-
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Figure 3
Pseudocode for Performing Posterior Sampling
1: Initiate 6(°) for all chains k: 1 < k < K (e.g., sample from priors).
2: forlterations: 0 < s< S —1do
3: for Chain k: 1 < k < K do
4: Calculate factor scores EM& = Ammv,mﬂ@,ﬁ@vﬂ - tmmw foralli : 1 < i < n where mM& = _OWQM&V and
59 = _omimmlwy Let ) = (@), | w®).
5 Update A* and ¥* (Eq. 11 and 13):
6 forj: 1 <j<pdo
7 Define H,,; = ASQAJ@V and Calculate Ay, Hyj, anej, and Brej-
8 Sample AL ~ MVNg(Anj, ¢ H,,j) and (0T0) ! ~ Gamma(omes, Bnes)-
9 end for
10: Update ® (Eq. 11): Sample &+ ~ TWo(Ry " + (2G)(QE) T n + po).
11: Update p (Eq. 7 and 11):
12: Calculate sample means g of AmMmﬁ mM&‘ &Mmﬂ n;)overi: 1 <i<n,and then v, and A,,.
13: Sample pCtD) ~ MV Npiq(vn, Ay).
14: Update s, 71, -+, 7p (Eq. 13):
15: forj: 1 <j<pdo
16: forl:1<1<qdo
17: Calculate jir;, = }QMJrC and then Sample Aﬂwm+5v|m ~ IG(pirjy,, (K(9)?).
18: end for
19: end for
20: Calculate anc and B, and then Sample k2 ~ Gamma(cnx, Bnx)-
21: Update a (Eq. 7):
22 Sample two chains except for k. Let a1 and a2 be their last samples of a.
23: Sample y ~ U(0.5,1) and e ~ U(—b, b).
24: Propose by crossover: a* < a(®) + (a1 — a2) +e.
25¢ Calculate p4 with mﬁu&‘:mﬁia*,NM&,NM&.&MWV: and Hm— [Dj main?ﬁWM&,N‘M&,AWJ%
26: Generate p* ~ QSwC '
27: if p* < pa then
28: Store a(sT1)  a*
29: else
30: Store a(5t1) « a(s)
31 end if
32: Update n; = (£;,2;,d;)T (Eq. 7):
33: Calculate £(s+1) = (A (D)) (A(sHI)T | F(s+1)
34: forj: 1 <j<pdo
35: Sample two chains except for k. Let 1; and m2; be vectors of their last samples of (%;, Z;, d;)T.
36: Sample y ~ U(0.5,1) and e ~ U(—b, b).
37: Propose by crossover: n* = (&}, 2}, d})T < n®) + v(n1; — m2;) + e and inverse-transform (£}, 2
(tF,27): tf = exp(ff) and 27 = a(s+1) . AW_MMWWJV .
38: Calculate py with Diffusion(a(**+1) t¥, 27, d), U*\:mainﬁiihsﬂmﬁ NMMV, &vav\ &, 25,d:,nT)T ~
>\~<>€+nﬁt?+5 5 MU?.+CV‘ and QM&“mMmﬁ&M&,:w;vﬂ ~ MV Npiq AtA?rC, MU?.TCV.
39: Generate p* ~ U(0,1)
40: if p* < p4 then
41: Store n(sT1) + n*
42: else
43: Store n(st1) « n(s)
44: end if
45: end for
46: end for
47: end for




publishers.

and is not to be disseminated broadly.

gical Association or one of its allied

This document is copyrighted by the American Psycholo,
This article is intended solely for the personal use of the individual user

REGULARIZED LINKING METHOD FOR BRAIN AND BEHAVIOR 409

dure is shown in Figure 3. Although this figure includes details of
how to apply the Lasso to the FA NDDM, we will save discussion
of the Lasso until the next section.

In the FA NDDM, all factor loadings except for those in the first
q rows are freely estimated which is an exploratory aspect of the
model. Although this enables us to study a factor structure of the
manifest variables, this approach will produce complex structures,
whereas often parsimonious solutions are desired to facilitate
interpretations of the factor structure. In a typical EFA, rotation
techniques are applied to find a simple structure by minimizing a
complexity function. The central focus of our article is that statis-
tical regularization can also be applied to remove small and un-
important factor loadings, while detecting important loadings
(Choi et al., 2010; Hirose & Konishi, 2012; Hirose & Yamamoto,
2015; Lu et al., 2016; Muthén & Asparouhov, 2012; Ning &
Georgiou, 2011). Given the conjugate priors and posteriors we
reviewed, it is straightforward to apply the hierarchical represen-
tation of the Bayesian Lasso (Park & Casella, 2008) to the FA
NDDM, mirroring previous studies of the structural component
within SEM (Feng et al., 2017a, 2017b; Guo et al., 2012; Wang et
al., 2013).

Applying the Bayesian Lasso to the FA NDDM

In this section, we extend the FA NDDM to the Lasso FA
NDDM by applying the hierarchical representation of the Bayesian
Lasso proposed by Park and Casella (2008). The priors and pos-
teriors for intercepts, residual variances, and factor covariance
matrix remain the same as in Equation 10 and Equation 11. For the
factor loadings, the following hierarchical priors are applied to
implement shrinkage effects.

A, 73~ MVN(Aq;, bieiHy)),
H; = diag(7)), 7;= (712«1, e 'rjz- r

2 12
(7l K?) k]:[l Kjexp(— KZTJZ»k/Z), (2)

K2~ Gamma(aOK’ BOK) .

As a global and local shrinkage prior, k controls the global
shrinkage effect on all the factor loadings A, j = 1,..., p, but the
effect is modulated by 7,. Also, usually Ay; = 0 in regularization
methods. To implement the Lasso to the FA NDDM, this prior
should be applied to in Equation 7, the bottom p rows of the
factor loading matrix.

Given N_,-, a vector of the j-th neural covariate containing all n
observations, the corresponding conjugate posterior distributions
are

PXq

AjIN;, QU7 ~ MVN,(A,;, b H,),
A,;=H,(Hy'Ay;+ QN)), H, = (Hy'+QQ")™",

2
173 o i 7~ 16, ), e, = | —— 5,
(1775 I\ e ¢ (e KOs By ()\jk_)\ojk)zwej

2| T, . , Ty~ Gamma(, B,
1L L
Qe = Qg + qu B}’IK = BOK + EZ zk: szk'
J
(13)

where N, and A, are (j, k) elements of A and A,, respectively,
and /G indicates an inverse Gaussian distribution:

Y
Ll D ) (14)

- o () (
forlp iy = (21’rx3) P 2u*x
With the full conditional distributions for factor loadings, inter-
cepts, residual variances, and factor covariance matrix, and the
sampling method for the diffusion model parameters, the full joint
posterior distributions can be estimated. The algorithm to estimate
the joint posterior distribution of the parameters in the FA NDDM
with the Lasso is shown in Figure 3. The sampling method in the
algorithm is a combination of the conditional posterior sampling
and the DE-MCMC sampling.

The Bayesian model proposed here differs from the previous
Bayesian Lasso applications to latent variable models (Feng et al.,
2017a, 2017b; Guo et al., 2012; Song et al., 2014; Wang et al.,
2013). First, the Bayesian Lasso is applied to the factor analysis
model (i.e., the measurement model in the SEM) in the current
approach, whereas previous studies applied regularization methods
to the structural model of the SEM. In doing so, the model is able
to explore a factor structure of the manifest variables regarding the
latent variables defined based on the cognitive components in the
behavioral model employed in the joint modeling framework. As
the Lasso FA NDDM exploratorily estimates factor loadings, the
solution in Equation 9 should be implemented during the posterior
sampling to address the sign-switching problem. Second, a single
global parameter k is used in the proposed prior, whereas this
parameter is allowed to vary by different dependent variables in
the previous studies. If we were to allow multiple global param-
eters in the current approach, the model should simultaneously
update K, ..., K,, one for each dependent (manifest) variable,
instead of a single k which exerts its effect on all of the variables.
In this case, each global parameters K,j=1,...,p and corre-
sponding local shrinkage parameters 7, . . . , T;, would be updated
on the basis of only the ¢ = 3 latent variables of the DDM. Having
only a little information to constrain penalty parameters would
severely limit our ability to estimate all model parameters, and so

Figure 3 (opposite). Note. The pseudocode here can be used to draw samples from the joint posterior distribution of the factor analysis neural drift
diffusion model with the Lasso application. Except where stated, the last posterior sample in the chain should be used in all calculations above. Although
not specified, prior distributions should be taken into account when calculating the acceptance probability p, (as defined in Metropolis-Hasting algorithms)
in Steps 25 and 38. Some calculations can be grouped, or the order of updating steps may be rearranged to increase computational efficiency. n = number
of trials; p = number of neural covariates; ¢ = number of behavioral factors; K = number of chains; S = number of iterations; @ = vector of all parameters;
b = small noise parameter for the crossover step (e.g., b = 0.005); p, = acceptance probability.
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we chose to explore only a single global penalty parameter in this
article.

Simulation Study

In this section, we present three simulation studies meant to
systematically examine the effectiveness of the Bayesian Lasso in
three factor loading settings: simple, overlapping, and complex
structures. In each simulation, we generated data by assuming
there are p = 128 neural features, and the number of trials was N =
300 as in Turner, Wang, et al. (2017). We set the number of factors
equal to ¢ = 3, representing each of the single-trial DDM param-
eters (i.e., nondecision time, bias, and drift rate). To induce dif-
ferent complexities, we specified three different settings of the
factor loading matrix (reported below).

After generating data in each simulation, we fit the FA NDDM
and the Lasso FA NDDM to the simulated data. We used a
combination of the conditional posterior sampling (for the factor
analysis parameters) and the DE-MCMC (Ter Braak, 2006;
Turner, Sederberg, et al., 2013) sampling (for single-trial DDM
parameters). Each time, the algorithm was run for 20,000 iterations
with 12 chains. The first 2,000 samples were treated as the burn-in
period and were discarded, resulting in 216,000 samples. The R
codes to fit the proposed model (with a toy example) can be found
in the supplementary materials (https://github.com/MbCN-lab/
LassoFANDDM).

Simulation 1: Simple Structure

In Simulation 1, we assumed a factor loading matrix with a
simple structure, such that each observed variable loaded onto a
single factor. Except for the first three rows, which were con-
strained to be diagonal as discussed above, the true factor loading
matrix had the following form

A0 0
A=]0 Ay 0
0 0 A

where A, A,, and A; are (¢, X 1), (g, X 1), and (g5 X 1) vectors
of factor loadings, respectively, and ¢,, (k = 1, 2, 3) indicates the
number of manifest variables related to the k-th factor. To generate
the factor loading shape, we set g, = 64, ¢, = 32, and g5 = 32,
respectively. We based this decision on Turner, Wang, et al.’s
(2017) factor loading results from real data analysis, where the
nondecision time factor typically had more large factor loadings
than the other two factors.

Following the simulation study in Turner, Wang, et al. (2017),
we randomly generated parameter values for the FA NDDM
according to the following specifications:

* N ~ TN(Q©.5, 0.2, 0, »)

e 5, ~ U(0.03, 0.3)

e ®: ¢, = 1and ¢, = 0.3

* w5 = (—0.5,0.1, 1.5) and .5, ~ N(0.3, 0.05)
e a=2

When fitting the FA NDDM to the data, regardless of the factor
loading structure, we initialized all factor loadings by randomly
sampling values from Unif(0.2, 0.8). The goal of the simulation
study was to assess whether or not the Lasso FA NDDM could
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detect and shrink factor loadings with zero true values while
estimating the other loadings well.

Results

The top panels of Figure 4 show the parameter recovery
results for the factor loading matrix. On the left, the maximum
a posteriori (MAP) estimates of the factor loadings whose true
values are nonzero are plotted on the x-axis with their true
values plotted on the y-axis. On the right, the histogram shows
the estimates of the factor loadings whose true values are zero
(i.e., zero loadings). On each panel, the Lasso estimates (blue)
and plain FA NDDM estimates (orange) are plotted together for
comparison.

For the factor loadings with nonzero true values, the Pearson
correlation between the true values and their estimates is 0.994
in the Lasso FA NDDM and 0.964 in the FA NDDM. Although
the correlation is high in both methods, the factor loadings are
slightly overestimated in the plain FA NDDM result which is
consistent with Turner, Wang, et al.’s (2017) result. By con-
trast, there is no systematic bias in the Lasso result. It can be
speculated that the overestimation of the nonzero factor load-
ings is corrected due to the shrinkage effect of the Lasso. For
factor loadings with zero true values, estimates are near zero in
both methods. However, the Lasso tends to produce estimates
that are nearer to zero than the plain FA. Unlike the frequentist
Lasso, the Bayesian Lasso cannot produce zero estimates ex-
actly as it estimates the posterior distributions of the coeffi-
cients. To examine the false alarm rate of the Lasso and plain
FA NDDMs, we can specify an arbitrary criterion to determine
if the estimated factor loadings are meaningfully large. A cutoff
of 0.1 is used following the previous studies (Feng et al., 2017a,
2017b; Guo et al., 2012; Hoti & Sillanpéd, 2006) and thus if
MAP estimates of the factor loadings fall within the cutoff
region | N, | < 0.1, they are considered too small to be mean-
ingful (“unimportant”). If the MAP estimates fall outside of the
cutoff region ([N, | > 0.1), they are considered large and
meaningful. Under the simple structure, all of the Lasso esti-
mates corresponding to the 256 truly zero loadings fall under
this cutoff value (they range between [—0.062, 0.081]), pro-
ducing a false alarm rate of zero. For the plain FA NDDM, 44
of 256 estimates are detected as large, and thus the false alarm
rate is 0.172. The Lasso application increases the miss rate from
0.008 to 0.016, but this effect is relatively minor compared with
the improvement of the false alarm rate. These results demon-
strate that applying the Lasso to the FA NDDM can be useful in
better discriminating large meaningful factor loadings from
small and unimportant ones.

Figure 5 provides another look at the parameter recovery for the
factor loading matrix. In each panel, a matrix is shown whose
elements are colored according to the legend on the right-hand
side. The left panel shows the true factor loading matrix used to
generate the data. Here, the simple structure is evident, as each
element (e.g., neural feature) loads onto only a single factor
(columns). The second panel shows how each parameter was
initialized when fitting the models to data. The third and fourth
panels show the recovery results obtained when fitting the Lasso
FA NDDM and FA NDDM to the generated data, respectively.
The right two panels show two principle results. First, they illus-
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Figure 4
Structural Recovery Results, Simple Structure
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Note. In each panel, parameter estimates (x-axis) obtained by the Lasso FA NDDM (blue) and
the FA NDDM (orange) are shown against the true parameter values (y-axis). The top right
panel shows the distribution of estimated factor loadings with zero true values. Where
appropriate, Pearson correlations are reported for the Lasso FA NDDM results within panels.
FA NDDM = factor analysis neural drift diffusion model. See the online article for the color

version of this figure.

trate that the estimates are clearly different from their initialized
values, suggesting that the fitting algorithm is not biasing our
results. Second, they both illustrate accurate recovery of the true,
data-generating factor structure used to generate the data. Com-
paring across the two rightmost panels, Figure 5 shows that the
Lasso FA NDDM provides more accurate parameter estimates
compared to the FA NDDM.

The bottom panels of Figure 4 show the parameter recovery
results for residual variances (W) and intercepts (p), whereas
Figure 6 shows the results for factor variances and covariances
(®). For the residual variances, the Pearson correlations between
the true values and the estimates are 0.879 and 0.877, and for the
intercepts, the correlations are 0.821 and 0.822, in the Lasso FA
NDDM and in the plain FA NDDM, respectively. In this recovery,
factor variances are underestimated and residual variances are
overestimated, whereas intercepts do not show any systematic
bias. Comparing the Lasso and plain FA NDDM, the factor vari-
ance for nondecision time (¢,) is estimated similarly while the
variances for the other diffusion model parameters (¢, and ¢5) are
better estimated when the Lasso is implemented. Biases in the
estimation result are due to the systematic relationship that exists
among the parameters. In factor analysis, the model estimates
parameters by reducing the discrepancy between a sample cova-

riance matrix S and a model-predicted covariance matrix 3 =
ADAT + W (i.e., implied covariance matrix). Given a fixed
amount of common variances explained by the factor model
(A(i)f\r)’ overestimation of the factor loading matrix is accompanied
by underestimation of the factor variances. Also, if the common
variances are obtained smaller than the optimum, the residual vari-
ances (¥) should be overestimated to better match the sample cova-
riance matrix. The FA NDDM tends to overestimate the factor load-
ings and the bias propagates to the factor variances so that they are
underestimated. The Lasso FA NDDM corrects the overestimation
bias in the factor loading estimates and thus the variances can also be
better estimated. One might expect that the shrinkage effect of the
Lasso or other regularization methods will reduce the common vari-
ances and increase the residual variances. However, estimates for
residual variances remain almost the same even though the regular-
ization is applied. Thus, it can be concluded that the Lasso does not
change the total amount of variances that can be explained by the
single-trial diffusion model parameters. Instead, the Lasso exerts its
shrinkage effect by modulating values of factor loadings and factor
variances.

Figure 7 shows the parameter recovery results for the single-trial
DDM parameters. Nondecision time (#,), bias (z;), and drift rate (d,)
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Figure 5
Factor Loading Recovery Results, Simple Structure
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Note. The left panel shows the true factor loading structure used to generate the data. The second panel shows how both the Lasso FA and FA NDDMs
were initialized with random starting values. The third and fourth panels show the recovered factor loading matrix when using the Lasso FA NDDM and
FA NDDM, respectively. FA NDDM = factor analysis neural drift diffusion model. See the online article for the color version of this figure.

are plotted in the left, middle, and right panels, respectively. The MAP
estimates are shown on the x-axis whereas the true values are shown
on the y-axis. In each panel, estimates obtained from the Lasso FA
NDDM are shown in green, whereas estimates of the FA NDDM are
shown in red. In general, the parameter estimates are accurate, with
the most inaccurate estimates occurring at the most extreme values of
the parameter ranges. This is a typical result in a Bayesian framework
due to shrinkage effects that occur in hierarchical modeling (Turner et
al., 2015; Turner, Wang, et al., 2017). The underestimation bias in the
FA NDDM result is the reason for the factor loadings being overes-
timated. One interesting effect is that the Lasso FA NDDM reduces
this shrinkage effect, at least for the bias and drift rate parameters
(middle and right panels). This is consistent with the finding that the
Lasso corrects the overestimation bias in the factor loadings. The
Pearson correlations between the true values and the estimates are
0.995 and 0.994 for nondecision time, 0.991 and 0.989 for bias, 0.988
and 0.948 for drift rate, in the Lasso FA NDDM and in the FA
NDDM, respectively.

Simulation 2: Overlapping Structure

Although the simple structure from the previous section is
useful from a pedagogical perspective, it is very unlikely that
such a simple structure would emerge in real-world data. It is
also unlikely that every feature will load onto any factor. For
example, Turner, Wang, et al. (2017) analyzed data from an
experiment and showed that (a) many features were sparse in
the sense that they did not have large loadings onto any factor,
and (b) several features loaded largely onto more than one
factor. Given this possibility, Simulation 2 was designed to
evaluate the ability of the Lasso to (a) identify features whose
factor loading overlaps across factors, and (b) identify features
who exhibit small and trivial factor loading structure. Also,
unlike in Simulation 1, nonzero factor loadings were scattered
across the matrix rather than being organized according to the
simple structure. The left panel of Figure 8 illustrates the true
factor loading matrix we used to generate the data. In this



Note. Each panel shows the estimated posterior distributions for each element of the factor variance matrix
obtained by either the Lasso FA NDDM (blue) or the plain FA NDDM (orange). The red vertical lines indicate
the true values. FA NDDM = factor analysis neural drift diffusion model. See the online article for the color
version of this figure.
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Factor Variance Estimates, Simple Structure
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figure, the rows of the factor loading matrices are sorted for
visual clarity (see the row numbers). Figure 8 shows a more
complex pattern of factor loadings where features can load onto
either zero, one, two, or three factors. All other details of this
simulation study, unless otherwise noted, were identical to
those presented in Simulation 1.

Results

The top panels of Figure 9 show the parameter recovery for
the factor loading matrix. As in Figure 4, the left panel shows

the MAP estimates for the nonzero loadings whereas the right
panel shows the histogram of zero loadings. In general, the
results are similar to those in Simulation 1. For the factor
loadings with nonzero true values, the Pearson correlation be-
tween the true values and their estimates is 0.974 in the Lasso
FA NDDM and 0.803 in the FA NDDM. As in Simulation 1, the
FA NDDM overestimates some factor loading but the degree of
bias becomes larger due to the overlapping structure. These
positive biases disappear when the Lasso is applied. For the
factor loadings with zero true values, the FA NDDM without

Figure 7
Single-Trial Parameter Estimates, Simple Structure
Nondecision Time Bias Drift
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Note. Each panel shows the maximum a posteriori estimates of the single-trial parameters for the diffusion
decision model component of the model: nondecision time (left), starting point bias (middle), and drift rate
(right). In each panel, estimates are shown on the x-axis, whereas the true parameter values are shown on the
y-axis, where Lasso FA NDDM results are shown in green and FA NDDM results are shown in red. Pearson
correlations for the Lasso FA NDDM are shown in the top left region for each panel. FA NDDM = factor
analysis neural drift diffusion model. See the online article for the color version of this figure.
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Figure 8
Factor Loading Recovery Results, Overlapping Structure
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Note. The first (i.e., left) panel shows the true factor loading structure used to generate the data. The second panel shows how both the Lasso FA NDDM and
FA NDDM were initialized with random starting values. The third and fourth panels show the recovered factor loading matrix when using the Lasso FA NDDM
and FA NDDM, respectively. FA NDDM = factor analysis neural drift diffusion model. See the online article for the color version of this figure.

the Lasso produces more variable MAP estimates and many of
the values are highly negative. As a result, 49 out of 256 zero
loadings fall outside of the cutoff region (I\; | < 0.1). In
contrast, the Lasso estimates the zero loadings fairly close to
zero and 253 of the loadings are identified as too small to be
meaningful. The false alarm rates are 0.191 and 0.012 for the
plain FA NDDM and the proposed method, respectively, which
demonstrates that implementing the Lasso can help the FA
NDDM improve its performance in identifying meaningful
brain-behavior relations. The shrinkage effect induced by the
Lasso increases the miss rate from O (in the FA NDDM) to
0.023 (in the Lasso), which is a minor difference compared with
the effect on the false alarm rate.

Figure 8 shows another view of the factor loading structure
recovery. In each panel, the values of the factor loadings are
color coded according to the legend on the far right-hand side.
Although the nonzero factor loadings were randomly arranged
within the true factor loading matrix, they are sorted in this

figure for visual clarity (see the index on the left side of the
panels for the original row numbers). As in Simulation 1, both
the Lasso and plain FA NDDMs performed well in retrieving
the true structure of the factor loading matrix. However, the
plain model produces some high negative values for the zero
loadings, many of which are diagnosed as large and meaningful
according to our criterion. Furthermore, many of the nonzero
loadings are estimated as having higher factor loadings com-
pared to their true values. By contrast, MAP estimates from the
Lasso FA NDDM are generally closer to the true values. Al-
though there are some truly zero loadings that are estimated as
having small negative loadings (i.e., the pale cyan blocks), most
of these estimated loadings are too small to be considered
meaningful according to our criterion.

The bottom two panels of Figure 9 and Figure 10 show the
parameter recovery for the residual variances, intercepts, and fac-
tor variances and covariances. The MAP estimates for residual
variances and intercepts are consistent with the previous simula-
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Structural Recovery Results, Overlapping Structure
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Note. In each panel, parameter estimates (x-axis) obtained by the Lasso FA NDDM (blue) and the FA NDDM
(orange) are shown against the true parameter values (y-axis). The top right panel shows the distribution of
estimated factor loadings for features with imposed zero-value true loadings. Where appropriate, Pearson
correlations are reported for the Lasso FA NDDM results within panels. FA NDDM = factor analysis neural drift
diffusion model. See the online article for the color version of this figure.

tion and the FA NDDM with and without the Lasso produce very
similar results. The Pearson correlations between the true values
and the estimates are 0.913 and 0.914 for the residual variances,
and 0.785 and 0.786 for the intercepts, in the Lasso FA NDDM and
in the FA NDDM, respectively. The factor variances have negative
biases in the FA NDDM results as in Simulation 1. When the
Lasso is applied, these biases are reduced and the posterior distri-
butions of the variance terms are centered more closely to their
corresponding true values.

The parameter recovery results for the single-trial DDM parameters
are very similar to those in Simulation 1 (with correlations ranging
from 0.98 to 0.99). As such, we do not present those results here;
instead, the recovery plot can be found in the supplementary materials
(https://github.com/MbCN-lab/LassoFANDDM).

Simulation 3: Complex Structure

In the two previous simulation studies, all factor loadings with
nonzero true values were generated from a truncated normal dis-

tribution with the same mean and standard deviation. However, the
distribution of factor loadings can exhibit considerable variance
and multimodality, in practice. Also, even if there is no strong and
meaningful relationship between a manifest variable and a factor,
their corresponding factor loading may have some nonzero value
due to noise. For the final simulation, we vary factor loading value
to a large degree and test the Lasso’s ability to detect different
degrees of factor loadings. From the buildup of simulation com-
plexity, we consider Simulation 3 to be a realistic case that
matches patterns of factor loadings we might expect to see in our
real-world application below.

For this simulation, we used the same (overlapping) factor
loading structure as in Simulation 2, but varied factor loading
values. Nonzero factor loadings were sampled from two truncated
normal distributions with different means and standard deviations:

* N ~ TN(0.8, 0.2; 0.6, 1.0) for high loadings
* N\ ~ TN(@0.2, 0.1; 0.15, 0.3) for low loadings
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Factor Variance Estimates, Overlapping Structure
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Note. Each panel shows the estimated posterior distributions for each element of the factor variance matrix
obtained by either the Lasso FA NDDM (blue) or the plain FA NDDM (orange). The red vertical lines indicate
the true values. FA NDDM = factor analysis neural drift diffusion model. See the online article for the color

version of this figure.

This produced a pattern of bimodal factor loadings such that
some loadings had high values, whereas others were low.

After the loadings were sampled, we added some small pertur-
bation noise by sampling random deviates from the normal distri-
bution with mean zero and standard deviation equal to 0.05 and
adding these deviates to the factor loading matrix. Although the
amount of noise was not large, it further blended the pattern of
loadings from the structural constraints such that high factor load-
ings, low factor loadings, and zero factor loadings would be

difficult to discern. In other words, this additional variability
allowed us to assess whether the Lasso can discriminate small but
meaningful loadings from noise. All other settings and procedures
were identical to the previous simulations.

Results

Figure 11 shows the parameter recovery results for the factor
loading matrix. The left panel shows MAP estimates for the large

Figure 11
Structural Recovery Results, Complex Structure
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Note. In the first two panels, parameter estimates (x-axis) obtained by the Lasso FA NDDM (blue) and the FA NDDM (orange)
are shown against the true parameter values (y-axis). Factor loadings with high true values are shown on the left and factor loadings
with low true values are shown in the middle. The right panel shows the distribution of estimated factor loadings whose true values
are centered at zero. Where appropriate, Pearson correlations are reported for the Lasso FA NDDM results within panels. FA
NDDM = factor analysis neural drift diffusion model. See the online article for the color version of this figure.
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factor loadings, the middle panel shows MAP estimates for the slightly higher in this simulation compared to the previous ones,
small loadings, and the right panel shows the histogram of MAP the reduction of the false alarm rate due to the Lasso is remarkable
estimates for factor loadings centered at zero. Because of the as the miss rate does not change that much across the two methods
additional noise added to the true values, the distribution of pa- (0.016 and 0.008 for the FA NDDM with and without the Lasso,
rameter estimates in the right panel vary more than those in the respectively). Therefore, we conclude that the noise decreases the
previous simulations. For the high and low factor loadings, the accuracy of detecting zero loadings in both methods, but the Lasso
recovery result is similar to the results from previous simulations. FA NDDM is robust and it outperforms the plain model.

The Pearson correlation between the true values and their esti- Figure 12 shows the recovery of the factor loading structure.

mates is 0.968 in the Lasso FA NDDM but 0.587 in the FA The factor loadings are sorted in the same way as in Simulation 2
NDDM. The large decrease in the FA NDDM is because the factor for visual clarity. The pale yellow and cyan colors in the true factor

Factor Loading Recovery Results, Complex Structure

loadings corresponding to bias and drift rate are largely overesti- loading matrix represent factor loadings due to noise. The result is

mated. In contrast, the Lasso FA NDDM exhibits no systematic consistent with those of the previous simulations: the Lasso FA

) bias and correctly estimates the loadings. Despite the noise, the NDDM outperforms the plain model as the MAP estimates with

= Lasso still performs well in detecting unimportant loadings. Given the Lasso reproduce the true values well whereas those without the
;f 8 our cutoff of 0.1, 238 out of 256 zero loadings are determined as Lasso suffer from biases.

z :: small and unimportant, resulting in a false alarm rate of 0.070. By The parameter recovery results for the other parameters (residual

—é f contrast, the plain model excludes 181 zero factor loadings and so variances, intercepts, factor variances and covariances, and single-trial

3 % its false alarm rate is 0.293. Although the false alarm rates are DDM parameters) are very similar to the previous simulations and the
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corresponding plots can be found in the supplementary materials
(https://github.com/MbCN-lab/LassoFANDDM). Despite the large
variability in the factor loading values and the perturbation noise, the
Lasso FA NDDM performs similarly well in this simulation, further
demonstrating the robustness of the proposed method.

Evaluation of the Estimation

As discussed in Section Lasso in Linear Regression Literature,
regularization methods can decrease the MSE of estimators by
reducing the variances at the expense of some biases. Because this
is a simulation study, we know the true values of the parameters
that generated data, and so we can compare the estimates obtained
by FA NDDM and the Lasso FA NDDM on the basis of their
relative amounts of bias. Similarly, we can evaluate the standard
errors of the factor loading estimates by calculating the posterior
standard deviations. Although we could have calculated these
quantities in the previous two simulation studies, for brevity, we
only report the standard errors and MSE for Simulation 3.

Figure 13 shows the standard errors (left) calculated from the
standard deviations of the estimated factor loading posterior dis-
tributions, and the MSEs (right) calculated from Equation 3 for the
FA NDDM (y-axis) and the Lasso FA NDDM (x-axis). In each
panel, the gray-shaded area designates regions in which the Lasso
FA NDDM outperforms the plain FA NDDM. As expected, every
standard error of the factor loading estimate is smaller when the
Lasso is applied. In addition, the MSE is considerably smaller
when the Lasso is applied. Specifically, of the factor loadings with
truly zero, small, and large values, 98.4%, 95.3%, and 100% of the
estimates, respectively, have smaller MSEs when the Lasso is
applied. This pattern of results emerges because the original FA
NDDM tends to overestimate the factor loadings and the Lasso

Figure 13

corrects this bias (see the structural recovery results in Figure 4, 8,
and 11). Hence, unlike what is typically expected from regular-
ization methods, the Lasso FA NDDM estimates of the factor
loadings have smaller biases despite the shrinkage induced by the
Lasso. The reduction of the MSE combined with the reduced
standard error leads us to the conclusion that the Lasso FA NDDM
produces better estimates of the factor loadings.

Effective Sample Size and Convergence

In our simulation study, we ran a combination of the conditional
posterior sampling and the DE-MCMC sampling (see Figure 3) for
20,000 iterations (the first 2,000 discarded as burn-in) with 12
chains. Having such large numbers of samples is recommended
because the number of parameters of the model can easily be large
as we attempt to jointly model multiple data modalities and esti-
mate single-trial parameters. Also, some parameters have high
autocorrelations due to the complex structure of the behavioral
models used in psychology. Specifically, it is often found that the
values of parameters in accumulator models trade off with one
another, which results in a highly correlated parameter space
(Turner, Sederberg, et al., 2013).

As a consequence of the high autocorrelations, the effective
sample sizes (ESSs) are not expected to be large relative to the
product of the number of iterations and chains. In the current
study, the ESSs vary largely across different parameters. The
factor loadings, which are of our main interest, have ESSs of
3315.9-199142.5 in the most complex condition (Simulation 3:
Complex structure). In our result, the high autocorrelations and
some small ESSs do not signal a convergence issue of the Markov
chains of the Bayesian samples. Figure 14 shows the posterior
densities of factor loadings with different ESSs. The posterior

Standard Errors and Mean Squared Errors, Complex Structure

Standard Error

hoopn, ,

FA NDDM

0.00 0.05 0.10 0.15 0.20
J
%

0.00 0.05 0.10 0.15 0.20

Lasso FA NDDM

Mean Squared Error

0.4

0.3

0.1

— S —
-05 05 15

0.2
1 R gy o ( e

0.0

0.1 0.2 0.3 0.4

Lasso FA NDDM

o
o

Note. The left panel shows the estimated standard errors and the right panel shows the estimated mean squared
errors for the FA NDDM with (x-axis) and without (y-axis) the Lasso. The gray-shaded area represents regions
in which the Lasso FA NDDM outperforms the plain FA NDDM. The estimates are colored according to the
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Figure 14
Posterior Densities of Factor Loadings
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Note. Some factor loadings with different effective sample sizes (ESSs) are selected for the plotting purpose. Their posterior densities are calculated by
individual chains separately and then plotted in the same panel. The factor loading plotted and its ESS are displayed on top of each panel. The red vertical
lines indicate the true values of the factor loadings. See the online article for the color version of this figure.

densities of a single factor loading were estimated by individual
chains and then plotted in the same panel to check the convergence
of the chains. The factor loading is displayed along with its
associated ESS on the top of each panel. The top left and bottom
right panels show the posterior densities of the factor loadings with
the minimum and maximum ESSs, respectively. Across all ranges
of the ESSs, the posterior densities are well centered around the
true values of the factor loadings which are indicated by the red
vertical lines. This shows that the chains converged well and the
high autocorrelations resulted from the correlated parameter space,
not from any convergence issue. In general, the factor loadings
with large true values are loosely constrained and so their posterior
densities vary more while those with small and unimportant true
values have highly constrained posterior densities. This is due to
the main feature of the global and local shrinkage priors (Section
Global and Local Shrinkage). Convergence of the other parameters
were assessed with their posterior samples in the same manner.
Also, the estimated values of Gelman-Rubin convergence diagnos-
tic (R) were smaller than 1.1 for all parameters (Gelman, 1996;
Gelman et al., 2013).

Application: Brain Networks Under the
Speed—Accuracy Trade-Off

Having assured ourselves of the performance of the Lasso under
a variety of complexity circumstances, we now apply the Lasso FA
NDDM to fMRI data from a perceptual decision making task. The
data are first reported in van Maanen et al. (2011), and they consist

of choice and response time from a simple, two-choice decision-
making task. The fMRI data are obtained in an 8-s scan that
preceded the stimulus presentation, because the scanning protocol
was designed to assess off-task behavior, and because decisions
within the task were typically far faster than the temporal resolu-
tion of the blood oxygenated level dependent response used in
fMRI. The task was a random dot motion task where subjects were
presented with 120 dots in a display, 60 of which move to the left
or to the right while the others move in random directions. The
subject was instructed to report the direction that most of the dots
were moving toward. Additionally, the instructions were manipu-
lated to either emphasize speed or accuracy by telling subjects to
either respond “as quickly as possible” or “as accurately as pos-
sible”. In the reported data, there were 17 subjects (seven female,
mean age = 23.1 SD age = 3.1) who participated in the task. More
details of the experiments, procedures, and preprocessing of the
fMRI data can be found in Turner, Wang, et al. (2017) and van
Maanen et al. (2011).

For the purposes of comparison, we fit both the Lasso FA
NDDM and the FA NDDM separately to trials involving a speed
emphasis and those involving an accuracy emphasis. The purpose
of fitting the models to separate data streams was to examine
whether brain networks exhibited different functional properties
when processing stimuli for speed rather than accuracy. We fit
them separately because, despite many theoretical arguments that
only a threshold should change across instruction, recent evidence
suggested that other parameters may also change as a function of
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task instruction (Rae et al., 2014). Because we wanted to avoid any
undue specification of which parameters should change across task
instruction, we chose to allow all parameters to vary. In each of the
four fits (i.e., model by instruction), we specified the same prior
distributions for each model parameter, and used a combination of
conjugate posterior sampling and DE-MCMC sampling to sample
from their joint posterior distribution. We ran this algorithm for
20,000 iterations with 18 chains, and discarded the first 5,000
samples as a burn-in period. Hence, our parameter estimates are
based on 270,000 samples of the joint posterior distribution.

As discussed in the introduction, fitting either FA NDDM model
to data requires a constraint to prevent the factor loadings from
switching their signs. Turner, Wang, et al. (2017) used an element-
wise constraint by specifying a uniform prior from zero to one. By
doing so, all the loadings were constrained to be positive, circum-
venting the sign-switching problem altogether. A possible side
effect of this constraint is that, if some factor loadings have true
values outside of [0, 1], they cannot be estimated close to the
true values, resulting in some biases. As previously explained,
these biases can propagate to other factor loadings or variances as
the FA NDDM attempts to find a set of estimates that can best
approximate the covariance structure in the data.

To avoid these issues, we fit both the Lasso FA NDDM and the
FA NDDM using the conjugate prior distributions derived in
Equation 10, and the column-wise constraint suggested in Turner,
Wang, et al. (2017; and discussed above). Here, the solution relies
on our ability to fix the sign of one factor loading in each column,
resulting in three constraints for the FA NDDM. Fortunately,
considerable progress has been made in the field of model-based
cognitive neuroscience in mapping parameters of the DDM to
regions of the brain (Forstmann & Wagenmakers, 2015; Keuken et
al., 2014; Mulder et al., 2014; Turner et al., 2015; Turner, Wang,
et al., 2017). According to Turner, Wang, et al.’s (2017) result,
nondecision time, bias, and drift rate had high positive loadings for
brain regions of interest (ROIs) 33, 59, and 57, respectively, in the
speed condition (Figure 7 in Turner, Wang, et al., 2017). Hence,
we fixed the signs of the corresponding factor loadings to be
positive when fitting both models to data. The same constraints
were imposed on ROIs 39, 24, and 33 for nondecision time, bias,
and drift rate, respectively, in the accuracy condition.

Figure 15 shows the MAP estimates for the factor loading
matrices from the plain FA NDDM (the left two panels) and the
Lasso FA NDDM (the right two panels) for the accuracy (the first
and third panels) and speed (the second and fourth panels) condi-
tions. The MAP estimates are color-coded according to the legend
on the right-hand side. There are several—but not many—esti-
mated factor loadings with values larger than one, but they are
color-coded as if their loadings are exactly one for visual clarity.
In each matrix panel, the rows correspond to brain ROIs whereas
the columns correspond to the factors of nondecision time, bias,
and drift rate, respectively.

Figure 15 allows us to compare the factor loadings across the
two instruction conditions, as well as compare the estimates ob-
tained from the FA NDDM with those from the Lasso FA NDDM.
In comparing the two methods, Figure 15 shows that several ROIs
have high connectivity with the three single-trial parameters. To
more specifically examine the difference between the two meth-
ods, we applied a threshold of 0.6 to the factor loading values as

KANG, YI, AND TURNER

used in Turner, Wang, et al. (2017). In the FA NDDM results, 59
and 24 factor loadings are higher than the threshold in the accuracy
and speed conditions, respectively. The application of the Lasso
further simplifies this result, producing 32 and 20 large factor
loadings in those two conditions, respectively. Also, small load-
ings are estimated much closer to zero by the Lasso (more whitish
cells in Figure 15). Thus, the Lasso produces a more parsimonious
structure, allowing us to clearly explore meaningfully related brain
networks.

In the Lasso FA NDDM result, there are 17, 10, and 5 ROIs with
large loadings on the nondecision time, bias, and drift rate, respec-
tively, in the accuracy condition. Specifically, the ROIs with high
factor loadings on the nondecision time factor include the calcarine
sulcus (ROIs 1, 3, 21), cerebellum (eight), precuneus (31, 33, 55,
56), splenium (31), posterior intraparietal sulcus (38), thalamus
(45), superior frontomedian cortex (47), cingulate sulcus (51),
rolandic operculum (57), superior temporal gyrus (58), and medial
temporal gyrus (60). For the bias factor, ROIs such as the cere-
bellum (8, 13), medial temporal gyrus (22), superior frontomedian
cortex (34), posterior intraparietal sulcus (38), cingulate gyrus
(41), anterior insula (52), and frontopolar cortex (53, 59) have high
factor loadings. The drift rate factor has high loadings for the
following ROIs: precuneus (33), thalamus (45), parahippocampus
(46), superior frontomedian cortex (47), and frontopolar (59).

In the speed condition, a number of regions changes their
activation compared with the accuracy condition and there are 3, 8,
and 9 ROIs with large loadings on the nondecision time, bias, and
drift rate, respectively. For the nondecision time factor, ROIs such
as calcarine (21), ventromedial orbitofrontal cortex/precuneus
(24), and fusiform gyrus (28) have high factor loadings. Some
areas such as the middle frontal gyrus (ROI 39), superior fronto-
median cortex (47), midoccipital gyrus (48), cingulate sulcus (51),
precuneus (55), rolandic operculum (57), and superior temporal
gyrus (58) have high factor loadings on the bias factor. For the drift
rate factor, areas including the calcarine sulcus (three), cerebellum
(8, 13), thalamus (30, 45), precuneus (33, 56), superior frontome-
dian cortex (34), and cingulate gyrus (41) have high factor load-
ings.

Together, our results imply that some brain regions are highly
related to more than one or all cognitive components of interest,
whereas others do not show a noticeable relationship with them.
For example, precuneus has high factor loading values on the
nondecision time and drift rate in the accuracy condition. In
contrast, superior temporal gyrus (ROIs 18 and 19) does not have
large factor loadings across all the conditions in both methods.
Furthermore, the activation pattern changes considerably across
the conditions. For example, posterior intraparietal sulcus (38)
does not have high factor loadings in the speed condition, while it
does for the nondecision time and bias factors in the accuracy
condition. The two ROISs related to cerebellum, ROIs 8 and 13,
have high factor loadings in the accuracy condition, but their
activation switches to the drift rate in the speed condition. Some
differences in the activated areas between the current and Turner,
Wang, et al. (2017) results can be attributed to the choice of the
boundary constraints of the factor loading values: The parameter
range was [0, 1] in the previous study whereas there is no boundary
in the current analysis.

The regularization results may depend on the global penalty
parameter k, and thus different prior specifications for k can
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Figure 15
Factor Loading Matrices for Experimental Data
FA (Accuracy) FA (Speed)
Nondecision Bias Drift Nondecision Bias Drift

Region of Interest

Lasso (Accuracy)

Nondecision Bias Drift

Lasso (Speed)

Nondecision Bias Drift

—

1.0

,\,_‘_._.__._.__‘_._.@m\.a,a,bm,\,_.
COWONDNHLWN—=O
0.7 0.9

0.5

27
28 @ _|
29 o

30

31

32

33

34

35 -
36 [}

49 [3¢]

50 o

51 [

52

53

54

55

56 0

57] o
|

Note. The left and right panels show the factor loading matrices estimated for the FA NDDM (left two) and the Lasso FA NDDM (right two) after fit to
data from van Maanen et al. (2011). Here, the rows represent different brain regions of interest, whereas the columns correspond to mechanisms of the
diffusion decision model (left to right: nondecision time, bias, and drift rate). Each element within the factor loading matrices is color coded according
to the legend on the right-hand side. See the online article for the color version of this figure.

produce considerably different MAP estimates of the factor load-
ing matrix. In the sensitivity analysis (see the Appendix), it turned
out that our results are robust to the different choices for hyper-
parameters of k.

Discussion

In this article, we have demonstrated that dimensionality reduc-
tion techniques such as the Lasso can be combined with recent
endeavors of simultaneously modeling high-dimensional neural
data and computational theories of behavioral data. We have
illustrated the benefits of using our approach in the context of
identifying brain networks that correlate with model mechanisms,
such as the drift rate, starting point, and nondecision time param-
eters assumed by the diffusion decision model. We have shown
that the Lasso was successful in decreasing the false alarm rate and
producing a sparse composition of brain regions without compro-
mising the miss rate. Although the application of the Lasso has

been successful here, there are a few issues that merit further
discussion.

Alternative Regularization Techniques

Although the current article focused on the Lasso technique,
there are many other regularization methods that could be applied
to arrive at more parsimonious brain networks. Luckily, many of
these methods can be applied using the same framework presented
here by simply altering the priors within the Bayesian hierarchical
model. For example, Lu et al. (2016) proposed to use the slab-
and-spike prior (Mitchell & Beauchamp, 1988) in Bayesian factor
analysis. This prior is a discrete mixture of an uninformative
normal distribution (the slab), and either the Dirac delta function
concentrated at zero or a normal distribution with small variance
centered around zero (the spike; Lu et al., 2016; van Erp et al.,
2019). The slab-and-spike prior works to remove small factor
loadings by shifting their corresponding estimates toward zero



publishers.

and is not to be disseminated broadly.

gical Association or one of its allied

This document is copyrighted by the American Psycholo,
This article is intended solely for the personal use of the individual user

422 KANG, YI, AND TURNER

(i.e., the spike), and retaining large factor loadings by shifting
them toward the part of the prior containing the slab. When using
the Dirac delta function instead of the mixture of normals, it is
possible to completely eliminate coefficients with small and un-
important factor loadings (Lu et al., 2016). Eliminating features
can be advantageous in the case of uncertainty about the estimated
factor loading values. For example, in our applications we applied
an arbitrary criterion of 0.1 (although this value has been widely
accepted; Feng et al., 2017a, 2017b; Guo et al., 2012; Hoti &
Sillanpdd, 2006), but setting the criterion to zero would avoid the
arbitrary nature of choosing a criterion. In summary, many other
regularization methods could be investigated using the model
structure presented here by simply adjusting the prior appropri-
ately. The proposed Lasso application should be understood as a
first attempt to apply a shrinkage estimation technique to the joint
modeling approach of linking brain and behavior, and we look
forward to further applications of other regularization methods.

The Paradoxical Advantage of Shrinkage

In the Bayesian hierarchical modeling, shrinkage is the tendency
for a parameter to more closely resemble the prior information
imposed by the upper-level structure rather than that of the like-
lihood. Of course, an ideal method of inference would allow the
data to speak prominently in the parameter estimation process, and
so shrinkage due to the hierarchical structure would appear to be a
negative aspect of our research. However, hierarchical methods
allow the data to control the prior through the hyperstructure that
is informed by jointly estimating all model parameters. Hence,
while shrinkage may appear to be problematic at the level of an
individual subject, it is statistically optimal when considering the
full set of subjects, and the relative importance of different levels
of the hierarchical model (e.g., subject- vs. group-level effects).

Regularization methods that exploit shrinkage trade a small
amount of bias and a large standard error to obtain a large reduc-
tion in the MSE. Hence, regularization methods generally produce
more stable and reliable estimators with reasonably small biases.
The Lasso method in this article lowered the MSE to a large extent
compared with the FA NDDM without the Lasso. This was an
expected outcome. However, it was unexpected that the Lasso FA
NDDM would also have smaller biases and smaller standard errors
in the factor loading estimates. This result occurs because the
original FA NDDM imposed shrinkage effects on the single-trial
diffusion model parameters (i.e., factor scores) from the model’s
hierarchical structure. The shrinkage of these model parameters
then propagated to the factor loading estimates, biasing the results.
Applying the Lasso to the FA NDDM seems to correct the biases
of the factor loading estimates. Although this result may be limited
to the current study, it is possible that regularization methods can
remedy the bias that shrinkage causes within the hierarchical
models. We save the formalization of a precise statistical and
mathematical mechanism that explains this result for future re-
search.

Generalization of Lasso FA NDDM

Although the present article considers the use of regularization
techniques on the identification of brain networks, this particular
application was only a case study. In general, any type of covariate

can be used within the FA NDDM, and the Lasso method can also
be applied. Furthermore, the application of FA NDDM is not
restricted to a single covariate. For example, Turner et al. (2016)
used a joint model to simultaneously model EEG, fMRI, and
choice response time data from an intertemporal choice task.
Although Turner et al.’s (2016) approach did not use a factor
structure, such modeling efforts are now well within reach. As
another example, subjects’ personal attributes and clinical mea-
sures could also be exploited to further constrain the model (e.g.,
dysphoria and tendency to ruminate, Vandekerckhove, 2014). Be-
cause linking more data sets requires more complex models to deal
with information from multiple sources, it is possible that these
other sources could obscure networks of interesting variables,
hindering our understanding of the underlying latent processes.
The Lasso method proposed here should be a useful tool to help
identify important features of psychological phenomena from
noisy conglomerates of data.

Conclusions

There is a tremendous amount of data in the fields of psychol-
ogy and neuroscience, but very little theory that can be used to
explain why patterns of (especially neural) data are dramatically
altered across experimental conditions, individual subjects, or even
across time. Until such a unified theory of the brain exists, we can
use computational models to examine how experimental manipu-
lations affect neural and behavioral data. In the field of mathemat-
ical psychology, the DDM (and other sequential sampling models)
has provided the theoretical groundwork necessary to explain how
differences in behavioral data emerge as a function of individual
differences, intelligence quotients, or experimental manipulations.
Our goal was to build a computational framework that would
enable such a model to transcend behavioral data and establish
context when interpreting complicated patterns in high-
dimensional neural data. Such a framework should help to isolate
the aforementioned effects and build toward a unified theory of
brain-behavior dynamics.
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Appendix

Robustness Check for Different Prior Specifications of the Global Penalty Parameter

The effectiveness of the Lasso depends on the global penalty
parameter k, and different priors for k can produce considerably
different MAP estimates of the factor loading matrix. To ensure
that our results in the application section were not overly sensitive
to the specification for the prior on k, we also conducted a
sensitivity analysis by specifying four different priors for k, and
refitting the Lasso FA NDDM. In the previous applications (Feng
et al., 2017a, 2017b; Guo et al., 2012; Song et al., 2014; Wang et
al., 2013), a gamma prior has been used successfully such that k* ~
Gamma(o,., Bo,), Where o, is commonly set to 1 as a means to
specify an uninformative prior. Previous sensitivity results have
examined the role of 3, by setting it to the following values: 0.1,
0.05, 0.01, and 0.005.

Figure A1l shows the estimated factor loading matrices under
four different settings for 3, in the gamma prior: B, = {0.1,
0.05, 0.01, 0.005}. As in previous figures, each value of the
factor loading matrix is color coded according to the legend on
the right-hand side. Across all settings for 3., Figure A1 shows
that the estimated factor loading matrices are quite similar. In
large part, these factor loading results are due to only small
differences in the MAP estimates obtained for k, which were
5.603 (B, = 0.1), 5.393 (B, = 0.05), 5.320 (By. = 0.01), and
5.301 (By. = 0.005). These results assure us that our conclu-
sions are insensitive to our choice of prior, and that the estimate
of the penalty term k is determined largely from the data rather
than the prior.

(Appendix continues)
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Figure A1
Effects of Penalty Hyperparameters
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Note. Each panel shows the estimated factor loading matrix obtained from the accuracy condition under four different hyperparameter settings for the
penalty term. See the online article for the color version of this figure.
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