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Abstract

Outliers widely occur in big-data applications and may severely affect statistical
estimation and inference. In this paper, a framework of outlier-resistant estimation
is introduced to robustify an arbitrarily given loss function. It has a close connec-
tion to the method of trimming and includes explicit outlyingness parameters for
all samples, which in turn facilitates computation, theory, and parameter tuning.
To tackle the issues of nonconvexity and nonsmoothness, we develop scalable algo-
rithms with implementation ease and guaranteed fast convergence. In particular, a
new technique is proposed to alleviate the requirement on the starting point such
that on regular datasets, the number of data resamplings can be substantially re-
duced. Based on combined statistical and computational treatments, we are able
to perform nonasymptotic analysis beyond M-estimation. The obtained resistant
estimators, though not necessarily globally or even locally optimal, enjoy minimax
rate optimality in both low dimensions and high dimensions. Experiments in regres-
sion, classification, and neural networks show excellent performance of the proposed
methodology at the occurrence of gross outliers.

1 Introduction

Outliers are bound to occur in real-world big data and may severely affect statistical
analysis. Many commonly used methods, including the lasso (Tibshirani, 1996), break
down in the presence of a single bad observation. We study the problem in a general setup.
Given an arbitrary loss function l, a response vector y ∈ Rn and a design matrix X ∈
Rn×p, the coefficient vector β ∈ Rp can be estimated by solving the following optimization
problem

min
β∈Rp

l(η;y) +

p∑
j=1

P (βj) s.t. η = Xβ, (1)

where l measures the discrepancy between the observed response and the prediction, and
P represents a regularizer that can also be a constraint. Neither l nor P is necessarily
convex. The loss can be, say, a deviance function corresponding to a generalized linear
model (GLM), a robust loss like Huber’s loss, or the well-known hinge loss or exponential
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loss for the purpose of classification. The loss function need not be associated with any
probability distribution.

The goal of this work is to robustify (1) for any given l at the occurrence of a small
number of gross outliers—we stress that the desired outlier resistance should not only
accommodate samples with mild deviations from the model assumption, but also handle
extreme anomalies with severe outlyingness and leverage. Some frequently used robust
losses—Huber’s loss and the ℓ1-norm loss, in particular—are not resistant to gross outliers,
and hence one may want a reinforced robustification in the setup of (1). The nature of the
task eventually leads to an ℓ0-type regularization proposal.

The research of robust statistics undergoes a long history and leads to fruitful outcomes.
A standard means to gain robustness is to modify the loss, or equivalently, reweight the
samples. We illustrate the idea with robust regression. Instead of minimizing the quadratic
loss ∥y−Xβ∥22, M-estimation (Huber and Ronchetti, 2009; Hampel et al., 2011; Maronna
et al., 2006) solves minβ

∑
i ρ(yi − xTi β) or XTψ(Xβ − y) = 0, where ρ is a robust

loss and ψ = ρ′. Let w(t) = ψ(t)/t and r = Xβ − y. The score equation can be
written as XT{w(r) ◦ (Xβ − y)} = 0, where the multiplicative weights w(ri) are applied
componentwise. The design of a robust loss thus amounts to that of a weight function.
See Loh (2017) and Avella-Medina (2017), for example, for some theoretical properties.
We call the above scheme the multiplicative robustification, to contrast with the additive
fashion to be introduced in Section 2. An iterative algorithm called iterative reweighted
least squares (IRLS) is popularly used in computation. The most critical and expensive
step however lies in the preliminary resistant fit with high-breakdown (Rousseeuw and
Yohai, 1984; Rousseeuw, 1985), also the focus of our paper. Some challenges of resistant
estimation in methodology, theory, and computation are summarized as follows.

First, when l(η;y) has a more complicated expression than that in terms of ri = yi −
xTi β only, how to reshape it to guard against gross outliers does not seem straightforward.
According to Bianco and Yohai (1996), simply applying ρ on the deviance residuals of a
GLM (Pregibon, 1982) does not ensure consistency and an extra bias correction term must
be added into the criterion. Croux and Haesbroeck (2003) limited ρ to a certain class to
guarantee the existence of a finite solution, and included an additional weighting step to get
a bounded influence function. We refer to Avella-Medina and Ronchetti (2018) for a robust
quasi-likelihood form by use of both a ψ function and a weight function. To us, another
important line of work on the trimmed likelihood estimator (TLE) (Hadi and Luceño,
1997; Vandev and Neykov, 1998; Kurnaz et al., 2018), as an extension of least trimmed
squares (LTS) (Rousseeuw, 1985), is most motivating. LTS and TLE give rise to our new
regularized form of resistant estimation that is more amenable to both optimization and
analysis.

The theoretical challenges faced by today’s robust statisticians are perhaps even more
pressing. For example, even under n > p (let alone in high-dimensional settings), (a) how
trimming inflates the risk, (b) how small the universal minimax lower bound could be, and
(c) what makes a theoretically sound model selection criterion, are all surprisingly unknown
in the literature. We emphasize the finite-sample nature of desired statistical theory (e.g.,
Theorems 4–6), because in real-life data applications, it is often hard to know how large the
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sample size should be relative to the number of unknowns to apply asymptotics. Breakdown
point provides a useful index of the robustness of a given method, but as pointed out by
Huber and Ronchetti (2009), such worst-case studies are not probabilistic and may be
too conservative on a particular dataset. In addition to robust analysis, parameter tuning
based on asymptotics or breakdown point suffers the same theoretical difficulties.

The last big challenge lies in computation. Resistant fits are much more costly than
IRLS or Θ-IPOD (She and Owen, 2011) which takes them as initial points. Due to the
inherent nonconvexity, subset sampling is heavily used in LTS-like algorithms to gener-
ate multiple starting values (Rousseeuw and Driessen, 1999). Unfortunately, the number
of required samplings grows exponentially in p and so these procedures already become
inaccurate and/or prohibitive for moderate p. Developing more efficient outlier-resistant
algorithms and mitigating the burden of subset sampling are at the core of modern-day
robust statistics. Moreover, the fact that the computationally obtained solutions are not
necessarily globally optimal poses nontrivial challenges in theoretical analysis.

This paper attempts to address some aforementioned obstacles to gain outlier resistance,
with the hope to advance the practice of robust statistics to more sophisticated learning
tasks. Our main contributions are threefold. a) A general resistant learning framework is
introduced to robustify an arbitrarily given loss, with an “ℓ0 + ℓ2” form of regularization
to deal with gross outliers in possibly high dimensions. It has a close connection to the
method of trimming but includes explicit outlyingness parameters, which in turn facili-
tates computation, theory, and parameter tuning. b) Although the associated problem
is highly nonconvex and nonsmooth, extremely scalable algorithms with implementation
ease can be developed with guaranteed convergence. In particular, the statistical error of
the sequence of iterates can converge geometrically fast. A progressive optimization tech-
nique is proposed to relax the regularity condition and alleviate the requirement on the
starting point so that on regular datasets the number of data resamplings can be substan-
tially reduced. c) Combined statistical and computational treatments make it possible to
perform nonasymptotic analysis beyond the M-estimation setting, and the obtained “A-
estimators”, though not necessarily globally or even locally optimal, enjoy minimax rate
optimality in both low dimensions and high dimensions.

The rest of the paper is organized as follows. Section 2 introduces our regularized resis-
tant learning framework and compares it to trimming. Section 3 deals with the computa-
tional issues by progressive iterative quantile thresholding. Section 4 provides nonasymp-
totic theoretical support for the obtained estimators under proper regularity conditions.
Section 5 reveals some universal minimax lower bounds and investigates the issue of param-
eter tuning. Section 6 performs extensive simulation studies and real world data analysis.
The proof details and more simulation results are given in the appendix.

Notation. We use X = [x1,x2, · · · ,xn]T to denote the design matrix and xi the ith
sample. Throughout the paper, we use l(η;y) to denote a differentiable loss defined on the
systematic component η, and assume that l is bounded from below and infη l(η;y) ≥ 0
without loss of generality. Sometimes, such as when building the connection to trimming,
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we assume that the overall loss takes a sample-additive form, l(η;y) =
∑n

i=1 l0(ηi; yi).
l(η;y) is said to be L-strongly smooth or have an L-Lipschitz continuous gradient if

∥∇l(η1;y)−∇l(η2; y)∥2 ≤ L∥η1 − η2∥2, ∀η1,η2 (2)

for some L > 0. For ease of presentation, we frequently use the concatenated notation

X̄ = [X, I], β̄ = [βT ,γT ]T ,

and so Xβ + γ = X̄β̄. For any matrix A, ∥A∥2 is its spectral norm. Given any β ∈ Rp,
∥β∥0 =

∑p
j=1 1βj ̸=0. The hat matrix H of X isX(XTX)+XT with + denoting the Moore-

Penrose inverse. Given any two vectors α,β of the same size, the inner product ⟨α,β⟩ is
given by

∑
αjβj.

Given X ∈ Rn×p and s ≤ p, we introduce 0 ≤ mX(s),MX(s) associated with the re-
stricted isometry property (Candes and Tao, 2005) bymX(s)∥β∥22 ≤ ∥Xβ∥22 ≤MX(s)∥β∥22,
∀β : ∥β∥0 ≤ s. In particular, MX̄(s, o) (s ≤ p, o ≤ n) obeying

∥X̄β̄∥22 ≤MX̄(s, o)∥β̄∥22, ∀β̄ : ∥β∥0 ≤ s, ∥γ∥0 ≤ o

will play an active role in our algorithm design and analysis. Obviously, MX(s) ≤ ∥X∥22
and MX̄(s, o) ≤ ∥X̄∥22. But since we are primarily interested in s, o ≪ n, Xβ or X̄β̄
for an s-restricted β or an (s, o)-restricted β̄ involves a much thinner design, and so
MX(s),MX̄(s, o) can be way smaller.

We use C, c and L to denote universal constants which are not necessarily the same at
each occurrence and ≲ denotes an inequality that holds up to a multiplicative numerical
constant. Finally, 0 log 0 = 0, a ∨ b = max{a, b} and a ∧ b = min{a, b} are adopted.

2 L0-regularization vs. Trimming

We begin with the robust estimation problem (1) without regularization. The customizable
loss determines the performance metric, so we prefer not to alter its form in the process of
robustification. This is possible by use of an additive regularized estimation.

Concretely, re-define η as Xβ + γ, where γi characterizes the outlyingness of the ith
sample and we allow it to be large. Taking advantage of the sparsity in γ, as outliers are
never the norm, we propose an ℓ0-constrained, ℓ2-penalized outlier-resistant estimation

min
β,γ

l(η;y) +
ν

2
∥γ∥22 s.t. η = Xβ + γ, ∥γ∥0 ≤ q, (3)

where q satisfies q ≤ n/2 and is assumed to be an integer throughout the paper. Here, the
number of unknowns, n + p, is larger than the number of observations, and the “ℓ0 + ℓ2”
regularization plays an effective role in dealing with the high-dimensional challenge.

Unlike the popular ℓ1-norm penalty, the ℓ0 ‘norm’ used in the constraint is indifferent
to the magnitude of γi and does not result in any undesired bias. An alternative idea
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is to utilize a non-convex sparse penalty—in the regression setting, this amounts to M-
estimation, the diverse choices of the penalty lead to different robust losses (She and Owen,
2011), and the conclusion extends to regularized β-estimation in possibly high dimensions
(She and Chen, 2017, Lemma 2). But (3) has some distinct advantages: the constraint
directly controls the maximum number of outliers and ∥ · ∥0 is arguably the ideal function
to enforce sparsity regardless of the severity of aberrant samples. In practice, specifying
the value of q, rather than a penalty parameter λ, is easier and more convenient.

In addition to the sparsity-promoting regularization, we include the ℓ2-shrinkage to
enhance numerical stability and compensate for collinearity in the presence of clustered
outliers. We will see in Section 3.1 that with ν introduced, the samples with minor devia-
tions can still contribute to the model fitting. Empirically, ν is not a sensitive parameter,
and we often set ν to a mild value (say 1e-4). As long as ν > 0, the γ-estimate is finite.
But if we force ν = 0, (3) has an interesting and important connection to the method of
trimming (Rousseeuw, 1985; Hadi and Luceño, 1997; Vandev and Neykov, 1998).

Theorem 1. Assume l(η;y) takes a sample-additive form
∑n

i=1 l0(ηi; yi) and infη l0(η; y) =
0 for all y ∈ Y ⊂ R.

i) Given any minimizer (β̂, γ̂) of the ℓ0-constrained joint problem minβ,γ l(Xβ+ γ;y)

s.t. ∥γ∥0 ≤ q, β̂ is also a globally optimal solution to the trimmed problem on β:

minβ

∑n−q
i=1 l

(i)
0 (β) with l

(1)
0 (β) ≤ · · · ≤ l

(n)
0 (β) the order statistics of l0(x

T
i β; yi); conversely,

given any β̂ that minimizes
∑n−q

i=1 l
(i)
0 (β), there always exists a γ̂ ∈ R̄n with R̄ = [−∞,∞]

so that (β̂, γ̂) is a solution to the ℓ0-constrained joint problem.
ii) The same connection holds between the ℓ0-penalized joint problem minβ,γ l(Xβ +

γ;y) + τ∥γ∥0 and the winsorized problem minβ

∑
τ ∧ l0(xTi β; yi) for any cutoff τ ≥ 0.

iii) Finally, any minimizer β̂ of the winsorized optimization problem is a solution to
the trimmed problem with q = |{i : l0(xTi β̂; yi) > τ}|, and any (β̂, γ̂) that minimizes the
ℓ0-penalized joint criterion is also an optimal solution to the ℓ0-constrained joint problem
with q = ∥γ̂∥0.

So in a sense, imposing the ℓ0 regularization on γ amounts to using a trimmed version
or setting a cutoff of the original loss on β, both of which can effectively bound the influence
of outliers and necessarily result in nonconvexity. The joint (β,γ) formulation under ℓ0-
penalization corresponds to winsorizing the loss (which unsurprisingly gives a redescending
ψ in the setup of robust regression), and the ℓ0-constrained form has a similar power but
utilizes a data-adaptive cutoff. It is noteworthy that our additive regularized framework
makes it possible to utilize any loss (which can be convex) for resistant estimation.

Remark 2.1. Because of the connections, some breakdown-point and influence-function
results of the estimators defined by (3) can be directly obtained from say Alfons et al. (2013)
and Öllerer et al. (2015). For example, Proposition 1 of Alfons et al. (2013) can be slightly
modified to argue that the breakdown point is greater than q/n when η > 0 and l is convex
under some regularity conditions. Moreover, interested readers may refer to Appendix A.11
for a risk-based breakdown point defined via the Orlicz norm of the effective noise, which
takes the randomness into account, cf. (A.76), (A.77). One can then combine the empirical
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process theory and generalized Bregman calculus to perform breakdown point studies for an
extended real-valued loss l(η;y) that may not be a function of y − η as in M-estimation.
See Remark A.5 and Theorem A.5 for details, where the benefit of using a strongly convex
l on the systematic component is shown.

On the other hand, the equivalence between the sets of globally optimal solutions does
not preclude practically obtained estimates from being different. For the analysis of locally
optimal or alternatively optimal estimators to be presented in later sections, our additive
regularized form appears to be advantageous over the trimming form.

Finally, an extension of (3) to high dimensions gives rise to resistant variable selection
or resistant shrinkage estimation

min
β,γ

l(Xβ + γ;y) + P (β;λ) +
ν

2
∥γ∥22 s.t. ∥γ∥0 ≤ q. (4)

P (β;λ) can be, say, a sparsity-inducing penalty/constraint, or an ℓ2-type penalty. (4)
allows for p > n. Similar to Theorem 1, in the special case of l(η;y) = ∥y − η∥22/2,
P (β;λ) = λ∥β∥1 and ν = 0, (4) can be shown to be equivalent to the sparse LTS (Alfons
et al., 2013). In comparison, our explicit introduction of the outlyingness vector γ provides
new insights. First, outliers can be directly revealed from the γ-estimate. Second, the
formulation eases the design of optimization-based algorithms (Section 3). Third, (3) and
(4) enable us to borrow high dimensional statistics tools to investigate the non-asymptotic
behavior of resistant estimators (Section 4) and develop a new information criterion for
regularization parameter tuning (Section 5).

3 Progressive Iterative Quantile-thresholding

This section studies how to solve the computational problems defined in Section 2, where
the main obstacle lies in nonconvexity and nonsmoothness. Thanks to the sparsity of the
problem, obtaining a globally optimal solution may not be necessary in many real world
applications. This section develops two classes of iterative algorithms, the BCD type and
the MM type, both of which can accommodate a differentiable loss function that is not
necessarily convex. More importantly, we propose a progressive optimization technique to
relax the condition required to enjoy the best statistical accuracy.

3.1 Outlier-resistant regression

To illustrate the main ideas and techniques, this part studies outlier-resistant regression
with n > p:

min
β∈Rp,γ∈Rn

1

2
∥y −Xβ − γ∥22 +

ν

2
∥γ∥22 := f(β,γ) s.t. ∥γ∥0 ≤ q. (5)

Compared with LTS, the inclusion of γ in (5) renders the quadratic loss intact, and so
block-wise coordinate descent (BCD) can be used for computation. The sub-problem of
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β is trivial, and given β, the best γ can be obtained with a quantile thresholding operator
Θ# (She et al., 2013). Given any s ∈ Rn, define Θ#(s; q, ν) to be a vector t ∈ Rn satisfying
t(j) = s(j)/(1+ ν) if 1 ≤ j ≤ q, and 0 otherwise, where s(1), . . . , s(n) are the order statistics
of s1, . . . , sn satisfying |s(1)| ≥ · · · ≥ |s(n)|, and t(1), . . . , t(n) are defined similarly. To
ensure Θ# is a function and avoid ambiguity, we assume throughout the paper that in
performing Θ#(s; q, ν) , either |s(q)| > |s(q+1)| or |s(q)| = |s(q+1)| = 0 occurs, referred to as
the Θ#-uniqueness assumption. The resultant BCD algorithm proceeds as follows{

γ(t+1) = Θ#(y −Xβ(t); q, ν),

β(t+1) = (XTX)+XT (y − γ(t+1)),
(6)

or simply

γ(t+1) = Θ#(Hγ(t) + (I −H)y; q, ν), (7)

starting with β(0) ∈ Rp or γ(1) ∈ Rn. (6) and (7) are referred to as iterative quantile-
thresholding (IQ) algorithms in the paper. Intuitively, (7) repeatedly thresholds a weighted
average of y and the current γ-estimate. But the quantile thresholding is no ordinary hard-
thresholding due to its iteration-varying threshold and concurrent ℓ2 shrinkage. (7) shares
some similarity with the celebrated “C-step” designed on the basis of trimming (Rousseeuw
and Driessen, 1999). On the other hand, at each iteration C-step only uses a subset of
observations to get the coefficient vector, while IQ uses all the samples with adjustment.
In a sense, C-step’s subset selection amounts to checking the zero-nonzero pattern of γ

(t+1)
i

instead of its exact value.
The algorithm also suggests some virtues of the complementary ℓ2-shrinkage. When

ν = 0, given the optimal β̂, γ̂i = 0 or yi − xTi β̂. Letting di = 1γ̂i ̸=0 and D = diag{di},
from (6), β̂ satisfies

XT (I −D)Xβ̂ = XT (I −D)y.

Because of the binary nature of di, the ith observation is either kept unaltered or removed
completely, which might hurt the estimation accuracy in the presence of a number of mildly
outlying observations. When ν > 0, the above equation still holds for di = 1γ̂i ̸=0/(1 + ν),
and the fact that I−D is nonsingular even when q takes a conservatively large value secures
numerical stability and variance reduction. More insights can be gained by transforming
y = Xβ∗ + γ∗ + ϵ to y′ = V Tγ∗ + ϵ′ where V is the orthogonal complement to the range
of X, y′ = V Ty and ϵ′ = V Tϵ. Then, during the occurrence of clustered outliers with a
large overall leverage, the ℓ2 regularization has a beneficial effect to cope with the coherent
Gram matrix V TV = I −H .

Establishing IQ’s rate of convergence is nontrivial since it is a nonconvex optimization
algorithm in high dimensions (rigorously speaking, n observations and p + n unknowns).
We give two results regarding the convergence of its computational error and statistical
error.

Theorem 2. Consider the algorithm defined by (6) or (7).
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a) For any T ≥ 1,

min
1≤t≤T

∥X(β(t) − β(t+1))∥22 = min
1≤t≤T

∥H(γ(t) − γ(t+1))∥22

≤ 1

T
(∥(I −H)(γ(1) − y)∥22 + ν∥γ(1)∥22).

b) Let y = Xβ∗ + γ∗ + ϵ, where ∥γ∗∥0 = o∗, ϵ is a sub-Gaussian random vector with
mean zero and scale bounded by σ (cf. Definition 1 in Appendix A.2). Let q = ϑo∗

with ϑ > 1. Suppose the design matrix satisfies a restricted isometry property (RIP)
for some ε: 0 < ε < 1

∥H∆∥22 ≤ (1− ε)∥∆∥22, ∀∆ : ∥∆∥0 ≤ (1 + ϑ)o∗. (8)

Then with probability at least 1− C(n− p)−c, for any t ≥ 1

∥H(γ(t) − γ∗)∥22 ≲
( 1

1 + κ

)t−1

∥H(γ(1) − γ∗)∥22 +
ν

κ
∥γ∗∥22 +

σ2

κ
ϑo∗ log

en

o∗
, (9)

where

κ = {ε− 1/
√
ϑ+ (1− 1/

√
ϑ)ν}/(1− ϵ), (10)

and C, c > 0 are constants. Furthermore, under a slightly stronger noise assumption
that ϵi are independent sub-Gaussian(0, σ2), the following convergence result holds
for all t ≥ 1 with probability at least 1− C(n− p)−c − C exp(−cp)

∥X(β(t) − β∗)∥22 ≲
( 1

1 + κ

)t−1

∥X(β(1) − β∗)∥22 +
ν

κ
∥γ∗∥22 + pσ2 +

σ2

κ
ϑo∗ log

en

o∗
.

(11)

The first result in (a) states a universal convergence rate of the order O(1/t), and the
conclusion is free of any conditions. On the other hand, this rate does not take the model
parsimony into full account.

The statistical error convergence shown in (b) is surprising and delightful. Although
Θ# is not a nonexpansive mapping, let alone a contraction, IQ approaches the statistical
target geometrically fast with high probability, as long as θ or ν is properly large:

ε+ (1− 1/
√
ϑ)ν > 1/

√
ϑ. (12)

Such a linear convergence result in the discrete nonconvex setup is novel to the best of our
knowledge. A positive ν can improve the linear rate parameter κ. The error bound remains
the same order as long as ν∥γ∗∥22 is dominated by a constant multiple of σ2ϑo∗ log en

o∗
.

(The best value of ν should be data-adaptive, but fixing it at a mild value already gives
satisfactory performance.) The statistical error does not vanish as t → ∞ due to the
existence of noise, but Section 5 will show that pσ2 + o∗σ2 log(en/o∗) is the desired error
rate in robust regression. Hence over-optimization seems to be unnecessary.

8



Of course, to enjoy the fast convergence, a regularity condition on H must be assumed.
Restricted isometry like (8) is widely used and known to hold in compressed sensing and
many high-dimensional sparse problems (Candes and Tao, 2005; Hastie et al., 2015). In-
tuitively, ∆T (I −H)∆ ≥ ε∥∆∥22, ∀∆ : ∥∆∥0 ≤ (1 + ϑ)o∗ means all principal submatrices
of size (1 + ϑ)o∗ of I − H should have eigenvalues greater than or equal to a positive ϵ.
The cone to define the restricted eigenvalue shrinks when o∗ is small. It is well known that
RIP is much less demanding than the mutual coherence restrictions on hi,j(i ̸= j) (van de
Geer and Bühlmann, 2009; Hastie et al., 2015) which are realized by low-leveraged data
since |hi,j| ≤ (hiihjj)

1/2.
We will show that for strongly convex losses, pursuing globally optimal estimators in

our additive regularized framework can ultimately remove all regularity conditions, namely,
outlier resistance regardless of leverage and outlyingness. But on regular datasets this may
be unnecessary. The global minimization comes at a heavy computational cost: multiple
random starts have to be used due to the nonconvexity, and experience shows that even
when p = 50, the subset sampling popularly used in robust statistics already becomes
ineffective and expensive (Rousseeuw and Hubert, 1997).

So a legitimate question on large data is how to relax the condition required for statisti-
cal accuracy while maintaining computational efficiency. Theorem 2 sheds new light on the
issue. For example, with ν = 0, ε > 1/

√
ϑ ensures the geometric statistical convergence,

and to make it hold more easily, an obvious means is to increase ϑ. The larger the value of
ϑ takes, the bigger ε is, and so the smaller the influence of the initial point according to (9)
or (11). The adverse effect is the larger error term ϑo∗ log en

o∗
. But we can gradually tighten

the cardinality constraint with a sequence Q(t) which deceases from n to q as t increases.
The resultant algorithm is termed as Progressive Iterative Quantile-thresholding (PIQ).
PIQ can substantially improve the mediocre performance of IQ. It is easy to extend Theo-
rem 2 from fixed quantiles to varying quantiles, but deriving a theoretically optimal cooling
scheme is challenging. Fortunately, this is not a big issue in practice; various schemes seem
to do a decent job, such as Q(t) = n−at2 (quadratic), Q(t) = 2n/(1+exp(at)) (sigmoidal),
Q(t) = n− a log t (logarithmic) and so on.

Our progressive quantile proposal is innovative in that it is not just another intri-
cate sampling scheme and does not increase the number of initial points. Compared with
state-of-the-art algorithms, the tables and figures in Section 6.1 clearly show that it can
significantly reduce the need of data resampling (thereby the overall computational time)
without sacrificing the statistical accuracy. In addition, we must point out that PIQ works
in the opposite direction to the class of forward pathwise algorithms and boosting methods
(Bühlmann and Yu, 2003; Needell and Tropp, 2009; Zhang, 2013) which all grow a model
from the null. Both of our analysis and computer experiments support the backward man-
ner in resistant learning.

An alternative (and perhaps simpler) algorithm can be developed following the principle
of majorization-minimization (MM) (Hunter and Lange, 2004). The technique is general
and will play a vital role in extending BCD-type PIQ to conquer a general loss. Recall
the concatenated notation X̄ = [X I], β̄ = [βT γT ]T . Instead of directly minimizing
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the original objective function f(β̄) = ∥y − X̄β̄∥22/2 + ν∥γ∥22/2, we construct a surrogate

function g(β̄; β̄
−
) by (joint) linearization

gρ(β̄; β̄
−
) := ∥y − X̄β̄

−∥22/2 + ⟨X̄T
(X̄β̄

− − y), β̄ − β̄
−⟩+ ρ

2
∥β̄ − β̄

−∥22 +
ν

2
∥γ∥22, (13)

where ρ is the inverse stepsize parameter to be chosen later. Then minimizing g with

respect to β̄ yields a sequence of iterates β̄
(t+1)

= argminβ̄ gρ(β̄; β̄
(t)
) s.t. ∥γ∥0 ≤ q. After

some algebraic manipulations, g can be rephrased as

gρ(β̄; β̄
−
) =

ρ

2
∥β̄ − β̄

−
+ X̄

T
(X̄β̄

− − y)/ρ∥22 +
1

2
∥y − X̄β̄

−∥22

− 1

2ρ
∥X̄T

(X̄β̄
− − y)∥22 +

1

2
ν∥γ∥22

=
ρ

2
∥β̄ − β̄

−
+ X̄

T
(X̄β̄

− − y)/ρ∥22 +
ν

2
∥γ∥22 + c(β̄

−
),

(14)

where c(β̄
−
) does not depend on β. Noticing the separability in β and γ, the resultant

update is given by{
β(t+1) = β(t) −XT (Xβ(t) + γ(t) − y)/ρ,

γ(t+1) = Θ#(γ(t) − (Xβ(t) + γ(t) − y)/ρ; q, ν/ρ).
(15)

As long as the stepsize is properly small, e.g., ρ > ∥X̄∥22, (15) is convergent (cf. Theorem
3). A similar conclusion to Theorem 2 can be proved, which supports a progressive scheme
with Q(t) decreasing to q to relax the requirement of the initial point.

Different from (6), (15) updates (β,γ) simultaneously and does not involve any matrix
inversion or expensive operations. A downside of MM however lies in its smaller step-size,
which not only slows down convergence but may (surprisingly) affect statistical accuracy
in resistant learning; see Section 4.

3.2 Harnessing a general loss

This part uses the optimization techniques developed for resistant regression to deal with
a general objective with p possibly larger than n:

min
(β,γ)

l(Xβ + γ;y) + P (ϱβ;λ) +
ν

2
∥γ∥22 s.t. ∥γ∥0 ≤ q, (16)

where P is often a sparsity-promoting penalty, but can also take the form of a ridge penalty
or an ℓ0-constraint. Here, we add the algorithmic parameter ϱ > 0 to match the scale of
the design and aid stepsize selection. With linearization and MM, we can extend (15) to
(17), (18) below, applicable to a broad family of l and P .
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Theorem 3. Assume that ∇l(η; y) is L-Lipschitz continuous. Given an arbitrary thresh-
olding rule Θ with λ as the threshold parameter (cf. Appendix A.3), consider the following
algorithm {

β(t+1) = Θ(ϱβ(t) −XT∇l(Xβ(t) + γ(t);y)/ϱ;λ)/ϱ, (17)

γ(t+1) = Θ#(γ(t) −∇l(Xβ(t) + γ(t);y)/ϱ2; q, ν/ϱ2), (18)

where t ≥ 0, ϱ > 0. Let f(β̄) = l(X̄β̄;y) + P (ϱβ;λ) + ν∥γ∥22/2, where P is defined based

on Θ: P (θ;λ)− P (0;λ) =
∫ |θ|
0
(sup{s : Θ(s;λ) ≤ u} − u) du + q(θ;λ) for some q(·, λ) ≥ 0

satisfying q(Θ(t;λ);λ) = 0, ∀t ∈ R. Then, given any starting point β̄
(0)

and any ϱ > 0,

f(β̄
(t+1)

) ≤ f(β̄
(t)
) − (β̄

(t+1) − β̄
(t)
)T (ϱ2I − LX̄

T
X̄)(β̄

(t+1) − β̄
(t)
)/2 and the following

convergence rate holds

min
t≤T

(β̄
(t+1) − β̄

(t)
)T (ϱ2I − LX̄

T
X̄)(β̄

(t+1) − β̄
(t)
) ≤ 2f(β̄

(0)
)

T + 1
, ∀T ≥ 0. (19)

In particular, if ϱ2 > LMX̄(p, 2q) (cf. Section 1) and ν > 0, any limit point (β̂, γ̂) of
(β(t),γ(t)) satisfies β̂ = Θ(ϱβ̂ − XT∇l(Xβ̂ + γ̂;y)/ϱ;λ)/ϱ and γ̂ = Θ#(γ̂ − ∇l(Xβ̂ +
γ̂;y)/ϱ2; q, ν/ϱ2) provided Θ is continuous at ϱβ̂ −XT∇l(Xβ̂ + γ̂;y)/ϱ.

In robust regression, (17) degenerates to the linear β-update in (15) with ρ = ϱ2, but
notice the distinctive scaled form of (17) associated with a nonlinear thresholding operator
Θ. The Lipschitz condition is satisfied by the squared error loss, logistic deviance, and
Huber’s loss, among many others, but is only used to give a universal stepsize. In fact,
using a backtracking line search (Boyd and Vandenberghe, 2004), L need not be known
in implementation; see Remark A.1. The equations satisfied by (β̂, γ̂) actually define a
broader class of estimators that will be investigated in Section 4.

In the remaining, we use BCD to tackle (16). The alternating update involves solving
two sub-problems:

γ(t+1) = argmin
γ

l(γ +Xβ(t)) + ν∥γ∥22/2 s.t. ∥γ∥0 ≤ q,

β(t+1) = argmin
β

l(Xβ + γ(t+1)) + P (ϱβ;λ).

(20)

(21)

The first problem can be addressed using a similar MM trick as in Theorem 3. But there is a
more efficient way to directly locate the optimal support of γ when l(η;y) =

∑n
i=1 l0(ηi; yi).

Specifically, with l̃(t; a, b) = l0(a+t, b)+νt
2/2, the criterion becomes

∑
i:γi=0 l0(x

T
i β

(t), yi)+∑
i:γi ̸=0 l̃(γi;x

T
i β

(t), yi). Let l0,i = l0(x
T
i β

(t); yi) and l̃min,i = mint l̃(t;x
T
i β

(t), yi). Then the

index set I associated with the q largest differences δi := l0,i − l̃min,i (1 ≤ i ≤ n) gives the
support. When ν = 0 and l̃min,i = 0, simply sorting the losses l0,i achieves the goal. Next,

one merely needs to solve q univariate problems mins l̃(s;x
T
i β

(t), yi) to get γ(t+1).
For (21), an iterative MM algorithm similar to (17) can be developed, and we will show

that it suffices to performing the update just once, β(t+1) = Θ(ϱβ(t) − XT∇l(Xβ(t) +
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γ(t+1);y)/ϱ;λ)/ϱ. Again, we advocate pursuing β-sparsity via the hybrid “ℓ0 + ℓ2” regu-
larization in place of (21),

β(t+1) = argmin l(Xβ + γ(t+1)) + νβ∥β∥22/2 s.t. ∥β∥0 ≤ qβ.

By use of linearization, the resultant progressive quantile-thresholding is given by

β(t+1) = Θ#(β(t) −XT∇l(Xβ(t) + γ(t+1);y)/ρ; q
(t)
β , νβ/ρ),

where ρ ≥ LMX(2qβ) (recall the definition ofMX in Section 1) and the sequence q
(t)
β drops

to qβ eventually. (One might want to merge the two ℓ0-constraints into ∥β̄∥0 ≤ qβ + qγ
to simplify the computation, but this would result in a larger statistical error due to the
enlarged search space; see the analysis in Section 4.)

At the end of the section, we make a comparison between the MM-type and the BCD-
type PIQ algorithms. The first kind has a single-loop structure and maintains low per-
iteration complexity. We do observe that MM is faster than BCD in some large-p classifi-
cation problems (say when p > 500), but in the conventional n > p setup and many other
scenarios, BCD is more accurate and efficient. We will mainly use the BCD-type PIQ in
applications and analysis unless otherwise specified.

4 Statistical Accuracy of A-estimators

A major theoretical challenge brought by the class of estimators from our computational
algorithms is their lack of global optimality and stationarity, which significantly differen-
tiates them from conventional M-estimators and Z-estimators (van der Vaart, 1998). We
call such estimators A-estimators due to their alternative optimality nature. In fact, even
the alternative optimality may be merely in a local sense. As far as we know, there is a
lack of statistical accuracy studies for such algorithm-driven estimators. In this section,
we aim for developing new techniques to reveal tight error rates of A-estimators as well as
the comprehensive roles of algorithmic parameters in resistant learning, in both low and
high dimensions.

Introducing the notion of noise in the non-likelihood setting is an essential component.
We define the effective noise associated with a statistical truth β̄

∗
= [β∗T ,γ∗T ]T by

ϵ = −∇l(X̄β̄
∗
), (22)

which is not affected by the regularizer. In a GLM with cumulant function b and canonical
link function g = (b′)−1, the deviance based loss is given by l(η) = −⟨y,η⟩+ ⟨1, b(η)⟩, and
so

ϵ = y − g−1(Xβ∗ + γ∗) = y − E(y).
In general, however, the effective noise jointly determined by the loss and y may not be the
raw noise on y. For example, a robust loss associated with a bounded ψ function always
gives rise to a bounded ϵ, thereby sub-Gaussian regardless of the distribution of y, making
our analysis nonparametric in nature; the same is true for many classification losses.

12



Unless otherwise specified, we assume that ϵ is a sub-Gaussian random vector with
mean zero and scale bounded by σ (cf. Definition 1 in Appendix A.2). This gives a broad
family including Gaussian and bounded random variables; in particular, any Lipschitz l
results in a sub-Gaussian effective noise. However, our analysis is not restricted by sub-
Gaussianity; Theorem A.4 in Appendix A.11 gives a universal risk bound when ϵ has a
general Orlicz norm. Also, we allow γ∗i to take arbitrarily large values to capture extreme
anomalies; another possible way is to assume γi are i.i.d. following a certain distribution,
but treating γ∗ as an n-dimensional unknown parameter vector (with sparsity) is convenient
in detecting outliers and in handling models with non-additive noise.

Our main tool to tackle the diverse form of the loss is the generalized Bregman function
(GBF) (She et al., 2021): given any differentiable l

∆l(α,β) := l(α)− l(β)− ⟨∇l(β),α− β⟩. (23)

If, further, l is strictly convex,∆l(α,β) becomes the standard Bregman divergenceDψ(α,β)
(Bregman, 1967). When l(β) = ∥β∥22/2, ∆l(α,β) = ∥α−β∥22/2, abbreviated as D2(α,β).
In general, ∆l(α,β) may not be symmetric, and we define its symmetrization by ∆̄l(α,β) :=
(∆l(α,β) +∆l(β,α))/2.

We work in a general setting with p possibly larger than n unless otherwise mentioned.
For simplicity, all ℓ2-shrinkage parameters are set to zero, and we assume ∇l is L-Lipschitz
continuous, and take L = 1 without loss of generality.

Let’s first consider the advocated doubly constrained form introduced at the end of
Section 3 to exemplify the error bounds. As aforementioned, to make the statistical error
study more realistic, rather than restricting to the set of globally optimal solutions, one
needs to pay particular attention to the A-estimators defined by

β̂ ∈ arg min
β:∥β∥0≤qβ

l(Xβ + γ̂;y)

γ̂ ∈ arg min
γ:∥γ∥0≤qγ

l(Xβ̂ + γ;y).

(24a)

(24b)

But the β̂ delivered from the fast PIQ algorithm may not possess the global alternative
optimality in (24a). The good news is that according to Theorem A.1 in Appendix A.4,
all these global or local A-estimators satisfy{

β̂ = Θ#(β̂ −XT∇l(Xβ̂ + γ̂;y)/ρ; qβ)

γ̂ = Θ#(γ̂ −∇l(Xβ̂ + γ̂;y); qγ),
(25)

for any ρ > MX(2qβ). Our statistical accuracy analysis is applicable to the whole class
(and MM-type non-global estimators as well, with slight modification). For clarity, define
o∗ = ∥γ∗∥0, s∗ = ∥β∗∥0.
Theorem 4. Let (β̂, γ̂) be an A-estimator that satisfies (25) for some ρ > 0, qγ = ϑo∗, qβ =

ϑs∗ (ϑ ≥ 1) and ∥γ̂∥0 = qγ, ∥β̂∥0 = qβ. Let X̄ρ = [X/
√
ρ I]. Assume that there exists

some δ > 0 such that

(2∆̄l − δD2)(X̄ρβ̄, X̄ρβ̄
′
) ≥ 1√

ϑ
D2(β̄, β̄

′
) (26)

13



for sparse β̄, β̄
′
satisfying ∥β∥0 ≤ ϑs∗, ∥β′∥0 ≤ s∗, ∥γ∥0 ≤ ϑo∗, ∥γ ′∥0 ≤ o∗. Then the

following error bound holds

E[D2(X̄
ˆ̄β, X̄β̄

∗
)] ≲

1

δ2

{
ϑo∗σ2 log

en

ϑo∗
+ ϑs∗σ2 log

ep

ϑs∗
+ σ2

}
, (27)

where C, c are positive constants.
More generally, if the starting point (β(0),γ(0)): ∥β(0)∥0 ≤ qβ, ∥γ(0)∥0 ≤ qγ already

satisfies E[D2(X̄β̄
(0)
, X̄β̄

∗
)] = O(R){ϑo∗σ2 log en

ϑo∗
+ϑs∗σ2 log ep

ϑs∗
+σ2} with +∞ ≥ R ≥ 1,

to obtain the same conclusion (27), (26) can be relaxed to

{
2(1− 1

R
)∆̄l +

C

R(Rδ ∨ 1)
∆l − δD2

}
(X̄ρβ̄, X̄ρβ̄

′
) ≥ (1− 1/R)√

ϑ
D2(β̄, β̄

′
) (28)

for some constant C > 0.

The regularity condition is an extension of the classical ℓ2-form restricted isometry im-
posed on the augmented design. Indeed, for l(η;y) = ∥η − y∥22/2, the condition can writ-
ten as ∥Xβ + γ∥22 ≥ [1/{(2− δ)

√
ϑ}]

(
ρ∥β∥22 + ∥γ∥22

)
, ∀(β,γ) : ∥β∥0 ≤ (1 + ϑ)s∗, ∥γ∥0 ≤

(1 + ϑ)o∗ for some δ > 0 and large enough ϑ. According to the proof, under qβ = p, the
term ρ∥β∥22 on its right-hand side can be dropped and so the condition degenerates to
the ordinary RIP used in Theorem 2, due to the orthogonal decomposition ∥Xβ + γ∥22 =
∥X{β + (XTX)+XTγ}∥22 + ∥(I −H)γ∥22. We have argued in Section 3 that in low di-
mensions, low leverage implies low mutual coherence which in turn implies RIP. But the
plain definition of leverage cannot incorporate outlier scarcity, and is noninformative as
p > n, since H = I when X has full row rank. The Bregman-based restricted isometry
on the augmented design gives an extension of the notion of leverage to high dimensions
and non-quadratic losses.

Theorem 4 gives useful implications regarding the algorithmic parameters as well. For
example, from (26), to enjoy the statistical guarantee, the inverse stepsize ρ must be
properly small. The finding is insightful and novel. Throughout the machine learning
literature, slow learning rate is recommended when training a nonconvex learner. But our
statistical error analysis strongly cautions against using an extremely small step size when
nonconvexity occurs. The BCD-type algorithm design appears advantageous in this aspect.
Moreover, a high-quality starting point, usually expensive in computation, certainly brings
some statistical benefit seen from the generalized regularity condition (28) (consider an
extreme case R = 1). But simply enlarging ϑ gives another promising way to relax (26),
and supports the progressive tightening proposal in Section 3.

When ϑ, δ are treated as constants and s∗ ∨ o∗ > 0, (27) shows that A-estimators can
achieve an error bound of the order σ2s∗ log(ep/s∗) + σ2o∗ log(en/o∗), which reduces to
pσ2 + σ2o∗ log(en/o∗) when there is no β-sparsity. This error rate involves the number of
outliers apart from the number of relevant predictors. But the influence of outliers remains
controlled in the sense that the bound does not grow with the magnitude of γ∗. In the
situation of relatively few outliers: o∗ log(en/o∗) ≪ s∗ log(ep/s∗), the proposed method can
attain the celebrated rate σ2s∗ log(ep/s∗) for (clean) large-p variable selection. On the other
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hand, one should be aware that on ‘big dirty’ data with large n and o∗, σ2o∗ log(en/o∗)
could be the dominant error term.

Remark 4.1. One may wonder whether the overall error rate in Theorem 4 can be further
improved by pursuing a global minimizer. Theorem A.2 shows that this is not the case, but
the regularity condition gets relaxed. Concretely, the symmetrized GBF ∆̄l in (26) will be
replaced by ∆l, and the right-hand side of (26) will be just zero. Hence if the loss l defined
on the systematic component is µ-strongly convex (e.g., regression), the error bound holds
with δ = µ, free of any RIP or leverage restriction. This shows the inherent soundness of
the proposed resistant learning framework.

Remark 4.2. The ℓ2-recovery result proved in Theorem 4 is fundamental, from which one
can also obtain estimation error bounds. For example, Theorem A.3 shows that under a
slightly stronger regularity condition,

∥β̂ − β∗∥22 ≲ σ2{s∗ log(ep/s∗) + o∗ log(en/o∗)}/n

holds with high probability. In the classical n > p setup with no penalty imposed on β, it
becomes ∥β̂ − β∗∥22 ≲ {pσ2 + o∗σ2 log(en/o∗)}/n. See Appendix A.5 for details.

Our theoretical techniques can cope with the penalized form of (16) as well. For
instance, Theorem 5 studies the outlier-resistant lasso (cf. Section 2), where

l(Xβ + γ;y) = ∥Xβ + γ − y∥22/2, P (β;λ) = λϱ∥β∥1,

with ϱ > 0. (The theorem proved in Appendix A.6 is actually regarding a general loss and
its proof applies to all subadditive penalties.)

Theorem 5. Let λ = Aσ
√
log(ep) with A a sufficiently large constant. Then if (β̂, γ̂) is

an A-estimator of resistant lasso for some ϱ and ϑ (cf. Theorem A.1), the risk bound

E[D2(X̄β̄
∗
, X̄ ˆ̄β)] ≲ σ2ϑo∗ log

en

o∗
+K2σ2s∗ log(ep) + σ2 (29)

holds under the assumption that there exists a large enough K such that K
√
J∥Xβ+γ∥2+

ϱ∥βJ c∥1 ≥ ∥γ∥22/(2λ
√
ϑ) + (1 + ε)ϱ∥βJ ∥1 for any β,γ with ∥γ∥0 ≤ (1 + ϑ)o∗, where ε is

a positive constant, J = {j : β∗
j ̸= 0} and J = |J |.

When K and ϑ are treated as constants, the error rate of the resistant lasso is slightly
worse (by a logarithmic term) than (27) for the doubly constrained form.

5 Minimax Lower Bounds and Model Comparison

We first derive some universal lower bounds that are satisfied by all estimators. These
nonasymptotic results are stated for GLMs. Let η∗ = X̄β̄

∗
and yi|η∗i be independent

and follow a distribution in the regular exponential family with dispersion σ2 and l0 be
the negative log-likelihood function (cf. Appendix A.7 for details), and consider a general
signal class with p possibly larger than n

B(s∗, o∗) = {(β∗,γ∗) : ∥β∗∥0 ≤ s∗, ∥γ∗∥0 ≤ o∗}. (30)
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Theorem 6. In the regular exponential dispersion family with n ≥ 2, p ≥ 2, 1 ≤ o∗ ≤
n/2, 1 ≤ s∗ ≤ p/2, define

P (s∗, o∗) = s∗ log(ep/s∗) + o∗ log(en/o∗). (31)

Let I(·) be any nondecreasing function with I(0) = 0, I ̸≡ 0. (i) Suppose for some κ > 0
∆l(0, X̄β̄)σ2 ≤ κD2(0, β̄) ∀β̄ : ∥β∥0 ≤ s∗, ∥γ∥0 ≤ o∗. Then there exist positive constants
c̃, c, depending on I(·) only, such that

inf
(β̂,γ̂)

sup
(β∗,γ∗)∈B(s∗,o∗)

E[I(D2(β̄
∗
, ˆ̄β)/{c̃σ2P (s∗, o∗)/κ})] ≥ c > 0, (32)

where (β̂, γ̂) denotes any estimator of (β∗,γ∗). (ii) Suppose ∆l(0, X̄β̄1)σ
2 ≤ κD2(0, β̄1)

and κD2(0, β̄2) ≤ D2(0, X̄β̄2), ∀β̄i : ∥βi∥0 ≤ is∗, ∥γi∥0 ≤ io∗, i = 1, 2, where κ/κ is a
positive constant. Then there exist positive constants c̃, c such that

inf
(β̂,γ̂)

sup
(β∗,γ∗)∈B(s∗,o∗)

E[I(D2(X̄β̄
∗
, X̄ ˆ̄β)/{c̃σ2P (s∗, o∗)})] ≥ c > 0. (33)

Finer analysis and lower bounds are presented in Appendix A.7. We illustrate the con-
clusion for classification. Because the logistic deviance has a 1/4-Lipschitz continuous gra-
dient, the regularity condition in (i) is satisfied for any κ ≥MX̄(s∗, o∗)/4 (cf. Section 1 and
Appendix A.3). So when κ ≤ cn, {s∗ log(ep/s∗)+o∗ log(en/o∗)}/n, or (p+o∗ log(en/o∗))/n
when s∗ = p, is the desired minimax lower error rate for all classifiers, both with constant
positive probability and in expectation (corresponding to I(t) = 1t≥c and I(t) = t). A sim-
ilar conclusion for prediction can be drawn from (ii). To the best of our knowledge, such
a kind of results with the usage of GBFs for resistant GLMs is novel in robust statistics.

Together with the upper error bounds (e.g., Theorem 4 and Theorem A.3), PIQ enjoys
minimax rate optimality provided that qγ is not set too large relative to o

∗. It is common in
practice to directly specify the cardinality bound based on domain knowledge, say, ∥γ∥0 ≤
0.25n, for the sake of β-estimation. On the other hand, if the goal is to identify all outliers
to have the best predictive model, one ought to choose the regularization parameters in
a more data-adaptive manner. This is regarded as a vital and challenging task in robust
statistics (Ronchetti et al., 1997; Müller and Welsh, 2005; Salibian-Barrera and Van Aelst,
2008). Indeed, outliers may render resampling based cross-validation inappropriate, and
although there is an abundance of information criteria, which one is sound in theory and
reality lacks a clear conclusion. The joint variable selection in high dimensions and the
flexible choice of the loss exacerbate the issue. (The ℓ2-shrinkage parameter is however
much less sensitive and can be fixed at a mild value.)

In the general setup where both β and γ are possibly sparse, the upper and lower error
bounds suggest a universal function to penalize model complexity

P (β,γ) = ∥γ∥0 + ∥γ∥0 log(en/∥γ∥0) + ∥β∥0 + ∥β∥0 log(ep/∥β∥0). (34)

We refer to the associated criterion as the predictive information criterion (PIC). In the
case that no variable selection is needed (∥β∥0 = p), one can rewrite (34) as

P (γ) = ∥γ∥0 + ∥γ∥0 log(en/∥γ∥0) (35)
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for pure outlier identification.
(34) has some involved logarithmic terms and is not a simple ℓ0-type penalty, but it

leads to an ideal model comparison criterion with a solid finite-sample theoretical support.

Theorem 7. Assume ϵ defined in (22) is a sub-Gaussian random vector with mean zero
and scale bounded by a constant and β̄

∗ ∈ M and β̄
∗ ̸= 0. Define P (β̄) = P (β,γ) =

J(β) log(ep/J(β)) + J(γ) log(en/J(γ)). Assume that there exist constants δ > 0 and
A0 ≥ 0 such that (∆l − δD2)(X̄β̄, X̄β̄

′
) + A0(P (β̄) + P (β̄

′
)) ≥ 0, ∀β̄, β̄′ ∈ M. Then for

a sufficiently large constant A, any (β̂, γ̂) that minimizes

l(X̄β̄;y) + AP (β̄) (36)

subject to β̄ ∈ M must satisfy

E
[
D2(X̄

ˆ̄β, X̄β̄
∗
)
]
≲ s∗ log(ep/s∗) + o∗ log(en/o∗). (37)

Theorem 7 achieves the optimal error rate as Theorem 4 and Theorem 5, but a ma-
jor difference here is that no parameters (like q, λ) are involved, but just some absolute
constants. Moreover, Theorem 7 does not require any RIP or large signal-to-noise ratio
conditions.

When the noise distribution has a dispersion parameter σ2, Theorem 7 still applies, but
the penalty in (36) becomes Aσ2P (β,γ) with an unknown factor. A preliminary robust
scale estimate can be possibly used. But an appealing result for robust regression is that
the estimation of σ can be totally bypassed. For clarity, Theorem 8 assumes n > p and
no sparsity in β, in which situation a scale-free form of PIC, motivated by She and Tran
(2019), is given by

(n− p) log
(
∥Xβ + γ − y∥22

)
+ α1∥γ∥0 + α2∥γ∥0 log(en/∥γ∥0), (38)

where α1, α2 are absolute constants. Again, the soundness of (38) when the outliers are
not awfully many places no limit on their leverage or outlyingness. (More generally, using
(34) in place of (35) gives a more general form of scale-free PIC for joint variable selection
and outlier identification; Theorem 8’ proved in Appendix A.9 implies Theorem 8, and
applies to p > n.)

Theorem 8. Let y = Xβ∗ + γ∗ + ϵ, where X has full column rank, ϵi are independent
sub-Gaussian(0, σ2) and Eϵ2i = σ2

i = ciσ
2 with ci some positive constants and σ2 unknown.

Define l(Xβ + γ;y) = ∥Xβ + γ − y∥22 and P (γ) = ∥γ∥0 log(en/∥γ∥0). Assume P (γ∗) ≤
(n − p)/A0 for some constant A0 > 0. Let δ(γ) = AP (γ)/(n − p), where A is a positive
constant satisfying A < A0, and so δ(γ∗) < 1. Then, for sufficiently large values of A0

and A, any (β̂, γ̂) that minimizes log l(Xβ+γ;y) + δ(γ) subject to δ(γ) < 1 must satisfy

D2(X̄
ˆ̄β, X̄β̄

∗
) ≲ σ2o∗ log(en/o∗) + pσ2 with probability at least 1 − c(n − p)−c

′
for some

constants c, c′ > 0.
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Combining Theorem 6 and Theorem 8 supports the modified BIC proposed by She and
Owen (2011) based on empirical studies. However, (38) has some subtle but important
differences from BIC, and the resemblance is just a coincidence. First, unlike most infor-
mation criteria, its derivation and justification do not need an infinite sample size. Second,
the factor log(en/∥γ∥0)—not exactly log n as in BIC that assumes clean data—arises due
to the seek for outliers. Third, the general PIC complexity term (34) (cf. Theorem 7 or
Theorem 8’) has the overall inflation effect added to the degrees of freedom, as opposed to
the standard multiplicative relation in AIC, BIC, and many others.

In common with most nonasymptotic studies, our theorems do not show tight constants.
However, these numerical constants do not depend on a specific problem and in some
easier cases can be determined by Monte Carlo experiments—for example, when n > p,
we recommend 5.5∥γ∥0 + ∥γ∥0 log(en/∥γ∥0) in (38) for robust regression. Theoretically
deriving the optimal constants requires much finer analysis and we will not pursue in the
current paper.

6 Experiments

6.1 Simulations

In this part, we perform simulation studies to compare PIQ with some popular robust
and/or sparse estimation methods in p < n and p > n setups. Unless otherwise mentioned,
the raw predictor matrix X = [x1,x2, . . . ,xn]

T ∈ Rn×p is generated in the default way:

xi
iid∼ N (0,Σ), where Σ is a Toeplitz design covariance matrix with Σij = ρ|i−j|. Here, we

consider regression and classification models contaminated with highly-leveraged outliers
in the following four setups. More experiment results in other settings are in reported in
Appendix A.12 due to limited space. Recall o∗ = ∥γ∗∥0, s∗ = ∥β∗∥0.

Example 1 (n > p, regression): n = 1000, p = 10, ρ = 0.5, β∗ = [1, 1, 0.5, 0.5,−1.5,
−1.5,−1,−1, 1, 1]T . We set γ∗ = [5, . . . , 5, 0, . . . , 0]T with the first o∗ components nonzero,
and modify the first o∗ rows of X to [3, . . . , 3]. The response vector is generated according

to y = Xβ∗ + γ∗ + ϵ with ϵi
iid∼ N (0, 1).

Example 2 (n > p, classification): n = 1000, p = 10, ρ = 0.5, β∗ = [3, 3, 1.5,
1.5, 3, 3,−3,−3, 3, 3]T . To introduce outliers, we change the first o∗ rows of X to [3, . . . , 3]
so that the first o∗ elements in Xβ∗ are 45 and set γ∗i = −90, 1 ≤ i ≤ o∗ and 0 other-
wise. The response vector is generated according to the Bernoulli distribution with mean
1/(1 + exp(−xTi β

∗ − γ∗i )) for the ith observation.

Example 3 (p > n, regression): n = 200, p = 1000, β∗ = [1, 0.5, 0, 0,−0.5,−1, 0, . . . , 0]T

so that s∗ = 4, γ∗ = [5, . . . , 5, 0, . . . , 0]T . High-leveraged outliers are introduced in the same
way as in Example 1.

Example 4 (p > n, classification): n = 200, p = 1000, β∗ = [3, 1.5, 3, 0, . . . , 0]T . Similar
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to Example 2, outliers are added, with γ∗i = −45, 1 ≤ i ≤ o∗ and 0 otherwise.

The following 11 methods are included for comparison: S-estimator (Rousseeuw and
Yohai, 1984), LTS (Rousseeuw, 1985), Bianco and Yohai’s robust logistic regression (B-Y)
(Bianco and Yohai, 1996), TLE (Hadi and Luceño, 1997), robust quasi-likelihood estimator
(QLE) (Cantoni and Ronchetti, 2001), quantile lasso (QL) (Belloni and Chernozhukov,
2011), robust LARS (RLARS) (Khan et al., 2007), sparse LTS (S-LTS) (Alfons et al.,
2013), sparse maximum tangent-likelihood estimator (S-MTE) (Qin et al., 2017), elastic-
net LTS for classification (enetLTS) (Kurnaz et al., 2018) and PENSE (Freue et al., 2019).
To reduce the interference of different regularization parameter tuning schemes, and to
make a fair comparison, sparsity parameters and cut-off values for the sake of outlier
identification or variable selection are all chosen to yield 1.5o∗ or 1.5s∗ nonzeros using
the true model. The other parameters are set to their default values. In calling PIQ, we
use the BCD-type, with ν fixed at 10−4. A quadratic cooling schedule Q(t) = −at2 + U
with a = (U − L)/T 2 (0 ≤ t ≤ T ) is applied in regression and a logarithmic cooling
Q(t) = −a log t + U (0 < t ≤ T ) with a = (U − L)/ log T is used in classification, where
L is the desired cardinality, U = n or p for outlier identification or variable selection, and
T = 200. Owing to the progressive backward optimization, a simple single starting point
β(0) = 0 already seems satisfactory in PIQ. In each setup, we repeat the experiment 50
times and evaluate the performance of an algorithm using the following metrics. For outlier
identification, we report the masking or missing (M) rate, as well as the rate of successful
joint detection (JD); see She and Owen (2011). Concretely, the masking probability is
the fraction of undetected true outliers (misses), and the JD is the fraction of simulations
with zero miss. For variable selection, we report the false alarm (FA) rate (the fraction
of spuriously identified variables) in addition to M and JD. In regression experiments, the
mean square error on β, denoted by Err, is used to evaluate estimation accuracy, while in
classification, Err refers to the misclassification error on a separate clean testset containing
10,000 observations. The computational time in seconds, denoted by T, is also included
in the tables or figures to describe the complexity of each algorithm.

Table 1 shows a performance comparison for robust regression and robust classification
in Example 1 and Example 2, respectively. To investigate algorithm scalability, we also give
a computational time comparison in Figure 1 with respect to the dimension p. According
to the table, with less than 5% outliers, all methods show satisfactory results for regression
or classification. But as the percentage of outliers goes up to 10% (say) or more, the
performance of many conventional methods degrades significantly. Also, some algorithms
have poor numerical stability as p is just over 40. In comparison, PIQ is much more
accurate and robust, and its scalability is evident.

The advantages of PIQ are even more impressive in Table 2 which summarizes the
high-dimensional results. In particular, its boost in accuracy and outlier-resistance is not
accompanied by a sacrifice in computational time relative to other robust methods. PIQ
offered substantial time savings: its computational cost was at most about one fourth of
that of the other algorithms.

We also conducted experiments with different correlation strengths, covariance struc-
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Table 1: Performance comparison in n > p settings (Example 1, Example 2 with n = 1000, p =
10). The outlier percentage varies from 1% to 20% for regression, and 3% to 15% for classification.

Regression
o∗ = 10 o∗ = 50 o∗ = 100 o∗ = 150 o∗ = 200

Err M JD Err M JD Err M JD Err M JD Err M JD
S 0.06 2.0 82 0.05 0.6 78 0.05 2.2 76 0.27 60 26 0.40 77 0
LTS 0.02 2.0 82 0.02 0.8 70 0.03 4.3 64 0.13 38 40 0.29 74 2
RLARS 0.02 2.4 78 0.11 48 8 0.25 78 0 0.26 78 0 0.28 74 0
PENSE 0.02 1.6 86 0.02 0.6 78 0.23 79 0 0.27 80 0 0.29 75 0
PIQ 0.02 1.6 86 0.02 0.4 84 0.03 0.2 88 0.03 0.1 90 0.05 0.1 90

Classification
o∗ = 30 o∗ = 60 o∗ = 90 o∗ = 120 o∗ = 150

Err M JD Err M JD Err M JD Err M JD Err M JD
B-Y 0.06 0.1 98 0.14 42 56 0.28 100 0 0.29 100 0 0.30 100 0
QLE 0.06 0 100 0.23 88 12 0.28 100 0 0.29 100 0 0.30 100 0
TLE 0.09 0 100 0.09 0 100 0.08 0 100 0.11 16 84 0.35 100 0
PIQ 0.06 0 100 0.06 0 100 0.07 0 100 0.07 0 100 0.08 0 100
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Figure 1: Computational time comparison between different robust methods as p increases.
Left: regression with o∗ = 0.1n and n = 1000 (RLARS and PENSE are too costly compared
with the other methods and only parts of their cost curves are shown). Right: classification with
o∗ = 0.05n and n = 1000 (when p > 40, QLE delivered an error message and could not continue).

tures and sparsity levels, and similar conclusions can be drawn from the performance
comparison; see Appendix A.12 for details.
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Table 2: Performance comparison in p > n settings (Example 3, Example 4 with n = 200, p =
1000). The outlier percentage varies from 5% to 20%.

Regression
o∗ = 10 o∗ = 20

Err Mγ JDγ Mβ FAβ JDβ T Err Mγ JDγ Mβ FAβ JDβ T
QL 0.37 36 16 19 0.1 40 43 0.71 81 0 25 0.2 24 42
S-MTE 0.44 73 0 14 0.2 54 35 0.64 82 0 18 0.2 48 39
RLARS 0.53 82 4 25 0.2 40 42 1.06 89 0 42 0.3 0 42
S-LTS 0.28 4 80 1 0.1 98 134 0.27 5 74 1 0.2 96 134
PIQ 0.11 2 86 3 0.2 90 4 0.23 5 80 10 0.2 64 4

o∗ = 30 o∗ = 40

Err Mγ JDγ Mβ FAβ JDβ T Err Mγ JDγ Mβ FAβ JDβ T
QL 0.89 81 0 33 0.2 8 45 1.10 76 0 41 0.2 4 50
S-MTE 0.82 79 0 28 0.2 26 42 0.97 75 0 34 0.2 14 54
RLARS 1.52 91 0 58 0.3 0 41 1.55 85 0 57 0.3 0 40
S-LTS 1.24 79 10 29 1.4 16 132 1.52 82 0 46 1.5 0 136
PIQ 0.34 3 78 16 0.3 46 4 0.62 5 76 27 0.3 22 4

Classification
o∗ = 10 o∗ = 20

Err Mγ JDγ Mβ FAβ JDβ T Err Mγ JDγ Mβ FAβ JDβ T
enetLTS 12.4 4 96 1.3 0.1 96 62 16.0 22 78 5.3 0.24 86 67
PIQ 11.0 0 100 0 0.1 100 16 11.6 0 100 0 0.1 100 16

o∗ = 30 o∗ = 40

Err Mγ JDγ Mβ FAβ JDβ T Err Mγ JDγ Mβ FAβ JDβ T
enetLTS 36.2 94 6 43 1.0 16 86 19.8 100 0 66 0.9 0 96
PIQ 12.6 0 100 0.7 0.1 98 14 17.0 8 84 9 0.1 78 14

6.2 Robust classification of spam email

The email spam dataset (available at ftp.ics.uci.edu) contains 57 predictors including
relative frequencies of 54 most commonly occurring words and characters and 3 statistics
of capital letters. The total number of emails is 4,601, of which 1,813 are spam (y = 1) and
2,788 are non-spam (y = 0). We would like to know whether accommodating mislabeled
emails (if any) could lead to improved spam/non-spam classification.

We applied PIQ with the logistic deviance and the Huberized hinge loss (Chapelle,
2007), denoted by PIQ-L and PIQ-H, respectively, with PIC for tuning. Table 3 compares
PIQ with logistic regression, B-Y, TLE, and QLE (cf. Section 6.1) in terms of misclassi-
fication error and F1-score (Chinchor, 1992), both averaged over 100 data splits (70% for
training and 30% for test). From the table, TLE and QLE failed due to the large sample
size. PIQ outperforms the other methods and the choice of the loss does not affect its
performance on this dataset.

We then studied the subset of outliers identified by PIQ. Take PIQ-L for instance: there
are 73 nonzeros γ̂i’s, the smallest magnitude being 10.97. To verify if there is indeed a
distinction between the outliers (o = 1) and clean observations (o = 0), we examined 6
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Table 3: Email spam data: misclassification error rates and F1-scores.

Miscls (%) F1 (%)

Logistic 7.5 90.3
B-Y 7.0 89.4
TLE – –
QLE – –
PIQ-L 6.8 91.3
PIQ-H 6.8 91.3

indicative features, free, !, $, hp, 650 and cap avg. The first three words and signs are
often used in spam to attract people’s attention; hp and 650 are related to the data creator’s
working company and area code; cap avg measures the average length of uninterrupted
sequences of capital letters. Given each feature, we made a 2 × 2 table with its rows
corresponding to spam and non-spam (y = 1, 0) and columns corresponding to outlying
and clean (o = 1, 0). The cross-product ratio or odds ratio visualizes the strong association
between y and o, as shown in Figure 2. Indeed, even the odds ratios closer to 1 are either
as small as exp(−2.8) = 0.06 or as large as exp(4.89) = 133, demonstrating a strong
discrepancy between the outlier subset and the clean subset. We also built an ANOVA
model on each feature to test the significance of o; all the obtained p-values are below
1e-10, a clear evidence of the outlyingness.

The data analysis suggests that even on some conventional datasets, mislabeling fre-
quently occurs and guarding against outliers is beneficial. It is fair to say that modern
statistical analysis involves more and more large-scale datasets, but with bigger data also
come more junk and errors. This could be a severe issue for binary classification, since any
inaccuracy in labeling simply means the response goes to the other extreme. Applying a
classifier designed under no consideration of gross outliers could be risky in reality, and
our resistant learning framework offers an effective fix in this regard.

6.3 Robust neural network for Parkinson’s disease detection

Neural networks have attracted a great deal of attention in machine learning. In this
experiment, we adapt the PIQ technique to a neural net model and test its performance
for Parkinson’s disease (PD) detection. There has been a surge of interest in speech analysis
of PD recently, as voice recordings from these patients tend to show typical patterns like
aperiodic vibrations. We use the dataset from Little et al. (2007) which collects a range
of biomedical voice measurements from normal people and patients with PD, where the
22 predictors for 195 recordings include various measures of vocal fundamental frequency
and variation in amplitude, as well as some nonlinear metrics constructed from raw voice
recordings. We randomly split the dataset into a training subset (60%) and a test subset
(40%).

Previous studies suggest the presence of nonlinear effects and interactions of the features
in this challenging classification task (Little et al. (2007), Sakar et al. (2013)). Hence we
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Figure 2: Log odds ratios of six 2× 2 tables with row variable y and column variable o.

designed a feedforward neural network that consists of an input layer, two dense layers with
22 and 12 nodes respectively, and one output layer. The dense layers deploy the popular
rectified linear units (ReLU) (Nair and Hinton, 2010), and the output node uses a softmax
activation. We trained the network for 200 epochs and attained a misclassification error
rate of 9.1% on the test data—in contrast, an SVM with a nonlinear RBF kernel gave
17.9%. (Meanwhile, classical robust classification methods like B-Y, QLE, and TLE all
behaved poorly, with the misclassification error rates > 25%.)

On the other hand, the noisy signals and potential outliers occurring suggest the need
of robustification. But the overall network criterion barely resembles that of regression or
logistic regression due to its substantial nonlinearity and hierarchy, and how to reweight
the samples in this sophisticated model to limit the influence of outliers sounds tricky.
Following the additive robustification scheme, we simply added sample-indicator features
into the input layer (cf. Figure 3), accompanied by a group ℓ0 + ℓ2 regularization (q =
0.05n, ν = 1e-4) to correct for sample outlyingness in constructing predictive factors.
Our optimization-based PIQ algorithm can be seamlessly incorporated into the process of
back-propagation. Though a simple modification, the robustified neural network gave an
impressive misclassification error rate 6.4%, an improvement of about 30% over that of the
vanilla neural network.

7 Summary

The work studied how to gain outlier resistance for a given loss that is not necessarily
quadratic and may go beyond the likelihood setup. Motivated by the method of trimming,
we proposed an ℓ0+ℓ2 regularized learning framework. We showed that pursuing its (global)
minimizers can cope with extreme outliers regardless of leverage and outlyingness, but on
large-scale data, there is always a balance between statistical accuracy and computational
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Figure 3: Structure of the robustified neural network on Parkinson’s disease data, where sample-
indicator features (denoted by green square nodes) are added to the input layer.

efficiency. Hence a more meaningful and deeper question is how to design a scalable
algorithm to alleviate the starting point requirement and the regularity conditions to obtain
the desired order of statistical accuracy.

In this work, the interplay between high dimensional statistics and nonconvex optimiza-
tion led to fruitful results for resistant learning on the learning rate, cardinality control, the
choice of regularization parameters, and so on. In particular, a novel progressive backward
optimization scheme is brought forward which, unlike subset sampling, is cost effective, and
can significantly improve the statistical performance of iterative quantile-thresholding. We
hope that the work could raise concern about outliers among (big) data analysts, as well as
providing a sensible and universal means to boosting resistance in regression, classification
and more sophisticated learning tasks.

A Proofs

A.1 Proof of Theorem 1

First, we introduce a lemma to be used for proving the three statements.

Lemma 1. Let l0(η; y) be a loss function defined on η ∈ R with y ∈ Y ⊂ R as a parameter
and infη l0(η; y) = L > −∞ for all y ∈ Y. Define η = Xβ and l(η;y) =

∑n
i=1 l0(ηi; yi).
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Given any β, let l
(1)
0 (β) ≤ . . . ≤ l

(n)
0 (β) be the order statistics of l0(x

T
i β; yi) (1 ≤ i ≤ n).

Then

inf
∥γ∥0≤q

l(Xβ + γ;y) =

n−q∑
i=1

l
(i)
0 (β). (A.1)

Moreover, given any τ ≥ 0,

inf
γ
l(Xβ + γ;y) + τ∥γ∥0 =

n∑
i=1

(τ + L) ∧ l0(xTi β; yi). (A.2)

For a), let (β̂, γ̂) be a globally optimal solution to

min
(β,γ)

l(η;y) s.t. η = Xβ + γ, ∥γ∥0 ≤ q. (A.3)

Then for any β, l(Xβ̂+ γ̂;y) ≤ l(Xβ+ γ̂β;y), where γ̂β is an optimal solution of γ given

β. From Lemma 1, l(Xβ̂ + γ̂;y) =
∑n−q

i=1 l
(i)
0 (β̂), l(Xβ + γ̂β;y) =

∑n−q
i=1 l

(i)
0 (β), and so∑n−q

i=1 l
(i)
0 (β̂) ≤

∑n−q
i=1 l

(i)
0 (β).

Now suppose that β̂ is a globally optimal solution that minimizes the trimmed criterion
on the RHS of (A.1). Then for any (β,γ),

l(Xβ + γ;y) ≥ l(Xβ + γ̂β;y) =

n−q∑
i=1

l
(i)
0 (β) ≥

n−q∑
i=1

l
(i)
0 (β̂) = l(Xβ̂ + γ̂β̂;y),

which means (β̂; γ̂β̂) is a global minimizer of (A.3). The second conclusion for the penalized
form and winsorized form can be proved similarly (assuming L = 0).

To prove the last statement, we set C(β) = {i : l0(x
T
i β; yi) > τ, 1 ≤ i ≤ n} and

c(β) = |C(β)|. So
∑n

i=1 τ ∧ l0(xTi β; yi) = c(β)τ +
∑n−c(β)

i=1 l
(i)
0 (β).

We claim that for any β̂ ∈ argmin
∑
τ ∧ l0(xTi β; yi) with q = c(β̂), it is also an optimal

solution to min
∑n−q

i=1 l
(i)
0 (β). Prove by contradiction: if

∑n−q
i=1 l

(i)
0 (β̂) >

∑n−q
i=1 l

(i)
0 (β) for

some β, then since τ ∧ l0(xTi β̂; yi) = τ ≥ τ ∧ l0(xTj β; yj) for all i ∈ C(β̂), j : 1 ≤ j ≤ n, we

would get
∑n

i=1 τ ∧ l0(xTi β̂; yi) >
∑n

i=1 τ ∧ l0(xTi β; yi).
Finally, we show that given any (β̂, γ̂) ∈ argmin l(Xβ + γ;y) + τ∥γ∥0 with q =

∥γ̂∥0 (where γ̂i are allowed to take ±∞), it is also an optimal solution to minβ,γ l(Xβ +

γ;y) s.t. ∥γ∥0 ≤ q. Suppose that there exists (β,γ) with ∥γ∥0 ≤ q so that l(Xβ̂ +
γ̂;y) > l(Xβ + γ;y). Then, by considering (β,γ ′) with γ ′ = γ̂β and ∥γ ′∥0 ≤ q as

defined previously, inf∥γ∥0≤q l(Xβ̂ + γ;y) = l(Xβ̂ + γ̂;y) > inf∥γ∥0≤q l(Xβ + γ;y), and

thus
∑n−q

i=1 l
(i)
0 (β̂) >

∑n−q
i=1 l

(i)
0 (β) from Lemma 1. Using the fact that γ̂i ̸= 0 implies

τ + l0(x
T
i β̂ + γ̂i; yi) = τ , and the construction of γ ′, l(Xβ̂ + γ̂;y) + τ∥γ̂∥0 = qτ +∑n−q

i=1 l
(i)
0 (β̂) and l(Xβ + γ ′;y) + τ∥γ ′∥0 = qτ +

∑n−q
i=1 l

(i)
0 (β). Summarizing the above

gives l(Xβ̂ + γ̂;y) > l(Xβ + γ ′;y), contradicting the optimality of (β̂, γ̂). The proof is
complete.
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Proof of Lemma 1 Recall that the loss is assumed bounded from below. Without loss
of generality, let infη l0(η; y) = 0 for all y ∈ Y (otherwise, we can redefine the loss function
by l0(η; y)− infη l0(η; y)).

Given β, denote by γ̂β a minimizer of l(Xβ + γ;y) subject to ∥γ∥0 ≤ q, whose
components can take ±∞. Then if γ̂i = 0, l0(x

T
i β+ γ̂i; yi) = l0(x

T
i β; yi) ≥ 0. If γ̂i ̸= 0, by

varying its value, which will not violate the constraint, one can argue that l0(x
T
i β+γ̂i; yi) =

infη l0(η; yi) = 0. Therefore, l(Xβ + γ̂β;y) =
∑n−q

i=1 l
(i)
0 (β). The proof of (A.2) follows

similar lines.

A.2 Proof of Theorem 2

First, we have the following result to argue the (alternative) optimality of γ(t+1) given β(t),
cf. Lemma C.1 in She et al. (2013).

Lemma 2. Given any s ∈ Rn, 0 ≤ q ≤ n, ν ≥ 0, ξ̂ = Θ#(s; q, ν) is a global optimal
solution to minξ∈Rn ∥s− ξ∥22/2 + ν∥ξ∥22/2 s.t. ∥ξ∥0 ≤ q.

The below definition of a sub-Gaussian random vector is standard in the literature, see,
e.g., Vershynin (2012).

Definition 1 (Sub-Gaussian random variable/vector). We call ξ a sub-Gaussian(0,
σ2) random variable if and only if ξ has mean 0 and there exist constants C, c > 0 such
that P{|ξ| ≥ t} ≤ Ce−ct

2
, ∀t > 0 with the scale (or ψ2-norm) of ξ defined by σ(ξ) = inf{σ >

0 : E exp(ξ2/σ2) ≤ 2}. More generally, ξ ∈ Rp is called a sub-Gaussian random vector
with scale bounded by σ if all one-dimensional marginals ⟨ξ,α⟩ are sub-Gaussian satisfying
∥⟨ξ,α⟩∥ψ2 ≤ σ∥α∥2, ∀α ∈ Rp.

a) Using the update in (6), we can represent the optimal β as a function of γ, from
which problem (5) is equivalent to

min
γ
f(γ) :=

1

2
∥(I −H)(γ − y)∥22 +

ν

2
∥γ∥22 s.t. ∥γ∥0 ≤ q. (A.4)

Let l(γ) = ∥(I −H)(γ − y)∥22/2. From Lemma 2, a nice fact of (7) is that

γ(t+1) = arg min
∥γ∥0≤q

g(γ;γ(t)),

where
g(γ;γ−) = ∥(I −H)(γ− − y)∥22/2 + ⟨(I −H)(γ− − y),γ − γ−⟩

+ ∥γ − γ−∥22/2 + ν∥γ∥22/2
= f(γ) + (D2 −∆l)(γ,γ

−)

with ∆l and D2 introduced in Section 4. By definition, g(γ(t);γ(t)) ≥ g(γ(t+1);γ(t)), and
so we have

f(γ(t))− f(γ(t+1)) ≥ (D2 −∆l)(γ
(t+1),γ(t)). (A.5)
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Summing up (A.5) over t = 1, . . . , T gives the conclusion.

b) We begin with a useful lemma. Throughout the proof, given any β, we use J (β) to
denote its support, i.e., J (β) = {j : βj ̸= 0}, and J(β) = |J (β)|. Recall that s∗ = J(β∗)
and o∗ = J(γ∗).

Lemma 3. Given q ≤ p and ν ≥ 0, a globally optimal solution to the optimization problem
minβ∈Rp l(β) = ∥y − β∥22/2 + ν∥β∥22/2 s.t. ∥β∥0 ≤ q is given by β̂ = Θ#(y; q, ν). Let

J = J (β), Ĵ = J (β̂) and assume J(β̂) = q. Then, for any β with J(β) ≤ s = q/ϑ and
ϑ ≥ 1,

l(β)− l(β̂) ≥ {1− L(J , Ĵ )}(1 + ν)∥β̂ − β∥22/2,
where L(J , Ĵ ) = (|J \Ĵ |/|Ĵ \J |)1/2 ≤ (s/q)1/2 = ϑ−1/2.

It can be proved by Lemma 9 in She and Chen (2017). By Lemma 3, for any γ satisfying
∥γ∥0 ≤ q,

g(γ;γ(t))− g(γ(t+1);γ(t)) ≥ {1− L(J (γ),J (γ(t+1)))}(1 + ν)D2(γ
(t+1),γ),

and so
f(γ) + (D2 −∆l)(γ,γ

(t))− f(γ(t+1))− (D2 −∆l)(γ
(t+1),γ(t))

≥{1− L(J (γ),J (γ(t+1)))}(1 + ν)D2(γ
(t+1),γ),

or
f(γ) + ((1 + ν)D2 −∆f )(γ,γ

(t))− f(γ(t+1))− (D2 −∆l)(γ
(t+1),γ(t))

≥{1− L(J (γ),J (γ(t+1)))}(1 + ν)D2(γ
(t+1),γ).

Substituting γ∗ for γ gives

{1− L(J (γ∗),J (γ(t+1)))}(1 + ν)D2(γ
(t+1),γ∗) + (D2 −∆l)(γ

(t+1),γ(t))

≤ −∆f (γ
(t+1),γ∗)− ⟨∇f(γ∗),γ(t+1) − γ∗⟩+ ((1 + ν)D2 −∆f )(γ

∗,γ(t)).
(A.6)

Since ∥I −H∥2 = 1, (D2 −∆l)(γ
(t+1),γ(t)) ≥ 0. Together with

L(J (γ∗),J (γ(t+1))) ≤ 1/
√
ϑ,

we obtain

((1− 1/
√
ϑ)(1 + ν)D2 +∆l + νD2)(γ

(t+1),γ∗)

≤ (D2 −∆l)(γ
∗,γ(t)) + ⟨(I −H)2(γ∗ − y) + νγ∗,−γ(t+1) + γ∗⟩

=(D2 −∆l)(γ
∗,γ(t)) + ⟨−U⊥U

T
⊥ϵ+ νγ∗,γ∗ − γ(t+1)⟩

=(D2 −∆l)(γ
∗,γ(t)) + ⟨ϵ′,UT

⊥(γ
(t+1) − γ∗)⟩+ ν⟨γ∗,γ∗ − γ(t+1)⟩,

(A.7)

where X = [U ,U⊥]DV T is the singular value decomposition of X with U⊥ ∈ Rn×(n−p)

and ϵ′ = UT
⊥ϵ which is still a sub-Gaussian random vector with mean 0 and scaled bounded

by σ. From I −H = U⊥U
T
⊥, ∆l(γ,γ

′) = ∥UT
⊥(γ − γ ′)∥22/2.

The stochastic term ⟨ϵ′,UT
⊥(γ

(t+1) − γ∗)⟩ can be bounded using the following lemma.
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Lemma 4. Let ϵ be a sub-Gaussian random vector with mean zero and scale bounded by
σ. Given X ∈ Rn×p and 0 ≤ J ≤ p, there exist universal constants A,C, c > 0 such that
for any a > 0, the following event

sup
β∈Rp:∥β∥0≤J

⟨ϵ,Xβ⟩ − 1

2a
∥Xβ∥22 − aA2σ2J log(ep/J) > aσ2t (A.8)

occurs with probability at most C exp(−ct)p−cA2
for any t ≥ 0.

The result is a variant of Lemma 4 of She (2016) and can be obtained from its proof.
According to Lemma 4, there exist constants A,C, c > 0 such that for any a > 0,

⟨ϵ′,UT
⊥(γ

(t+1) − γ∗)⟩ ≤ 1

a
∆l(γ

(t+1),γ∗) + aA2σ2(1 + ϑ)o∗ log
en

o∗
(A.9)

occurs with probability at least 1 − C(n − p)−c. Since ⟨γ∗,−γ(t+1) + γ∗⟩ ≤ (b/2)∥γ∗∥22 +
(1/2b)∥γ(t+1) − γ∗∥22 for any b > 0, combining (A.7) and (A.9) gives

{((1− 1√
ϑ
) + (2− 1√

ϑ
− 1

b
)ν)D2 + (1− 1

a
)∆l}(γ(t+1),γ∗)

≤ (D2 −∆l)(γ
(t),γ∗) + aA2σ2(1 + ϑ)o∗ log

en

o∗
+
bν

2
∥γ∗∥22.

(A.10)

Let

κ =
1

1− ε

{
(2− 1

a
)ε− 1√

ϑ
+ (2− 1√

ϑ
− 1

b
)ν
}
. (A.11)

By the regularity condition,

(1 + κ)(D2 −∆l)(γ
(t+1),γ∗)

≤{((1− 1√
ϑ
) + (2− 1√

ϑ
− 1

b
)ν)D2 + (1− 1

a
)∆l}(γ(t+1),γ∗)

≤ (D2 −∆l)(γ
(t),γ∗) + aA2σ2(1 + ϑ)o∗ log

en

o∗
+
bν

2
∥γ∗∥22.

Finally, by a recursive argument, we have

(D2 −∆l)(γ
(t),γ∗)

≤
( 1

κ+ 1

)t−1

(D2 −∆l)(γ
(1),γ∗) +

a

κ
A2σ2(1 + ϑ)o∗ log

en

o∗
+
bν

2κ
∥γ∗∥22.

Choosing a = 1, b = 1, which ensures 1 + κ ≥ 0, we obtain the conclusion on the sequence
of γ-iterates.

In fact, according to (A.11), we may choose any a ≥ 1 and b > 0, and so the linear
convergence rate holds if ε > 1/(2

√
ϑ)− (2− 1/(

√
ϑ)ν.

To show the conclusion on the sequence of β-iterates, notice that for any t ≥ 1,

Xβ(t) −Xβ∗ +Hγ(t) −Hγ∗ = Hϵ.
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and
P[∥Hϵ∥22 ≥ cr(X)σ2 + tσ2] ≤ C exp(−c[{t2/r(X)} ∧ t]),

where r(X) denotes the rank of X. The last inequality can be shown from the Hanson-
Wright inequality (Rudelson and Vershynin, 2013) under the independent sub-Gaussian
assumption since ∥H∥2 = 1 and ∥H∥2F = r(X). Then applying the Cauchy-Schwartz
inequality gives the result (details omitted).

A.3 Proof of Theorem 3

First, a thresholding function (She and Owen, 2011) is defined as a real-valued function
Θ(t;λ) for −∞ < t < ∞ and 0 ≤ λ < ∞ such that (i) Θ(−t; λ) = −Θ(t;λ); (ii) Θ(t; λ) ≤
Θ(t′;λ) for t ≤ t′; (iii) limt→∞ Θ(t;λ) = ∞; (iv) 0 ≤ Θ(t;λ) ≤ t for 0 ≤ t < ∞. Θ is
defined component-wise if either t or λ is replaced by a vector. Throughout the paper,
assume that λ is the threshold parameter.

Let f(β̄) = l̃(β̄)+P (ϱβ;λ)+ ν∥γ∥22/2+ ι(γ; q), where l̃(β̄) = l(X̄β̄;y) and ι(γ; q) = 0

if ∥γ∥0 ≤ q and +∞ otherwise. Let g(β̄; β̄
−
) = l(X̄β̄

−
;y) + ⟨X̄T∇l(X̄β̄

−
;y), β̄ − β̄

−⟩+
ϱ2∥β̄− β̄

−∥22/2+ν∥γ∥22/2+P (ϱβ;λ)+ ι(γ; q). We drop the dependence on ρ for notational
simplicity.

First, we claim that for any β̄, β̄
−
,

∆l̃(β̄, β̄
−
) ≤ ϱ2D2(β̄, β̄

−
) (A.12)

provided that ϱ ≥
√
L∥X̄∥2, where the generalized Bregman notations defined in Section

4 are used. In fact,

∆l̃(β̄, β̄
−
)

= l̃(β̄)− l̃(β̄
−
)− ⟨∇l̃(β̄−

), β̄ − β̄
−⟩

=

∫ 1

0

⟨∇l̃(β̄−
+ t(β̄ − β̄

−
)), β̄ − β̄

−⟩ dt−
∫ 1

0

⟨∇l̃(β̄−
), β̄ − β̄

−⟩ dt

=

∫ 1

0

⟨X̄T∇l(X̄β̄
−
+ tX̄(β̄ − β̄

−
)), β̄ − β̄

−⟩ dt−
∫ 1

0

⟨X̄T∇l(X̄β̄
−
), β̄ − β̄

−⟩ dt

=

∫ 1

0

⟨∇l(X̄β̄
−
+ tX̄(β̄ − β̄

−
))−∇l(X̄β̄

−
), X̄(β̄ − β̄

−
)⟩ dt

≤
∫ 1

0

∥∇l(X̄β̄
−
+ tX̄(β̄ − β̄

−
))−∇l(X̄β̄

−
)∥2∥X̄(β̄ − β̄

−
)∥2 dt

≤
∫ 1

0

tL∥X̄β̄ − X̄β̄
−∥2∥X̄β̄ − X̄β̄

−∥2 dt

=
L

2
∥X̄β̄ − X̄β̄

−∥22 ≤
LMX̄(p, 2q)

2
∥β̄ − β̄

−∥22 ≤
L∥X̄∥22

2
∥β̄ − β̄

−∥22.
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Next, we solve minβ̄ g(β̄; β̄
−
). Due to the separability, the problem is equivalent to

min
β
ϱ2∥β − β− +XT∇l(X̄β̄

−
;y)/ϱ2∥22/2 + P (ϱβ;λ), and

min
γ

∥γ − γ− +∇l(X̄β̄
−
;y)/ϱ2∥22/2 + (ν/ϱ2)∥γ∥22/2 + ι(γ; q).

With a change of variables, it leads to the MM updates given in the theorem, cf. She
(2012). Furthermore, it is easy to show (details omitted) that the construction of g is
equivalent to

g(β̄; β̄
−
) = f(β̄) + (ϱ2D2 −∆l̃)(β̄, β̄

−
).

Then, g(β̄; β̄
−
)−f(β̄) = ϱ2D2(β̄, β̄

−
)−∆l̃(β̄, β̄

−
). By the optimality of β̄

(t+1)
, we obtain

ϱ2D2(β̄, β̄
−
)−∆l̃(β̄, β̄

−
) + f(β̄

(t+1)
) ≤ g(β̄

(t+1)
; β̄

(t)
) ≤ g(β̄

(t)
; β̄

(t)
) = f(β̄

(t)
). (A.13)

It follows that

(ϱ2D2 −∆l̃)(β̄
(t+1)

, β̄
(t)
) ≤ f(β̄

(t)
)− f(β̄

(t+1)
). (A.14)

Summing up (A.14) over t = 0, 1, . . . , T , and using ∆l̃(β̄, β̄
−
) ≤ LD2(X̄β̄, X̄β̄

−
) proved

before, we obtain the convergence rate.
Finally, we prove the limit-point equation. Since

ν∥γ(t)∥22/2 + P (ϱβ(t);λ) ≤ f(β̄
(t)
) ≤ f(β̄

(0)
),

the sequence of {β̄(t)}∞t=0 is uniformly bounded under ν > 0. Moreover, limt→∞(f(β̄
(t+1)

)−
f(β̄

(t)
)) = 0 implies that limt→∞(ϱ2D2 − ∆l̃)(β̄

(t+1)
, β̄

(t)
) = 0 and so limt→0(β̄

(t+1) −
β̄

(t)
) = 0 since ϱ2 > LMX̄(p, 2q). Let (β̂, γ̂) be any limit point of (β(t),γ(t)) satisfying

β̂ = limk→∞ β(jk) and γ̂ = limk→∞ γ(jk) for some sequence {jk, k = 1, 2, . . .}. Then

0 = lim
k→∞

{β(jk+1) − β(jk)}

= lim
k→∞

Θ(ϱβ(jk) −XT∇l(Xβ(jk) + γ(jk))/ϱ;λ)/ϱ− β̂

= Θ(ϱβ̂ −XT∇l(Xβ̂ + γ̂)/ϱ;λ)/ϱ− β̂

(A.15)

and
0 = lim

k→∞
{γ(jk+1) − γ(jk)}

= lim
k→∞

Θ#(γ(jk) −∇l(Xβ(jk) + γ(jk))/ϱ2; q, ν/ϱ2)− γ̂

= Θ#(γ̂ −∇l(Xβ̂ + γ̂)/ϱ2; q, ν/ϱ2)− γ̂

(A.16)

due to the continuity assumption of Θ and the Θ#-uniqueness assumption.

Remark A.1. The conclusion of f(β̄
(t)
) ≤ f(β̄

(t+1)
) holds more generally, as long as

g(β̄
(t+1)

; β̄
(t)
) ≤ g(β̄

(t)
; β̄

(t)
). Moreover, the exact value of L or MX̄(p, 2q) need not be

known, because we can perform a line search until f(β̄
(t+1)

) ≤ g(β̄
(t+1)

; β̄
(t)
) is satisfied.
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A.4 Thresholding equations of A-estimators

For the penalized form problem minβ,∥γ∥0≤q l(X̄β̄;y) +P (ϱβ;λ) with P associated with a

thresholding Θ: P (θ;λ)−P (0;λ) =
∫ |θ|
0
(sup{s : Θ(s;λ) ≤ u}−u) du as defined in Theorem

3, let A(λ, q) be the set of all alternative estimators satisfying β̂ ∈ argminβ l(Xβ+ γ̂;y)+

P (ϱβ;λ) and γ̂ ∈ argminγ l(Xβ̂ + γ;y) s.t. ∥γ∥0 ≤ q.
Similarly, for the ℓ0-constrained form, let A(qβ, qγ) be the set of alternative estimators

(β̂, γ̂) satisfying β̂ ∈ argminβ l(Xβ+ γ̂;y) s.t. ∥β∥0 ≤ qβ and γ̂ ∈ argminγ l(Xβ̂+γ;y)
s.t. ∥γ∥0 ≤ qγ. (Recall the definition of MX in Section 1 and we know MX(q) ≤ ∥X∥22 for
any q.)

Theorem A.1. Under the 1-Lipschitz condition of ∇l, (i) any (β̂, γ̂) ∈ A(qβ, qγ) satisfies
the following two quantile-thresholding equations:{

β̂ = Θ#(β̂ −XT∇l(Xβ̂ + γ̂;y)/ρ; qβ)

γ̂ = Θ#(γ̂ −∇l(Xβ̂ + γ̂;y); qγ)
(A.17)

for any ρ > MX(2qβ), and (ii) any (β̂, γ̂) ∈ A(λ, q) satisfies the mixed thresholding
equations {

β̂ = Θ(ϱβ̂ −XT∇l(Xβ̂ + γ̂;y)/ϱ;λ)/ϱ

γ̂ = Θ#(γ̂ −∇l(Xβ̂ + γ̂;y); q)
(A.18)

for any ϱ > 0, provided that Θ is continuous at ϱβ̂ −XT∇l(Xβ̂ + γ̂;y)/ϱ.

These equations are also satisfied by the fixed points of our BCD algorithms seen from
the iterate updates given in Section 3.

Proof. We prove the result for the doubly constrained form first. Given β̂, construct

g(γ;γ−) = l(Xβ̂ + γ;y) + (D2 −∆l(Xβ̂+·))(γ,γ
−). (A.19)

Under the 1-Lipschitz continuity of ∇l, for any γ,γ−,

g(γ;γ−) ≥ l(Xβ̂ + γ;y).

Recall that γ̂ is a minimizer of l(Xβ̂ + γ;y) subject to ∥γ∥0 ≤ qγ. Define

γ̃ := Θ#(γ̂ −∇l(Xβ̂ + γ̂); qγ). (A.20)

Then, by use of Lemma 3 and the construction of g, we have

l(Xβ̂ + γ̃;y) ≤ g(γ̃; γ̂) ≤ g(γ̂; γ̂) = l(Xβ̂ + γ̂;y), (A.21)

which means γ̃ must also be a globally optimal solution to minγ:∥γ∥0≤qγ l(Xβ̂+γ;y). The
optimal support is uniquely determined due to the Θ#-uniqueness assumption. Moreover,
∇l(Xβ̂ + γ̂) restricted to J = {i : γ̂i ̸= 0} is a zero vector. It follows from (A.20) that

γ̃i = γ̂i ̸= 0, ∀i ∈ J

31



and so γ̂ = Θ#(γ̂ −∇l(Xβ̂ + γ̂); qγ).

Similar to the proof of Theorem 3, given γ̂, any β̂ ∈ argmin∥β∥0≤qβ l(Xβ+γ̂;y) =: l̃(β)
satisfies (details omitted)

l̃(β̃) + (ρD2 −∆l̃)(β̃, β̂) ≤ l̃(β̂),

where

β̃ = Θ#(β̂ −XT∇l(Xβ̂ + γ̂;y)/ρ; qβ). (A.22)

Therefore, for any ρ > MX(2qβ), l̃(β̃) = l̃(β̂), (ρD2 − ∆l̃)(β̃, β̂) = 0, and so β̃ = β̂ (cf.
Appendix A.3).

To prove the result for the penalized form, it suffices to study the conditions satisfied
by a local or coordinate-wise minimizer β̂ of fΘ := l(Xβ;y)+

∑p
j=1 PΘ(|βj|;λ). The proof

of Theorem 1 in She (2016) can be modified for the purpose. For completeness, we give the
details below. Denote the criterion by f for simplicity and define s(u;λ) := Θ−1(u;λ)− u
for u ≥ 0. Let δf(β;h) denote the directional derivative of f at β with increment h:

δf(β;h) = lim
ϵ→0+

f(β + ϵh)− f(β)

ϵ
.

By the definition of PΘ, δf(β,h) exists for any h ∈ Rp. Let l0(β) = l(Xβ). Consider the
following directional vectors: dj = [d1, · · · , dp]T with dj = ±1 and dj′ = 0, ∀j′ ̸= j. Then
for any j,

δl0(β;dj) = djx
T
j ∇l(Xβ),

δPΘ(β;dj) =

{
s(|βj|)sgn(βj)dj, if βj ̸= 0,

s(|βj|), if βj = 0.

(A.23)

(A.24)

Due to the local coordinatewise optimality of β̂, δf(β̂;dj) ≥ 0, ∀j. When β̂1 ̸= 0, we

obtain xT1∇l(Xβ̂) + s(|β̂1|;λ)sgn(β̂1) = 0. When β̂1 = 0, xT1∇l(Xβ̂) + s(|β̂1|;λ) ≥ 0 and
−xT1∇l(Xβ̂) + s(|β̂1|;λ) ≥ 0, i.e., |xT1∇l(Xβ̂)| ≤ s(|β̂1|;λ) = Θ−1(0;λ). To summarize,
whenever f achieves a local coordinate-wise minimum at β̂, we have

β̂j ̸= 0 ⇒ Θ−1(|β̂j|;λ)sgn(β̂j) = β̂j − xTj ∇l(Xβ̂)

β̂j = 0 ⇒ Θ(xTj ∇l(Xβ̂);λ) = 0.

(A.25)

(A.26)

When Θ is continuous at β̂j−xTj ∇l(Xβ̂), (A.25) implies that β̂j = Θ(β̂j−xTj ∇l(Xβ̂);λ).

Hence β̂ must satisfy β̂ = Θ(β̂ −XT∇l(Xβ̂);λ). For the original problem, let β′ = ϱβ
and notice that ∇β′l(Xβ + γ̂) = XT∇l(Xβ + γ̂)/ϱ. The conclusion thus follows.

A.5 Proof of Theorem 4

Recall that given any β, J (β) denotes its support, i.e., J (β) = {j : βj ̸= 0}, and J(β) =
|J (β)| and s∗ = J(β∗) and o∗ = J(γ∗). Given a matrix A, let PA be the orthogonal
projection matrix onto the column space of A and P⊥

A be its orthogonal complement. The
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range of A is denoted by R(A). For convenience, we also use PA to stand for R(A) or
R(PA). In the proofs, [n] denotes the set of {1, . . . , n} and we use C and c and L to denote
universal constants which are not necessarily the same at each occurrence.

Lemma 5. Any (β̂, γ̂) satisfying (25) can be re-characterized by

(β̂, γ̂) ∈ argmin
(β,γ)

g(β,γ;β−,γ−)|β−=β̂,γ−=γ̂ s.t. ∥γ∥0 ≤ qγ, ∥β∥0 ≤ qβ, (A.27)

where

g(β,γ;β−,γ−) = l(Xβ− + γ−) + ⟨∇l(Xβ− + γ−),Xβ −Xβ− + γ − γ−⟩
+ ρ∥β − β−∥22/2 + ∥γ − γ−∥22/2. (A.28)

The proof of the lemma can be shown from Lemma 2 and the details are omitted. A
pleasant fact is that (A.27) gives a joint optimization problem, rather than an alternative
one. Also, notice that g may not majorize l.

From (A.28), g(β,γ; β̂, γ̂) is equivalent to ρ∥β− β̂+XT∇l(Xβ̂+ γ̂)/ρ∥22/2+∥γ− γ̂+
∇l(Xβ̂ + γ̂)∥22/2 up to some additive terms dependent on β̂, γ̂ only. By g(β̂, γ̂; β̂, γ̂) ≤
g(β∗,γ∗; β̂, γ̂) and Lemma 3,

1

2
∥γ∗ − γ̂ +∇l(Xβ̂ + γ̂)∥22 −

1

2
∥∇l(Xβ̂ + γ̂)∥22

+
ρ

2
∥β∗ − β̂ +XT∇l(Xβ̂ + γ̂)/ρ∥22 −

ρ

2
∥XT∇l(Xβ̂ + γ̂)/ρ∥22

≥ 1

2

[
1− L(J (γ∗),J (γ̂))

]
∥γ̂ − γ∗∥22 +

ρ

2

[
1− L(J (β∗),J (β̂))

]
∥β̂ − β∗∥22.

(A.29)

From L(J (γ∗),J (γ̂)) ≤ 1/
√
ϑ, L(J (β∗),J (β̂)) ≤ 1/

√
ϑ, and the definition of noise ϵ, we

can show (details omitted)

2∆̄l(Xβ̂ + γ̂,Xβ∗ + γ∗) ≤ 1

2
√
ϑ
(∥γ̂ − γ∗∥22 + ρ∥β̂ − β∗∥22) + ⟨ϵ,Xβ̂ −Xβ∗ + γ̂ − γ∗⟩.

(A.30)

Define
P (β,γ) = J(β) + J(β) log(ep/J(β)) + J(γ) + J(γ) log(en/J(γ)).

Because the function depends on cardinality only, we also denote it by P (J(β), J(γ)). We

will show that with high probability, the last stochastic term or ⟨ϵ, X̄ ˆ̄β − X̄β̄
∗⟩ in (A.30)

can be bounded by the sum of ∥X̄ ˆ̄β − X̄β̄
∗∥22 and σ2P (β∗,γ∗) + σ2P (β̂, γ̂), up to some

multiplicative constants.

To achieve the purpose, we decompose X̄(ˆ̄β − β̄
∗
) =: X̄∆ as follows

X̄∆ = PX̄J (β̄∗)
(X̄∆) + P⊥

X̄J (β̄∗)
(X̄∆)

= PX̄J (β̄∗)
(X̄∆) + P⊥

X̄J (β̄∗)
(Xβ̂ + γ̂)− P⊥

X̄J (β̄∗)
(Xβ∗ + γ∗)

= PX̄J (β̄∗)
(X̄∆) + P⊥

X̄J (β̄∗)
PX̄J (ˆ̄β)

(Xβ̂ + γ̂) ≡ I + II.

(A.31)
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It is easy to verify that ∥I∥22+∥II∥22 = ∥X̄∆∥22. We use Lemma 6 and Lemma 7 to handle
⟨ϵ, I⟩ and ⟨ϵ, II⟩, respectively. The proof of Lemma 6 is given at the end; the proof of
Lemma 7 is similar and omitted.

Lemma 6. Given [X(1),X(2)] ∈ Rn×(p1+p2) where X(1) ∈ Rn×p1 ,X(2) ∈ Rn×p2 , rank(X(1)) =
r1, rank(X

(2)) = r2 and 1 ≤ J1 ≤ p1, 1 ≤ J2 ≤ p2, define ΓJ1,J2 = {α ∈ Rp1+p2 :
∥α∥2 ≤ 1,α ∈ P

[X
(1)
J1
,X

(2)
J2

]
for some J1 ⊂ [p1],J2 ⊂ [p2] with |J1| ≤ J1, |J2| ≤ J2}. Let

P ′(J1, J2) = σ2{J1 ∧ r1 + J2 ∧ r2 + log
(
p1
J1

)
+ log

(
p2
J2

)
}. Then for any t ≥ 0,

P
(

sup
α∈ΓJ1,J2

⟨ϵ,α⟩ > tσ +
√
LP ′(J1, J2)

)
≤ C exp(−ct2), (A.32)

where L,C, c are universal constant.

Lemma 7. Given X = [X(1),X(2)] ∈ Rn×(p1+p2) where X(1) ∈ Rn×p1 ,X(2) ∈ Rn×p2,
rank(X(1)) = r1, rank(X

(2)) = r2 and 1 ≤ J1, J
′
1 ≤ p1, 1 ≤ J2, J

′
2 ≤ p2, let PJ1,J2 :=

P
[X

(1)
J1
,X

(2)
J2

]
and define ΓJ1,J2,J ′

1,J
′
2
= {α ∈ Rp1+p2 : ∥α∥2 ≤ 1,α ∈ R(P⊥

J1,J2
PJ ′

1,J ′
2
) for J1,J ′

1 ⊂
[p1],J2,J2 ⊂ [p2] and |J1| ≤ J1, |J2| ≤ J2, |J ′

1| ≤ J ′
1, |J ′

2| ≤ J ′
2}. Let P ′′(J1, J2, J

′
1, J

′
2) =

σ2{J ′
1 ∧ r1 + J ′

2 ∧ r2 + log
(
p1
J1

)(
p2
J2

)(
p1
J ′
1

)(
p2
J ′
2

)
}. Then for any t ≥ 0,

P
(

sup
α∈ΓJ1,J2,J

′
1,J

′
2

⟨ϵ,α⟩ > tσ +
√
LP ′′(J1, J2, J ′

1, J
′
2)

)
≤ C exp(−ct2), (A.33)

where L,C, c are universal constant.

Define Γs,o = {∆ ∈ P[XJ1
, IJ2

], ∥∆∥2 ≤ 1,J1 ⊂ [p],J2 ⊂ [n], |J1| ≤ s, |J2| ≤ o}. Given
any a, b, a′ > 0, we have

⟨ϵ,PX̄J (β̄∗)
X̄∆⟩ − 1

a
∥PX̄J (β̄∗)

X̄∆∥22 − bLσ2P (J(β∗), J(γ∗))

≤∥PX̄J (β̄∗)
X̄∆∥2⟨ϵ,

PX̄J (β̄∗)
X̄∆

∥PX̄J (β̄∗)
X̄∆∥2

⟩ − 2σ∥PX̄J (β̄∗)
X̄∆∥2

√
b

a
LP (J(β∗), J(γ∗))

≤ 1

a′
∥PX̄J (β̄∗)

X̄∆∥22 +
a′

4
sup

∆∈Γs∗,o∗
[⟨ϵ,∆⟩ − 2σ{(b/a)LP (s∗, o∗)}1/2]2+

by the Cauchy-Schwarz inequality.
Let Rs,o = sup∆∈Γs,o

[⟨ϵ,∆⟩ − 2σ{(b/a)LP (s, o)}1/2]+. Lemma 6 indicates that Rs,o is

bounded above by a constant times σ2 in expectation when choosing b/a to be a constant
greater than 1/4. Note that when s = o = 0, R0,0 = 0. When s ≥ 1, o ≥ 1, for any t ≥ 0,

P(Rs,o > tσ)

≤P
(

sup
∆∈Γs,o

⟨ϵ,∆⟩ −
√
LP (s, o) > tσ + 2σ

√
b

a
LP (s, o)− σ

√
LP (s, o)

)
≤C exp(−ct2) exp[−c(2

√
b/a− 1)2P (s, o)]

≤C exp(−ct2)(np)−c ≤ C exp(−ct2),

(A.34)
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where we used log
(
p
J

)
≤ CJ log(ep/J) and C, c > 0 are constants. Similarly, when s = 0,

we know P(Rs,o > tσ) ≤ C exp(−ct2)n−c for any 0 ≤ o ≤ n, and when o = 0, P(Rs,o >
tσ) ≤ C exp(−ct2)p−c for any 0 ≤ s ≤ p. From these tail bounds, we get

E⟨ϵ,PX̄J (β̄∗)
X̄∆⟩ ≤ E[(

1

a
+

1

a′
)∥PX̄J (β̄∗)

X̄∆∥22 + bLσP (J(β∗), J(γ∗))] + a′Cσ2.

Repeating the treatment using Lemma 7 gives

E⟨ϵ, P⊥
X̄J (β̄∗)

PX̄J (ˆ̄β)
(Xβ̂ + γ̂)⟩ ≤E[(

1

a
+

1

a′
)∥P⊥

X̄J (β̄∗)
PX̄J (ˆ̄β)

(Xβ̂ + γ̂)∥22

+ bLσ{P (J(β̂), J(γ̂)) + P (J(β∗), J(γ∗))}] + a′Cσ2.

Combining the two bounds and using the monotone property of P , we get for any 4b >
a > 0, a′ > 0,

E⟨ϵ, X̄∆⟩ ≤ E(
1

a
+

1

a′
)∥X̄∆∥22 + 3bLσ2P (ϑs∗, ϑo∗) + a′Cσ2 (A.35)

where C, c are positive constants. It follows from (A.30), (A.35) and the regularity condi-
tion (26) that

E[(
δ

2
− (

1

a
+

1

a′
))∥X̄∆∥22] ≤ bL′σ2ϑ(o∗ log

en

ϑo∗
+ s∗ log

ep

ϑs∗
) + Ca′σ2, (A.36)

where L′ is a constant. Taking a = a′ = 8/δ and b = 4/δ gives the conclusion.
In the remaining, we prove the more general result under

E[D2(X̄β̄
(0)
, X̄β̄

∗
)] ≤ CM{ϑo∗σ2 log

en

ϑo∗
+ ϑs∗σ2 log

ep

ϑs∗
+ σ2} (A.37)

where M satisfies +∞ ≥M ≥ 1 and C ≥ 0 is a constant, and{
2(1− 1

M
)∆̄l +

C0

M(Mδ0 ∨ c0)
∆l − δ0D2

}
(X̄β̄, X̄β̄

′
) ≥ (1− 1/M)√

ϑ
(ρD2(β,β

′) +D2(γ,γ
′))

(A.38)

for all β̄, β̄
′
: ∥β∥0 ≤ ϑs∗, ∥β′∥0 ≤ s∗, ∥γ∥0 ≤ ϑo∗, ∥γ ′∥0 ≤ o∗ for some δ0 > 0 and constants

C0, c0 > 0.
First, from the above analysis, we have

E[(2δ∆̄l − δ2D2)(X̄
ˆ̄β, X̄β̄

∗
)]− E[

δ√
ϑ

(ρD2(β̂,β
∗) +D2(γ̂,γ

∗))] ≤ CE. (A.39)

where E := ϑo∗σ2 log en
ϑo∗

+ ϑs∗σ2 log ep
ϑs∗

+ σ2. Next, from l(X̄ ˆ̄β) ≤ l(X̄β̄
(0)
), we have

∆l(X̄
ˆ̄β, X̄β̄

∗
) ≤ ∆l(X̄β̄

(0)
, X̄β̄

∗
) + ⟨ϵ,X ˆ̄β − X̄β̄

∗⟩ − ⟨ϵ,Xβ̄
(0) − X̄β̄

∗⟩ (A.40)
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from which it follows that for any δ′ > 0,

E[(∆l − δ′D2)(X̄
ˆ̄β, X̄β̄

∗
)] ≤ (∆l +

1

M
D2)(X̄β̄

(0)
, X̄β̄

∗
) + CE(

1

δ′
+M). (A.41)

Since ∇l is Lip(1) and M ≥ 1, we obtain

E[(∆l − δ′D2)(X̄
ˆ̄β, X̄β̄

∗
)] ≤ CE(

1

δ′
+M) ≤ C

c1 ∧ c2
E(
c1
δ′

+ c2M) (A.42)

where c1, c2 > 0 are arbitrary constants and recall that C may not be the same constant
at each occurrence. Taking δ2 = δ′2/(c1 + c2Mδ′), we get

E[(
δ2

δ′
∆l − δ2D2)(X̄

ˆ̄β, X̄β̄
∗
)] ≤ C

c1 ∧ c2
E. (A.43)

Multiplying (A.39) by (1 − 1/M) and (A.43) by 1/M and adding the two inequalities
yield

E[(1− 1

M
){2∆̄l(X̄

ˆ̄β, X̄β̄
∗
)− ρD2(β̂,β

∗) +D2(γ̂,γ
∗)√

ϑ
}

+ (
δ

Mδ′
∆l − δD2)(X̄

ˆ̄β, X̄β̄
∗
)] ≤ E

δ
(1 +

C

c1 ∧ c2
).

Simple calculation shows

δ′/δ = c2Mδ +
√
c22M

2δ2 + 4c1 ≤ (2c2Mδ) ∨ (4c1)

Under (A.38) with δ0 = 2δ, C0 = 1/c2, c0 = 4c1/c2, we get E[D2(X̄
ˆ̄β, X̄β̄

∗
)] ≲ E/δ20. A

reparameterization of (A.38) gives the assumed regularity condition.

Proof of Lemma 6 By definition, {⟨ϵ,α⟩ : α ∈ ΓJ1,J2⟩} is a stochastic process with sub-
Gaussian increments. The induced metric on ΓJ1,J2 is Euclidean d(α1,α2) = σ∥α1−α2∥2.

To bound the metric entropy logN (ε,ΓJ1,J2 , d), where N (ε,ΓJ1,J2 , d) is the small-
est cardinality of an ε-net that covers ΓJ1,J2 under d, we notice that α is always in a
(r1 ∧ J1 + r2 ∧ J2)-dimensional ball and the number of such ball is at most

(
p1
J1

)(
p2
J2

)
. By a

standard volume argument

logN (ε,ΓJ1,J2 , d) ≤ log

(
p1
J1

)(
p2
J2

)(Cσ
ε

)r1∧J1+r2∧J2
= log

(
p1
J1

)
+ log

(
p2
J2

)
+ (r1 ∧ J1 + r2 ∧ J2) log(Cσ/ε),

where C is a universal constant.
From Dudley’s integral bound,

P
(

sup
α∈ΓJ1,J2

⟨ϵ,α⟩ ≥ tσ + L

∫ σ

0

√
logN (ε,ΓJ1,J2 , d)dε

)
≤ C exp(−ct2).

The conclusion follows from the Cauchy-Schwarz inequality.
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Remark A.2. Because of the tail bounds, the proof also gives a high-probability form result:

∥X̄ ˆ̄β − X̄β̄
∗∥22 ≲

σ2ϑ

δ2

{
o∗ log

en

ϑo∗
+ s∗ log

ep

ϑs∗

}
with probability at least 1− Cn−c(1∧o∗)p−c(1∧s

∗) under the same regularity condition.
In addition, if the β-optimization problem is convex, such as in robust regression or

logistic regression, the regularity condition can be weakened to (2∆̄l−δD2)(Xβ+γ,Xβ′+
γ ′) ≥ ∥γ − γ ′∥22/(4

√
ϑ) for any β,γ,β′,γ ′: ∥γ∥0 ≤ ϑo∗, ∥γ ′∥0 ≤ o∗ and some δ > 0. It is

also worth mentioning that to get the risk bound, (26) can be stated in expectation.

A.6 Proof of Theorem 5

We prove a more general theorem for a strongly smooth loss l with ∇l 1-Lipschitz.
Theorem 5’. Consider minβ,γ l(Xβ + γ) + λϱ∥β∥1 s.t. ∥γ∥0 ≤ q, where ϱ > 0, λ =

Aσ
√

log(ep) with A a sufficiently large constant and q = ϑo∗ with ϑ ≥ 1. Then the

following inequality holds for any coordinatewise minimum point (β̂, γ̂)

E[∥X̄ ˆ̄β − X̄β̄∗∥22] ≲ σ2ϑo∗ log(en/o∗) + σ2K2s∗ log(ep) + σ2 (A.44)

under the assumption that there exists K ≥ 0 such that (2∆̄l− δD2)(X̄β̄, X̄β̄
′
)+λϱ∥(β−

β′)J c∥1 + K2λ2J ≥ ∥γ − γ ′∥22/(2
√
ϑ) + (1 + ε)λϱ∥(β − β′)J ∥1 holds for any β,β′,γ,γ ′

satisfying ∥γ∥0 ≤ ϑo∗, ∥γ ′∥0 ≤ o∗, where J = {j : β∗
j ̸= 0}, J = |J |, and ε, δ are positive

constants.

For resistant lasso, where l(Xβ + γ,y) = ∥y − Xβ∥22/2, the regularity condition is
implied byK

√
J∥Xβ+γ∥2+ϱ∥βJ c∥1 ≥ ∥γ∥22/(2λ

√
ϑ)+(1+ε)ϱ∥βJ ∥1 for some (redefined)

K ≥ 0, where ∥γ∥0 ≤ (1 + ϑ)o∗ and ε is some positive constant, cf. Theorem 5.

Proof. First, from the proof of Theorem A.1, any coordinatewise minimum point (β̂, γ̂)
must obey {

β = Θsoft(β −XT∇l(Xβ + γ;y);λϱ),

γ = Θ#(γ −∇l(Xβ + γ;y); q),
(A.45)

where Θsoft(β;λ) = sign(β)◦(|β|−λ)+ is the soft-thresholding and ◦ is the component-wise
multiplication.

Then, similar to the proof of Lemma 5, we can prove

(β̂, γ̂) ∈ argmin
β,γ

g(β,γ;β−,γ−)|β−=β̂,γ−=γ̂ s.t. ∥γ∥0 ≤ q, (A.46)

where g(β,γ;β−,γ−) = l(Xβ− + γ−) + ⟨∇l(Xβ− + γ−),Xβ −Xβ− + γ − γ−⟩+ ∥β −
β−∥22/2+ ∥γ−γ−∥22/2+ ϱλ∥β∥1. Then by Lemma 2 in She (2016) and Lemma 3, we have

1

2
∥γ∗ − γ̂ +∇l(Xβ̂ + γ̂)∥22 −

1

2
∥∇l(Xβ̂ + γ̂)∥22 + λϱ∥β∗∥1 − λϱ∥β̂∥1

+
1

2
∥β∗ − β̂ +XT∇l(Xβ̂ + γ̂)∥22 −

1

2
∥XT∇l(Xβ̂ + γ̂)∥22

≥ 1

2

[
1− L(J (γ∗),J (γ̂))

]
∥γ̂ − γ∗∥22 +

1

2
∥β̂ − β∗∥22,

(A.47)
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or

2∆̄l(Xβ̂ + γ̂,Xβ∗ + γ∗) ≤ 1

2
√
ϑ
∥γ̂ − γ∗∥22 + λϱ∥β∗∥1 − λϱ∥β̂∥1 + ⟨ϵ, X̄ ˆ̄β − X̄β̄

∗⟩.

(A.48)

Next we try to bound the stochastic term in a proper way to merge with the β-penalties.
Let PH(t;λ) = (−t2/2+λ|t|)1|t|<λ+(λ2/2)1|t|≥λ and PH(β;λ) =

∑
PH(βj;λ). The following

lemma based on combined statistical and computational analysis is useful.

Lemma 8. Define Γq = {(β,γ) : β ∈ Rp,γ ∈ Rn, ∥γ∥0 ≤ q} where 0 ≤ q ≤ n. Then
for any ϱ ≥ ∥X∥2, there exist universal constants A0, A1, C, c, c1, c2 > 0 such that for any
a ≥ 2b > 0, the following event

sup
(β,γ)∈Γq

{2⟨ϵ,Xβ + γ⟩ − 1

a
∥Xβ + γ∥22 −

1

b
PH(ϱβ;λ)− aA0σ

2q log(en/q)} ≥ aσ2t

occurs with probability at most C exp(−ct), where λ = Aσ
√

log(ep), A =
√
abA1 and t ≥ 0.

From Lemma 8 and ∥γ̂ − γ∗∥0 ≤ (1 + ϑ)o∗, it is easy to see

⟨ϵ,Xβ̂ −Xβ∗ + γ̂ − γ∗⟩

≤ 1

a
D2(X̄β̄

∗
, X̄ ˆ̄β) +

1

2b
PH(ϱ(β̂ − β∗), λ) +

1

2
σ2aA0o

∗(1 + ϑ) log
en

o∗
+ aR

(A.49)

with ER ≤ Cσ2. Let J = {j : β∗
j ̸= 0}. Due to the sub-additivity of ∥ · ∥1 and the fact

that PH(t;λ) ≤ λ|t|,

λϱ∥β∗∥1 − λϱ∥β̂∥1 +
1

2b
PH(ϱ(β̂ − β∗);λ)

≤λϱ{∥(β̂ − β∗)J ∥1 − ∥(β̂ − β∗)J c∥1}+ ελϱ{∥(β̂ − β∗)J c∥1 + ∥(β̂ − β∗)J ∥1}
≤λϱ{(1 + ε)∥(β̂ − β∗)J ∥1 − (1− ε)∥(β̂ − β∗)J c∥1}
≤λϱ{(1 + ε)∥(β̂ − β∗)J ∥1 − ∥(β̂ − β∗)J c∥1},

(A.50)

where we set b = 1/(2ε) > 0. Combining (A.48), (A.49), and (A.50) gives

2∆̄l(Xβ̂ + γ̂,Xβ∗ + γ∗)− 1

2a
∥Xβ̂ −Xβ∗ + γ̂ − γ∗∥22

≤ 1

2
√
ϑ
∥γ̂ − γ∗∥22 +

1

2
σ2aA0o

∗(1 + ϑ) log
en

o∗

+ λϱ{(1 + ε)∥(β̂ − β∗)J ∥1 − ∥(β̂ − β∗)J c∥1}+ aR.

(A.51)

Choosing a = 2/δ + 1/ε, A ≥
√
abA1, and using the regularity condition, we obtain the

conclusion.
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Proof of Lemma 8 Define lH(β,γ, q) = 2⟨ϵ,Xβ+γ⟩− ∥Xβ+γ∥22/a−PH(ϱβ;λ)/b−
aA0σ

2q log(en/q). Let P0(β;λ) = λ2∥β∥0/2. Similarly, define l0(β,γ, q) = 2⟨ϵ,Xβ+γ⟩−
∥Xβ+ γ∥22/a−P0(β;λ)/b− aA0σ

2q log(en/q). Let AH = {sup(β,γ)∈Γq
lH(β,γ, q) ≥ atσ2}

and A0 = {sup(β,γ)∈Γq
l0(β,γ, q) ≥ atσ2}. The occurrence of AH implies

lH(β
o,γo, q) ≥ atσ2 (A.52)

for any (βo,γo) that solves

min
β,γ:∥γ∥0≤q

∥Xβ + γ∥22/2− a⟨ϵ,Xβ + γ⟩+ (a/(2b))PH(ϱβ;λ). (A.53)

Lemma 9. Given any τ ≥ ∥X∥22, there always exists a globally optimal solution βo to
minβ ∥y − Xβ∥22/2 + τPH(β;λ) such that for any j : 1 ≤ j ≤ p, either βoj = 0 or
βoj ≥ λ

√
τ/∥X∥2 ≥ λ.

The lemma can be shown by linearization and the property of PH ; see She (2012). From
Lemma 9 and a/2b ≥ 1 ≥ ∥X∥22/ϱ2, (A.52) implies the existence of an optimal solution
(βo,γo) to (A.53) such that l0(β

o,γo, q) = lH(β
o,γo, q) ≥ atσ2 and so AH ⊂ A0. It suffices

to study P(A0).
The remaining part follows the lines of the proof of Theorem 4 and is omitted.

A.7 Proof of Theorem 6

Assume the density of y ∈ Yn given η∗ = X̄β̄
∗
is given by

pβ̄∗(y) = exp{[⟨y, η̄∗⟩ − ⟨1, b(η̄∗)⟩]/σ2} (A.54)

with respect to a base measure µ defined on Yn. The corresponding loss is l(η) = ⟨1, l0(η)⟩
with ηi = xTi β + γi = x̄Ti β̄ and

l0(ηi; yi) = (−yiηi + b(ηi))/σ
2. (A.55)

Assume the natural parameter space Ω = {η ∈ Rn : b(η) < +∞} is open. Then the loss
corresponds to a distribution in the regular exponential dispersion family with dispersion
σ2 and natural parameter ηi. In the Gaussian case, l0(ηi) is (ηi − yi)

2/(2σ2) up to an
additive term independent of ηi. Consider a signal class

B(s∗, o∗,Mβ,Mγ) = {(β∗,γ∗) : ∥β∗∥0 ≤ s∗, ∥γ∗∥0 ≤ o∗, ∥β∗∥∞ < Mβ, ∥γ∗∥∞ < Mγ}
(A.56)

where 0 ≤ s∗ ≤ p, 0 ≤ o∗ ≤ n, and +∞ ≥ Mβ,Mγ ≥ 0. The following theorem implies
Theorem 6 by setting Mβ =Mβ = +∞ and assuming κβ/κβ and κγ are positive constants.

Theorem 6’. In the regular exponential dispersion family with n ≥ 2, p ≥ 2, 1 ≤ o∗ ≤
n/2, 1 ≤ s∗ ≤ p/2, define

Pβ(s
∗) = s∗ log(ep/s∗), Pγ = o∗ log(en/o∗). (A.57)
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Let I(·) be any nondecreasing function with I(0) = 0, I ̸≡ 0. (i) Suppose for some κβ, κγ > 0
∆l(0,Xβ)σ2 ≤ κβD2(0,β), ∀β : ∥β∥0 ≤ s∗, ∥β∥∞ < Mβ, and ∆l(0,γ)σ

2 ≤ κγD2(0,γ),
∀γ : ∥γ∥0 ≤ o∗, ∥γ∥∞ < Mγ. Then there exist positive constants c̃, c, depending on I(·)
only, such that

inf
(β̂,γ̂)

sup
(β∗,γ∗)∈B(s∗,o∗,Mβ ,Mγ)

E
[
I
(
D2(β̄

∗
, ˆ̄β)/

{
c̃
[
min{σ2Pβ(s

∗)/κβ,M
2
βs

∗}

+min{σ2Pγ(o
∗)/κγ,M

2
γo

∗}
]})]

≥ c > 0,

(A.58)

where (β̂, γ̂) denotes any estimator of (β∗,γ∗). (ii) Suppose ∆l(0,Xβ1)σ
2 ≤ κβD2(0,β1)

and κβD2(0,β2) ≤ D2(0,Xβ2), ∀βi : ∥βi∥0 ≤ is∗, ∥βi∥∞ < Mβ, i = 1, 2, and ∆l(0,γ)σ
2

≤ κγD2(0,γ), ∀γ : ∥γ∥0 ≤ o∗, ∥γ∥∞ < Mγ. where 0 ≤ κβ ≤ κβ, 0 ≤ κγ. Then there exist
positive constants c̃, c such that

inf
(β̂,γ̂)

sup
(β∗,γ∗)∈B(s∗,o∗,Mβ ,Mγ)

E
[
I
(
D2(X̄β̄

∗
, X̄ ˆ̄β)/

{
c̃
[
min{(κβ/κβ)σ2Pβ(s

∗), κβM
2
βs

∗}

+min{σ2Pγ(o
∗)/κγ,M

2
γo

∗}
]})]

≥ c > 0.

(A.59)

Proof. First we introduce a lemma (She et al., 2021, Lemma 3(iii)).

Lemma 10. For any pβ̄1
, pβ̄2

in the regular exponential dispersion family, the Kullback-
Leibler divergence of pβ̄2

from pβ̄1
, defined by K(pβ̄1

, pβ̄2
) =

∫
pβ̄1

log(pβ̄1
/pβ̄2

) dν, satisfies

K(pβ̄1
, pβ̄2

) = ∆l(X̄β̄2, X̄β̄1),

where ∆l(·, ·) is the generalized Bregman divergence notation introduced in Section 4.

To prove the desired rate for estimation, we make a discussion in two cases.
Case (i) min{σ2Pγ(o

∗)/κγ,M
2
γo

∗} ≤ min{σ2Pβ(s
∗)/κβ,M

2
βs

∗}. Consider a signal sub-
class

B1 = {β̄ = [βT ,0T ]T : βj ∈ {0, τR}, ∥β∥0 ≤ s∗},
where

R = σ(log(ep/s∗))1/2/κβ
1/2 ∧Mβ

and 1 > τ > 0 is a small constant to be chosen later. Clearly, B1 ∈ B(s∗, o∗,Mβ,Mγ).
By Stirling’s approximation, log |B1| ≥ log

(
p
s∗

)
≥ s∗ log(p/s∗) ≥ cs∗ log(ep/s∗) for some

universal constant c.
Let ρ(β̄1, β̄2) = ∥β̄1− β̄2∥0, the Hamming distance between β̄1 and β̄2. By Lemma A.3

in Rigollet and Tsybakov (2011), there exists a subset B10 ⊂ B1 such that β̄0 = 0 ∈ B10

and

log |B10| ≥ c1s
∗ log(ep/s∗), ρ(β̄1, β̄2) ≥ c2s

∗, ∀β̄1, β̄2 ∈ B10, β̄1 ̸= β̄2

for some universal constants c1, c2 > 0. Then

∥β̄1 − β̄2∥22 = τ 2R2ρ(β̄1, β̄2) ≥ c2τ
2R2s∗ (A.60)
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for any β̄1, β̄2 ∈ B10, β̄1 ̸= β̄2.
By Lemma 10 and the regularity condition, for any β̄ ∈ B10, we have

K(pβ̄, pβ̄0
) = ∆l(X̄β̄0, X̄β̄) ≤ nτ 2κβR

2s∗/σ2.

Therefore,
1

|B10| − 1

∑
β̄∈B10\{β̄0}

K(pβ̄, pβ̄0
) ≤ τ 2κβs

∗ log(ep/s∗). (A.61)

Combining (A.60) and (A.61) and choosing a sufficiently small value for τ , we can apply
Theorem 2.7 of Tsybakov (2008) to get the desired lower bound.

Case (ii) min{σ2Pγ(o
∗)/κγ,M

2
γo

∗} ≥ min{σ2Pβ(s
∗)/κβ,M

2
βs

∗}. Define a signal sub-
class

B2 = {β̄ = [0T ,γT ]T : γi ∈ {0, τR}, ∥γ∥0 ≤ o∗},
where R = σ(log(en/o∗))1/2/τ 1/2 ∧Mγ and 1 > τ > 0 is a small constant. The afterward
treatment is similar to (i). The details are omitted.

The proof for the lower bound of ∥X̄β̄
∗ − X̄ ˆ̄β∥22 follows similar lines.

A.8 Proof of Theorem 7

Let J(γ) = |J (γ)| = ∥γ∥0 and J (γ) is the support of γ, i.e., J (γ) = {i : γi ̸= 0}. The
optimality of (β̂, γ̂) implies that

∆l(Xβ̂ + γ̂,Xβ∗ + γ∗) ≤ APo(β
∗,γ∗)− APo(β̂, γ̂) + ⟨ϵ, X̄ ˆ̄β − X̄β̄

∗⟩. (A.62)

The stochastic term ⟨ϵ, X̄ ˆ̄β − X̄β̄⟩ can be decomposed and bounded in a similar way
as in the proof of Theorem 4. The difference is to use the union bound to show the
E sups≤p,o≤nR

2
s,o ≤ C. Take the first term ⟨ϵ, I⟩ from the decomposition as an example:

⟨ϵ,PX̄J (β̄∗)
X̄∆⟩ − 1

a
∥PX̄J (β̄∗)

X̄∆∥22 − bLPo(J(β
∗), J(γ∗))

≤ 1

a′
∥PX̄J (β̄∗)

X̄∆∥22 +
a′

4
sup

s≤p,o≤n
sup

∆∈Γs,o

[⟨ϵ,∆⟩ − 2{(b/a)LPo(s, o)}1/2]2+

≡ 1

a′
∥PX̄J (β̄∗)

X̄∆∥22 +
a′

4
sup

s≤p,o≤n
R2
s,o.
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When s = o = 0, R0,0 = 0. When s ≥ 1 and o ≥ 1, for any t ≥ 0, if 4b/a is a constant
greater than 1,

P( sup
1≤o≤n,1≤s≤p

Rs,o > tσ)

≤
p∑
s=1

n∑
o=1

P
(

sup
∆∈Γs,o

⟨ϵ,∆⟩ −
√
LP (s, o) > tσ + 2σ

√
b

a
LP (s, o)−

√
LP (s, o)

)

≤C exp(−ct2)
p∑
s=1

n∑
o=1

exp[−c(2
√
b/a− 1)2P (s, o)]

≤C exp(−ct2) exp(−c(log n+ log p))

p∑
s=1

n∑
o=1

exp(−c(s+ o))

≤C exp(−ct2)(np)−c,

(A.63)

where the last inequality is due to the sum of geometric series. Similarly, when s = 0,
P(sup0≤o≤nR0,o > tσ) ≤ C exp(−ct2)n−c, and when o = 0, P(sup0≤s≤pRs,0 > tσ) ≤
C exp(−ct2)p−c for any 0 ≤ s ≤ p. Hence E sups,oR

2
s,o ≤ C. To summarize, we obtain that

for any constants a, b, a′, b′ > 0 satisfying 4b > a,

E⟨ϵ, X̄ ˆ̄β − X̄β̄⟩ ≤ (
1

a
+

1

a′
)∥Xβ̂ −Xβ + γ̂ − γ∥22 + 2bL[P (β̂, γ̂) + P (β,γ)] + a′C.

(A.64)

Using the regularity condition and choosing constants a, a′, b, b′ and A sufficiently large
such that 1/a+ 1/a′ = δ/4, 4b > a and A = A0 + 2bL, we obtain the error bound.

A.9 Proof of Theorem 8

We prove a general theorem in possibly high dimensions where β is also desired to be
sparse.

Theorem 8’. Let y = Xβ∗ + γ∗ + ϵ, where ϵi are independent sub-Gaussian(0, σ2) and
Eϵ2i = σ2

i = ciσ
2 with ci some positive constants and σ2 unknown. Let l0(Xβ + γ;y) =

∥y − Xβ − γ∥22/2. Define P (β,γ) = J(β) log(ep/J(β)) + J(γ) log(en/J(γ)). Assume
the true model is parsimonious in the sense that P (β∗,γ∗) ≤ n/A0 for some constant
A0 > 0. Let δ(β,γ) = AP (β,γ)/n where A is a positive constant satisfying A < A0, and
so δ(β∗,γ∗) < 1. Then for sufficiently large values of A0 and A, any (β̂, γ̂) that minimizes
log l0(Xβ + γ;y) + δ(β,γ) s.t. δ(β,γ) < 1 satisfies

D2(X̄
ˆ̄β, X̄β̄

∗
) ≲ σ2P (β∗,γ∗) (A.65)

with probability at least 1−C ′n−c′ −Cn−c(1∧o∗)p−c(1∧s
∗) for some constants c, c′, C, C ′ > 0.

Proof. Let h(β,γ;A) = 1/(n−AP (β,γ)). It follows from 1/(1− δ) ≥ exp(δ) for any 0 ≤
δ < 1 and exp(δ) ≥ 1/(1−δ/2) for any 0 ≤ δ < 2 that n∥y−Xβ̂−γ̂∥22h(β̂, γ̂;A/2) ≤ ∥y−
Xβ̂− γ̂∥22 exp[δ(β̂, γ̂)] ≤ ∥y−Xβ∗−γ∗∥22 exp[δ(β∗,γ∗)] ≤ ∥y−Xβ∗−γ∗∥22h(β∗,γ∗;A)n.
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Since h(β̂, γ̂;A/2) > 0, we have

∥y −Xβ̂ − γ̂∥22 ≤ ∥y −Xβ∗ − γ∗∥22h(β∗,γ∗;A)/h(β̂, γ̂;A/2).

It follows that

∥Xβ̂ −Xβ∗ + γ̂ − γ∗∥22
≤∥ϵ∥22[h(β∗,γ∗;A)/h(β̂, γ̂;A/2)− 1] + 2⟨ϵ,Xβ̂ −Xβ∗ + γ̂ − γ∗⟩

≤ A∥ϵ∥22
nσ2 − Aσ2P (β∗,γ∗)

σ2P (β∗,γ∗)− A∥ϵ∥22
2nσ2

σ2P (β̂, γ̂) + 2⟨ϵ,Xβ̂ −Xβ∗ + γ̂ − γ∗⟩.

The proof of Theorem 7 gives a high-probability bound for the stochastic term: for any
constant a, b, a′ > 0 satisfying 4b > a,

2⟨ϵ,Xβ̂ −Xβ∗ + γ̂ − γ∗⟩

≤ 2(
1

a
+

1

a′
)∥Xβ̂ −Xβ∗ + γ̂ − γ∗∥22 + 4bLσ2[P (β̂, γ̂) + P (β∗,γ∗)]

(A.66)

with probability at least 1− Cn−c(1∧o∗)p−c(1∧s
∗) for some c, C > 0.

Assume c0σ
2 ≤ Eϵ2i ≤ C0σ

2 with c0, C0 positive constants and let ε and ε′ be two
constants satisfying 0 < ε < 1, ε′ > 0. On A = {(c0 − ε)nσ2 ≤ ∥ϵ∥22 ≤ (C0 + ε′)nσ2}, we
have

A∥ϵ∥22
nσ2 − Aσ2P (β∗,γ∗)

σ2P (β∗,γ∗)− A∥ϵ∥22
2nσ2

σ2P (β̂, γ̂)

≤ (C0 + ε′)AA0

A0 − A
σ2P (β∗,γ∗)− (c0 − ε)A

2
σ2P (β̂, γ̂).

With A0 large enough, we can choose a, a′, b, A such that 1/a + 1/a′ < 1/2, 4b > a and
8bL/c0(1 − ε) ≤ A. From the Hanson-Wright inequality (Rudelson and Vershynin, 2013)
A occurs with probability at most c′2 exp(−c2n), where c2, c′2 are dependent on constants
ε, ε′. The conclusion results.

Remark A.3. For robust regression in low dimensions, applying Theorem 8’ to the reduced
model UT

⊥y = UT
⊥γ

∗ + ϵ′ gives Theorem 8, where U⊥ ∈ Rn×(n−r(X)) is the orthogonal
complement of U that is from the SVD: X = UDV T , and ϵ′ = UT

⊥ϵ. The proof follows the
same lines; in particular, when applying the Hanson-Wright inequality, note that E[∥ϵ′∥22] =
Tr{diag{σ2

i }U⊥U
T
⊥} ∈ [c0(n− r(X))σ2, C0(n− r(X))σ2] and ∥U⊥U

T
⊥∥2F = n− r(X) and

∥U⊥U
T
⊥∥2 = 1.

A.10 Error bounds of optimal solutions

This part points out that the error rate remains the same if (β̂, γ̂) is globally optimal, but
the regularity condition gets relaxed. For simplicity, we drop the ℓ2 penalty terms.
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Theorem A.2. Let (β̂, γ̂) be any globally optimal solution of min∥β∥0≤qβ ,∥γ∥0≤qγ l(Xβ +

γ̂;y) with ∥γ̂∥0 = qγ, ∥β̂∥0 = qβ, qγ = ϑo∗, qβ = ϑs∗ and ϑ ≥ 1. Assume that there exists
some δ > 0 such that

(∆l − δD2)(X̄β̄, X̄β̄
′
) ≥ 0 (A.67)

holds for any ∥β∥0 ≤ ϑs∗, ∥β′∥0 ≤ s∗, ∥γ∥0 ≤ ϑo∗, ∥γ ′∥0 ≤ o∗. Then the following error
bound holds

E[D2(X̄
ˆ̄β, X̄β̄

∗
)] ≲

ϑ

δ2
σ2(s∗ log

ep

s∗
+ o∗ log

en

o∗
) +

σ2

δ2
. (A.68)

(A.67), apart from replacing 2∆̄l by ∆l, removes the term on the right-hand side of
(26). It is easy to see that if l is µ-strongly convex, then (A.67) is true with δ = µ. In
particular, when l0(η; y) = (η − y)2/2, the condition holds trivially (δ = 1).

Under a slightly stronger regularity condition than that used in Theorem 4, we get an
estimation error bound.

Theorem A.3. Let (β̂, γ̂) be an A-estimator satisfying ∥γ̂∥0 = qγ, ∥β̂∥0 = qβ with qγ =
ϑo∗, qβ = ϑs∗ and ϑ ≥ 1. Assume β∗ ̸= 0. Then, with (26) replaced by (1 − ϵ)(2∆̄l −
δD2)(X̄ρβ̄, X̄ρβ̄

′
) ≥ 1√

ϑ
D2(β̄, β̄

′
) ∀β̄, β̄′

: ∥β∥0 ≤ ϑs∗, ∥β′∥0 ≤ s∗, ∥γ∥0 ≤ ϑo∗, ∥γ ′∥0 ≤
o∗ for some ϵ, δ > 0, with probability at least 1 − Cp−c, ρ∥β̂ − β∗∥22 + ∥γ̂ − γ∗∥22 ≲
σ2

δε
{ϑ3/2[s∗ log(ep/s∗) + o∗ log(en/o∗)]}. In particular, we have the estimation error bound

∥β̂ − β∗∥22 ≲
σ2

δε

ϑ3/2[s∗ log(ep/s∗) + o∗ log(en/o∗)]

ρ
(A.69)

with probability 1− Cp−c under (26) with X̄ρ redefined as [X/
√
ρ(1 + ϵ) I].

When ϑ, ϵ, δ are constants and ρ ≥ cn, the estimation error bound in (A.69) is of the
order σ2{s∗ log(ep/s∗) + o∗ log(en/o∗)}/n.

Proof. To prove Theorem A.2, by definition, ˆ̄β = [β̂
T
, γ̂T ]T satisfies l(X̄ ˆ̄β) ≤ l(X̄β̄

∗
) or

equivalently,

∆l(X̄
ˆ̄β, X̄β̄

∗
) ≤ ⟨ϵ, X̄ ˆ̄β − X̄β̄

∗⟩. (A.70)

Treating the stochastic term in the same way as in the proof of Theorem 4, we obtain

E⟨ϵ, X̄ ˆ̄β − X̄β̄
∗⟩ ≤ (

1

a
+

1

a′
)∥X̄ ˆ̄β − X̄β̄

∗∥22 + 3bLσ2P (qβ, qγ) + a′Cσ2, (A.71)

for any a, a′, b > 0 satisfying 4b > a. The regularity condition implies

(δ/2)∥X̄ ˆ̄β − X̄β̄
∗∥22 ≤ ∆l(X̄

ˆ̄β, X̄β̄
∗
). (A.72)

Combining the above three inequalities and choosing a, a′, b such that a = a′ = 8/δ and
b = 4/δ gives the desired result.
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To prove Theorem A.3, recall that from the proof of Theorem 4, we obtain

2∆̄l(Xβ̂ + γ̂,Xβ∗ + γ∗) ≤ 1

2
√
ϑ
(∥γ̂ − γ∗∥22 + ρ∥β̂ − β∗∥22)

+(
1

a
+

1

a′
)∥X̄ ˆ̄β − X̄β̄

∗∥22 + 3bLϑσ2Po(s
∗, o∗)

with probability at least 1 − Cn−c(1∧o∗)p−c. Using the regularity condition, and setting
a = a′ = 4/δ and b = 2/δ, we get the estimation error bound (A.69) with high probability
(details omitted).

A.11 General noise and stochastic breakdown

Given a random variable X, its Orlicz ψ-norm is defined by

∥X∥ψ = inf
{
M > 0 : Eψ(

|X|
M

) ≤ 1
}
,

where ψ is a strictly increasing convex function on [0,+∞) with ψ(0) = 0; see, e.g., van der
Vaart and Wellner (1996). Similar to the definition of sub-Gaussian random vectors (cf.
Definition 1), we say that a random vector ϵ has its ψ-norm bounded above by σ if

∥⟨ϵ,α⟩∥ψ ≤ σ∥α∥2

for any vector α. The components of ϵ are not required to be independent.
Some commonly used ψ-norms in statistics are the Lp norms, ψ(x) = xp with p ≥ 1,

which means |X| possesses a finite p-th moment, and ψp norms, ψ(x) = exp(xp) − 1,
covering sub-Gaussian (p = 2) and sub-exponential (p = 1) random variables. By Markov’s
inequality, that X has a finite ψ-norm σ implies a tail probability bound

P(|X| > t) ≤ 2

ψ(t/σ) + 1
, ∀t > 0

which encompasses diverse heavy/light tail decays.
In the following theorem, instead of restricting our attention to a sub-Gaussian type

effective noise ϵ (cf. (22)), which is sensible in many applications especially when a Lip-
schitz continuous loss is in use, we make a more general assumption that ϵ has a finite
Orlicz ψ-norm bounded above by σ and ψ(x) ≥ cx2 (i.e., the second moment exists), to-
gether with the regularity condition lim supx,y→∞ ψ(x)ψ(y)/ψ(cxy) < ∞ (van der Vaart
and Wellner, 1996) for some constant c > 0 that is satisfied by say the Lp norms and ψp
norms. (Note that the ψ here is not the same psi function to define an M-estimator.)

Theorem A.4. Let ˆ̄β be a solution to minβ̄:∥β∥0≤qβ ,∥γ∥0≤qγ l(X̄β̄;y) with 0 ≤ qγ ≤ n, 0 ≤
qβ ≤ p. Assume that there exists some δ > 0 such that (∆l − δD2)(X̄β̄, X̄β̄

′
) ≥ 0 for
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sparse β̄, β̄
′
satisfying ∥β∥0 ≤ qβ, ∥β′∥0 ≤ qβ, ∥γ∥0 ≤ qγ, ∥γ ′∥0 ≤ qγ. Then the following

oracle inequality holds for any β̄ : ∥β∥0 ≤ qβ, ∥γ∥0 ≤ qγ

E[D2(X̄
ˆ̄β, X̄β̄

∗
)] ≲

1

δ2

{
δ E∆l(X̄β̄, X̄β̄

∗
) + σ2

[
ψ−1

(
exp{c(qγ log

en

qγ
+ qβ log

ep

qβ
)}
)]2}

,

(A.73)

where c is a positive constant. In particular, in the sub-Gaussian case with ψ(x) =
exp(x2)− 1, the RHS becomes 1

δ2
{δ E∆l(X̄β̄, X̄β̄

∗
) + σ2qγ log(en/qγ) + σ2qβ log(ep/qβ) +

σ2)}.

Proof. By definition, for any β̄ : ∥β∥0 ≤ qβ, ∥γ∥0 ≤ qγ, l(X̄
ˆ̄β) ≤ l(X̄β̄) and so

∆l(X̄
ˆ̄β, X̄β̄

∗
) ≤ ∆l(X̄β̄, X̄β̄

∗
) + ⟨ϵ, X̄(ˆ̄β − β̄)/∥X̄(ˆ̄β − β̄)∥2)⟩∥X̄(ˆ̄β − β̄)∥2. (A.74)

Define Γ(qβ, qγ) = {θ ∈ Rn : ∥θ∥2 ≤ 1,θ = Xβ + γ for some ∥β∥0 ≤ qβ, ∥γ∥0 ≤
qγ} or Γ for short when there is no ambiguity. For notational convenience, we bound
supθ∈Γ(qβ ,qγ)⟨ϵ,θ⟩. The difficulty lies in the possible divergence of the entropy integral for
a general ψ. To conquer this, we apply discretization and make use of the finiteness of the
number of range spaces defined by Γ.

Recall that θ ∈ Γ(qβ, qγ) means θ = X̄β̄ ∈ PX̄J (β̄)
. Obviously, if β̄ has degenerate

zeros: ∥β∥0 < qβ and/or ∥γ∥0 < qγ, the range of X̄
J (β̄)

is always included in a column

subspace of X̄ indexed by exactly qβ columns in X and qγ columns in In×n, and so we just
need to focus on the β̄’s with J(β) = qβ and J(γ) = qγ. To use an ε-net Γ̇ to discretize
Γ such that for any θ ∈ Γ, there exists θ̇ ∈ Γ̇ ⊂ Γ satisfying ∥θ − θ̇∥2 ≤ ε, we include all
nondegenerate subspaces and apply a standard volume argument. Then for any 0 < ϵ < 1,
the covering number N (ε,Γ, ∥ · ∥2) is bounded by

N (ε,Γ, ∥ · ∥2) ≤
(
p

qβ

)(
n

qγ

)(3
ε

)r(X)∧(qβ+qγ)
.

Furthermore, the construction shows that for θ ∈ Γ and θ = X̄β̄ with no degeneracy in
β̄, θ̇ is also in the subspace determined by P := PX̄J (β̄)

. Since Pα ∈ Γ for any ∥α∥2 ≤ 1

we have
⟨ϵ,θ⟩ = ⟨ϵ,θ − θ̇⟩+max

θ̇∈Γ̇
⟨ϵ, θ̇⟩

= ε⟨ϵ,P(θ − θ̇)/ε⟩+max
θ̇∈Γ̇

⟨ϵ, θ̇⟩

≤ ε sup
θ∈Γ

⟨ϵ,θ⟩+max
θ̇∈Γ̇

⟨ϵ, θ̇⟩,

and so (1− ε) supθ∈Γ⟨ϵ,θ⟩ ≤ maxΓ̇⟨ϵ, θ̇⟩. We can take say ε = 0.5 to turn to a finite-class
problem instead of using the entropy integral.

Indeed, by an extension of Massart’s finite class lemma (cf. Lemma 2.2.2 in van der
Vaart and Wellner (1996)) and Stirling’s formula, we obtain

∥ sup
θ∈Γ(2qβ ,2qγ)

⟨ϵ,θ⟩∥ψ ≤ Cψ−1
(
exp{c(qγ log

en

qγ
+ qβ log

ep

qβ
)}
)
σ
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where C, c are constants depending on ψ only.
Based on (A.74) and the regularity condition,

δ

4
∥X̄(ˆ̄β−β̄

∗
)∥22 ≤ ∆l(X̄

ˆ̄β, X̄β̄
∗
)− δ

4
∥X̄(ˆ̄β−β̄

∗
)∥22 ≤ ∆l(X̄β̄, X̄β̄

∗
)+

1

δ
( sup
θ∈Γ(2qβ ,2qγ)

⟨ϵ,θ⟩)2.

By assumption, {E[(supθ∈Γ(2qβ ,2qγ)⟨ϵ,θ⟩)
2]}1/2 ≲ ∥ supθ∈Γ(2qβ ,2qγ)⟨ϵ,θ⟩∥ψ. Hence

E[D2(X̄
ˆ̄β, X̄β̄

∗
)] ≲

1

δ
E∆l(X̄β̄, X̄β̄

∗
) +

1

δ2
{[σ2ψ−1(exp{cqγ log

en

qγ
+ cqβ log

ep

qβ
})]2}.

The proof is complete.

Remark A.4. The oracle inequality implies that even if β̄
∗
has ∥β∗∥0 ≫ qβ, ∥γ∗∥0 ≫ qγ,

as along as β̄
∗
can be well approximated by some β̄: ∥β∥0 ≤ qβ, ∥γ∥0 ≤ qγ in the sense

that the bias E∆l(X̄β̄, X̄β̄
∗
) is controlled by σ2

[
ψ−1

(
exp{c(qγ log en

qγ
+ qβ log

ep
qβ
)}
)]2
/δ up

to a multiplicative constant, the prediction risk bound is of the order σ2/δ2 times[
ψ−1

(
exp

{
c(qγ log

en

qγ
+ qβ log

ep

qβ
)
})]2

. (A.75)

This applicability to approximately sparse signals is quite useful in reality.

Remark A.5. Taking a specific β̄ = β̄
∗
in (A.73) and assuming the associated regularity

condition holds, the error bound depends on γ∗ through its support size only, thereby finite
regardless of its magnitude or outlyingness. This gives a risk-based breakdown point result
that accounts for the randomness of the estimators.

Concretely, to define a general stochastic breakdown point, we fix the true systematic
component Xβ, but can freely alter the response y in

Y(o) = {y : ∥γ∥0 ≤ o, ∥ϵ∥ψ < +∞} (A.76)

with o ∈ N∪{0}, where ϵ = −∇l(Xβ+γ;y). Given any estimator (β̂, γ̂) (that implicitly
depends on the data X,y), its finite-sample breakdown point ϵ∗ can be defined by

1

n
min{o : sup

y∈Y(o)

E[D2(X̄
ˆ̄β, X̄β̄)] = +∞}. (A.77)

Then, in the setup of Theorem A.4, the estimator given qβ, qγ has the stochastic breakdown
point

ϵ∗ ≥ (qγ + 1)/n. (A.78)

For example, for ˆ̄β = argminβ̄:∥β∥0≤qβ ,∥γ∥0≤qγ l(X̄β̄;y) with a quadratic l(η;y) = ∥y −
η∥22/2, the contamination model associated with Y(o) is y = Xβ+γ+ϵ subject to ∥γ∥0 ≤ o,
where the nonzero components of γ can be arbitrarily large, but even in high dimensions the

breakdown point of ˆ̄β is no lower than (qγ +1)/n. The direct link between the ℓ0-constraint
and breakdown point facilitates parameter tuning.
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Statistically speaking, obtaining a precise error rate
[
ψ−1

(
exp{c(qγ log en

qγ
+qβ log

ep
qβ
)}
)]2

in Theorem A.4 is much more informative than simply knowing that the risk is finite for
the purpose of breakdown studies. However, it is an interesting question to determine
what relaxed conditions ϵ should satisfy to guarantee (A.78) for a general extended real-
valued function l : Rn → R ∪ {+∞}. Toward this, we change the D2 in (A.77) to the

generalized Bregman ∆l: ϵ
∗ = min{o : supy∈Y(o) E[∆l(X̄

ˆ̄β, X̄β̄)] = +∞}/n, and make a

no-model-ambiguity assumption: l is differentiable at X̄β̄
∗ ∈ D = {η : l(η) < +∞} with

the gradient ∇l(X̄β̄
∗
) = −ϵ, X̄β̄

∗
is a finite optimal solution to the Fenchel conjugate

when ζ = −ϵ:

l∗(ζ) = sup
η∈Rn

⟨ζ,η⟩ − l(η), (A.79)

and the extended real-valued convex function l∗ is differentiable at −ϵ. The assumption
simply means that (X̄β̄

∗
,−ϵ) makes a conjugate pair. Note that l need not be overall

strictly convex, especially when D is compact, according to Danskin’s min-max theorem
(Bertsekas, 1999). Then we have the following conclusion.

Theorem A.5. Under E[∆l∗(ϵ,−ϵ)] < M < +∞ for all γ∗ : ∥γ∗∥0 ≤ q, the ∆l-risk based

breakdown point for any finite solution ˆ̄β to minβ̄:∥γ∥0≤q l(X̄β̄;y) satisfies ϵ∗ ≥ (q + 1)/n.

In the special case that l is strongly convex on Rn with respect to a certain norm,
as long as the effective noise has the second moment, the theorem recovers (A.78) since
l∗ can be shown to be strongly smooth with respect to the Euclidean norm (Rockafellar,
1970) (albeit not delivering a concrete error rate as before). Two other notable features
apart from the randomness: l is a general extended real-valued function (not restricted to
be a function of y − η as in M-estimation), and its conjugate plays an important role in
bounding the risk; also, we do not need to assume a positive norm penalty which is a key
element to the proof of Proposition 1 in Alfons et al. (2013).

Proof. First, we show that

∆l(X̄
ˆ̄β, X̄β̄

∗
) ≤ ∆l∗(ϵ,−ϵ). (A.80)

By definition, l(X̄ ˆ̄β) ≤ l(X̄β̄
∗
), from which it follows that ∆l(X̄

ˆ̄β, X̄β̄
∗
) ≤ ⟨ϵ, X̄ ˆ̄β −

X̄β̄
∗⟩. Define η∗ = X̄β̄

∗
and

h(δ) = ∆l(δ + η∗,η∗).

By assumption, l is a proper function and applying Fenchel-Young’s inequality gives

∆l(X̄
ˆ̄β, X̄β̄

∗
) ≤ ⟨ϵ, δ⟩|

δ=X̄ ˆ̄β−X̄β̄
∗ ≤

1

c
∆l(δ + X̄β̄

∗
, X̄β̄

∗
)|
δ=X̄ ˆ̄β−X̄β̄

∗ +
1

c
h∗(cϵ)

or (1− 1/c)∆l(X̄
ˆ̄β, X̄β̄

∗
) ≤ h∗(cϵ)/c for any c > 0.
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On the other hand,

h∗(ζ) = sup
δ
⟨ζ, δ⟩ − l(η∗ + δ) + l(η∗) + ⟨∇l(η∗), δ⟩

= sup
δ
⟨ζ +∇l(η∗), δ⟩ − l(η∗ + δ) + l(η∗)

= sup
δ
⟨ζ +∇l(η∗),η∗ + δ⟩ − l(η∗ + δ) + l(η∗)− ⟨ζ +∇l(η∗),η∗⟩

= l∗(ζ +∇l(η∗)) + l(η∗)− ⟨ζ +∇l(η∗),η∗⟩,

where l(η∗),∇l(η∗) are known to be finite. Using the optimality of η∗, we have further

h∗(ζ) = l∗(ζ +∇l(η∗))− l∗(−ϵ)− ⟨ζ,η∗⟩.

Moreover, from the assumption and definition (A.79), it is easy to show that η∗ ∈ ∂l∗(−ϵ),
and so ∇l∗(−ϵ) = η∗, from which it follows that

h∗(ζ) = ∆l∗(ζ − ϵ,−ϵ). (A.81)

Taking c = 2 gives (A.80). The rest of the lines follow Remark A.5.

A.12 More simulations

In this part, we present more experiment results by varying the correlation strength, co-
variance structure and sparsity level.

Concretely, in Example 1 with n = 1000, p = 10, o∗ = 100, we changed the correlation
strength ρ from 0.2 to 0.8. In Example 2 with n = 1000, p = 10, o∗ = 120, three possible
covariance structures for Σ were included, Toeplitz structure [ρ|i−j|], equally correlated
structure [ρ1i̸=j], and blocked structure diag{Σ0,Σ1}, with two blocks of equal size and the
predictors within each block equally correlated with ρ = 0.5. In Example 3 and Example
4, where n = 200, p = 1000, o∗ = 30, we considered different sparsity levels. The later
steps of introducing high-leveraged outliers remain the same. The results are summarized
in Table A.1, Table A.2, and Table A.3. The overall comparison evidently supports PIQ
as an extremely resistant and efficient method.

Table A.1: Example 1 with different correlation strengths.

ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8

Err M JD T Err M JD T Err M JD T Err M JD T
S 0.17 49 38 0.1 0.06 7.3 76 0.1 0.08 0.3 80 0.1 0.12 0.3 80 0.1
LTS 0.11 36 44 0.2 0.04 9.1 64 0.2 0.03 0.5 78 0.2 0.06 0.2 82 0.2
RLARS 0.23 84 0 0.9 0.22 81 0 0.9 0.23 74 0 0.7 0.29 59 0 0.7
PENSE 0.25 85 0 13 0.24 82 0 13 0.21 62 16 13 0.11 0.2 88 13
PIQ 0.02 0.20 90 0.1 0.02 0.2 90 0.1 0.02 0.2 90 0.1 0.06 0.2 88 0.1
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Table A.2: Example 2 with different covariance structures.

Toeplitz structure Blocked structure Equally correlated

Err M JD T Err M JD T Err M JD T
B-Y 0.29 100 0 0.6 0.34 97 0 0.8 0.34 97 0 0.7
QLE 0.29 100 0 0.1 0.33 97 0 0.1 0.33 97 0 0.1
TLE 0.11 16 84 6.0 0.07 0 100 7.0 0.07 0 100 6.0
PIQ 0.07 0 100 0.1 0.06 0 100 0.1 0.06 0 100 0.1

Table A.3: Example 3 and Example 4 with different sparsity levels.

Regression
s∗ = 2 s∗ = 4

Err Mγ JDγ Mβ FAβ JDβ T Err Mγ JDγ Mβ FAβ JDβ T
QL 0.70 79 0 4 0.2 92 44 0.89 81 0 33 0.2 8 45
S-MTE 0.58 77 0 0 0.2 100 35 0.82 79 0 28 0.2 26 42
RLARS 1.24 88 0 50 0.1 0 40 1.52 91 0 58 0.3 0 41
S-LTS 0.93 62 18 32 1.6 36 134 1.24 79 10 29 1.4 16 132
PIQ 0.15 2 76 3 0.1 94 4 0.34 3 78 16 0.3 46 4

s∗ = 6 s∗ = 8

Err Mγ JDγ Mβ FAβ JDβ T Err Mγ JDγ Mβ FAβ JDβ T
QL 1.14 81 0 36 0.2 0 51 1.59 86 0 42 0.1 0 52
S-MTE 0.98 79 0 29 0.2 4 49 1.34 83 0 31 0.2 0 60
RLARS 1.21 85 0 40 0.4 0 41 1.27 83 0 32 0.6 2 41
S-LTS 1.29 77 22 25 1.0 20 134 1.55 90 4 23 1.0 8 144
PIQ 0.64 21 50 20 0.4 18 4 1.25 33 34 31 0.7 0 4

Classification
s∗ = 2 s∗ = 4

Err Mγ JDγ Mβ FAβ JDβ T Err Mγ JDγ Mβ FAβ JDβ T
enetLTS 41 100 0 36 1.0 28 65 43 96 4 62 1.0 4 72
PIQ 15 4 96 2 0.1 96 14 18 5 92 15 0.3 48 15

s∗ = 6 s∗ = 8

Err Mγ JDγ Mβ FAβ JDβ T Err Mγ JDγ Mβ FAβ JDβ T
enetLTS 46 96 4 82 0.8 14 74 47 96 4 88 0.6 0 76
PIQ 25 65 20 33 0.5 6 15 26 93 4 39 0.7 0 15
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