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Abstract 

In order to accurately categorize items, humans learn to selectively attend to stimulus dimensions 

that are most relevant to the task. Models of category learning describe the interconnected 

cognitive processes that contribute to attentional tuning as labeled stimuli are progressively 

observed. The Adaptive Attention Representation Model (AARM), for example, provides an 

account whereby categorization decisions are based on the perceptual similarity of a new 

stimulus to stored exemplars, and dimension-wise attention is updated on every trial in the 

direction of a feedback-based error gradient. As such, attention modulation as described by 

AARM requires interactions among orienting, visual perception, memory retrieval, prediction 

error, and goal maintenance in order to facilitate learning across trials. The current study 

explored the neural bases of attention mechanisms using quantitative predictions from AARM to 

analyze behavioral and fMRI data collected while participants learned novel categories. GLM 

analyses revealed patterns of BOLD activation in the parietal cortex (orienting), visual cortex 

(perception), medial temporal lobe (memory retrieval), basal ganglia (prediction error), and 

prefrontal cortex (goal maintenance) that covaried with the magnitude of model-predicted 

attentional tuning. Results are consistent with AARM’s specification of attention modulation as a 

dynamic property of distributed cognitive systems. 
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Distributed Neural Systems Support Flexible Attention Updating 

during Category Learning 

Introduction 

When grouping items into categories, humans are extraordinarily adept at identifying 

regularities across dimensions and mapping features to category labels. As we get to know a new 

person, for example, we may be able to categorize their mood as happy, sad, or angry based on 

specific elements of their facial expression, tone of voice, or body language. In an effort to 

explain how humans can learn new categories quickly even when they are multivariate, 

probabilistic, or non-linearly separable, computational models of categorization aim to formalize 

the processing stream that links memories of previous experiences to representations of new 

items (Galdo, Weichart, Sloutsky, & Turner, 2021; Kruschke, 1992; Love, Medin, & Gureckis, 

2004; Nosofsky, 1986). Across contemporary models, dynamic allocation of selective attention 

to goal-relevant dimensions is often implicated as the critical mechanism through which 

categorization accuracy improves across trials. 

Models differ considerably, however, in their descriptions of how attention is distributed 

to facilitate categorization accuracy. The influential Generalized Context Model (GCM; 

Nosofsky, 1986), for example, describes a static distribution of attention based on overall 

dimension diagnosticity across the items represented in memory. Adaptive attention models, by 

contrast, suggest that attention is updated on every trial according to a feedback-based error 

gradient, requiring dynamic monitoring of attention-outcome contingencies (Kruschke, 1992; 

Love, Medin, & Gureckis, 2004). Although previous fMRI work has provided evidence of 

representational reorganization in the hippocampus that is consistent with an adaptive attention 
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account (specifically, SUSTAIN; Mack, Love, & Preston, 2016), questions about the nature of 

attention, its component processes, and the neural systems that are recruited during attention 

deployment still remain. The aim of our study, therefore, is to discuss the brain functions that 

contribute to attentional updating in the context of category learning, and to evaluate a theory of 

dynamic, gradient-based attention through model-based fMRI analyses. 

The current study focuses specifically on the Adaptive Attention Representation Model 

(AARM; Galdo, Weichart, Sloutsky, & Turner, 2021), an example of the class of adaptive 

attention models described above. The conceptual basis of AARM comes from context theory, 

which assumes previously-experienced items (i.e. exemplars) are stored in memory as discrete 

episodic traces along with associated category labels (Medin & Schaffer, 1978). As in GCM, 

AARM describes how category representations are formed according to the similarity between 

new stimuli and stored exemplars. An attention vector weights the influence of plausible feature-

to-category mappings when the observer makes a choice. AARM additionally includes 

mechanisms for feedback-based attention updates, which are intended to optimize future 

responses with respect to the goals of the learner. AARM’s attention updating mechanisms 

therefore incorporates notions of prediction error in a manner that is conceptually related to 

models of reinforcement learning (RL). Whereas the equation defining the prediction error signal 

in standard RL models emerges from a gradient of reward as a function of time (Sutton & Barto, 

2018), AARM computes the gradient as a function of attention during each individual trial. In 

summary, the theory put forth by AARM suggests that attention updating requires dynamic 

interactions among orienting, visual processing, prediction error, memory encoding and retrieval, 

and goal-directed behavior. 
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In previous work, support for AARM’s mechanisms of attention allocation was provided 

by fits to simultaneous streams of choice and eye-tracking data that were collected while 

participants learned novel categories (Galdo, Weichart, Sloutsky, & Turner, 2021). Across 

paradigms of varying complexity, AARM accurately predicted increases in accuracy that 

coincided with increased probability of selectively attending to goal-relevant dimensions, as 

measured by trial-level gaze fixations. Although these results provided support for AARM by 

way of eye-tracking data as the terminal output of human attention dynamics (Blair, Watson, 

Walshe, & Maj, 2009; Rehder & Hoffman, 2005a, 2005b), the extent to which AARM’s 

mechanisms reflect expected patterns of neural activity remains to be determined. The current 

study therefore investigates the neural plausibility of attention updating as described by AARM, 

given current knowledge about the multifaceted neural loci of its theoretical subprocesses. In 

particular, we expect the trial-level magnitude of model-predicted attention updates to covary 

with blood-oxygen-level-dependent (BOLD) activation in five relevant functional clusters (for 

review, see Seger & Miller, 2010): 1) parietal cortex (orienting); 2) visual cortex (perceptual 

processing); 3) hippocampus and medial temporal lobe (episodic memory and recognition); 4) 

midbrain dopaminergic systems and basal ganglia (prediction error); and 5) prefrontal cortex 

(PFC; goal maintenance and representation). 

For our purposes, we used behavioral and fMRI data that were collected by Mack, Love, 

and Preston (2016) and were made freely available via the Open Science Foundation (OSF; 

https://osf.io/5byhb/). In the task, participants were asked to categorize novel insects into two 

groups according to the features contained in three dimensions: legs, antennae, and mouth. 

Corrective feedback was provided on every trial, allowing participants to effectively map 

features to category labels. Given the layers of complexity provided by the task paradigm in the 
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form of multidimensional stimuli, trial-and-error learning, unidimensional and exclusive-OR 

(XOR) categorization rules, and rule-switches, we deemed the dataset to be ideal for the purpose 

of identifying the functional components of adaptive attention. 

The current article is organized as follows. We begin by providing a conceptual overview 

of AARM, highlighting the brain regions hypothesized to contribute to dynamic attentional 

tuning. Second, we will summarize the methods related to data collection (as described by Mack, 

Love, & Preston, 2016), model-fitting, and model-based fMRI analyses. Finally, we relate the 

attentional tuning mechanism in AARM to BOLD activation in the regions of interest (ROIs) 

identified in our analysis, and discuss our results in terms of canonical category learning 

findings. 

Adaptive Attention Representation Model 

Figure 1 provides a conceptual overview of AARM’s component mechanisms. 

Additional mathematical details will be provided in the AARM Technical Specifications section 

to follow. In general, AARM defines the processes through which new items are represented in 

psychological space and mapped to category labels. Learning (i.e. increased categorization 

accuracy across trials) is conceptualized as a natural consequence of storing experiences of 

stimuli and associated feedback as they occur, and preferentially allocating attention to the most 

relevant dimensions. Here, we will introduce the framework in terms of three core components: 

Representation, Decision, and Attention (Turner, 2019; Weichart, Galdo, Sloutsky, & Turner, 

2021). 

The Representation component of AARM specifies how the low-level perceptual 

qualities of a new stimulus are interpreted and contextualized by the observer’s goals and 
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experiences. At the beginning of a trial, attention orients to spatial locations due to a combination 

of salience and learned relevance. When a new stimulus is introduced, the observer then samples 

information from dimensions according to a learned trajectory of dimension prioritization. This 

sampling process activates memories of similar items with known category labels, which allow 

the observer to form a representation of the stimulus that is relevant to the task. Similarity is 

determined from the feature-level comparison of the current stimulus to all stored exemplars, and 

is modulated by attention (Equation 1). As such, an exemplar will be perceived to be more 

similar to the current stimulus if its features match on highly-attended dimensions, or more 

dissimilar if its features mismatch on highly-attended dimensions. 

The Decision component describes how the observer maps the representation of the 

current stimulus to a category response. Because corrective feedback is typically provided during 

category learning tasks, AARM presumes that each stored exemplar carries an association to a 

known category label. The observer therefore has access to the necessary information for 

mapping the similarity-based activation of each exemplar to its respective category. As such, the 

total activation across exemplars that are associated with a common category label can be 

interpreted as decision evidence in favor of that particular category. When making a response, 

the observer is presumed to select a category in proportion to the relative decision evidence 

among the available options (Equation 3). 

After the observer makes a decision and corrective feedback is observed, the stimulus and 

the category label are stored in memory for future use. Within the Attention component, AARM 

subsequently updates attention in a manner that is intended to optimize for the goals of the 

observer on future trials (e.g. improve accuracy, reduce sampling; Equation 4), and occurs in 

consideration of the predicted response probability relative to the observed feedback. If a highly-
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attended dimension provides evidence in favor of the incorrect category label, for example, 

attention to that dimension will be reduced. The newly-updated attention vector is fed back into 

the Representation component in preparation for the next trial. 

It is critical to highlight that the specifications of the Representation and Decision 

components of AARM were based on GCM, a model of categorization that assumes attention is 

calculated retrospectively after all stimuli have been observed (Nosofsky, 1986; Turner, 2019). 

GCM can generate accurate categorization predictions, given that it uses a stable attention vector 

that is specified to preferentially consider task-relevant dimensions when making decisions. The 

GCM conceptualization of attention, however, does not naturally extend to questions of category 

learning. When in a novel task environment with novel stimuli, the observer cannot possibly 

know which dimensions are going to be relevant and which to attend unless explicitly instructed. 

This insight can only come from experience. 

AARM’s innovation relative to GCM, therefore, lies in its inclusion of a gradient-based 

mechanism for updating attention according to feedback. Because attention is redistributed on 

every trial based only on what the observer has experienced up until that point, AARM can 

account for the gradual accrual of information that is required for identifying the task-relevant 

dimensions concurrent with learning (Galdo, Weichart, Sloutsky, & Turner, 2021; Weichart, 

Galdo, Sloutsky, & Turner, 2021).  

Relative to other adaptive attention models like ALCOVE (Kruschke, 1992) and 

SUSTAIN (Love, Medin, & Gureckis, 2004), AARM’s advancement is its specification of 

gradient-based attention updating mechanisms that optimize for the individual goals of the 

learner, rather than error minimization alone. While further exposition will be provided in the 

AARM Technical Specifications section, the gradient calculation allows for the possibility that 
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secondary computational goals bear an impact on the representation of new items, such as an 

implicit desire to maximize information sampling efficiency. Given that it is often the case that 

multiple dimensions provide similarly diagnostic information, the learner could conceivably seek 

to reduce time or effort spent on each individual trial by only attending to a subset of informative 

dimensions before making a response, with minimal detriment to overall accuracy. This idea has 

been supported by our previous presentation of AARM. When additional mechanisms were 

added to the model to optimize for secondary computational goals, the expanded variant 

outperformed a baseline unconstrained variant when fit to behavioral and eye-tracking data 

(Galdo, Weichart, Sloutsky, & Turner, 2021). While a strict error-reduction policy for attention 

updating that is standard among contemporary adaptive attention models was sufficient for 

predicting accuracy across trials, accounting for individualized computational goals in the 

gradient specification was necessary for predicting trial-level information sampling behavior via 

eye-tracking. Related mechanisms for dimension reduction have been implemented in RL 

models as well, and have proven necessary for predicting human-like attention operations in 

naturalistic multidimensional environments (Niv et al., 2015; Leong et al., 2017). 

Hypothesized Neural Systems 

As an extension to our previous results, the current study investigates the neural 

plausibility of AARM’s attention updating mechanism. In order for this mechanism to be 

considered theoretically viable, it should, at a minimum, covary with neural activation in the 

distributed systems that are hypothesized to contribute to continuous tuning across trials. The 

neural systems that we expect to be recruited during attentional tuning come directly from the 

literature on the neural correlates of category and RL. In particular, we discuss five functional 
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clusters for category learning that were defined by Seger and Miller (2010) in an independent 

review. 

The parietal cortex is involved in orientation of spatial attention (Bisley & Goldberg, 

2010; Yin et al., 2012), which is instantiated in AARM via the connection between the attention 

gradient and feature sampling when new stimuli are presented (Point 1 in Figure 1). The visual 

cortex is known to be involved in the formation of low-level perceptual representations (Folstein 

& Palmeri, 2013; Point 2 in Figure 1). The hippocampus and medial temporal lobe are involved 

in the maintenance and retrieval of past learning instances (Cutsuridis & Yoshida, 2017; 

O’Reilly & Munakata, 2000; Seger & Miller, 2010), as well as modulation of object 

representations during category learning (Mack, Love, & Preston, 2016). We therefore expect 

these regions to be involved in attention modulation in AARM, given the mechanism’s critical 

reliance on activation of past exemplars (Point 3 in Figure 1). The midbrain dopaminergic 

systems and basal ganglia have been implicated in behaviors related to prediction error in RL 

(Averbeck & O’Doherty, 2021). Because category predictions and observed feedback are critical 

inputs to the attention updating mechanisms in AARM, we expect model-predicted attention to 

require the influence of prediction error action selection functions in these regions (Point 4 in 

Figure 1). The prefrontal cortex is known to be involved in goal-directed behaviors, particularly 

in higher-level monitoring of rule-based performance (Bogdanov, Timmermann, Glaescher, 

Hummel, & Schwabe, 2018), as would be expected for an update rule that optimizes for the 

learner’s goals of reducing errors and maintaining computational parsimony (Point 5 in Figure 

1). 

Although we do not make specific predictions about the computations that are performed 

in each set of brain regions, our study seeks to establish that attentional tuning recruits the 
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contributions of distributed systems as described by AARM’s dynamic structure. Further review 

of the candidate brain regions and how they relate to category learning are provided in the 

Discussion. 

Experimental Methods 

Dataset 

The task paradigm from Mack et al. (2016) builds upon the classic experiments of 

Shepard, Hovland, & Jenkins (1961), which have become a benchmark test for models of human 

category learning. The benchmark study used stimuli that consisted of three binary dimensions to 

construct six types of category delineations (referred to as Types I-VI). The results, which have 

been replicated several times (e.g. Crump, McDonnell, & Gureckis, 2013; Nosofsky, Gluck, 

Palmeri, McKinley, & Glauthier, 1994), showed a progression of learning difficulty from Type I 

(one dimension was perfectly diagnostic of category membership) to Type VI (all three 

dimensions needed to be attended to produce a correct response). The observed relative learning 

rates across category types provide considerable empirical constraint that contemporary theories 

of category learning are expected to account for in order to be regarded as viable (e.g. Galdo, 

Weichart, Sloutsky, & Turner, 2021; Goodman, Tenenbaum, Feldman, & Griffiths, 2008; 

Kruschke, 1992; Nosofsky, Gluck, Palmeri, McKinley, & Glauthier, 1994). 

The paradigm designed by Mack et al., (2016) presented participants with three different 

categorization types within the same task context, using a common set of stimulus features. The 

paradigm therefore posed a unique challenge to participants, such that they had to identify and 

adapt to new categorization rules in order to maintain high accuracy. In the original study, the 

inclusion of rule-switches allowed the authors to investigate the hypothesis that learning in a 
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dynamic task environment is made possible by continuous modulation of object representations. 

Model-based fMRI analyses using SUSTAIN (Mack, Love, & Preston, 2016; Love, Medin, & 

Gureckis, 2004) supported their hypothesis, and provided evidence that shifting attention to rule-

relevant dimensions impacted object representations in the hippocampus. 

Our study builds upon these results, taking a more general approach to understanding the 

functional correlates of attention. In particular, we use a latent input approach to analyze whole 

brain fMRI data, which was described by Turner and colleagues (2017) to be ideal for 

exploratory analysis. Given that the adaptive attention mechanism specified by AARM requires 

dynamic interactions among multiple cognitive systems, is there evidence of distributed system 

coactivation in the brain during attentional tuning? Relevant details of the stimuli and procedures 

are provided in the following sections, but the reader is directed to Mack et al. (2016) for more 

information. 

Stimuli 

Stimuli were 8 images of insects, each of which was comprised of a body, legs, antennae, 

and a mouth. While all insects had an identical body shape, each of the other dimensions 

contained one of two possible features: legs could be thick or thin, antennae could be thick or 

thin, and mouths could be shovel- or pincer-shaped. Participants were instructed to learn how to 

classify the insects according to their features, using the corrective feedback that would be 

provided after every trial as a guide. Examples of stimuli are shown in the top panel of Figure 2. 

Task Paradigm 

As mentioned previously, participants completed three sub-tasks during the experiment, 

each with a different type of categorization rule (Types I, II, and VI; Shepard, Hovland, & 
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Jenkins, 1961). From the participants’ perspective, sub-tasks were delineated by a change in the 

instructions. For example, a participant may have been asked to categorize insects according to 

their temperature preference (warm or cool) during the first sub-task, and according to the 

hemisphere in which they are typically found (eastern or western) during the second. Beyond the 

change in instructions, participants were not informed of any potential change in rule 

complexity. 

In the Type I sub-task, the category label of each stimulus could be determined from the 

feature value of one dimension. For example, participants could learn to selectively attend to the 

relevant “legs" dimension upon observing that all insects with thick legs preferred warm 

temperatures and all insects with thin legs preferred cool temperatures. The Type II sub-task 

used an exclusive disjunction (i.e. XOR) rule, and required participants to attend to two 

dimensions in order to categorize the insects correctly. Insects typically found in the eastern 

hemisphere, for example, might have thick antennae with a pincer-shaped mouth or thin 

antennae with a shovel-shaped mouth, whereas insects found in the western hemisphere might 

have thick antennae with a shovel-shaped mouth or thin antennae with a pincer-shaped mouth. In 

this case, the antennae and mouth dimensions are relevant and the legs dimension is irrelevant. 

The Type VI sub-task extended the logic of Type II, and required participants to learn the 

feature-category mappings and contingencies among all three dimensions. As such, all three 

dimensions were relevant for identifying category membership. All participants completed the 

Type VI task first, and the subsequent order of Types I and II were counterbalanced between-

subjects. 

Participants completed the three sub-tasks in the MRI scanner, and indicated category 

responses using a button box. A sub-task consisted of 4 functional runs, each with 32 trials. 
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During a trial, the stimulus was presented for a duration of 3.5s, followed by a 0.5-4.5s jittered 

fixation. Participants were then presented with a feedback screen containing the stimulus, 

accuracy information, and the correct category label for 2s, followed by a 4-8s jittered fixation. 

Each functional run lasted 194s and included 4 repetitions of each unique stimulus. 

Data Description 

The dataset contains MRI and behavioral data from 23 right-handed participants (12 

males, age 18-31 years) with normal or corrected-to-normal vision. One participant’s data were 

corrupted and therefore excluded from all analyses presented here. Participants completed 4 

consecutive runs corresponding to each of three categorization rules (Types I, II, and VI, as 

previously described). Out of all data files that were made available by Mack et al. (2016) via 

OSF, the following were used in the current study: 1) MPRAGE T1 anatomical images 

(FOV=256mm, 1mm isotropic voxels); 2) 12 functional timeseries acquired with a T2*-weighted 

multiband EPI sequence (TR=2s, TE=31ms, flip angle = 73 degrees, FOV=220mm, 72 slices, 

1.7mm isotropic voxels); and 3) behavioral data consisting of stimulus and timing information, 

categorization responses, and correct category feedback. 

Modeling Procedures 

As a complement to the conceptual overview of AARM that was provided previously, we 

now provide the mathematical details of the model as it was specifically used in our current 

model-based fMRI analyses. It is worth noting that AARM was originally presented by Galdo et 

al. (2021) as a general framework that was designed to account for attention “shortcuts" that 

humans often take when completing a classification task. For example, if stimuli contain a large 

number of dimensions, adult participants tend to consider only a small subset of them when 
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making decisions (Blanco, Turner, & Sloutsky, 2021). One interpretation of this behavior is that 

in addition to the goal of achieving high accuracy on a task, humans simultaneously pursue 

secondary computational goals like reducing the amount of time and effort they spend on 

individual trials. The extent to which these shortcuts impact behavior, however, varies according 

to the demands of the task. 

The full AARM framework contains various mechanisms that instantiate biases for 

computational simplicity. For our current purposes, we used the variant of AARM that was 

identified in a switchboard analysis conducted by Galdo et al. (2021) to provide the best fits to 

data across five experiments, including Mack et al. (2016). The model description provided here 

therefore includes mechanisms for regularization (tendency toward low-dimensional 

representations) and competition (increasing attention to one dimension results in a decrease in 

attention to the others). For more information on AARM’s mechanisms for attentional shortcuts, 

the interested reader is directed to Galdo et al. (2021) for a thorough investigation in various 

contexts of task complexity with quantified comparisons to traditional attention constraints.  

AARM Technical Specifications 

When introducing model notation, we will use unbolded symbols to represent scalar 

values, bold lowercase symbols to represent vectors, and bold uppercase symbols to represent 

matrices. 

AARM describes how humans learn to categorize a sequence of stimuli 𝐄 = [𝐞!, 𝐞", . . . ]. 

Each 𝐷-dimensional stimulus belongs to one of 𝐶 categories and is represented as row vector 𝐞#, 

where 𝑡 denotes the trial number. The model assumes that learning occurs via interactions 

between two continuously-updated processes: memory acquisition and attention to task-relevant 
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dimensions. To acquire new memories, the model assumes that the stimulus presented on Trial 𝑡, 

𝐞#, is stored as an episodic trace 𝐱$ = [𝑥$,!	𝑥$," 	…	𝑥$,&]' (i.e. an “exemplar"). Each exemplar is 

associated with a memory strength 𝑚#,$ and a category label 𝑓$ ∈ {1,2, … , 𝐶} acquired by 

feedback. The feature values, memory weights, and category labels associated with the 

exemplars can be conceptualized as matrices that are updated after each trial is completed. On 

Trial 𝑡, the full history of exemplar feature values are contained within 𝐗# = [𝐱! 	…	𝐱(], 

memory strengths are contained within 𝐌# = [𝑚#,!	𝑚#," 	…	𝑚#,(], and the relevant category 

labels are contained within 𝐅# = [𝑓! 	…	𝑓(]. 

When a new stimulus is presented, it activates memories for stored exemplars on the 

basis of perceived similarity. Similarity is computed by way of a factorizable exponential 

similarity kernel (Nosofsky, 1986; Shepard, 1987), such that activation 𝑎#,$ of the i-th exemplar 

in response to the stimulus 𝐞# on Trial 𝑡 is given by 

 𝑎#,$ = exp:−𝛿 ∑ 𝛼#,)&
)*! |𝑒#,) − 𝑥$,)|A𝑚#,$                                                                         (1) 

where 𝛿 is the specificity of the similarity kernel function, and 𝛼#,) is the attention applied to the 

𝑗-th dimension on Trial 𝑡. Attention to each dimension can be represented succinctly as a 𝐷-

dimensional vector 𝛂#. The values of 𝛂# modulate the observer’s perception of each exemplar’s 

similarity to the current stimulus. For example, in the extreme case where 𝛼#,) is 0, the 

differences across dimension 𝑗 has no impact on exemplar activation. By contrast, as 𝛼#,) 

approaches infinity, an exemplar must have identical values to the stimulus 𝐞# along the 𝑗-th 

dimension in order to maintain activation of the exemplar. We account for lag-based memory 

strength using a modified temporal decay function that allows for different temporal weighting 

structures depending on three parameters (Pooley, Lee, & Shankle, 2011): 
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 𝑚#,$ = [1 − (1 − 𝜖+$ )(1 − 𝜖,
(!-$.!)](1 − 𝜂) + 𝜂,                                  (2) 

where 𝜖+ and 𝜖, ∈ [0,1] are primacy and recency weights, 𝜂 ∈ [0,1] is a lower bound for 

memory weights, and 𝑁# is the number of exemplars stored on Trial 𝑡. After computing each 

exemplar’s activation, a Luce choice rule is used to compute categorization choice probability. 

Specifically, the probability of making a Category 𝑐 response is 

 𝑃(″𝑐″|𝛂# , 𝐞# , 𝐅# , 𝐗# , 𝐌#) =
∑ 0!,#$
#%& 𝕀(3#*4)
∑ 0!,#$
#%&

,                        (3) 

where 𝕀(𝑓$ = 𝑐) is an indicator function that returns a one if the 𝑖-th exemplar 𝐱$ is associated 

with Category 𝑐: 

 𝕀(𝑓$ = 𝑐) = P1 𝑓$ = 𝑐
0 otherwise

 

Therefore, the probability of choosing 𝑐 is the summed similarity of the exemplars associated 

with the 𝑐-th category, normalized by the total activation of all exemplars. 

AARM assumes 𝛂# changes according to a competitive stochastic gradient-based update 

rule in an effort to minimize error, and is subject to attentional constraints of regularization and 

competition. Although the AARM framework supports other variations of attention update rules 

(Galdo, Weichart, Sloutsky, & Turner, 2021), the specification that is relevant to the current 

article is as follows: 

 𝛂#.! = 𝛂# + 𝚪[∇𝜶log(𝑃(𝑓#|𝛂# , 𝐞# , 𝐅# , 𝐗# , 𝐌#)) − 𝜆𝟏],                   (4) 

where log(𝑃(𝑓#|𝛂# , 𝐞# , 𝐅# , 𝐗# , 𝐌#)) is the log likelihood of making a choice that is consistent with 

Feedback 𝑓# on Trial 𝑡, and 1 is a D-dimensional column vector whose elements are all one. 
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Here, ∇𝜶 is a shorthand denoting a “gradient operator" for computing the set of partial 

derivatives of a function 𝑓(𝐚) with respect to each element of the vector 𝜶 = [𝛼!, ⋯ , 𝛼7]8: 

 ∇𝜶𝑓(𝐚) := Y
9
9:&

𝑓(𝐚) 9
9:'

𝑓(𝐚) … 9
9:(

𝑓(𝐚)Z
8
. 

The positive parameter 𝜆 determines the strength of L1-norm or LASSO regularization, and is 

related to attentional capacity constraints and bias toward low-dimensional representations. 𝚪 is a 

matrix whose diagonal elements contain the gradient step-size parameter 𝛾; and off-diagonal 

elements are −𝛽 such that 

 𝚪 =

⎣
⎢
⎢
⎢
⎡
𝛾; −𝛽 −𝛽 . . . . −𝛽
−𝛽 𝛾; −𝛽 . . . . −𝛽
−𝛽 −𝛽 𝛾; ⋱ −𝛽
⋮ ⋮ ⋱ ⋱ ⋮
−𝛽 −𝛽 −𝛽 . . . . 𝛾; ⎦

⎥
⎥
⎥
⎤

, 

where 𝛽, 𝛾; ∈ (0,∞). 𝛽 determines the strength of competition between dimensions during the 

attention update. In other words, for objective function 𝑔(𝛂#), 𝛽 controls the extent to which 

increasing attention to one dimension results in a reciprocal decrease in attention to the other 

dimensions. 

To avoid negative values of attention, 𝛂# is constrained to be positive. However, the 

attention update equation may still propose negative values. To facilitate unconstrained 

optimization, attention is updated on the log scale. Setting 𝛖# = log(𝛂#) and using the change-

of-variable technique, we can rewrite the attention update equation 𝛖# as 

𝛖#.! = 𝛖# + 𝚪hi∇:log:𝑃(𝑓#|𝛂# , 𝐞# , 𝐅# , 𝐗# , 𝐌#)A − 𝜆𝟏j ⊙ exp(𝛖#)l,                  (5)   
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where ⊙ is the element-wise multiplication or Hadamard product operator. Because the 

logarithm is a one-to-one monotonic function, finding the optimal 𝛖# is equivalent to finding the 

optimal 𝛂#. Derivations of the attention gradient and a parameter recovery study are provided in 

Galdo et al. (2021). 

Model Fitting 

The fits to behavioral data from Mack et al. (2016) that are used in the current study were 

originally presented by Galdo et al. (2021). The model was fit to data from each participant 

independently, with the general goal of identifying the set of parameters that maximized the 

likelihood function provided in Equation 3. In an effort to ensure robust optimization, a three-

step algorithmic approach was used. First, a Differential Evolution procedure using the 

DEoptimR package was implemented for 100 iterations using 13 particles (2𝜅 + 1, where 𝜅 is 

the number of free parameters) to effectively sample the parameter space and identify reasonable 

initial values (Brest, Greiner, Boskovic, Mernik, & Zumer, 2006; Storn & Price, 1997). Second, 

the initial values were used as input in R’s base implementation of the Nelder-Mead optimization 

algorithm (Nelder & Mead, 1965). Third, in the event of failure to meet the base convergence 

criterion after 1000 iterations, R’s base implementation of simulated annealing was used for 

5000 iterations (Van Laarhoven & Aarts, 1987). The result of this procedure was a single set of 

best-fitting parameters for each participant. 

A few constraints were imposed in an effort to maintain parameter identifiability. The 

similarity kernel specificity parameter was constrained to 𝛿 = 1 for all participants. Initialized 

values for the 3-dimensional attention vector 𝛼; = [𝛼;,!, 𝛼;,", 𝛼;,<]8 were constrained to be 

equivalent such that 𝛼;,! = 𝛼;," = 𝛼;,< = 𝛼;∗, and a single parameter 𝛼;∗ was freely estimated. To 
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initialize the representation, two “background exemplars" per category were provided with 

feature values of [0.5,0.5,0.5] (Nosofsky, 1986; Turner, 2019). This setting assumes the observer 

begins the task with equal evidence for each category response, such that the initial state is 

uncertain rather than uninformed (Estes, 1994). The model contained a total of six free 

parameters: learning rate (𝛾;), initial attention (𝛼;∗), competition (𝛽), regularization (𝜆), primacy 

(𝜖+), recency (𝜖,), and baseline memory strength (𝜂). 

To facilitate our model-based fMRI analyses, we input each participant’s best-fitting 

parameters back into the model, along with the corresponding participant’s unique experience of 

trial-level stimuli and feedback. We were therefore able to generate participant-level predictions 

for changes in the attention gradient across trials in the Mack et al. (2016) experiment. Because 

we were interested in observing which brain areas contribute to dynamic changes in attention 

during learning, we calculated a single “attention gradient magnitude" value for each trial, which 

was the Euclidean norm of model-generated attention update values: |𝐮| = o∑ 𝑢)"&
)*! , where 

 u = 𝚪hi∇:log:𝑃(𝑓#|𝛂# , 𝐞# , 𝐅# , 𝐗# , 𝐌#)A − 𝜆𝟏j⊙ exp(𝛖#)l 

is the attention update vector shown in Equation 5. The attention gradient magnitude was 

subsequently used as a regressor in our fMRI analyses. 

MRI Data Preprocessing and Analysis 

Preprocessing and analysis of the fMRI data was performed primarily using FEAT (fMRI 

Expert Analysis Tool; Version 6.0.5), a tool within FSL (FMRIB’s Software Library; 

https://fsl.fmrib.ox.ac.uk/fsl/). Functional EPI data were corrected for excessive motion using 

MCFLIRT (Jenkinson, Bannister, Brady, & Smith, 2002), stripped of non-brain structures using 
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BET (Smith, 2002), spatially smoothed with a 3.4mm full-width-half-maximum Gaussian kernel, 

and temporally filtered with a high pass filter cutoff of 100s. Anatomical T1 images were 

registered to standard space using FNIRT, which generated a transformation matrix for each 

participant. To align a participant’s functional and anatomical images, the functional data were 

first registered to the participant’s T1 image using the brain-boundary-based registration method 

in FLIRT (Greve & Fischl, 2009; Jenkinson, Bannister, Brady, & Smith, 2002), then transformed 

into a standard space (MNI152 with 1mm resolution) by applying the same transformation 

matrix generated from T1 registration. Additionally, FAST (Zhang, Brady, & Smith, 2001) was 

used to segment the T1 image into three tissue types: gray matter, white matter, and 

cerebrospinal fluid (CSF). The CSF mask from this segmentation was subsequently transformed 

into the functional space in order to extract the timeseries of mean CSF signal from each run. 

After preprocessing, we used FSL’s general linear model tool (FILM: Woolrich, Ripley, 

Brady, & Smith, 2001) to conduct a three-level whole-brain generalized linear model (GLM) 

analysis. The goal was to identify the brain areas involved in attentional tuning, as predicted by 

AARM. Trial-wise attention gradient magnitudes were generated by AARM, timelocked to the 

onset of each trial’s feedback period, then concatenated to create the regressor of interest. 

At the first level of the analysis, a GLM was fit to the timeseries of attention gradient 

magnitudes in each individual run. The model included 32 trial-specific regressors, which were 

timelocked to the onset of each stimulus and lasted the duration of the decision period during 

each trial. These trial-specific regressors were included to ensure that any signal attributed to the 

attention gradient magnitude was not confounded by the influence of cognitive processes 

involved in the decision period. Additionally, to isolate the effects of attentional updating from 

the effects of error processing, trial-level accuracy was included as a regressor during the 
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feedback periods. The attention gradient magnitude, accuracy, and trial-specific regressors for 

each of 32 trials were convolved with a standard double-gamma hemodynamic response 

function, temporally filtered with a high pass filter cutoff of 100s, and prewhitened. The 

temporal derivatives of these 34 regressors were also included in the GLM. Finally, nuisance 

regressors representing the standard six motion parameters (pitch, yaw, roll, and x,y,z shifts) and 

mean CSF signal were added to the model to control for signal which does not originate from the 

BOLD response. The effect of attentional tuning on BOLD signal was calculated as a contrast of 

the gradient magnitude regressor versus no activity (i.e., gradient magnitude signal greater than 

zero). 

At the second level of analysis, a fixed-effects model was used to calculate the effect of 

attentional tuning across all runs within-subject. Because the attentional tuning mechanism in 

AARM is a general cognitive mechanism that is not constrained by the changing categorization 

rules of the task, we collapsed across all runs for each participant. 

The third level of analysis considered group level effects of attentional tuning. Group 

effects were identified through a mixed effects GLM, which was fit by FSL’s FLAME 1+2 

algorithm (Woolrich et al., 2004). The algorithm combines an approximation of the Bayesian 

posterior distribution and Markov Chain Monte Carlo (MCMC) methods to estimate coefficients 

for each voxel, and was identified by Eklund and colleagues (2016) to produce minimal false 

positives (<5%) across a battery of fMRI analyses. 

The sample size of N=22 from Mack et al., (2016) was deemed sufficient for our 

purposes on the basis of three factors: 1) large-scale sensitivity and reliability examinations of 

group fMRI studies with GLM analyses have indicated that 20 or more participants should be 

included to achieve sufficient reliability (Thirion, Pinel, Meriaux, Roche, Dehaene, & Poline, 
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2007; Zandbelt, Gladwin, & Raemaekers et al., 2008); 2) several previous studies using model-

based fMRI approaches have identified significant effects during category learning using similar 

sample sizes (N=18-22; Davis, Love, & Preston, 2012;  Mack, Preston, & Love, 2013; Nosofsky, 

Little, & James, 2012); and 3) recovery of AARM’s parameters for fits to individual participants 

was verified in previous work (Galdo et al., 2021), providing assurance of regressor stability 

within our core analysis. 

Results 

We now present our results in two sections. First, we show the behavioral results from 

Mack et al. (2016) and the corresponding predictions from AARM, including the trajectory of 

latent attention across trials and rule-changes. Second, we show the results of a model-based 

fMRI analysis that was designed to identify the brain regions that contribute to attentional 

tuning, as specified by AARM. Taken together, our results demonstrate that AARM can 

accurately predict learning in a complex category learning task via a gradient-based attentional 

tuning signal, and the same signal fluctuates across trials in a manner that is consistent with 

BOLD activation in regions with known relevance to category learning. 

Fits to Behavioral Data 

 After fitting AARM to data, best-fitting parameters were used to generate a predicted 

progression of latent attentional tuning and associated responses across trials for each participant. 

Model-predicted category responses to the unique set of stimuli experienced by each participant 

were converted to “correct" or “incorrect" accuracy information via comparison to the true 

category labels. A qualitative evaluation of model fits is shown in Figure 2C, where model-

predicted accuracy was aggregated across participants and displayed as an orange line. Observed 
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group-level mean accuracy is shown as a black line, with a 95% Bayesian credible interval (CI) 

shown as a gray shaded region. Model predictions fall well within the 95% CI range, and closely 

follow the trajectory of the group-level mean across trials in both conditions of task order (Left: 

Task Order 1, Types VI–I–II; Right: Task Order 2, Types VI–II–I). While only qualitative fits 

are shown here, quantitative comparisons conducted by Galdo et al. (2021) showed that the 

current model provided the best fits to behavioral data from a set of five studies (including Mack, 

Love, & Preston, 2016) compared to all alternative specifications of AARM and a selection of 

competing models. 

Figure 2B provides insight into how AARM was able to predict learning across 

categorization rule types. By updating dimension-wise attention on every trial in response to 

feedback, AARM gradually learns to prioritize information from the most relevant dimensions. 

Figure 2B shows an increase in attention that is allocated to the relevant dimensions, as indicated 

by the corresponding categorization rule type. For example, one group of participants 

experienced Task Order 1, where Type VI blocks (all three dimensions were relevant) were 

followed by Type I blocks (one dimension was relevant, two were irrelevant), which were 

followed by Type II blocks (two dimensions were relevant, one was irrelevant). This information 

is indicated by the stimuli pictured above Figure 2A, in which the relevant dimensions for each 

sub-task are highlighted in red. Mapping the relevant dimensions to model-generated attention 

shown in Figure 2B, we observe that the progression of attention mirrors the prescribed sub-task 

order. Purple, green, and yellow lines reflecting attention to the legs, antennae, and mouth 

dimensions respectively all increase during the first sub-task when all three dimensions were 

relevant for determining category membership. In the second sub-task where only the legs 

dimension was relevant, the corresponding purple line quickly increases from the starting point, 
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whereas the green and yellow lines drop off to indicate reduced attention to the antennae and 

mouth dimensions. In the third sub-task, the antennae and mouth dimensions become relevant, 

and the legs dimension becomes irrelevant. The green and yellow lines that correspond to the 

newly-relevant dimensions show an increase in attention relative to the second sub-task, and the 

purple line decreases. A conceptually similar pattern of predictions was observed for participants 

who experienced Task Order 2, where the lines representing dimension-wise attention in Figure 

2B follow a trajectory that is consistent with dimension relevance in each sub-task. 

Figure 2A shows the progression of latent attention gradient magnitude across trials. We 

observe that the magnitude of between-trial attentional tuning is maximized when choice 

accuracy is low. As the diagnosticity of dimensions is learned, attention is optimally distributed 

towards the relevant dimension(s) and therefore, smaller changes of attention are required. 

Because there is less tuning needed, the gradient magnitude tends to diminish toward zero, but 

quickly rises again when the categorization rule changes. 

Neural Covariation of the Attention Gradient 

Trial-level attention gradient magnitude was used as the regressor of interest in our GLM 

analysis. Correct or incorrect accuracy information was included as an additional regressor in 

order to isolate changes related to attention from changes specific to error processing. As shown 

in Figure 2A, the largest magnitude of attentional change tended to coincide with rule-switches. 

Because AARM uses a cross-entropy loss function to calculate the attention gradient that is 

highly sensitive to errors, it is well in line with expectation that moments of uncertainty about 

which dimensions were relevant (Figure 2B) would result in a high probability of predicted 

errors (orange line, Figure 2C) and correspondingly large adjustments in attention (Figure 2A). 
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As such, our fMRI GLM analysis was designed to identify ROIs where BOLD activation 

reflected changes across trials that were consistent with learning and associated changes in 

attention. 

Maps from the group-level GLM were converted to z-scores and were thresholded at 𝑍 ≥

3.1 within each voxel. Spatially-contiguous voxel clusters were corrected for family-wise error at 

𝑝 < .001 (Woo, Krishnan, & Wager, 2014) using FSL’s implementation of Gaussian Random 

Field Theory. Smoothness was estimated using FSL’s ‘smoothest’ function on group level 

residuals. This resulted in 14 unique clusters where model-generated attention gradient 

magnitude accounted for significant variability in BOLD signal across trials. Figure 3 shows the 

spatial location of each ROI in MNI152 standard space. Because some ROIs appear to be non-

contiguous when displayed as 2-dimensional slices, each ROI was randomly assigned a unique 

color to properly visualize the spatial differentiation. Sagittal and axial slices in Figure 3 were 

selected in an effort to display all ROIs as parsimoniously as possible. Table 1 shows the 

corresponding MNI coordinates and peak Z value of each ROI, where ROIs are listed in 

descending order of cluster size. 

We observe a high degree of overlap between the ROIs identified here, and the five 

functional clusters of interest as defined by Seger and Miller (2010). The largest ROI (ROI 1 in 

Table 1) is primarily reflective of the parietal cortex and visual cortex functional clusters, which 

are thought to be used for spatial orientation and low-level perceptual object representations 

during category learning, respectively. The hippocampus and medial temporal lobe functional 

cluster consists of five ROIs (ROIs 7, 10, 11, 13 and 14 in Table 1), and is thought to form 

higher-level object representations in reference to previously-encoded stimuli in an effort to 

orthogonalize experiences in memory. Two ROIs are consistent with the midbrain dopaminergic 
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systems and basal ganglia functional cluster (ROIs 7 and 9 in Table 1), which is thought to be 

involved in prediction error and converting information inputs into actions. Seven ROIs overlap 

with the prefrontal cortex functional cluster (ROIs 2, 3, 4, 5, 6, 8, and 12 in Table 1), which is 

involved in action policy updating in the presence of rule-switches and changing environments. 

In consideration of previous literature, these ROIs characterize a diverse set of neural systems 

that reflect dynamic adjusting of attentional weights upon observation of feedback, beyond what 

is accounted for by error processing alone.  

Discussion 

In the current study, we investigated the hypothesis that adaptive attention mechanisms 

require the synchronized involvement of orienting, visual processing, memory retrieval, 

prediction error, and goal maintenance systems in order to effectively facilitate learning of novel 

categories. Our analytical approach focused specifically on the theoretical predictions of one 

category learning model, AARM. As illustrated in Figure 1, attention in AARM is influenced by 

the decision component of the observer’s experience on each trial, and is then fed back into the 

representation component to modulate category activations on subsequent trials. As such, 

attention is conceptualized as the critical mechanism for learning, while also being an emergent 

property of the learning process itself. It therefore follows that attentional tuning should engage a 

diverse distribution of neural systems during category learning that are involved in components 

of Representation, Decision, and Attention (Figure 1). 

In previous work, we demonstrated that AARM can predict human-like learning across 

several complex category learning paradigms using simultaneous streams of behavioral and eye-

tracking data (Galdo, Weichart, Sloutsky, & Turner, 2021). As originally demonstrated by 
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Rehder & Hoffman (2005a), humans gradually show a fixation preference for the most relevant 

dimensions over the course of learning tasks, and this fixation bias co-occurs with increasing 

accuracy. The authors argued that learning is not simply a process of pure stimulus-category 

association, but rather involves a gradual acquisition of information about dimension relevance 

that eventually allows the observer to categorize items as efficiently as a model like GCM 

(Nosofsky, 1986). By fitting AARM to eye-tracking data in previous work, we were able to show 

that AARM’s mechanisms of attention not only predict learning at the level of response 

accuracy, but at the level of information sampling behaviors as well with increasing reliance on 

relevant dimensions as the task proceeds. Additional work showed that AARM extends to 

within-trial dynamics, such that it can accurately predict the order in which individuals will 

fixate to dimensions after gaining sufficient experience with the structure of the task (Weichart, 

Galdo, Sloutsky, & Turner, 2021). Because gaze fixations during goal-directed behaviors are 

often considered to be a terminal output of latent attention processes (Blair, Watson, Walshe, & 

Maj, 2009; Itti & Koch, 2000; Kuhn, Tatler, & Cole, 2009), demonstrating accurate fixation 

predictions provided support for AARM’s ability to capture how humans interact with new 

stimuli during learning. The current study took an alternative approach, investigating the 

dynamic processes that give rise to adaptive attention rather than the behaviors that result from it. 

As shown in Figure 2C, AARM predicts changes in accuracy across task blocks that 

closely resemble the aggregate behavior of human participants: observed behavior and model 

predictions show a decrease in accuracy after each rule-switch that soon re-approaches ceiling-

level performance. Although the available feature values are consistent throughout the task, 

AARM is able to predict shifts in accuracy by way of feedback-informed attention weights to 

each dimension (Figure 2B), which naturally incur large update magnitudes immediately 
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following a rule-switch (Figure 2A). Using attention gradient magnitude as a regressor in a 

GLM, model-based fMRI analyses identified statistically significant covariation in 14 ROIs. 

Consistent with our hypothesis, our results provided evidence that latent attention mechanisms in 

AARM indeed covary with BOLD activation in neural systems canonically involved in 

orienting, visual perception, memory retrieval, prediction error, and goal maintenance aspects of 

category learning (Seger & Miller, 2010). We additionally consider our results to be consistent 

with findings from RL modeling work, in which attention mechanisms are investigated as a 

vehicle for post-error changes in behavior and neural activation. Niv and colleagues (2015), for 

example, provided evidence that attentional tuning during an RL paradigm facilitated 

interactions between the intraparietal sulcus, precuneus, and dorsolateral PFC (dlPFC) to update 

the task representation and provoke action selection via the basal ganglia. Follow-up work by 

Leong and colleagues (2017) showed that attention served dual purposes of biasing value 

computations during the decision period and value-updating across learning, as reflected by 

activation in the ventromedial PFC (vmPFC) and basal ganglia. Together with the results of the 

current work, these findings support the notion that attention and learning bear bidirectional 

influences on one another, in a manner that recruits operations from widely distributed systems 

across the brain. 

While the results presented here provide preliminary neural support for AARM, our 

approach has several limitations. AARM comprises a set of dynamic mechanisms that are 

hypothesized to be involved in category learning, but the analyses presented here were not 

intended to make any claims about the computations that occur in the regions identified. Instead, 

the interpretations that we can draw from a GLM are limited to the notion that model-generated 

attention gradient magnitude accounts for significant variability in BOLD signal change in the 
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regions specified. We additionally opted not to conduct similar analyses with attention signals 

generated by any alternative theoretical accounts. We therefore do not claim that our results 

could only be identified by AARM, as it is likely that other adaptive attention models would also 

recruit activation of similar brain regions. For our purposes, it was sufficient to demonstrate that 

adaptive attention in AARM covaried with neural activation in a manner that a model with stable 

attention across trials would not be equipped to do. Finally, it is important to note that the current 

dataset and analysis cannot suitably arbitrate between activation related to attention updating and 

activation related to traditional notions of prediction error as described by RL accounts (Sutton & 

Barto, 2018). This is because 1) prediction error is implicit to AARM’s mechanisms for attention 

updating; and 2) transitions between sub-tasks of the Mack et al. (2016) design naturally give 

rise to both a high probability of prediction error and the necessity to redistribute attention to 

newly-relevant dimensions. While we do not consider this distinction to be antithetical to the 

conclusions presented here, follow-up will investigate AARM’s predictions in the context of task 

paradigms that were designed to dissociate between the respective roles of attention and error 

processing (e.g. Calderon et al., 2021).  

The relative simplicity of our analytical approach nevertheless provided us with the 

opportunity to explore the potential reach of adaptive attention, without imposing constraints on 

the particular nature of the connection between the latent signal of interest and neural activation 

in each region. Now that we have established a set of ROIs that coactivate with attentional 

tuning, the findings presented here will serve as an impetus for future joint modeling work using 

AARM as a tool to understand the dynamic neural computations involved in learning (Turner, 

Forstmann, & Steyvers, 2019; Turner, Forstmann, Love, Palmeri, & van Maanen, 2017; Turner, 

Forstmann, Wagenmakers, Brown, Sederberg, & Steyvers, 2013). In the following sections, we 
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discuss the ROIs shown in Figure 3 in terms of the functional clusters for category learning that 

were defined by Seger and Miller (2010). 

Parietal Cortex 

The largest ROI that was identified by our GLM analysis contained the superior parietal 

lobe (ROI 1 in Table 1), which is known to play a role in attention orienting and prioritization 

(Bisley & Goldberg, 2010). In the context of category learning, the process of tuning attention 

weights can be understood as a matter of orienting attention to the appropriate dimensions, 

similar to how attention must reorient following an invalid cue in an attentional cueing task (e.g. 

Posner cueing paradigm; Posner, 1980). When a spatial location (or object) is cued with an 

invalid cue, attention to the cued location must be diminished in order to facilitate detection of 

the target elsewhere, which leads to slower response times on invalid trials (i.e., the cueing 

effect). In this context, BOLD activation in the superior parietal lobe have been shown to track 

processing differences between validly- and invalidly-cued targets (Vossel, Weidner, Thiel, & 

Fink, 2009), and individuals with parietal lesions demonstrate a disrupted ability to inhibit 

invalid cues (Sapir, Hayes, Henik, Danziger, & Rafal, 2004). Other work has suggested that the 

lateral intraparietal area (LIP) is critically involved in integrating bottom-up (salience-based) and 

top-down (relevance-based) influences on overt attention (for review, see Bisley & Goldberg, 

2010). In particular, Bisley and Goldberg (2010) argued that LIP serves as a “priority map," 

whereby saccades occur in proportion to behavioral relevance with influences from rapid visual 

response. In connection to AARM’s mechanisms for attention, the parietal cortex serves a 

function that is conceptually consistent with allocation of attention to spatial locations according 

to a combination of learned dimension relevance with potential influences from secondary 

computational goals. 
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Visual Cortex 

Along with superior parietal lobe, the largest ROI that we identified also contained the 

bilateral visual pathways in the visual cortex (ROI 1 in Table 1), which has been shown to be 

involved in tasks that require visual processing of spatial locations or visual features (Maunsell 

& Treue, 2006; for review, see Posner & Gilbert, 1999; Ungerleider & Kastner, 2000). Important 

insights on the role of visual cortex in attention, for example, came from early single-cell 

recordings from macaques (Chelazzi, Duncan, Miller, & Desimone, 1998; Chelazzi, Miller, 

Duncan, & Desimone, 2001; Luck, Chelazzi, Hillyard, & Desimone, 1997; McAdams & 

Maunsell, 1999, 2000), which broadly demonstrated neuronal firing preferences for search 

targets that closely matched a cue. Some studies have additionally shown that after sufficient 

training, neurons in the inferior temporal gyrus can selectively respond to targets that match a 

cue on the basis of a particular, task-relevant feature despite mismatching on others (Bichot, 

Rossi, & Desimone, 2005; De Baene, Ons, Wagemans, & Vogels, 2008; Sigala & Logothetis, 

2002) and similar correlates of learned discriminability have been observed via human fMRI 

(Folstein & Palmeri, 2013; Reber, Gitelman, Parrish, & Mesulam, 2003; Saenz, Buracas, & 

Boynton, 2002). 

In general, the visual cortex is thought to represent objects at the basic perceptual level 

(e.g. contrast sensitivity and spatial resolution) in a manner that connects to orientation and can 

be modulated by covert attention (Barbot & Carrasco, 2017; for review, see Carrasco, 2011). It is 

therefore notable that model-generated attention covaries with low-level sensory processing in 

the visual cortex. 
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Hippocampus and Medial Temporal Lobe 

Five ROIs overlap with the hippocampus and medial temporal lobe functional cluster 

described by Seger and Miller (2010; ROIs 7, 10, 11, 13 and 14 in Table 1). The medial temporal 

lobe (MTL) is thought to be responsible for functions related to the encoding and maintenance of 

individual learning instances (Cutsuridis & Yoshida, 2017; O’Reilly & Munakata, 2000). The 

CA3 field of the hippocampus is thought to be particularly relevant to category learning, given 

its role in forming autoassociative links between items. This mechanism is characterized by the 

representational reactivation of previously-observed items during encoding in order to properly 

orthogonalize cues that overlap on a subset of dimensions (Becker & Wojtowicz, 2007; Gluck, 

Meeter, & Myers, 2003; O’Reilly & McClelland, 1994; Sutherland & Rudy, 1989). Learners 

therefore are able to quickly store activation patterns of similar items with minimal interference 

(for review, see Hunsaker & Kesner, 2013). 

As expected, several studies have demonstrated MTL recruitment during category 

learning tasks, both alongside human fMRI (Poldrack et al., 2001; Poldrack, Prabhakaran, Seger, 

& Gabrieli, 1999; Seger & Cincotta, 2006) and monkey neurophysiology methods (Hampson, 

Pons, Stanford, & Deadwyler, 2004). Other work, however, has suggested that the involvement 

of the MTL is contingent upon the mode of learning that is required for a particular task. While 

rule-based categorization (i.e. categories are dissociable by a single dimension) tends to result in 

maximal differential activation in the hippocampus, information integration (i.e. information 

from multiple dimensions is required to identify the category) and paradigms that contain 

unannounced rule-switches tend to additionally recruit the basal ganglia (Poldrack, Prabhakaran, 

Seger, & Gabrieli, 1999; Seger & Cincotta, 2005) and prefrontal cortex (Nomura et al., 2007; 

Nomura & Reber, 2008). 
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The MTL is nevertheless consistently recruited during initial training across paradigms 

(Poldrack et al., 2001; Poldrack, Prabhakaran, Seger, & Gabrieli, 1999). This suggests that the 

MTL is necessary for learning, but that familiarity-based activation may be insufficient for 

categorization in more complex tasks. Studies have shown that item representations in the 

hippocampus are reorganized in accordance with changing rule states when multiple training 

periods occur within a single experiment (Aly & Turk-Browne, 2016a, 2016b). Importantly, 

model-based fMRI work using SUSTAIN additionally showed that this reorganization is 

influenced by selective attention to dimensions with learned relevance to the current task state 

(Mack, Love, & Preston, 2016). In light of these results as well as the fact that attention updating 

in AARM critically relies on continuous comparisons of probes to stored exemplars, identifying 

ROIs in the MTL that covary with model-predicted attention was consistent with expectation. 

Midbrain Dopaminergic Systems and the Basal Ganglia 

Two ROIs overlap with the midbrain dopaminergic systems and basal ganglia functional 

cluster (ROIs 7 and 9 in Table 1). The basal ganglia are thought to serve as a hub for converting 

information inputs to actions, in the form of selecting both movements (Humphries, Stewart, & 

Gurney, 2006) and task strategies (Frank, 2005). As part of the midbrain dopaminergic system 

(Schultz & Romo, 1992), their role in action selection is critically influenced by reward-related 

influxes in dopamine (Schultz, Apicella, Ljungberg, Romo, & Scarnati, 1993; Seymour, Daw, 

Dayan, Singer, & Dolan, 2007). The superior colliculus, for example, has been shown to be 

involved in RL by way of biasing visual responses in a reward-seeking manner (Shires, Joshi, & 

Basso, 2010). 
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Model-based RL accounts explain that this type of learning can arise from the continuous 

calculation of prediction errors, which are the differences between expected and observed 

rewards following particular sequences of actions (Nasser, Calu, Schoenbaum, & Sharpe, 2017; 

Schultz, 2016; Frank & Badre, 2012a/b). More generally, RL comprises an iterative process of 

prediction, action selection, observation of outcome, and error-based policy (i.e. strategy) 

updating, such that observers use their experiences to guide future behaviors. While seemingly 

straightforward, RL implicitly raises the problem of balancing exploration and exploitation: is it 

better to exploit an action that is already known to produce a reward, or to explore other actions 

in the hopes of acquiring a larger, less effortful, or more consistent reward? A compelling line of 

computational and neurophysiology work (Frank, Doll, Oas-Terpstra, & Moreno, 2009; Frank, 

Moustafa, Haughey, Curran, & Hutchinson, 2007; Frank, Seeberger, & O’Reilly, 2004; 

Humphries, Khamassi, & Gurney, 2012) has suggested that the explore vs. exploit tradeoff is 

directly modulated by striatal dopamine, such that increasing tonic striatal dopamine decreases 

the probability of explorative action selection output from the basal ganglia to the superior 

colliculus. fMRI studies have additionally shown that exploration tends to engage the frontal 

pole whereas exploitation engages the vmPFC (Daw, O’Doherty, Dayan, Seymour, & Dolan, 

2006), suggesting dissociable downstream executive effects of action selection via the basal 

ganglia (Averbeck & O’Doherty, 2021). 

In the context of category learning, the basal ganglia are involved in tasks that require 

learning by trial and error (Cincotta & Seger, 2007). Similar to action selection in RL, it has been 

suggested that the basal ganglia are involved in the selection of category representations and 

strategies for sampling information from various dimensions (Seger, 2008; Seger & Miller, 

2010) with the goal of maximizing accuracy. Turner et al. (2021), for example, provided 
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evidence that observers may “exploit” dimensions via fixations that are known to carry 

probabilistic category information, or they may “explore” other dimensions in the hopes of 

identifying the one that is most reliably diagnostic of category membership. ROI results are 

consistent with the expectation that model-generated attention covaries with activation related to 

prediction error and policy updating in these regions. 

Prefrontal Cortex 

Seven ROIs overlap with the prefrontal cortex functional cluster (ROIs 2, 3, 4, 5, 6, 8, 

and 12 in Table 1). The PFC is broadly thought to be involved in goal-directed behavior (for 

review, see Bogdanov, Timmermann, Glaescher, Hummel, & Schwabe, 2018). In category 

learning tasks where the goal is to efficiently discriminate between categories, goal-directed 

behaviors refer to the rapid identification and exploitation of the categorization rule. Evidence 

from monkey neurophysiology has shown robust learning-related differences in neuronal firing 

between categories, even when stimuli contain multiple overlapping irrelevant features 

(Freedman, Riesenbuber, Poggio, & Miller, 2002, 2003; Freedman, Riesenhuber, Poggio, & 

Miller, 2001). Similarly, human fMRI work has shown that learned boundaries between 

categories as well as relevant feature conjunctions in information integration tasks are 

represented in the PFC (Jiang, Bradley, & Rini, 2007; Li, Mayhew, & Kourtzi, 2009). 

The PFC has been shown to engage during category learning (Reber, Stark, & Squire, 

1998; Vogels, Sary, Dupont, & Orban, 2002), and PFC activation is the earliest predictor of the 

choice after category distinctions have been acquired (Antzoulatos & Miller, 2011, 2014; 

Djurfeldt, Eleberg, & Graybiel, 2001; Pasupathy & Miller, 2005). The PFC has additionally been 

shown to be involved in error monitoring and corrective behaviors, particularly in the anterior 
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cingulate cortex (ACC) and dlPFC (Antzoulatos & Miller, 2014; Carter et al., 1998; Hadland, 

Rushworth, Gaffan, & Passingham, 2003). 

While the basal ganglia appear to be involved in tuning the current stimulus-action policy 

from trial to trial, the PFC is responsible for higher-level monitoring to identify rule-shifts and 

inhibit the newly-ineffective policy as needed (Bissonette, Powell, & Roesch, 2013). Interactions 

between the ACC and dlPFC have therefore been frequently identified in tasks that involve set-

shifting, like the Wisconsin Card Sorting Task (Monchi, Petrides, Petre, Worsley, & Dagher, 

2001). Because AARM predicts attention updates in the direction of an error gradient, it is 

consistent with expectation that the increased error frequency that accompanied rule-shifts were 

associated with both substantial changes to the distribution of attention and increased activity in 

the PFC. 

Conclusions 

AARM defines a mechanism of attentional tuning that arises as a consequence of the 

observer’s categorization decisions in relation to feedback, and in turn, directly impacts the 

psychological representations of future stimuli. Therefore, attention is adaptive in that it adjusts 

to the experiences of the individual, and facilitates learning in a goal-directed manner. The 

current study demonstrated that with its unique specification of attentional tuning, AARM was 

able to accurately predict behavior in a complex task paradigm that required continuous 

monitoring of goals and representations. Importantly, the attentional tuning mechanisms that 

made it possible for AARM to predict human-like learning behaviors also covaried with 

activation in distributed neural systems that have been implicated in distinct aspects of category 

learning. Given that learning is known to require complex interactions among cognitive 
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functions of orienting, visual perception, memory retrieval, prediction error, and goal 

maintenance, our results provide preliminary support for AARM as a neurally-plausible theory 

for how these interactions occur, and are facilitated by continuous updates to attention. 
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Tables 

Region(s) X Y Z Cluster size Max Z score 
1. Bilateral visual pathways, superior parietal 12 -101 1 117004 11.00 
2. Bilateral dorsal ACC, superior frontal gyrus 0 25 45 6283 6.43 
3. L middle frontal and precentral gyrus -48 8 53 4142 6.79 
4. R frontal pole 38 53 -5 3985 6.88 
5. R superior middle frontal gyrus, premotor cortex 28 -4 49 2556 6.11 
6. L superior middle frontal gyrus, premotor cortex -42 3 62 1432 6.78 
7. Thalamus, hippocampus, superior colliculus -7 -33 -3 1249 5.10 
8. R dorsolateral PFC 43 32 34 1212 6.67 
9. R insular cortex, putamen, caudate 21 15 0 1124 5.19 
10. L posterior middle temporal gyrus -58 -40 4 1120 6.05 
11. R thalamus, parahippocampal gyrus 11 -44 -2 898 5.94 
12. L frontal pole -28 54 9 812 5.70 
13. hippocampus 21 -25 -8 747 5.00 
14. R posterior middle temporal gyrus 47 -28 -1 392 5.55 

Table 1: Regions of interest resulting from fMRI generalized linear model analysis. 

Coordinates and clusters are in 1mm MNI152 space. Spatially-contiguous voxel clusters 

corrected for family-wise error at p<0.001. ROIs are listed in descending order of cluster size. 

L: left; R: right; ACC: anterior cingulate cortex; PFC: prefrontal cortex 
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Figure Captions 

Figure 1: Conceptual overview of the Adaptive Attention Representation Model. Basic 

mechanisms that occur within each component during a single trial are shown as a flowchart. 

Green text indicates information provided to the observer during the trial, and all other 

processes are considered latent. Red arrows indicate the direct role of the attention gradient. 

Yellow markers indicate conceptually-associated neural functions. The dotted line indicates that 

attention modulates the representation of stored exemplars despite not being physically present 

at the time of stimulus processing. MTL: medial temporal lobe; BG: basal ganglia 

Figure 2: Attention to dimensions affects accuracy. Circles overlaying the insect stimuli 

indicate which dimensions were relevant in each sub-task. In all panels, vertical black lines 

indicate transitions between sub-tasks. (A) Orange lines show mean model-generated gradient 

magnitude values across participant-level simulations. (B) Purple, green, and yellow lines 

correspond to mean model-generated attention (𝛼) quantities allocated to leg, antennae, and 

mouth dimensions, respectively. (C) Lines show means of observed (black) and model-generated 

(orange) accuracy across participants. Shaded gray regions show the 95% Bayesian posterior 

credible intervals assuming a Beta(1,1) prior on the probability of responding correctly. 

Figure 3: Regions of interest resulting from fMRI generalized linear model analysis. Each 

cluster is presented as a unique color rendered in MNI152 1mm standard space. Arrows in the 

sagittal slices indicate the position of corresponding axial slices. 

 

 

 


