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Abstract

In order to accurately categorize items, humans learn to selectively attend to stimulus dimensions
that are most relevant to the task. Models of category learning describe the interconnected
cognitive processes that contribute to attentional tuning as labeled stimuli are progressively
observed. The Adaptive Attention Representation Model (AARM), for example, provides an
account whereby categorization decisions are based on the perceptual similarity of a new
stimulus to stored exemplars, and dimension-wise attention is updated on every trial in the
direction of a feedback-based error gradient. As such, attention modulation as described by
AARM requires interactions among orienting, visual perception, memory retrieval, prediction
error, and goal maintenance in order to facilitate learning across trials. The current study
explored the neural bases of attention mechanisms using quantitative predictions from AARM to
analyze behavioral and fMRI data collected while participants learned novel categories. GLM
analyses revealed patterns of BOLD activation in the parietal cortex (orienting), visual cortex
(perception), medial temporal lobe (memory retrieval), basal ganglia (prediction error), and
prefrontal cortex (goal maintenance) that covaried with the magnitude of model-predicted
attentional tuning. Results are consistent with AARM’s specification of attention modulation as a

dynamic property of distributed cognitive systems.
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Distributed Neural Systems Support Flexible Attention Updating

during Category Learning

Introduction

When grouping items into categories, humans are extraordinarily adept at identifying
regularities across dimensions and mapping features to category labels. As we get to know a new
person, for example, we may be able to categorize their mood as happy, sad, or angry based on
specific elements of their facial expression, tone of voice, or body language. In an effort to
explain how humans can learn new categories quickly even when they are multivariate,
probabilistic, or non-linearly separable, computational models of categorization aim to formalize
the processing stream that links memories of previous experiences to representations of new
items (Galdo, Weichart, Sloutsky, & Turner, 2021; Kruschke, 1992; Love, Medin, & Gureckis,
2004; Nosofsky, 1986). Across contemporary models, dynamic allocation of selective attention
to goal-relevant dimensions is often implicated as the critical mechanism through which

categorization accuracy improves across trials.

Models differ considerably, however, in their descriptions of how attention is distributed
to facilitate categorization accuracy. The influential Generalized Context Model (GCM,;
Nosofsky, 1986), for example, describes a static distribution of attention based on overall
dimension diagnosticity across the items represented in memory. Adaptive attention models, by
contrast, suggest that attention is updated on every trial according to a feedback-based error
gradient, requiring dynamic monitoring of attention-outcome contingencies (Kruschke, 1992;
Love, Medin, & Gureckis, 2004). Although previous fMRI work has provided evidence of

representational reorganization in the hippocampus that is consistent with an adaptive attention
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account (specifically, SUSTAIN; Mack, Love, & Preston, 2016), questions about the nature of
attention, its component processes, and the neural systems that are recruited during attention
deployment still remain. The aim of our study, therefore, is to discuss the brain functions that
contribute to attentional updating in the context of category learning, and to evaluate a theory of

dynamic, gradient-based attention through model-based fMRI analyses.

The current study focuses specifically on the Adaptive Attention Representation Model
(AARM; Galdo, Weichart, Sloutsky, & Turner, 2021), an example of the class of adaptive
attention models described above. The conceptual basis of AARM comes from context theory,
which assumes previously-experienced items (i.e. exemplars) are stored in memory as discrete
episodic traces along with associated category labels (Medin & Schaffer, 1978). As in GCM,
AARM describes how category representations are formed according to the similarity between
new stimuli and stored exemplars. An attention vector weights the influence of plausible feature-
to-category mappings when the observer makes a choice. AARM additionally includes
mechanisms for feedback-based attention updates, which are intended to optimize future
responses with respect to the goals of the learner. AARM’s attention updating mechanisms
therefore incorporates notions of prediction error in a manner that is conceptually related to
models of reinforcement learning (RL). Whereas the equation defining the prediction error signal
in standard RL models emerges from a gradient of reward as a function of time (Sutton & Barto,
2018), AARM computes the gradient as a function of attention during each individual trial. In
summary, the theory put forth by AARM suggests that attention updating requires dynamic
interactions among orienting, visual processing, prediction error, memory encoding and retrieval,

and goal-directed behavior.
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In previous work, support for AARM’s mechanisms of attention allocation was provided
by fits to simultaneous streams of choice and eye-tracking data that were collected while
participants learned novel categories (Galdo, Weichart, Sloutsky, & Turner, 2021). Across
paradigms of varying complexity, AARM accurately predicted increases in accuracy that
coincided with increased probability of selectively attending to goal-relevant dimensions, as
measured by trial-level gaze fixations. Although these results provided support for AARM by
way of eye-tracking data as the terminal output of human attention dynamics (Blair, Watson,
Walshe, & Maj, 2009; Rehder & Hoffman, 2005a, 2005b), the extent to which AARM’s
mechanisms reflect expected patterns of neural activity remains to be determined. The current
study therefore investigates the neural plausibility of attention updating as described by AARM,
given current knowledge about the multifaceted neural loci of its theoretical subprocesses. In
particular, we expect the trial-level magnitude of model-predicted attention updates to covary
with blood-oxygen-level-dependent (BOLD) activation in five relevant functional clusters (for
review, see Seger & Miller, 2010): 1) parietal cortex (orienting); 2) visual cortex (perceptual
processing); 3) hippocampus and medial temporal lobe (episodic memory and recognition); 4)
midbrain dopaminergic systems and basal ganglia (prediction error); and 5) prefrontal cortex

(PFC; goal maintenance and representation).

For our purposes, we used behavioral and fMRI data that were collected by Mack, Love,
and Preston (2016) and were made freely available via the Open Science Foundation (OSF;
https://osf.io/5byhb/). In the task, participants were asked to categorize novel insects into two
groups according to the features contained in three dimensions: legs, antennae, and mouth.
Corrective feedback was provided on every trial, allowing participants to effectively map

features to category labels. Given the layers of complexity provided by the task paradigm in the
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form of multidimensional stimuli, trial-and-error learning, unidimensional and exclusive-OR
(XOR) categorization rules, and rule-switches, we deemed the dataset to be ideal for the purpose

of identifying the functional components of adaptive attention.

The current article is organized as follows. We begin by providing a conceptual overview
of AARM, highlighting the brain regions hypothesized to contribute to dynamic attentional
tuning. Second, we will summarize the methods related to data collection (as described by Mack,
Love, & Preston, 2016), model-fitting, and model-based fMRI analyses. Finally, we relate the
attentional tuning mechanism in AARM to BOLD activation in the regions of interest (ROIs)
identified in our analysis, and discuss our results in terms of canonical category learning

findings.

Adaptive Attention Representation Model

Figure 1 provides a conceptual overview of AARM’s component mechanisms.
Additional mathematical details will be provided in the A4RM Technical Specifications section
to follow. In general, AARM defines the processes through which new items are represented in
psychological space and mapped to category labels. Learning (i.e. increased categorization
accuracy across trials) is conceptualized as a natural consequence of storing experiences of
stimuli and associated feedback as they occur, and preferentially allocating attention to the most
relevant dimensions. Here, we will introduce the framework in terms of three core components:
Representation, Decision, and Attention (Turner, 2019; Weichart, Galdo, Sloutsky, & Turner,

2021).

The Representation component of AARM specifies how the low-level perceptual

qualities of a new stimulus are interpreted and contextualized by the observer’s goals and
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experiences. At the beginning of a trial, attention orients to spatial locations due to a combination
of salience and learned relevance. When a new stimulus is introduced, the observer then samples
information from dimensions according to a learned trajectory of dimension prioritization. This
sampling process activates memories of similar items with known category labels, which allow
the observer to form a representation of the stimulus that is relevant to the task. Similarity is
determined from the feature-level comparison of the current stimulus to all stored exemplars, and
is modulated by attention (Equation 1). As such, an exemplar will be perceived to be more
similar to the current stimulus if its features match on highly-attended dimensions, or more

dissimilar if its features mismatch on highly-attended dimensions.

The Decision component describes how the observer maps the representation of the
current stimulus to a category response. Because corrective feedback is typically provided during
category learning tasks, AARM presumes that each stored exemplar carries an association to a
known category label. The observer therefore has access to the necessary information for
mapping the similarity-based activation of each exemplar to its respective category. As such, the
total activation across exemplars that are associated with a common category label can be
interpreted as decision evidence in favor of that particular category. When making a response,
the observer is presumed to select a category in proportion to the relative decision evidence

among the available options (Equation 3).

After the observer makes a decision and corrective feedback is observed, the stimulus and
the category label are stored in memory for future use. Within the Attention component, AARM
subsequently updates attention in a manner that is intended to optimize for the goals of the
observer on future trials (e.g. improve accuracy, reduce sampling; Equation 4), and occurs in

consideration of the predicted response probability relative to the observed feedback. If a highly-
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attended dimension provides evidence in favor of the incorrect category label, for example,
attention to that dimension will be reduced. The newly-updated attention vector is fed back into

the Representation component in preparation for the next trial.

It is critical to highlight that the specifications of the Representation and Decision
components of AARM were based on GCM, a model of categorization that assumes attention is
calculated retrospectively after all stimuli have been observed (Nosofsky, 1986; Turner, 2019).
GCM can generate accurate categorization predictions, given that it uses a stable attention vector
that is specified to preferentially consider task-relevant dimensions when making decisions. The
GCM conceptualization of attention, however, does not naturally extend to questions of category
learning. When in a novel task environment with novel stimuli, the observer cannot possibly
know which dimensions are going to be relevant and which to attend unless explicitly instructed.

This insight can only come from experience.

AARM’s innovation relative to GCM, therefore, lies in its inclusion of a gradient-based
mechanism for updating attention according to feedback. Because attention is redistributed on
every trial based only on what the observer has experienced up until that point, AARM can
account for the gradual accrual of information that is required for identifying the task-relevant
dimensions concurrent with learning (Galdo, Weichart, Sloutsky, & Turner, 2021; Weichart,

Galdo, Sloutsky, & Turner, 2021).

Relative to other adaptive attention models like ALCOVE (Kruschke, 1992) and
SUSTAIN (Love, Medin, & Gureckis, 2004), AARM’s advancement is its specification of
gradient-based attention updating mechanisms that optimize for the individual goals of the
learner, rather than error minimization alone. While further exposition will be provided in the

AARM Technical Specifications section, the gradient calculation allows for the possibility that
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secondary computational goals bear an impact on the representation of new items, such as an
implicit desire to maximize information sampling efficiency. Given that it is often the case that
multiple dimensions provide similarly diagnostic information, the learner could conceivably seek
to reduce time or effort spent on each individual trial by only attending to a subset of informative
dimensions before making a response, with minimal detriment to overall accuracy. This idea has
been supported by our previous presentation of AARM. When additional mechanisms were
added to the model to optimize for secondary computational goals, the expanded variant
outperformed a baseline unconstrained variant when fit to behavioral and eye-tracking data
(Galdo, Weichart, Sloutsky, & Turner, 2021). While a strict error-reduction policy for attention
updating that is standard among contemporary adaptive attention models was sufficient for
predicting accuracy across trials, accounting for individualized computational goals in the
gradient specification was necessary for predicting trial-level information sampling behavior via
eye-tracking. Related mechanisms for dimension reduction have been implemented in RL
models as well, and have proven necessary for predicting human-like attention operations in

naturalistic multidimensional environments (Niv et al., 2015; Leong et al., 2017).

Hypothesized Neural Systems

As an extension to our previous results, the current study investigates the neural
plausibility of AARM’s attention updating mechanism. In order for this mechanism to be
considered theoretically viable, it should, at a minimum, covary with neural activation in the
distributed systems that are hypothesized to contribute to continuous tuning across trials. The
neural systems that we expect to be recruited during attentional tuning come directly from the

literature on the neural correlates of category and RL. In particular, we discuss five functional
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clusters for category learning that were defined by Seger and Miller (2010) in an independent

review.

The parietal cortex is involved in orientation of spatial attention (Bisley & Goldberg,
2010; Yin et al., 2012), which is instantiated in AARM via the connection between the attention
gradient and feature sampling when new stimuli are presented (Point 1 in Figure 1). The visual
cortex is known to be involved in the formation of low-level perceptual representations (Folstein
& Palmeri, 2013; Point 2 in Figure 1). The hippocampus and medial temporal lobe are involved
in the maintenance and retrieval of past learning instances (Cutsuridis & Yoshida, 2017;
O’Reilly & Munakata, 2000; Seger & Miller, 2010), as well as modulation of object
representations during category learning (Mack, Love, & Preston, 2016). We therefore expect
these regions to be involved in attention modulation in AARM, given the mechanism’s critical
reliance on activation of past exemplars (Point 3 in Figure 1). The midbrain dopaminergic
systems and basal ganglia have been implicated in behaviors related to prediction error in RL
(Averbeck & O’Doherty, 2021). Because category predictions and observed feedback are critical
inputs to the attention updating mechanisms in AARM, we expect model-predicted attention to
require the influence of prediction error action selection functions in these regions (Point 4 in
Figure 1). The prefrontal cortex is known to be involved in goal-directed behaviors, particularly
in higher-level monitoring of rule-based performance (Bogdanov, Timmermann, Glaescher,
Hummel, & Schwabe, 2018), as would be expected for an update rule that optimizes for the

learner’s goals of reducing errors and maintaining computational parsimony (Point 5 in Figure

).

Although we do not make specific predictions about the computations that are performed

in each set of brain regions, our study seeks to establish that attentional tuning recruits the
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contributions of distributed systems as described by AARM’s dynamic structure. Further review
of the candidate brain regions and how they relate to category learning are provided in the

Discussion.

Experimental Methods

Dataset

The task paradigm from Mack et al. (2016) builds upon the classic experiments of
Shepard, Hovland, & Jenkins (1961), which have become a benchmark test for models of human
category learning. The benchmark study used stimuli that consisted of three binary dimensions to
construct six types of category delineations (referred to as Types I-VI). The results, which have
been replicated several times (e.g. Crump, McDonnell, & Gureckis, 2013; Nosofsky, Gluck,
Palmeri, McKinley, & Glauthier, 1994), showed a progression of learning difficulty from Type |
(one dimension was perfectly diagnostic of category membership) to Type VI (all three
dimensions needed to be attended to produce a correct response). The observed relative learning
rates across category types provide considerable empirical constraint that contemporary theories
of category learning are expected to account for in order to be regarded as viable (e.g. Galdo,
Weichart, Sloutsky, & Turner, 2021; Goodman, Tenenbaum, Feldman, & Griffiths, 2008;

Kruschke, 1992; Nosofsky, Gluck, Palmeri, McKinley, & Glauthier, 1994).

The paradigm designed by Mack et al., (2016) presented participants with three different
categorization types within the same task context, using a common set of stimulus features. The
paradigm therefore posed a unique challenge to participants, such that they had to identify and
adapt to new categorization rules in order to maintain high accuracy. In the original study, the

inclusion of rule-switches allowed the authors to investigate the hypothesis that learning in a
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dynamic task environment is made possible by continuous modulation of object representations.
Model-based fMRI analyses using SUSTAIN (Mack, Love, & Preston, 2016; Love, Medin, &
Gureckis, 2004) supported their hypothesis, and provided evidence that shifting attention to rule-

relevant dimensions impacted object representations in the hippocampus.

Our study builds upon these results, taking a more general approach to understanding the
functional correlates of attention. In particular, we use a latent input approach to analyze whole
brain fMRI data, which was described by Turner and colleagues (2017) to be ideal for
exploratory analysis. Given that the adaptive attention mechanism specified by AARM requires
dynamic interactions among multiple cognitive systems, is there evidence of distributed system
coactivation in the brain during attentional tuning? Relevant details of the stimuli and procedures
are provided in the following sections, but the reader is directed to Mack et al. (2016) for more

information.

Stimuli

Stimuli were 8 images of insects, each of which was comprised of a body, legs, antennae,
and a mouth. While all insects had an identical body shape, each of the other dimensions
contained one of two possible features: legs could be thick or thin, antennae could be thick or
thin, and mouths could be shovel- or pincer-shaped. Participants were instructed to learn how to
classify the insects according to their features, using the corrective feedback that would be

provided after every trial as a guide. Examples of stimuli are shown in the top panel of Figure 2.

Task Paradigm

As mentioned previously, participants completed three sub-tasks during the experiment,

each with a different type of categorization rule (Types I, II, and VI; Shepard, Hovland, &
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Jenkins, 1961). From the participants’ perspective, sub-tasks were delineated by a change in the
instructions. For example, a participant may have been asked to categorize insects according to
their temperature preference (warm or cool) during the first sub-task, and according to the
hemisphere in which they are typically found (eastern or western) during the second. Beyond the
change in instructions, participants were not informed of any potential change in rule

complexity.

In the Type I sub-task, the category label of each stimulus could be determined from the
feature value of one dimension. For example, participants could learn to selectively attend to the
relevant “legs" dimension upon observing that all insects with thick legs preferred warm
temperatures and all insects with thin legs preferred cool temperatures. The Type II sub-task
used an exclusive disjunction (i.e. XOR) rule, and required participants to attend to two
dimensions in order to categorize the insects correctly. Insects typically found in the eastern
hemisphere, for example, might have thick antennae with a pincer-shaped mouth or thin
antennae with a shovel-shaped mouth, whereas insects found in the western hemisphere might
have thick antennae with a shovel-shaped mouth or thin antennae with a pincer-shaped mouth. In
this case, the antennae and mouth dimensions are relevant and the legs dimension is irrelevant.
The Type VI sub-task extended the logic of Type II, and required participants to learn the
feature-category mappings and contingencies among all three dimensions. As such, all three
dimensions were relevant for identifying category membership. All participants completed the
Type VI task first, and the subsequent order of Types I and II were counterbalanced between-

subjects.

Participants completed the three sub-tasks in the MRI scanner, and indicated category

responses using a button box. A sub-task consisted of 4 functional runs, each with 32 trials.
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During a trial, the stimulus was presented for a duration of 3.5s, followed by a 0.5-4.5s jittered
fixation. Participants were then presented with a feedback screen containing the stimulus,
accuracy information, and the correct category label for 2s, followed by a 4-8s jittered fixation.

Each functional run lasted 194s and included 4 repetitions of each unique stimulus.

Data Description

The dataset contains MRI and behavioral data from 23 right-handed participants (12
males, age 18-31 years) with normal or corrected-to-normal vision. One participant’s data were
corrupted and therefore excluded from all analyses presented here. Participants completed 4
consecutive runs corresponding to each of three categorization rules (Types I, 11, and VI, as
previously described). Out of all data files that were made available by Mack et al. (2016) via
OSF, the following were used in the current study: 1) MPRAGE T1 anatomical images
(FOV=256mm, 1mm isotropic voxels); 2) 12 functional timeseries acquired with a T2*-weighted
multiband EPI sequence (TR=2s, TE=31ms, flip angle = 73 degrees, FOV=220mm, 72 slices,
1.7mm isotropic voxels); and 3) behavioral data consisting of stimulus and timing information,

categorization responses, and correct category feedback.

Modeling Procedures

As a complement to the conceptual overview of AARM that was provided previously, we
now provide the mathematical details of the model as it was specifically used in our current
model-based fMRI analyses. It is worth noting that AARM was originally presented by Galdo et
al. (2021) as a general framework that was designed to account for attention “shortcuts" that
humans often take when completing a classification task. For example, if stimuli contain a large

number of dimensions, adult participants tend to consider only a small subset of them when
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making decisions (Blanco, Turner, & Sloutsky, 2021). One interpretation of this behavior is that
in addition to the goal of achieving high accuracy on a task, humans simultaneously pursue
secondary computational goals like reducing the amount of time and effort they spend on
individual trials. The extent to which these shortcuts impact behavior, however, varies according

to the demands of the task.

The full AARM framework contains various mechanisms that instantiate biases for
computational simplicity. For our current purposes, we used the variant of AARM that was
identified in a switchboard analysis conducted by Galdo et al. (2021) to provide the best fits to
data across five experiments, including Mack et al. (2016). The model description provided here
therefore includes mechanisms for regularization (tendency toward low-dimensional
representations) and competition (increasing attention to one dimension results in a decrease in
attention to the others). For more information on AARM’s mechanisms for attentional shortcuts,
the interested reader is directed to Galdo et al. (2021) for a thorough investigation in various

contexts of task complexity with quantified comparisons to traditional attention constraints.

AARM Technical Specifications

When introducing model notation, we will use unbolded symbols to represent scalar
values, bold lowercase symbols to represent vectors, and bold uppercase symbols to represent

matrices.

AARM describes how humans learn to categorize a sequence of stimuli E = [eq, e,,...].
Each D-dimensional stimulus belongs to one of C categories and is represented as row vector e;,
where t denotes the trial number. The model assumes that learning occurs via interactions

between two continuously-updated processes: memory acquisition and attention to task-relevant
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dimensions. To acquire new memories, the model assumes that the stimulus presented on Trial ¢t,
e, is stored as an episodic trace X; = [x;1 X;5 ... X;p]" (i.e. an “exemplar"). Each exemplar is
associated with a memory strength m, ; and a category label f; € {1,2, ..., C} acquired by
feedback. The feature values, memory weights, and category labels associated with the
exemplars can be conceptualized as matrices that are updated after each trial is completed. On
Trial t, the full history of exemplar feature values are contained within X; = [X; ... Xy],
memory strengths are contained within My = [m,; m;, ... m;y], and the relevant category

labels are contained within F, = [f; ... fy].

When a new stimulus is presented, it activates memories for stored exemplars on the
basis of perceived similarity. Similarity is computed by way of a factorizable exponential
similarity kernel (Nosofsky, 1986; Shepard, 1987), such that activation a,; of the i-th exemplar

in response to the stimulus e; on Trial ¢ is given by
— D
ar; = exp(—6 Zj:l ajles; — xi,jl)mt,i (D

where § is the specificity of the similarity kernel function, and a, ; is the attention applied to the
j-th dimension on Trial t. Attention to each dimension can be represented succinctly as a D-
dimensional vector o;. The values of a, modulate the observer’s perception of each exemplar’s
similarity to the current stimulus. For example, in the extreme case where @ ; is 0, the
differences across dimension j has no impact on exemplar activation. By contrast, as a; ;
approaches infinity, an exemplar must have identical values to the stimulus e; along the j-th
dimension in order to maintain activation of the exemplar. We account for lag-based memory
strength using a modified temporal decay function that allows for different temporal weighting

structures depending on three parameters (Pooley, Lee, & Shankle, 2011):



NEURAL CORRELATES OF ADAPTIVE ATTENTION 17

me=[1-1-e)(1—e " Hia—n) +n, )

where €, and €, € [0,1] are primacy and recency weights, n € [0,1] is a lower bound for
memory weights, and N, is the number of exemplars stored on Trial t. After computing each
exemplar’s activation, a Luce choice rule is used to compute categorization choice probability.

Specifically, the probability of making a Category c response is

N
i=1 at,iﬂ(fi=c)

n_n Z
P("c’|ag, e, F, X, M) = B P (3)

where [(f; = ¢) is an indicator function that returns a one if the i-th exemplar x; is associated

with Category c:

1=y ={; Ji=¢

0 otherwise

Therefore, the probability of choosing c is the summed similarity of the exemplars associated

with the c-th category, normalized by the total activation of all exemplars.

AARM assumes a; changes according to a competitive stochastic gradient-based update
rule in an effort to minimize error, and is subject to attentional constraints of regularization and
competition. Although the AARM framework supports other variations of attention update rules
(Galdo, Weichart, Sloutsky, & Turner, 2021), the specification that is relevant to the current

article is as follows:
a1 = a; + TV log(P(ftlay, e, Fe, X, My)) — A1], 4)

where log(P (f;|a;, e, Fi, X¢, M;)) is the log likelihood of making a choice that is consistent with

Feedback f; on Trial t, and 1 is a D-dimensional column vector whose elements are all one.
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Here, V, is a shorthand denoting a “gradient operator" for computing the set of partial

derivatives of a function f(a) with respect to each element of the vector & = [ay, -+, a4]:

Vof@i= [ f@ sof@) . —f@)].

The positive parameter A determines the strength of L1-norm or LASSO regularization, and is
related to attentional capacity constraints and bias toward low-dimensional representations. I is a
matrix whose diagonal elements contain the gradient step-size parameter y, and off-diagonal

elements are —f such that

Yo =B -B ... =B
B Yo B ... =B

r=\-§ -8 v * -B}

B =B =B ... Yo
where 3, y, € (0,0). B determines the strength of competition between dimensions during the
attention update. In other words, for objective function g(a;), f controls the extent to which

increasing attention to one dimension results in a reciprocal decrease in attention to the other

dimensions.

To avoid negative values of attention, &, is constrained to be positive. However, the
attention update equation may still propose negative values. To facilitate unconstrained
optimization, attention is updated on the log scale. Setting v, = log(«;) and using the change-

of-variable technique, we can rewrite the attention update equation v, as

Uiy = v, + T[{V,log(P(f;la, e, Fe, X, M) — A1} © exp(v,)], (5)
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where © is the element-wise multiplication or Hadamard product operator. Because the
logarithm is a one-to-one monotonic function, finding the optimal v, is equivalent to finding the
optimal a;. Derivations of the attention gradient and a parameter recovery study are provided in

Galdo et al. (2021).
Model Fitting

The fits to behavioral data from Mack et al. (2016) that are used in the current study were
originally presented by Galdo et al. (2021). The model was fit to data from each participant
independently, with the general goal of identifying the set of parameters that maximized the
likelihood function provided in Equation 3. In an effort to ensure robust optimization, a three-
step algorithmic approach was used. First, a Differential Evolution procedure using the
DEoptimR package was implemented for 100 iterations using 13 particles (2x + 1, where k is
the number of free parameters) to effectively sample the parameter space and identify reasonable
initial values (Brest, Greiner, Boskovic, Mernik, & Zumer, 2006; Storn & Price, 1997). Second,
the initial values were used as input in R’s base implementation of the Nelder-Mead optimization
algorithm (Nelder & Mead, 1965). Third, in the event of failure to meet the base convergence
criterion after 1000 iterations, R’s base implementation of simulated annealing was used for
5000 iterations (Van Laarhoven & Aarts, 1987). The result of this procedure was a single set of

best-fitting parameters for each participant.

A few constraints were imposed in an effort to maintain parameter identifiability. The
similarity kernel specificity parameter was constrained to § = 1 for all participants. Initialized
values for the 3-dimensional attention vector @y = [@q 1, @ 2, @o,3]" Were constrained to be

equivalent such that ay, = @y, = ay3 = ay, and a single parameter a, was freely estimated. To
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initialize the representation, two “background exemplars" per category were provided with
feature values of [0.5,0.5,0.5] (Nosofsky, 1986; Turner, 2019). This setting assumes the observer
begins the task with equal evidence for each category response, such that the initial state is
uncertain rather than uninformed (Estes, 1994). The model contained a total of six free
parameters: learning rate (¥,), initial attention (ag), competition (), regularization (1), primacy

(€p), recency (€,), and baseline memory strength (n).

To facilitate our model-based fMRI analyses, we input each participant’s best-fitting
parameters back into the model, along with the corresponding participant’s unique experience of
trial-level stimuli and feedback. We were therefore able to generate participant-level predictions
for changes in the attention gradient across trials in the Mack et al. (2016) experiment. Because
we were interested in observing which brain areas contribute to dynamic changes in attention

during learning, we calculated a single “attention gradient magnitude" value for each trial, which

was the Euclidean norm of model-generated attention update values: |u| = / ?=1 u?, where

u = I[{v,log(P(f;la, €., F., X, M) — A1} © exp(v,)]

is the attention update vector shown in Equation 5. The attention gradient magnitude was

subsequently used as a regressor in our fMRI analyses.
MRI Data Preprocessing and Analysis

Preprocessing and analysis of the fMRI data was performed primarily using FEAT (fMRI
Expert Analysis Tool; Version 6.0.5), a tool within FSL (FMRIB’s Software Library;
https://fsl.fmrib.ox.ac.uk/fsl/). Functional EPI data were corrected for excessive motion using

MCFLIRT (Jenkinson, Bannister, Brady, & Smith, 2002), stripped of non-brain structures using
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BET (Smith, 2002), spatially smoothed with a 3.4mm full-width-half-maximum Gaussian kernel,
and temporally filtered with a high pass filter cutoff of 100s. Anatomical T1 images were
registered to standard space using FNIRT, which generated a transformation matrix for each
participant. To align a participant’s functional and anatomical images, the functional data were
first registered to the participant’s T1 image using the brain-boundary-based registration method
in FLIRT (Greve & Fischl, 2009; Jenkinson, Bannister, Brady, & Smith, 2002), then transformed
into a standard space (MNI152 with 1mm resolution) by applying the same transformation
matrix generated from T1 registration. Additionally, FAST (Zhang, Brady, & Smith, 2001) was
used to segment the T1 image into three tissue types: gray matter, white matter, and
cerebrospinal fluid (CSF). The CSF mask from this segmentation was subsequently transformed

into the functional space in order to extract the timeseries of mean CSF signal from each run.

After preprocessing, we used FSL’s general linear model tool (FILM: Woolrich, Ripley,
Brady, & Smith, 2001) to conduct a three-level whole-brain generalized linear model (GLM)
analysis. The goal was to identify the brain areas involved in attentional tuning, as predicted by
AARM. Trial-wise attention gradient magnitudes were generated by AARM, timelocked to the

onset of each trial’s feedback period, then concatenated to create the regressor of interest.

At the first level of the analysis, a GLM was fit to the timeseries of attention gradient
magnitudes in each individual run. The model included 32 trial-specific regressors, which were
timelocked to the onset of each stimulus and lasted the duration of the decision period during
each trial. These trial-specific regressors were included to ensure that any signal attributed to the
attention gradient magnitude was not confounded by the influence of cognitive processes
involved in the decision period. Additionally, to isolate the effects of attentional updating from

the effects of error processing, trial-level accuracy was included as a regressor during the



NEURAL CORRELATES OF ADAPTIVE ATTENTION 22

feedback periods. The attention gradient magnitude, accuracy, and trial-specific regressors for
each of 32 trials were convolved with a standard double-gamma hemodynamic response
function, temporally filtered with a high pass filter cutoff of 100s, and prewhitened. The
temporal derivatives of these 34 regressors were also included in the GLM. Finally, nuisance
regressors representing the standard six motion parameters (pitch, yaw, roll, and x,y,z shifts) and
mean CSF signal were added to the model to control for signal which does not originate from the
BOLD response. The effect of attentional tuning on BOLD signal was calculated as a contrast of
the gradient magnitude regressor versus no activity (i.e., gradient magnitude signal greater than

Zero).

At the second level of analysis, a fixed-effects model was used to calculate the effect of
attentional tuning across all runs within-subject. Because the attentional tuning mechanism in
AARM is a general cognitive mechanism that is not constrained by the changing categorization

rules of the task, we collapsed across all runs for each participant.

The third level of analysis considered group level effects of attentional tuning. Group
effects were identified through a mixed effects GLM, which was fit by FSL’s FLAME 1+2
algorithm (Woolrich et al., 2004). The algorithm combines an approximation of the Bayesian
posterior distribution and Markov Chain Monte Carlo (MCMC) methods to estimate coefficients
for each voxel, and was identified by Eklund and colleagues (2016) to produce minimal false

positives (<5%) across a battery of fMRI analyses.

The sample size of N=22 from Mack et al., (2016) was deemed sufficient for our
purposes on the basis of three factors: 1) large-scale sensitivity and reliability examinations of
group fMRI studies with GLM analyses have indicated that 20 or more participants should be

included to achieve sufficient reliability (Thirion, Pinel, Meriaux, Roche, Dehaene, & Poline,
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2007; Zandbelt, Gladwin, & Raemaekers et al., 2008); 2) several previous studies using model-
based fMRI approaches have identified significant effects during category learning using similar
sample sizes (N=18-22; Davis, Love, & Preston, 2012; Mack, Preston, & Love, 2013; Nosofsky,
Little, & James, 2012); and 3) recovery of AARM’s parameters for fits to individual participants
was verified in previous work (Galdo et al., 2021), providing assurance of regressor stability

within our core analysis.

Results

We now present our results in two sections. First, we show the behavioral results from
Mack et al. (2016) and the corresponding predictions from AARM, including the trajectory of
latent attention across trials and rule-changes. Second, we show the results of a model-based
fMRI analysis that was designed to identify the brain regions that contribute to attentional
tuning, as specified by AARM. Taken together, our results demonstrate that AARM can
accurately predict learning in a complex category learning task via a gradient-based attentional
tuning signal, and the same signal fluctuates across trials in a manner that is consistent with

BOLD activation in regions with known relevance to category learning.

Fits to Behavioral Data

After fitting AARM to data, best-fitting parameters were used to generate a predicted
progression of latent attentional tuning and associated responses across trials for each participant.
Model-predicted category responses to the unique set of stimuli experienced by each participant
were converted to “correct” or “incorrect" accuracy information via comparison to the true
category labels. A qualitative evaluation of model fits is shown in Figure 2C, where model-

predicted accuracy was aggregated across participants and displayed as an orange line. Observed
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group-level mean accuracy is shown as a black line, with a 95% Bayesian credible interval (CI)
shown as a gray shaded region. Model predictions fall well within the 95% CI range, and closely
follow the trajectory of the group-level mean across trials in both conditions of task order (Left:
Task Order 1, Types VI-I-II; Right: Task Order 2, Types VI-II-1). While only qualitative fits
are shown here, quantitative comparisons conducted by Galdo et al. (2021) showed that the
current model provided the best fits to behavioral data from a set of five studies (including Mack,
Love, & Preston, 2016) compared to all alternative specifications of AARM and a selection of

competing models.

Figure 2B provides insight into how AARM was able to predict learning across
categorization rule types. By updating dimension-wise attention on every trial in response to
feedback, AARM gradually learns to prioritize information from the most relevant dimensions.
Figure 2B shows an increase in attention that is allocated to the relevant dimensions, as indicated
by the corresponding categorization rule type. For example, one group of participants
experienced Task Order 1, where Type VI blocks (all three dimensions were relevant) were
followed by Type I blocks (one dimension was relevant, two were irrelevant), which were
followed by Type II blocks (two dimensions were relevant, one was irrelevant). This information
is indicated by the stimuli pictured above Figure 2A, in which the relevant dimensions for each
sub-task are highlighted in red. Mapping the relevant dimensions to model-generated attention
shown in Figure 2B, we observe that the progression of attention mirrors the prescribed sub-task
order. Purple, green, and yellow lines reflecting attention to the legs, antennae, and mouth
dimensions respectively all increase during the first sub-task when all three dimensions were
relevant for determining category membership. In the second sub-task where only the legs

dimension was relevant, the corresponding purple line quickly increases from the starting point,
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whereas the green and yellow lines drop off to indicate reduced attention to the antennae and
mouth dimensions. In the third sub-task, the antennae and mouth dimensions become relevant,
and the legs dimension becomes irrelevant. The green and yellow lines that correspond to the
newly-relevant dimensions show an increase in attention relative to the second sub-task, and the
purple line decreases. A conceptually similar pattern of predictions was observed for participants
who experienced Task Order 2, where the lines representing dimension-wise attention in Figure

2B follow a trajectory that is consistent with dimension relevance in each sub-task.

Figure 2A shows the progression of latent attention gradient magnitude across trials. We
observe that the magnitude of between-trial attentional tuning is maximized when choice
accuracy is low. As the diagnosticity of dimensions is learned, attention is optimally distributed
towards the relevant dimension(s) and therefore, smaller changes of attention are required.
Because there is less tuning needed, the gradient magnitude tends to diminish toward zero, but

quickly rises again when the categorization rule changes.

Neural Covariation of the Attention Gradient

Trial-level attention gradient magnitude was used as the regressor of interest in our GLM
analysis. Correct or incorrect accuracy information was included as an additional regressor in
order to isolate changes related to attention from changes specific to error processing. As shown
in Figure 2A, the largest magnitude of attentional change tended to coincide with rule-switches.
Because AARM uses a cross-entropy loss function to calculate the attention gradient that is
highly sensitive to errors, it is well in line with expectation that moments of uncertainty about
which dimensions were relevant (Figure 2B) would result in a high probability of predicted

errors (orange line, Figure 2C) and correspondingly large adjustments in attention (Figure 2A).
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As such, our fMRI GLM analysis was designed to identify ROIs where BOLD activation
reflected changes across trials that were consistent with learning and associated changes in

attention.

Maps from the group-level GLM were converted to z-scores and were thresholded at Z >
3.1 within each voxel. Spatially-contiguous voxel clusters were corrected for family-wise error at
p <.001 (Woo, Krishnan, & Wager, 2014) using FSL’s implementation of Gaussian Random
Field Theory. Smoothness was estimated using FSL’s ‘smoothest’ function on group level
residuals. This resulted in 14 unique clusters where model-generated attention gradient
magnitude accounted for significant variability in BOLD signal across trials. Figure 3 shows the
spatial location of each ROI in MNI152 standard space. Because some ROIs appear to be non-
contiguous when displayed as 2-dimensional slices, each ROI was randomly assigned a unique
color to properly visualize the spatial differentiation. Sagittal and axial slices in Figure 3 were
selected in an effort to display all ROIs as parsimoniously as possible. Table 1 shows the
corresponding MNI coordinates and peak Z value of each ROI, where ROIs are listed in

descending order of cluster size.

We observe a high degree of overlap between the ROIs identified here, and the five
functional clusters of interest as defined by Seger and Miller (2010). The largest ROI (ROI 1 in
Table 1) is primarily reflective of the parietal cortex and visual cortex functional clusters, which
are thought to be used for spatial orientation and low-level perceptual object representations
during category learning, respectively. The hippocampus and medial temporal lobe functional
cluster consists of five ROIs (ROIs 7, 10, 11, 13 and 14 in Table 1), and is thought to form
higher-level object representations in reference to previously-encoded stimuli in an effort to

orthogonalize experiences in memory. Two ROIs are consistent with the midbrain dopaminergic
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systems and basal ganglia functional cluster (ROIs 7 and 9 in Table 1), which is thought to be
involved in prediction error and converting information inputs into actions. Seven ROIs overlap
with the prefrontal cortex functional cluster (ROIs 2, 3, 4, 5, 6, 8, and 12 in Table 1), which is
involved in action policy updating in the presence of rule-switches and changing environments.
In consideration of previous literature, these ROIs characterize a diverse set of neural systems
that reflect dynamic adjusting of attentional weights upon observation of feedback, beyond what

is accounted for by error processing alone.

Discussion

In the current study, we investigated the hypothesis that adaptive attention mechanisms
require the synchronized involvement of orienting, visual processing, memory retrieval,
prediction error, and goal maintenance systems in order to effectively facilitate learning of novel
categories. Our analytical approach focused specifically on the theoretical predictions of one
category learning model, AARM. As illustrated in Figure 1, attention in AARM is influenced by
the decision component of the observer’s experience on each trial, and is then fed back into the
representation component to modulate category activations on subsequent trials. As such,
attention is conceptualized as the critical mechanism for learning, while also being an emergent
property of the learning process itself. It therefore follows that attentional tuning should engage a
diverse distribution of neural systems during category learning that are involved in components

of Representation, Decision, and Attention (Figure 1).

In previous work, we demonstrated that AARM can predict human-like learning across
several complex category learning paradigms using simultaneous streams of behavioral and eye-

tracking data (Galdo, Weichart, Sloutsky, & Turner, 2021). As originally demonstrated by
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Rehder & Hoffman (2005a), humans gradually show a fixation preference for the most relevant
dimensions over the course of learning tasks, and this fixation bias co-occurs with increasing
accuracy. The authors argued that learning is not simply a process of pure stimulus-category
association, but rather involves a gradual acquisition of information about dimension relevance
that eventually allows the observer to categorize items as efficiently as a model like GCM
(Nosofsky, 1986). By fitting AARM to eye-tracking data in previous work, we were able to show
that AARM’s mechanisms of attention not only predict learning at the level of response
accuracy, but at the level of information sampling behaviors as well with increasing reliance on
relevant dimensions as the task proceeds. Additional work showed that AARM extends to
within-trial dynamics, such that it can accurately predict the order in which individuals will
fixate to dimensions after gaining sufficient experience with the structure of the task (Weichart,
Galdo, Sloutsky, & Turner, 2021). Because gaze fixations during goal-directed behaviors are
often considered to be a terminal output of latent attention processes (Blair, Watson, Walshe, &
Maj, 2009; Itti & Koch, 2000; Kuhn, Tatler, & Cole, 2009), demonstrating accurate fixation
predictions provided support for AARM’s ability to capture how humans interact with new
stimuli during learning. The current study took an alternative approach, investigating the

dynamic processes that give rise to adaptive attention rather than the behaviors that result from it.

As shown in Figure 2C, AARM predicts changes in accuracy across task blocks that
closely resemble the aggregate behavior of human participants: observed behavior and model
predictions show a decrease in accuracy after each rule-switch that soon re-approaches ceiling-
level performance. Although the available feature values are consistent throughout the task,
AARM is able to predict shifts in accuracy by way of feedback-informed attention weights to

each dimension (Figure 2B), which naturally incur large update magnitudes immediately
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following a rule-switch (Figure 2A). Using attention gradient magnitude as a regressor in a
GLM, model-based fMRI analyses identified statistically significant covariation in 14 ROIs.
Consistent with our hypothesis, our results provided evidence that latent attention mechanisms in
AARM indeed covary with BOLD activation in neural systems canonically involved in
orienting, visual perception, memory retrieval, prediction error, and goal maintenance aspects of
category learning (Seger & Miller, 2010). We additionally consider our results to be consistent
with findings from RL modeling work, in which attention mechanisms are investigated as a
vehicle for post-error changes in behavior and neural activation. Niv and colleagues (2015), for
example, provided evidence that attentional tuning during an RL paradigm facilitated
interactions between the intraparietal sulcus, precuneus, and dorsolateral PFC (dIPFC) to update
the task representation and provoke action selection via the basal ganglia. Follow-up work by
Leong and colleagues (2017) showed that attention served dual purposes of biasing value
computations during the decision period and value-updating across learning, as reflected by
activation in the ventromedial PFC (vmPFC) and basal ganglia. Together with the results of the
current work, these findings support the notion that attention and learning bear bidirectional
influences on one another, in a manner that recruits operations from widely distributed systems

across the brain.

While the results presented here provide preliminary neural support for AARM, our
approach has several limitations. AARM comprises a set of dynamic mechanisms that are
hypothesized to be involved in category learning, but the analyses presented here were not
intended to make any claims about the computations that occur in the regions identified. Instead,
the interpretations that we can draw from a GLM are limited to the notion that model-generated

attention gradient magnitude accounts for significant variability in BOLD signal change in the
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regions specified. We additionally opted not to conduct similar analyses with attention signals
generated by any alternative theoretical accounts. We therefore do not claim that our results
could only be identified by AARM, as it is likely that other adaptive attention models would also
recruit activation of similar brain regions. For our purposes, it was sufficient to demonstrate that
adaptive attention in AARM covaried with neural activation in a manner that a model with stable
attention across trials would not be equipped to do. Finally, it is important to note that the current
dataset and analysis cannot suitably arbitrate between activation related to attention updating and
activation related to traditional notions of prediction error as described by RL accounts (Sutton &
Barto, 2018). This is because 1) prediction error is implicit to AARM’s mechanisms for attention
updating; and 2) transitions between sub-tasks of the Mack et al. (2016) design naturally give
rise to both a high probability of prediction error and the necessity to redistribute attention to
newly-relevant dimensions. While we do not consider this distinction to be antithetical to the
conclusions presented here, follow-up will investigate AARM’s predictions in the context of task
paradigms that were designed to dissociate between the respective roles of attention and error

processing (e.g. Calderon et al., 2021).

The relative simplicity of our analytical approach nevertheless provided us with the
opportunity to explore the potential reach of adaptive attention, without imposing constraints on
the particular nature of the connection between the latent signal of interest and neural activation
in each region. Now that we have established a set of ROIs that coactivate with attentional
tuning, the findings presented here will serve as an impetus for future joint modeling work using
AARM as a tool to understand the dynamic neural computations involved in learning (Turner,
Forstmann, & Steyvers, 2019; Turner, Forstmann, Love, Palmeri, & van Maanen, 2017; Turner,

Forstmann, Wagenmakers, Brown, Sederberg, & Steyvers, 2013). In the following sections, we
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discuss the ROIs shown in Figure 3 in terms of the functional clusters for category learning that

were defined by Seger and Miller (2010).

Parietal Cortex

The largest ROI that was identified by our GLM analysis contained the superior parietal
lobe (ROI 1 in Table 1), which is known to play a role in attention orienting and prioritization
(Bisley & Goldberg, 2010). In the context of category learning, the process of tuning attention
weights can be understood as a matter of orienting attention to the appropriate dimensions,
similar to how attention must reorient following an invalid cue in an attentional cueing task (e.g.
Posner cueing paradigm; Posner, 1980). When a spatial location (or object) is cued with an
invalid cue, attention to the cued location must be diminished in order to facilitate detection of
the target elsewhere, which leads to slower response times on invalid trials (i.e., the cueing
effect). In this context, BOLD activation in the superior parietal lobe have been shown to track
processing differences between validly- and invalidly-cued targets (Vossel, Weidner, Thiel, &
Fink, 2009), and individuals with parietal lesions demonstrate a disrupted ability to inhibit
invalid cues (Sapir, Hayes, Henik, Danziger, & Rafal, 2004). Other work has suggested that the
lateral intraparietal area (LIP) is critically involved in integrating bottom-up (salience-based) and
top-down (relevance-based) influences on overt attention (for review, see Bisley & Goldberg,
2010). In particular, Bisley and Goldberg (2010) argued that LIP serves as a “priority map,"
whereby saccades occur in proportion to behavioral relevance with influences from rapid visual
response. In connection to AARM’s mechanisms for attention, the parietal cortex serves a
function that is conceptually consistent with allocation of attention to spatial locations according
to a combination of learned dimension relevance with potential influences from secondary

computational goals.
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Visual Cortex

Along with superior parietal lobe, the largest ROI that we identified also contained the
bilateral visual pathways in the visual cortex (ROI 1 in Table 1), which has been shown to be
involved in tasks that require visual processing of spatial locations or visual features (Maunsell
& Treue, 2006; for review, see Posner & Gilbert, 1999; Ungerleider & Kastner, 2000). Important
insights on the role of visual cortex in attention, for example, came from early single-cell
recordings from macaques (Chelazzi, Duncan, Miller, & Desimone, 1998; Chelazzi, Miller,
Duncan, & Desimone, 2001; Luck, Chelazzi, Hillyard, & Desimone, 1997; McAdams &
Maunsell, 1999, 2000), which broadly demonstrated neuronal firing preferences for search
targets that closely matched a cue. Some studies have additionally shown that after sufficient
training, neurons in the inferior temporal gyrus can selectively respond to targets that match a
cue on the basis of a particular, task-relevant feature despite mismatching on others (Bichot,
Rossi, & Desimone, 2005; De Baene, Ons, Wagemans, & Vogels, 2008; Sigala & Logothetis,
2002) and similar correlates of learned discriminability have been observed via human fMRI
(Folstein & Palmeri, 2013; Reber, Gitelman, Parrish, & Mesulam, 2003; Saenz, Buracas, &

Boynton, 2002).

In general, the visual cortex is thought to represent objects at the basic perceptual level
(e.g. contrast sensitivity and spatial resolution) in a manner that connects to orientation and can
be modulated by covert attention (Barbot & Carrasco, 2017; for review, see Carrasco, 2011). It is
therefore notable that model-generated attention covaries with low-level sensory processing in

the visual cortex.
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Hippocampus and Medial Temporal Lobe

Five ROIs overlap with the hippocampus and medial temporal lobe functional cluster
described by Seger and Miller (2010; ROIs 7, 10, 11, 13 and 14 in Table 1). The medial temporal
lobe (MTL) is thought to be responsible for functions related to the encoding and maintenance of
individual learning instances (Cutsuridis & Yoshida, 2017; O’Reilly & Munakata, 2000). The
CA3 field of the hippocampus is thought to be particularly relevant to category learning, given
its role in forming autoassociative links between items. This mechanism is characterized by the
representational reactivation of previously-observed items during encoding in order to properly
orthogonalize cues that overlap on a subset of dimensions (Becker & Wojtowicz, 2007; Gluck,
Meeter, & Myers, 2003; O’Reilly & McClelland, 1994; Sutherland & Rudy, 1989). Learners
therefore are able to quickly store activation patterns of similar items with minimal interference

(for review, see Hunsaker & Kesner, 2013).

As expected, several studies have demonstrated MTL recruitment during category
learning tasks, both alongside human fMRI (Poldrack et al., 2001; Poldrack, Prabhakaran, Seger,
& Gabrieli, 1999; Seger & Cincotta, 2006) and monkey neurophysiology methods (Hampson,
Pons, Stanford, & Deadwyler, 2004). Other work, however, has suggested that the involvement
of the MTL is contingent upon the mode of learning that is required for a particular task. While
rule-based categorization (i.e. categories are dissociable by a single dimension) tends to result in
maximal differential activation in the hippocampus, information integration (i.e. information
from multiple dimensions is required to identify the category) and paradigms that contain
unannounced rule-switches tend to additionally recruit the basal ganglia (Poldrack, Prabhakaran,
Seger, & Gabrieli, 1999; Seger & Cincotta, 2005) and prefrontal cortex (Nomura et al., 2007,

Nomura & Reber, 2008).
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The MTL is nevertheless consistently recruited during initial training across paradigms
(Poldrack et al., 2001; Poldrack, Prabhakaran, Seger, & Gabrieli, 1999). This suggests that the
MTL is necessary for learning, but that familiarity-based activation may be insufficient for
categorization in more complex tasks. Studies have shown that item representations in the
hippocampus are reorganized in accordance with changing rule states when multiple training
periods occur within a single experiment (Aly & Turk-Browne, 2016a, 2016b). Importantly,
model-based fMRI work using SUSTAIN additionally showed that this reorganization is
influenced by selective attention to dimensions with learned relevance to the current task state
(Mack, Love, & Preston, 2016). In light of these results as well as the fact that attention updating
in AARM critically relies on continuous comparisons of probes to stored exemplars, identifying

ROIs in the MTL that covary with model-predicted attention was consistent with expectation.

Midbrain Dopaminergic Systems and the Basal Ganglia

Two ROIs overlap with the midbrain dopaminergic systems and basal ganglia functional
cluster (ROIs 7 and 9 in Table 1). The basal ganglia are thought to serve as a hub for converting
information inputs to actions, in the form of selecting both movements (Humphries, Stewart, &
Gurney, 2006) and task strategies (Frank, 2005). As part of the midbrain dopaminergic system
(Schultz & Romo, 1992), their role in action selection is critically influenced by reward-related
influxes in dopamine (Schultz, Apicella, Ljungberg, Romo, & Scarnati, 1993; Seymour, Daw,
Dayan, Singer, & Dolan, 2007). The superior colliculus, for example, has been shown to be
involved in RL by way of biasing visual responses in a reward-seeking manner (Shires, Joshi, &

Basso, 2010).
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Model-based RL accounts explain that this type of learning can arise from the continuous
calculation of prediction errors, which are the differences between expected and observed
rewards following particular sequences of actions (Nasser, Calu, Schoenbaum, & Sharpe, 2017;
Schultz, 2016; Frank & Badre, 2012a/b). More generally, RL comprises an iterative process of
prediction, action selection, observation of outcome, and error-based policy (i.e. strategy)
updating, such that observers use their experiences to guide future behaviors. While seemingly
straightforward, RL implicitly raises the problem of balancing exploration and exploitation: is it
better to exploit an action that is already known to produce a reward, or to explore other actions
in the hopes of acquiring a larger, less effortful, or more consistent reward? A compelling line of
computational and neurophysiology work (Frank, Doll, Oas-Terpstra, & Moreno, 2009; Frank,
Moustafa, Haughey, Curran, & Hutchinson, 2007; Frank, Seeberger, & O’Reilly, 2004;
Humphries, Khamassi, & Gurney, 2012) has suggested that the explore vs. exploit tradeoff is
directly modulated by striatal dopamine, such that increasing tonic striatal dopamine decreases
the probability of explorative action selection output from the basal ganglia to the superior
colliculus. fMRI studies have additionally shown that exploration tends to engage the frontal
pole whereas exploitation engages the vmPFC (Daw, O’Doherty, Dayan, Seymour, & Dolan,
2006), suggesting dissociable downstream executive effects of action selection via the basal

ganglia (Averbeck & O’Doherty, 2021).

In the context of category learning, the basal ganglia are involved in tasks that require
learning by trial and error (Cincotta & Seger, 2007). Similar to action selection in RL, it has been
suggested that the basal ganglia are involved in the selection of category representations and
strategies for sampling information from various dimensions (Seger, 2008; Seger & Miller,

2010) with the goal of maximizing accuracy. Turner et al. (2021), for example, provided
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evidence that observers may “exploit” dimensions via fixations that are known to carry
probabilistic category information, or they may “explore” other dimensions in the hopes of
identifying the one that is most reliably diagnostic of category membership. ROI results are
consistent with the expectation that model-generated attention covaries with activation related to

prediction error and policy updating in these regions.

Prefrontal Cortex

Seven ROIs overlap with the prefrontal cortex functional cluster (ROIs 2, 3,4, 5, 6, 8,
and 12 in Table 1). The PFC is broadly thought to be involved in goal-directed behavior (for
review, see Bogdanov, Timmermann, Glaescher, Hummel, & Schwabe, 2018). In category
learning tasks where the goal is to efficiently discriminate between categories, goal-directed
behaviors refer to the rapid identification and exploitation of the categorization rule. Evidence
from monkey neurophysiology has shown robust learning-related differences in neuronal firing
between categories, even when stimuli contain multiple overlapping irrelevant features
(Freedman, Riesenbuber, Poggio, & Miller, 2002, 2003; Freedman, Riesenhuber, Poggio, &
Miller, 2001). Similarly, human fMRI work has shown that learned boundaries between
categories as well as relevant feature conjunctions in information integration tasks are

represented in the PFC (Jiang, Bradley, & Rini, 2007; Li, Mayhew, & Kourtzi, 2009).

The PFC has been shown to engage during category learning (Reber, Stark, & Squire,
1998; Vogels, Sary, Dupont, & Orban, 2002), and PFC activation is the earliest predictor of the
choice after category distinctions have been acquired (Antzoulatos & Miller, 2011, 2014;
Djurfeldt, Eleberg, & Graybiel, 2001; Pasupathy & Miller, 2005). The PFC has additionally been

shown to be involved in error monitoring and corrective behaviors, particularly in the anterior
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cingulate cortex (ACC) and dIPFC (Antzoulatos & Miller, 2014; Carter et al., 1998; Hadland,

Rushworth, Gaffan, & Passingham, 2003).

While the basal ganglia appear to be involved in tuning the current stimulus-action policy
from trial to trial, the PFC is responsible for higher-level monitoring to identify rule-shifts and
inhibit the newly-ineffective policy as needed (Bissonette, Powell, & Roesch, 2013). Interactions
between the ACC and dIPFC have therefore been frequently identified in tasks that involve set-
shifting, like the Wisconsin Card Sorting Task (Monchi, Petrides, Petre, Worsley, & Dagher,
2001). Because AARM predicts attention updates in the direction of an error gradient, it is
consistent with expectation that the increased error frequency that accompanied rule-shifts were
associated with both substantial changes to the distribution of attention and increased activity in

the PFC.

Conclusions

AARM defines a mechanism of attentional tuning that arises as a consequence of the
observer’s categorization decisions in relation to feedback, and in turn, directly impacts the
psychological representations of future stimuli. Therefore, attention is adaptive in that it adjusts
to the experiences of the individual, and facilitates learning in a goal-directed manner. The
current study demonstrated that with its unique specification of attentional tuning, AARM was
able to accurately predict behavior in a complex task paradigm that required continuous
monitoring of goals and representations. Importantly, the attentional tuning mechanisms that
made it possible for AARM to predict human-like learning behaviors also covaried with
activation in distributed neural systems that have been implicated in distinct aspects of category

learning. Given that learning is known to require complex interactions among cognitive
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functions of orienting, visual perception, memory retrieval, prediction error, and goal
maintenance, our results provide preliminary support for AARM as a neurally-plausible theory

for how these interactions occur, and are facilitated by continuous updates to attention.
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Tables

Region(s) X Y Y4 Cluster size Max Z score

1. Bilateral visual pathways, superior parietal 12 -101 1 117004 11.00

2. Bilateral dorsal ACC, superior frontal gyrus 0 25 45 6283 6.43

3. L middle frontal and precentral gyrus -48 8 53 4142 6.79

4. R frontal pole 38 53 -5 3985 6.88

5. R superior middle frontal gyrus, premotor cortex 28 -4 49 2556 6.11

6. L superior middle frontal gyrus, premotor cortex -42 3 62 1432 6.78

7. Thalamus, hippocampus, superior colliculus -7 -33 -3 1249 5.10

8. R dorsolateral PFC 43 32 34 1212 6.67

9. R insular cortex, putamen, caudate 21 15 1124 5.19

10. L posterior middle temporal gyrus -58 -40 1120 6.05

11. R thalamus, parahippocampal gyrus 11 -44 -2 898 5.94

12. L frontal pole -28 54 9 812 5.70

13. hippocampus 21 -25 -8 747 5.00

14. R posterior middle temporal gyrus 47 -28 -1 392 5.55

Table 1: Regions of interest resulting from fMRI generalized linear model analysis.

Coordinates and clusters are in Imm MNI152 space. Spatially-contiguous voxel clusters

corrected for family-wise error at p<0.001. ROlIs are listed in descending order of cluster size.

L: left; R: right; ACC: anterior cingulate cortex; PFC: prefrontal cortex



NEURAL CORRELATES OF ADAPTIVE ATTENTION 58

Figure Captions

Figure 1: Conceptual overview of the Adaptive Attention Representation Model. Basic
mechanisms that occur within each component during a single trial are shown as a flowchart.
Green text indicates information provided to the observer during the trial, and all other
processes are considered latent. Red arrows indicate the direct role of the attention gradient.
Yellow markers indicate conceptually-associated neural functions. The dotted line indicates that
attention modulates the representation of stored exemplars despite not being physically present

at the time of stimulus processing. MTL: medial temporal lobe; BG: basal ganglia

Figure 2: Attention to dimensions affects accuracy. Circles overlaying the insect stimuli
indicate which dimensions were relevant in each sub-task. In all panels, vertical black lines
indicate transitions between sub-tasks. (A) Orange lines show mean model-generated gradient
magnitude values across participant-level simulations. (B) Purple, green, and yellow lines
correspond to mean model-generated attention (a) quantities allocated to leg, antennae, and
mouth dimensions, respectively. (C) Lines show means of observed (black) and model-generated
(orange) accuracy across participants. Shaded gray regions show the 95% Bayesian posterior

credible intervals assuming a Beta(1,1) prior on the probability of responding correctly.

Figure 3: Regions of interest resulting from fMRI generalized linear model analysis. Each
cluster is presented as a unique color rendered in MNI152 Imm standard space. Arrows in the

sagittal slices indicate the position of corresponding axial slices.



