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Abstract. The impact of biomass burning (BB) on the atmospheric burden of volatile organic compounds
(VOCs) is highly uncertain. Here we apply the GEOS-Chem chemical transport model (CTM) to constrain
BB emissions in the western USA at ~ 25 km resolution. Across three BB emission inventories widely used in
CTMs, the inventory—inventory comparison suggests that the totals of 14 modeled BB VOC emissions in the
western USA agree with each other within 30 %—40 %. However, emissions for individual VOCs can differ by a
factor of 1-5, driven by the regionally averaged emission ratios (ERs, reflecting both assigned ERs for specific
biome and vegetation classifications) across the three inventories. We further evaluate GEOS-Chem simulations
with aircraft observations made during WE-CAN (Western Wildfire Experiment for Cloud Chemistry, Aerosol
Absorption and Nitrogen) and FIREX-AQ (Fire Influence on Regional to Global Environments and Air Quality)
field campaigns. Despite being driven by different global BB inventories or applying various injection height
assumptions, the model-observation comparison suggests that GEOS-Chem simulations underpredict observed
vertical profiles by a factor of 3—7. The model shows small to no bias for most species in low-/no-smoke condi-
tions. We thus attribute the negative model biases mostly to underestimated BB emissions in these inventories.
Tripling BB emissions in the model reproduces observed vertical profiles for primary compounds, i.e., CO,
propane, benzene, and toluene. However, it shows no to less significant improvements for oxygenated VOCs,
particularly for formaldehyde, formic acid, acetic acid, and lumped > C3 aldehydes, suggesting the model is
missing secondary sources of these compounds in BB-impacted environments. The underestimation of primary
BB emissions in inventories is likely attributable to underpredicted amounts of effective dry matter burned, rather
than errors in fire detection, injection height, or ERs, as constrained by aircraft and ground measurements. We
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cannot rule out potential sub-grid uncertainties (i.e., not being able to fully resolve fire plumes) in the nested
GEOS-Chem which could explain the negative model bias partially, though back-of-the-envelope calculation
and evaluation using longer-term ground measurements help support the argument of the dry matter burned un-
derestimation. The total ERs of the 14 BB VOCs implemented in GEOS-Chem only account for half of the total
161 measured VOCs (~ 75 versus 150 ppbppm ™). This reveals a significant amount of missing reactive organic
carbon in widely used BB emission inventories. Considering both uncertainties in effective dry matter burned
(x 3) and unmodeled VOCs (x 2), we infer that BB contributed to 10 % in 2019 and 45 % in 2018 (240 and
2040 GgC) of the total VOC primary emission flux in the western USA during these two fire seasons, compared

to only 1 %—10 % in the standard GEOS-Chem.

1 Introduction

Biomass burning (BB), including wild and prescribed fires,
is estimated to be the largest primary source of fine partic-
ulate matter (PM) and the second-largest source of volatile
organic compounds (VOCs) globally (Yokelson et al., 2008),
impacting air quality, public health, and climate. In fire-prone
areas such as the western United States of America (USA),
the relative importance of BB emissions as a source of air
pollution has been growing due to increased wildfire activity
(Westerling, 2016; Higuera et al., 2021) and decreased an-
thropogenic emissions (Warneke et al., 2012; Simon et al.,
2015). Wildfires have been suggested to account for up to
half of the overall PM; 5 burden since 2012 and contribute to
its increasing trend in the last 3 decades in the western USA
(McClure and Jaffe, 2018; O’Dell et al., 2019; Burke et al.,
2021). Wildfire impacts on VOC burdens are highly uncer-
tain, in part due to the limited observational constraints on
BB VOC emissions. Here we apply comprehensive VOC
observations from two recent aircraft campaigns targeting
fires, along with the GEOS-Chem chemical transport model
(CTM), to examine our understanding of BB emissions in the
western USA.

Current CTMs often poorly simulate the impact of wild-
fire smoke partly because of an incomplete description of
the quantity and speciation of VOC emissions, along with
poor representation of their spatial, temporal, and vertical
distributions (Alvarado and Prinn, 2009; Jaffe and Wigder,
2012; Jaffe et al., 2018; Baker et al., 2016, 2018; Wolfe
et al.,, 2022). BB emission estimates are typically derived
from the product of a compound-and-biome-specific emis-
sion factor (EF, expressed as mass of species in grams per
dry biomass burned in kilograms) and an effective amount of
dry matter burned (effective DM burned, kg). Both EF and
DM burned are subject to large uncertainties (Akagi et al.,
2011; Andreae, 2019; Carter et al., 2020). EFs are either
measured in laboratory burning experiments that attempt to
simulate real-world fires or quantified from near-field mea-
surements on the ground or air that may be influenced by
atmospheric aging processes before sampling (e.g., Burling
et al., 2010; Warneke et al., 2010; Wooster et al., 2011; Per-
mar et al., 2021; Majluf et al., 2022). Recent efforts to rec-
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oncile the difference between laboratory and field measure-
ments support the need to adjust lab EFs to the typical field
combustion efficiency (Permar et al., 2021; Selimovic et al.,
2018). However, the burn conditions throughout the course
of a fire are currently not considered in inventories. In ad-
dition, commonly used global BB emission inventories often
consider only three to six biome groups (Andreae and Merlet,
2001; Wiedinmyer et al., 2011; Akagi et al., 2011; Randerson
et al., 2012; Kaiser et al., 2012; Koster et al., 2015; Andreae,
2019). For example, the Quick Fire Emissions Dataset ver-
sion 2.4 (QFED2.4) inventory has three biome groups to rep-
resent all global biomass: tropical forest, extratropical forest,
and savanna/grass (Koster et al., 2015). In the Global Fire
Emissions Database version 4 with small fires (GFED4s),
the extratropical forest biome is subdivided into the boreal
forest and temperate forest, and additionally two biomes for
peatland and agriculture/waste burning are considered, thus
giving a total of six (van der Werf et al., 2017). Differences
(and errors) in vegetation classifications among inventories
can also lead to diverse assigned EFs, even though those EFs
may come from the same experimental studies, thus resulting
in different emission estimates.

DM burned in commonly used emission inventories is es-
timated by two different satellite remote sensing approaches.
The “fire-detection-based and/or burned-area-based (FD-
BA)” method estimates DM burned from the product of
fire burn areas (BAs) and fuel consumption (i.e., loading,
type, timing, and rate). Global BB emission inventories us-
ing this method include GFED4s (van der Werf et al., 2017)
and the Fire INventory from NCAR version 1.5 (FINNv1.5;
Wiedinmyer et al., 2011). Another approach uses fire radia-
tive power (FRP, radiant energy released per time by burn-
ing fuel) and its empirical relationship with biomass burned.
Some widely used BB emission inventories using this ap-
proach include QFED2.4 (Koster et al., 2015) and the Global
Fire Assimilation System version 1.2 (GFASvl1.2; Kaiser
et al., 2012). Both FD-BA-based and FRP-based invento-
ries share common sources of uncertainties, such as missing
fire detections and/or FRP observations used to initialize DM
burned estimates. Additionally, those fire products are mostly
from polar-orbiting satellites with a low temporal coverage
(i.e., once or twice daily at a fixed local time) and can be ob-
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scured by clouds and smoke, resulting in assumptions often
having to be made to fill both temporal and spatial gaps in the
observations (Wang et al., 2018; Wiggins et al., 2020; Stock-
well et al., 2022). Current operational BB emission invento-
ries can produce monthly CO and aerosol fluxes that vary by
a factor of 5 or even 20 for a specific region (Al-Saadi et al.,
2008; Zhang et al., 2014; Koster et al., 2015). These differ-
ences in global total emissions averaged over longer periods
are smaller but still on the order of a factor of 2—4 (Strop-
piana et al., 2010; Granier et al., 2011; Carter et al., 2020;
Liu et al., 2020; Pan et al., 2020). The discrepancy could
be even larger in VOC emission estimates due to different
speciation among inventories (i.e., GFED4s has 21 VOCs,
while QFED2.4 has 9 VOCs). Different input data used to
drive BB emissions, such as EFs, fire detections, fire burned
area, and the amount of biomass burned, are all thought to
contribute to the divergent estimates among emission inven-
tories. Recently, Carter et al. (2020) suggested that, at least
for aerosol, the BB emission uncertainties are mostly from
DM burned at both regional and global scales and that differ-
ences in EFs across inventories are smaller than differences
in DM burned. These errors in estimating DM burned will
also affect VOC emission estimates; thus their uncertainty is
thought to be at least on a similar order to that of aerosol
and CO.

When compared to observations, previous model evalua-
tion studies (again mostly focusing on CO and aerosol) often
point to a general underestimation of BB emissions in the
commonly used inventories and a factor of 2 as the global
BB emission uncertainty (Kopacz et al., 2010; Wang et al.,
2018; Carter et al., 2020; Pan et al., 2020; Bela et al., 2022).
For example, various degrees of negative model bias are
found in aerosol optical depth and CO near BB source re-
gions when compared to corresponding satellite and ground
observations, though the FRP-based BB inventories often
provide higher emissions than the FD-BA-based estimates
(Yurganov et al., 2011; Petrenko et al., 2012, 2017; Zhang
et al., 2014; Reddington et al., 2016; Pan et al., 2020; Liu
et al., 2020; Bela et al., 2022). For the western USA, Pfis-
ter et al. (2011) suggested that an early version of FINN
(version 1) underestimated BB emissions by a factor of 4
over California, as revealed by constraints from aircraft and
satellite measurements. More recently, Carter et al. (2021)
found that the GEOS-Chem model driven by GFED4s is bi-
ased low for CO but captures the carbonaceous BB aerosol
when compared to the 2018 WE-CAN (Western Wildfire Ex-
periment for Cloud Chemistry, Aerosol Absorption and Ni-
trogen) airborne observations. Another recent study by Bela
et al. (2022) found that the daily mean emission estimates
from seven existing inventories for a case study of a west-
ern US wildfire varied by a factor of 83, despite bracketing
the observed BB CO fluxes. Even with observational con-
straints on certain input parameters (e.g., for relating FRP to
the quantity of biomass burned or emissions released), their
uncertainty range is still a factor of ~2 compared to the di-
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rect CO flux measurements in fire plumes (Bela et al., 2022).
A similar case study also suggested a wide spread of the
hourly emission estimates (spanning a factor of > 33) from
nine satellite-based inventories in the FIREX-AQ (Fire Influ-
ence on Regional to Global Environments and Air Quality)
airborne observations (Stockwell et al., 2022).

Here we aim to improve current understanding of
VOC emissions from wildfires in the western USA. Leverag-
ing the comprehensive VOC observations from the WE-CAN
airborne campaign, we evaluate a 0.25° x 0.3125° nested
version of the GEOS-Chem CTM driven by three commonly
used global BB emissions inventories (Sect. 4). We assess the
potential reasons for model and observation discrepancies in-
cluding the fire detections, emission ratios, and plume injec-
tion heights used in the emission inventory/CTM (Sects. 5
and 6). We further apply independent measurements from
ground sites and the FIREX-AQ airborne campaign to test
the regional representativeness and interannual variability in
our findings (Sects. 7 and 8). Finally, we discuss the potential
implications of our findings, taking into account the uncer-
tainties associated with the model results (Sect. 9).

2 Methods

2.1 WE-CAN aircraft campaign

The WE-CAN airborne campaign systematically character-
ized emissions and the chemical evolution of western US
wildfire smoke with the NSF/NCAR C-130 research air-
craft. The campaign was mainly based in Boise, ID, in July—
September 2018 and sampled 27 fire plumes in the near field
(some fires measured multiple times on different days) and
various cases of regional and aged smoke (Lindaas et al.,
2021; Permar et al., 2021). Table S1 in the Supplement sum-
marizes the sampling time, fire location, and acres burned for
specific fires sampled during WE-CAN.

Four sets of complementary VOC measurements were uti-
lized to constrain BB emissions, including a proton-transfer-
reaction time-of-flight mass spectrometer (PTR-ToF-MS,
or PTR), trace organic gas analyzer (TOGA), advanced
whole-air sampler (AWAS), and iodide (I") adduct high-
resolution time-of-flight chemical-ionization mass spectrom-
eter (I-CIMS). The four instruments have different strengths
and weaknesses in terms of analytical and separation powers,
uncertainty, and measurement frequencies (Apel et al., 2010;
Andrews et al., 2016; Palm et al., 2019; Permar et al., 2021).

We primarily focus on 14 VOCs or lumped VOC groups
that are represented in the standard GEOS-Chem version
12.5.0 with observations assigned to the model speciation
(Tables 1 and S2). Among them, 3 VOCs were mostly mea-
sured by discrete sampling with AWAS and in emission
transects (nearest downwind with <2h aging). Thus, we
limit their model evaluation to emission ratios. These in-
clude ethane, lumped alkanes with four or more carbon atoms
(or lumped > C4 alkanes), and lumped > C3 alkenes. The
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Table 1. VOC representation in the base-case GEOS-Chem simulation and WE-CAN measurements used in model evaluations.

Formula GEOS- Full name Biomass  Biogenic Anthropogenic  Instruments Measurement
Chem burning (MEGAN) (NEI2011) uncertainty
species (GFAS) (%)

CrHg C2H6 Ethane X NA X AWAS 10

C3Hg C3HS8 Propane X NA X TOGA 10

- ALK42 Lumped > Cy4 alkanes X X X AWAS/TOGA 10

- PRPE? Lumped > C3 alkenes x X x AWAS 10

CH,0 HCHO Formaldehyde X X X PTR/TOGA 40

CH3CHO ALD2 Acetaldehyde X X X PTR/TOGA 15

- RCHO? Lumped > C3 aldehydes xP NA X TOGA 30

CeHg BENZ Benzene X NA X PTR/TOGA 15

C7Hg TOLU Toluene X X X PTR/TOGA 15

CgHjo XYLE? Xylenes X NA X PTR/TOGA® 15

C3HgO ACET Acetone X X X PTR/TOGA® 15

CH3C(O)C,Hs MEK Methyl ethyl ketone xb NA X PTR/TOGA® 15

HCOOH HCOOH Formic acid xb X NA PTR/I-CIMS 50

CH3;COOH ACTA Acetic acid xP X NA PTR 50

Note: measurements used for figures in Sect. 4 are in bold text. @ The speciation of lumped VOCs in observations and models is provided in Table S2. b The default GFASV1.2 in the
standard GEOS-Chem does not contain RCHO, MEK, HCOOH, and ACTA. We incorporate their emissions by scaling CO BB emissions with corresponding emission ratios (ERs)

from Permar et al. (2021). They are 1.01 ppb ppm*1 for RCHO (sum of propanal and butanal species), 0.73 ppb ppnfl for MEK, 9.5 ppb ppm*1 for HCOOH, and 8.61 ppb ppm ™

1

for ACTA. © We applied 0.78/0.22, 0.65/0.35, and 0.8/0.2 ratios to the PTR-ToF-MS measurements to approximate the isomers of acetone / propanal, xylenes / ethylbenzene, and
MEK / butanal. The ratios are based on the speciated isomer distribution in the smoke transects closest to the fires observed by TOGA as described by Permar et al. (2021). NA: not

available.

other 11 VOC measurements used higher-frequency instru-
ments, allowing for more comprehensive model evaluations
along the C-130 (and DC-8) flight tracks. For these, we fol-
low the data reduction described in Permar et al. (2021),
mainly using PTR data with interferences corrected using co-
deployed TOGA measurements and laboratory observations
(Koss et al., 2018).

Figure S1 in the Supplement compares key VOCs
measured by higher-frequency instruments in the entire
WE-CAN (and FIREX-AQ) datasets. We find that PTR
agrees with I-CIMS within 420 %-40 % for formic acid.
PTR agrees with TOGA measurements within ~20 %
for formaldehyde, acetaldehyde, acetone, MEK, benzene,
and toluene, with high correlation between each instru-
ment (r =0.93 to 0.99; and similar agreements are found
in the FIREX-AQ dataset). PTR-measured xylenes are
~ 60 % higher than in TOGA during WE-CAN (and lower
by 20 % in FIREX-AQ), but again they are highly corre-
lated to each other. The difference in xylene measurements
is possibly due to unknown fragmentation and/or under-
characterized instrument sensitivity from likely varying iso-
mer fractions in smoke plumes in PTR. For those reasons, we
used TOGA xylene measurements whenever data are avail-
able (Sect. 4).

The emission ratios relative to CO in WE-CAN emission
transects identified in Permar et al. (2021) are used to eval-
uate this key input in emission inventories. CO was mea-
sured at 1 Hz with 1 ppb accuracy with a Picarro G2401-m
WS-CRDS analyzer during WE-CAN. All observations were
taken from the WE-CAN 1 min merge data unless other-
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wise noted (version 4; https://www-air.larc.nasa.gov/cgi-bin/
ArcView/firexag?MERGE=1TSS8, last access: 21 May 2023).

2.2 FIREX-AQ aircraft campaign and ground sites data

Two additional datasets are used to examine the broader rep-
resentativeness and the year-to-year variability in our find-
ings from WE-CAN. We use ground-level CO mixing ratios
from nine western US sites measured during WE-CAN 2018
to assess the model prediction of regional BB emissions at
the surface over the fire season. These include a mountaintop
site at Mt. Bachelor Observatory, OR; a long-term ground
station in Missoula, MT; and seven available Environmen-
tal Protection Agency (EPA) monitoring stations across the
western states (Table S3 and Fig. 1; Laing et al., 2017; Se-
limovic et al., 2020; https://www.epa.gov/ags, last access:
21 May 2023).

We also repeat the WE-CAN analyses using FIREX-AQ
DC-8 aircraft observations that took place in July—September
2019. FIREX-AQ was a joint field campaign led by NOAA
and NASA that investigated the chemistry and transport of
smoke from both wildland and agricultural fires in 2019.
Here we focus on the western US portion of FIREX-AQ,
which represents 64 % of the entire campaign data (Fig. 1
and Table S4). The DC-8 in FIREX-AQ systemically sam-
pled 18 wildfires in the western USA, and here we use the
1 min merge data unless otherwise noted (version R1; https://
www-air.larc.nasa.gov/cgi-bin/ArcView/firexaq, last access:
last access: 21 May 2023). The wildfire emission sizes dur-
ing FIREX-AQ were less than during WE-CAN as reflected
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Figure 1. VOC primary emissions over the western USA in the base GEOS-Chem simulation for the 2018 fire season (JJAS). Also shown
are the C-130 flight tracks during WE-CAN (black lines in the top-left map, a) and locations of the ground stations used in this study (black
x symbols in the upper-right map, b). Note the color scale for biogenic emissions (MEGANV2.1) is different from that for biomass burning
(GFASv1.2) and anthropogenic emissions (US Environmental Protection Agency (EPA) NEI 2011). VOC speciation for biomass burning in

the base simulation is provided in Tables 1 and S2.

by the GFAS total VOC emissions (20 versus 190 GgC in
the western USA on campaign-specific days) and the dis-
tribution of measured acetonitrile abundance in both cam-
paigns (Fig. S2). Together with the surface CO measure-
ments, they provide independent evidence to test if the model
emission biases found from WE-CAN in 2018 are represen-
tative across the western USA and in different years.

2.3 GEOS-Chem chemical transport model

We employ GEOS-Chem nested grid simula-
tions (version 12.5.0; Bey et al, 2001; http:
/Iwww.geos-chem.org, last access: 21 May 2023,
https://doi.org/10.5281/zenodo.3403111) to interpret
the recent airborne observations and ground measurements
in terms of new constraints on western US VOC emissions
from wildfires. GEOS-Chem is driven by assimilated mete-
orology from the NASA Goddard Earth Observing System
(GEOS). Here we use GEOS Forward Processing (GEOS-
FP) meteorological inputs to drive GEOS-Chem nested grid
simulations over North America for the WE-CAN (24 July—
14 September 2018) and FIREX-AQ (22 July—5 September
2019) periods. The nested domain covers 10-70°N and
140-60° W, with 0.25° x 0.3125° (~25km x 30km, lati-
tude x longitude) horizontal resolution and 47 vertical layers
extending up to 0.01 hPa (Wang et al., 2004; Kim et al.,
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2015). The model boundary conditions are obtained from
the global simulation at 4° x 5° resolution every 3h. The
transport/convection and emission/chemistry time steps of
the nested simulation are 5 and 10min, respectively. We
carry out a full-year spin-up simulation at 4° x 5° resolution
followed up by another 1-week spin-up at the nested resolu-
tion prior to the time periods of interest, to minimize effects
from initial conditions.

The GEOS-Chem chemical mechanism includes detailed
HO,-NO,—-VOC-ozone-halogen—aerosol chemistry with a
fully coupled troposphere and stratosphere (Park, 2004; Mao
et al., 2010; Eastham et al., 2014; Schmidt et al., 2016). Dry
deposition uses a standard resistance-in-series model (Wes-
ley, 1989). Wet deposition includes scavenging of soluble
tracers in convective updrafts, as well as rainout and washout
of soluble tracers (Liu et al., 2001). Emissions are computed
using the HEMCO module described by Keller et al. (2014).
These include biogenic VOC emissions from MEGANv2.1
(Guenther et al., 2012) as implemented by Hu et al. (2015a)
and anthropogenic emissions from the CEDS global emis-
sion inventory overwritten with the EPA’s national emission
inventory 2011 (NEI 2011) for the USA (Hoesly et al., 2018).
Below we describe aspects of the model configurations that
are most relevant to this work.

We carried out several simulations driven with four dif-
ferent global BB emission inventories. An initial result sug-
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L. Jin et al.: Constraining emissions of volatile organic compounds from western US wildfires

Simulation name

Biomass burning inventory

Injection height scheme  Diurnal representation

Inventory experiments ~ GFAS (base) sf2mami® WRAP (2005)
GFED4 surfaceP Mu et al. (2011)
QFED 35 % FT, 65 % PBL® WRAP (2005)

Injection experiments ~ GFAS 35 % FT, 65 % PBL® WRAP (2005)
GFAS surfaceP WRAP (2005)
GFAS sf2mami? WRAP (2005)
GFAS mamid WRAP (2005)
GFAS apb_apt® WRAP (2005)

noBB BB emissions turned off n/a n/a

3 x GFAS Tripled BB emissions sf2mami? WRAP (2005)

4 BB emissions are evenly distributed from the surface to the mean altitude of maximum injection (“mami”) from GFASv1.2.

b BB emissions are released into the model surface layer and mixed into the atmospheric boundary layer via diffusion before advection and
chemistry operators. € A total of 65 % of BB emissions by mass are released within the planetary boundary layer (PBL), and 35 % are
released between the top of PBL and 5500 m in the free troposphere (FT). d BB emissions are released to the mean altitude of maximum
injection from GFASv1.2. © BB emissions are evenly distributed from the bottom to the top of the plume from GFASv1.2. n/a: not

applicable.

gests that the FINNv1.5 emission inventory predicted only
4 %-8 % of western US BB VOCs or CO emissions com-
pared to those from the other three inventories, even though
their total global emission estimates agree within 40 %. This
is likely due to fuel characterization errors for this region
in FINNv1.5; thus we focus on simulations with GFED4s,
GFASv1.2, and QFED2.4 for the analysis in this work. A re-
cent study found that these three inventories strongly corre-
late with aircraft-derived hourly total carbon emissions dur-
ing FIREX-AQ but generally underpredict BB and cannot
capture the observed fire-to-fire variability (Stockwell et al.,
2022). For simplification, we denote these three BB invento-
ries as GFED4, GFAS, and QFED in the following discus-
sion. We also note that the BB emission inventories, in the
standard GEOS-Chem, may not contain a complete list of
VOCs in the model. We thus implement their BB emissions
in the base simulation (GEOS-Chem + GFAS; Table 2) by
scaling the CO BB flux with WE-CAN field-measured emis-
sion ratios (ERs) from Permar et al. (2021). These species in-
clude MEK, formic acid, acetic acid, and lumped > C3 alde-
hydes in GEOS-Chem + GFAS (Table 1).

The standard GEOS-Chem version also implements dif-
ferent emission injection height schemes for each BB inven-
tory, providing an opportunity to examine the impact of var-
ious plume height assumptions on the vertical distribution
of trace gases. Specifically, GFED4 (and FINNv1.5) emis-
sions, as incorporated in GEOS-Chem, are prescribed in the
model surface layer and mainly rely on diffusion and con-
vection (which depends on atmospheric turbulence and sta-
bility) for mixing before the chemistry operator. QFED pre-
scribes 65 % of BB emissions by mass evenly from the sur-
face to the top of the planetary boundary layer (PBL), and
the remaining 35 % are evenly distributed between the PBL
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height and 5500 m. This approach was based on the distri-
bution pattern of aerosol smoke plume heights from 5-year
Multi-angle Imaging SpectroRadiometer (MISR) observa-
tions and was suggested to improve PAN simulations at high
latitudes (Val Martin et al., 2010; Fischer et al., 2014).

GFAS, as implemented in the standard version of GEOS-
Chem, releases emissions evenly from the model surface to
the mean altitude of maximum injection (“mami”). GFAS
also provides estimates of the top and the bottom of the
plume at its native resolution (0.1° x 0.1° and daily). All
three products are derived from the Moderate Resolution
Imaging Spectroradiometer (MODIS) FRP product and a
plume rise model (PRM) at GFAS native pixels (Latham,
1994; Freitas et al., 2007). The PRM uses atmospheric pro-
files of meteorological parameters and fire information from
European Centre for Medium-Range Forecasts (ECMWF)
and MODIS observations to derive a full smoke detrainment
profile and further to be translated into injection height in-
formation (Rémy et al., 2017). The BB-free region is re-
garded as plume heights of zero in the model. Thus, the
plume heights would be artificially reduced when averaging
to the coarser-than-native resolution (i.e., 0.25° x 0.3125°
here). To account for this grid-dependent issue, we calcu-
late emission-flux-weighted averages for those GFAS plume
height products at the corresponding GEOS-Chem resolu-
tion.

For GFAS and QFED with temporal resolutions that vary
daily, the standard GEOS-Chem prescribes a climatolog-
ically diurnal distribution profile that emits the majority
(~ 85 %) of the daily BB emissions in the afternoon (lo-
cal time) (WRAP, 2005). For GFED4 with monthly tempo-
ral resolution, the model distributes the daily fraction using
MODIS active fire products and climatological mean diur-
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nal cycles (Mu et al., 2011). These temporal patterns are
in general consistent with observations in the western USA
as wildfires tend to be most active in the afternoon. A re-
cent study found that varying diurnal distribution using FRP
observed from a geostationary satellite (so that diurnal cy-
cles of BB emissions vary from grid to grid and from day
to day) shows little improvement compared to the climato-
logical approach representation at a campaign average for
both WE-CAN and FIREX-AQ, at least for the western USA
(Tang et al., 2022). Thus, in this work, we do not attempt
to constrain the diurnal distribution of BB emissions as that
would require continuous observations in the near field or
from space.

Table 2 summarizes all the simulation experiments used
in this study. These include three default simulations driven
by the different emission inventories which all have differ-
ent plume height schemes in the standard GEOS-Chem (“In-
ventory experiments”). In addition, we employ five differ-
ent plume injection schemes in combination with the GFAS
to test assumptions regarding BB emission vertical distri-
bution (“Injection experiments”). Further, we carry out one
simulation with BB emissions turned off (“noBB”) and an-
other simulation with 3 times the default GFAS BB emis-
sions (“3 x GFAS”) as additional sensitivity tests to examine
the BB impact in the western USA. All the simulations were
performed for the summer of 2018 and 2019, covering both
the WE-CAN and the FIREX-AQ campaign periods.

To directly compare the model to the aircraft observa-
tions, the model outputs are sampled along the C-130 and
DC-8 flight tracks (same location and altitude) and at the
time of the flights for every minute. Then both observa-
tions and model results are averaged to the center of the
model horizontal grid boxes and to transport resolution
(0.25° x 0.3125°; 5min). It is a general concern that Eulerian
models are not able to resolve sub-grid features, partly result-
ing from point source emissions being needed to be diluted
instantly to relatively coarse model grid sizes, particularly
when compared to observations from aircraft campaigns tar-
geting fresh fire smoke plumes. Thus, our model evaluation
does not focus on individual fire cases but rather on the cam-
paign average conditions, no-/low-smoke environments, and
trace : trace ratios. In addition, we apply the ground-based
measurements over a longer term as an additional test as they
should be less sensitive to any potential model biases due to
not properly accounting for sub-grid features in simulating
BB emissions. For this purpose, daily averaged CO obser-
vations from nine western US ground sites throughout the
summer 2018 are used to evaluate model outputs as an extra
representativeness validation. For this, either model outputs
at the surface layer or the corresponding elevation of obser-
vations (i.e., Mt. Bachelor Observatory) is used.
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3 Current knowledge of VOC emissions in the
western USA

Figure 1 shows the VOC primary emissions over the west-
ern USA in the base simulation during the 2018 fire sea-
son (June—September, or JJAS). This 4-month period typi-
cally accounts for 70 %—90 % of the annual acreage burned
in this region (Jaffe et al., 2008). In GFAS, the JJAS con-
tributes 85% of the 2018 annual BB emissions in the
western USA. According to emission inventories chosen in
GEOS-Chem, biogenic emissions are thought to be the dom-
inant VOC source in summer in this region (2200 GgC or
~75% of the total VOC emissions), followed by anthro-
pogenic emissions (405 GgC or ~ 15 %) and BB emissions.
In JJAS 2018, the total BB emissions from 14 VOCs in the
model range from 220 to 340 GgC (or 10 % of the total). As
we will show later, our model—observation comparisons sug-
gest that the role of BB is significantly underestimated in the
current CTMs.

In the 2019 fire season, the BB VOC emissions (40—
75GgC or 1 %-3 % of total primary VOC emissions) are
10 %-30 % of those in 2018 for this region and about 40 %—
50 % of the 2019 annual BB emissions depending on which
BB inventory is used. This shows the WE-CAN and FIREX-
AQ aircraft campaigns sampled two distinct fire seasons
which may reflect upper and lower bounds of wildfire ac-
tivity in this region (https://www.nifc.gov/fire-information/
statistics/wildfires, last access: 21 May 2023). Despite the
large interannual variability in wildfire emissions, the west-
ern USA accounted for ~ 90 % of BB VOC emissions in the
contiguous United States (CONUS) in 2018 and ~ 60 % in
2019 according to GFAS, confirming a significant fire influ-
ence exists in the western USA, which could also affect the
rest of CONUS downwind (O’Dell et al., 2021).

The total BB VOC emission estimates in the western USA
differ by 20 %—40 % across the three global inventories ex-
amined for the 2018 fire season. All emission inventories
show similar spatial distributions as they all use MODIS
satellite products such as active fire, burned areas, or FRP
as inputs. However, larger differences between inventories
occur for emission estimates for individual fires on specific
days (more than a factor of 20), also shown in Bela et al.
(2022) and Stockwell et al. (2022). These differences likely
reflect the various assumptions or adjustments made for fire
persistence, small fires, or fires obscured by clouds and haze
in the inventories (Liu et al., 2020).

All three global BB inventories suggest aldehydes, alka-
nes, and alkenes are the most abundantly emitted VOCs from
western US wildfires, largely consistent with recent field
measurements (Permar et al., 2021). However, emission esti-
mates for individual VOCs disagree by a factor of 1-5 in the
western US fire season (Figs. 2 and S3). Emission estimates
for xylenes show the largest difference (5 GgC in GFED4
versus 1 GgC in GFAS), while propane emissions agree
within £ 20 % across the three inventories (§—10 GgC). De-
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Figure 2. Biomass burning VOC emission estimates for the 2018 fire season (JJAS) (black) and emission ratios (red) over the western USA
in three global emission inventories. The emission ratios are regionally averaged from each inventory and are calculated from the regression
of daily mean VOC and CO BB emission fluxes at each grid cell for the region. Error bars represent 95 % confidence intervals from the
bootstrapping resampling of the regression. We note that regionally averaged emission ratios derived from inventories might differ from
those for individual fires derived from the full chemistry simulations used in Sect. 6. Values of zero indicate the species were not included in

the BB emission inventory.

spite the same FRP products being used, QFED is lower than
GFAS by a factor of 2-3 for emission estimates of acetalde-
hyde, lumped > C4 alkanes, and lumped > C3 alkenes. This
discrepancy can likely be explained by different emission ra-
tios and speciation used for lumped compounds in these two
inventories, in which QFED tends to have simpler specia-
tion (Kaiser et al., 2012; Koster et al., 2015). For instance,
C3-C¢ and Cg alkenes are incorporated in the GFAS, while
only C3 alkene is considered in the QFED. Besides, the emis-
sion ratios in QFED are primarily sourced from Andreae and
Merlet (2001), whereas GFAS has incorporated updates from
literature through 2009.

A recent global study comparing BB aerosol emissions
from inventories suggests that the effective DM burned is the
biggest contribution to divergent emission estimates across
inventories (Carter et al., 2020). In contrast, we find that the
regionally averaged ERs dominate disagreement in emission
estimates for most VOCs across the three inventories (Figs. 2
and S4). These ERs are regionally averaged from each in-
ventory and thus are functions of both assigned ERs for spe-
cific biome and vegetation classifications and are calculated
from the regression of daily mean VOC and CO BB emission
fluxes at each grid cell for the region from inventories.

Atmos. Chem. Phys., 23, 5969-5991, 2023

‘We also find that, at least for the western USA, these three
inventories agree on the amount of effective DM burned to
within 40 % (47-67Tg in 2018, as calculated by dividing
VOC and CO emission estimates by the corresponding re-
gionally averaged EF). Even though the amount of effec-
tive DM does not drive the inventory—inventory discrepancy
of emission estimates in the region, our model—observation
evaluations in the following sections infer that it is likely
too low. Indeed, using the National Interagency Fire Center
burned area report (~ 2.42 x 10® ha for 2018 in the west),
back-of-the-envelope calculation suggests that these global
inventories’ effective DM burned per area is 19-28 Mgha™!.
These values of biomass burned per area are at the low end of
the range of estimates from the United States Forest Service
(USFS) fuel consumption models, such as FOFEM and Con-
sume (25-193 Mgha™! for western US wildfires; Reinhardt
et al., 1997; Drury et al., 2014). Besides, limited field fuel
consumption measurements of western mixed conifer for-
est wildfires, ranging from 32-44 Mgha~! (Campbell et al.,
2007; Hyde et al., 2015), are also higher than values from the
global BB emission inventories. Taken together, these calcu-
lations suggest that the three global BB inventories under-
estimate the amount of DM burned in the western USA for

https://doi.org/10.5194/acp-23-5969-2023



L. Jin et al.: Constraining emissions of volatile organic compounds from western US wildfires

CO vertical profiles over western US (WE-CAN)
f T T T T T

400 i e
C-130 observations 3
GEOS-Chem + GFED4 j16
GEOS-Chem + GFAS 3 104
500 =125
GEOS-Chem + 3 x GFAS 3 242
J 664
J a2
600 =
1 269
3 304

1 354
179
4130
495
— 98
3173
370
59
141
136
322

Pressure (hPa)
~
o
o

[s:]
o
o

©o
o
o

© [T I T AT P AT T T T T

1000

100 200 300 400 500 600
Mixing ratio (ppb)

Figure 3. Median vertical profiles of CO mixing ratios in the west-
ern USA during the WE-CAN aircraft campaign (July—September
2018). GEOS-Chem simulations driven by three different biomass
burning emission inventories (GFED4s, GFASv1.2, and QFED2.4)
are compared to observations. Also shown are two model sensitiv-
ity tests with biomass burning emission turned off (noBB) and with
tripling GFASv1.2 emission (3 x GFAS). Model results are sampled
along the flight tracks at the time of research flights, and observa-
tions are regridded to model resolution. Profiles are binned to the
nearest 30 hPa. Horizontal bars show the 25th—75th percentile range
of measurements in each vertical bin. The number of observations
in each bin is given on the right side. Results are filtered to include
only data where the number of data points for the pressure bin is
larger than 10.

the fire seasons examined here, a conclusion that will also
be inferred from our model—observation comparisons in the
following sections.

4 Model evaluation with WE-CAN aircraft
observations

Figures 3 and 4 show the vertical distribution of CO and
VOCs sampled by the C-130 during WE-CAN, as well as
comparisons to various simulations. The observed abundance
of all species is elevated by 50 %—300 % within the plane-
tary boundary layer (> 850 hPa), indicating influences from
anthropogenic, biogenic, and/or BB emissions near the sur-
face during takeoff and landing time. The higher abundance
in the middle troposphere (750-500 hPa) than typical back-
ground conditions (i.e., < 500 hPa) is mostly due to BB, as
the C-130 targeted sampling both wildfire smoke in the near
field and aged smoke whenever feasible while in transit dur-
ing WE-CAN.

Simulations driven by different BB emission inventories
show remarkably similar abundance (mostly within + 10 %,
except for surface toluene and CO within & 30 %—40 %). All
the inventories capture the enhancement patterns observed
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by the C-130, both elevated altitudes and timing with high
correlations with observations (r =0.7 to 1.0 in 5 min aver-
aged data). The sensitivity run with no BB emissions (noBB)
indicates that wildfire is a significant source for CO and pri-
mary VOCs including propane, benzene, and toluene during
WE-CAN (enhanced by 2-3 times compared to noBB) but a
lesser source for oxygenated VOCs (OVOCs), especially for
formaldehyde (Figs. 4 and S5). The model driven by GFAS
(GEOS-Chem + GFAS) tends to simulate slightly higher and
better VOCs than GFED4 and QFED, possibly reflecting that
GFAS has more accurate ERs as discussed later in Sect. 6.

All three inventory experiments significantly underesti-
mate observed CO and VOCs, except for MEK. In the
middle to lower troposphere (> 500hPa), simulations re-
produce 40 %-70% of the observed abundance of CO,
benzene, toluene, and acetone and 30 %—40 % of the ob-
served propane, formaldehyde, acetaldehyde, and lumped
> C3 aldehydes but only 0 %—10 % of the observed organic
acids. The model suggests mixed performance for xylenes,
i.e., a high bias of 0 %—100 % in the lower troposphere and
a low bias of 50 %-100 % in middle troposphere. In a rela-
tively clean environment (< 500 hPa), the simulations show
relatively small negative biases for all compounds and tend
to match observations in generally clean or well-mixed envi-
ronments during WE-CAN.

Unlike other VOCs and CO, MEK is systematically over-
estimated by 50 %-300 % throughout the middle to lower
troposphere in all simulations including noBB but is repro-
duced in a relatively clean environment (< 500 hPa). Simi-
lar positive model bias has been reported in a recent study
comparing GEOS-Chem to a comprehensive suite of air-
borne datasets over North America (Chen et al., 2019). This
is likely due to the overestimation of MEK or its precursors
in the EPA NEI and/or MEGAN inventories (Yafiez-Serrano
et al., 2016), as such large high model bias exists even when
the BB influence is removed (Fig. 5). Thus, further evalua-
tion is needed for the sources of MEK and its precursors in
anthropogenic and biogenic emission inventories.

We further refine the analysis in low-/no-smoke condi-
tions by filtering out data when either the observed acetoni-
trile (CH3CN) mixing ratio, a known BB tracer, is > 159 ppt
(25th quantile of CH3CN) or the enhancement ratio of
CH;CN relative to CO is > 2.01 ppbppm~! (Huangfu et al.,
2021). The vertical profiles after applying this filter are
shown in Figs. 5 and S6 and represent about one-third of
the sampling time during WE-CAN, allowing us to exam-
ine the non-BB-related processes/emissions. Compared to
the full campaign data, the observations of CO and all VOCs
in low-/no-smoke conditions are lower by a factor of 2 or
more, confirming the important influence from BB in the
western USA during WE-CAN. The simulations capture the
observed CO, benzene, and toluene in this clean environ-
ment but still underestimate the rest of the VOCs (espe-
cially OVOCs) by 10 %-90 %, except for MEK. The low
model bias for formaldehyde in the free troposphere can

Atmos. Chem. Phys., 23, 5969-5991, 2023



5978

L. Jin et al.: Constraining emissions of volatile organic compounds from western US wildfires

VOC vertical profiles over western US (WE-CAN)

Frormf‘lldeh‘yde éﬁ i Acet:rlldehyde i Acetone é?s
: =
21
19
293
137
82
3
46
58
47
= R
L] 1 2 3 4 5 0 1 2 3 4
C-130 observations
= GEOS-Chem + GFED4
= GEOS-Chem + GFAS
~ GEOS-Chem + QFED
£ 82
= E
@ ¥ GEOS-Chem + 3 x GFAS
& B
= 1
X 08 1.0 0.0 0.1 0.2 0.3 0.4
ol w E 16 i
g Benzene i & Toluene i3 Xylenes i
X ) 41
= % 0 : it
700 £ 11 s m
82 a8 64
800 8 & i
55 :
900, AT 2z i p _?:5)
1000 ] ; 8 g ; 19 a - i 8
0.0 . . 0.3 0.6 0.00 0.05 0.10 0.15 0.20 025 0.000 0005 0.010 0015 0020 0025
Mixing ratio (ppb)

Figure 4. Median vertical profiles of observed VOC mixing ratios in the western USA during WE-CAN. GEOS-Chem simulations driven
by three different biomass burning emission inventories (GFED4s, GFASv1.2, and QFED2.4) are compared to observations. Also shown
are two model sensitivity tests with biomass burning emission turned off (noBB) and with tripling GFASv1.2 biomass burning emission
(3 x GFAS). Model results are sampled along the flight tracks at the time of the flights, and observations are regridded to model resolution.
Profiles are binned to the nearest 30 hPa. Horizontal bars show the 25th—75th percentile range of measurements in each vertical bin. The
number of observations in each bin is given on the right side of each panel. Results are filtered to include only data where the number of data

points for the pressure bin is larger than 10.

be partly due to underestimated oxidation of CHy or other
precursors (Zhao et al., 2022). The negative model bias
for acetaldehyde, formic acid, and acetic acid in the PBL
may be related to reasons including missing or underes-
timated precursors from biogenic emissions (Millet et al.,
2010, 2015; Paulot et al., 2011). The negative bias for ace-
tone in the middle—upper troposphere may reflect a poorly
constrained global background from ocean sources in GEOS-
Chem (Wang et al., 2020). Nevertheless, the negative model
bias in the low-/no-smoke conditions sampled during WE-
CAN (Fig. 5) is much smaller than the BB-influenced envi-
ronment. Thus, underestimation in the low-/no-smoke con-
ditions does not explain model underestimation across com-
pounds in the full campaign dataset (Fig. 4).

We calculate the average model biases that are due to
BB processes for each species using the enhancements be-
tween the full campaign dataset and the low-/no-smoke con-
ditions. Given the calculation of primary trace gases (CO,
propane, benzene, and toluene), we conclude that the model
potentially underestimates BB emissions or related processes
by a factor of 3-7 in the GFAS while the bias can slightly
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vary in the GFED4 or QFED. Thus, we further carry out
a sensitivity run by tripling the GFAS emissions in the
model (GEOS-Chem + 3 x GFAS) as a test of the BB im-
pact in the western USA. Figures 3 and S5 show that tripling
BB primary emissions results in evident improvements and
reproduces the observed levels for CO and most primary
VOC:s (propane, benzene, and toluene). The improvement for
xylenes is moderate due to other model errors in the averaged
OH reaction rate constant and ER (Sect. 6).

GEOS-Chem + 3 x GFAS has elevated simulated abun-
dance for OVOCs to various degrees compared to the base
run. For acetaldehyde and acetone, we find that 3 x GFAS
brings the model close to the measurement uncertainty. For
formaldehyde, formic acid, acetic acid, and lumped > C;3
aldehydes, tripling the primary BB emissions of these species
(and their precursors that are included in the model) does
not significantly improve the model-observation discrepancy
(the improvement is within 5 %). Since 3 x GFAS mostly
corrects the model error in primary BB emissions, this un-
derestimation suggests the current model likely misses large
secondary sources of these compounds in BB plumes due
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Figure 5. Median vertical profiles of observed VOC mixing ratios in the western USA for low-/no-smoke conditions sampled in WE-
CAN. GEOS-Chem simulations driven by three different biomass burning emission inventories (GFED4s, GFASv1.2, and QFED2.4) are
compared to observations. Results are filtered to include only data coincident with the bottom 25th percentile of observed acetonitrile, where
ACH3CN/ACO is less than 2.01 ppbppm_1 and where the number of data points for the pressure bin is larger than 10. Model results
are sampled along the flight tracks at the time of flights, and observations are regridded to model resolution. Profiles are binned to the
nearest 30 hPa. Horizontal bars show the 25th—75th percentile range of measurements in each vertical bin. The number of observations in

each bin is given on the right side of each panel.

to insufficient VOCs representation or errors in the chemi-
cal mechanism, which is supported by a recent box-modeling
study (Wolfe et al., 2022).

Eulerian models are known to have trouble preserving
sub-grid features such as concentrated fire plumes over time
due to rapid dissipation by numerical diffusion (Eastham
and Jacob, 2017; Rastigejev et al., 2010). Campaigns target-
ing plumes like WE-CAN can get particularly intense and
thus deviate from the climatologically diurnal distribution of
BB emissions used in the model, resulting in low model bias
when compared to aircraft measurements. In addition, any
wind direction or plume height errors in the model would
result in the model’s aircraft diagnostics missing the fire
plume when the real aircraft sampled it, contributing to some
amount of low bias. Finally, if the plumes are narrower than
~25km (and the aircraft transect lengths are also narrower
than ~ 25 km), then the plume will be diluted in the model
grid box more than the plane observed (even when including
the transect portions outside of the plumes), also contributing
to a low model bias. In addition to the BB emissions, those
above factors due to fire sub-grid features may all have con-
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tributed to the low model bias in the aircraft analysis, but it
is difficult to fully tease them out if at all possible. We thus
consider the model bias revealed here as the upper limit of
BB emission negative bias in the global inventories (Sects. 3
and 8).

5 Model uncertainties in fire detection and emission
injection heights

To explore causes for the underestimation of BB emissions
for these three emission inventories, we first determine if the
inventories have detected the 27 individual fire plumes sam-
pled in WE-CAN. A fire is considered to be detected if the
inventory has registered any CO emissions in the model sur-
face grid box at its location when the C-130 arrives. Table S1
shows that all the BB inventories (including FINNv1.5) cap-
ture all the sampled fires. BB emission inventories typically
rely on space-based observations of burned area or FRP (i.e.,
MODIS Terra and Aqua fire products) for fire detections.
For example, MCD64A1 burned area products are applied
in GFED4 and MOD14-MYD14 FRP products are used in
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GFAS and QFED. During WE-CAN, wildfires were mostly
sampled in the late afternoon when fires were the most ac-
tive. The fires sampled by the C-130 tended to have devel-
oped well-defined plumes that were visible from geostation-
ary GOES-16 or GOES-17 GeoColor images in the morning
of the same day when flight planning was finalized. Our find-
ing suggests that the fire detection products from low-orbit
satellites commonly used in global BB emission inventories
are efficient at detecting large fires in the western USA that
tend to burn for several days if not weeks or months.

We further examine the impact of the assumed injection
altitude of BB emissions by conducting sensitivity tests us-
ing five different BB injection height schemes (Table 2;
Sect. 2.3). Figure S7 shows almost identical model vertical
profiles in the five plume injection experiments, particularly
in the free troposphere. In the middle troposphere, the sim-
ulations with higher plume injection heights tend to show
larger enhancements; in the PBL, releasing BB emissions at
the surface tends to result in the highest surface mixing ra-
tios among the experiments. But the differences across sim-
ulations are within + 10 % except for benzene and toluene
(about =+ 40 % near the surface). The model does not appear
to be highly sensitive to assumptions regarding BB injec-
tion heights in the western USA at ~ 25 km resolution. This
insensitivity is likely because the trace gas emissions from
large wildfires are efficiently lifted into the free troposphere
by strong vertical mixing in the summer (Chen et al., 2009;
Jian and Fu, 2014). However, the choice of plume injection
heights can still be important for secondary production and
downwind areas (Tang et al., 2022). For example, daily mean
ozone concentrations vary by up to 14 % or 4 ppb at the sur-
face in our injection experiments. Thus, the impact of various
BB emission injection schemes on surface air quality needs
further investigation, especially for populated downwind re-
gions.

6 Model uncertainties in emissions ratios

Emission ratios (ERs; often interchangeable with emission
factors or EFs) can be a source of uncertainty in BB emis-
sions estimates if they are poorly characterized or unmea-
sured (e.g., Akagi et al., 2011; Urbanski et al., 2011). We
calculate ERs from the slope of the reduced major axis re-
gression of VOCs and CO measured (and simulated) in emis-
sion samples. In order to calculate ERs, plume samples with
physical ages less than 2h in the WE-CAN campaign and
less than 1 h in the FIREX-AQ campaign are used; these are
deemed to be relatively fresh, with minimal or no secondary
production. We note the observed ERs derived here using the
Smin averaged data tend to agree with what Permar et al.
(2021) reported within 20 %, despite Permar et al. (2021) cal-
culating ERs from 1 s observations and using the integration
approach. Also, calculating observed and simulated ERs in a
consistent way and according to the temporal and spatial res-
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olution of the model can provide a valuable constraint on the
overall model processes in terms of BB emission locations,
timing, transport, and chemistry in fire-influenced environ-
ments.

Figure 6 illustrates this approach with scatterplots of a
subset of observed VOCs and CO in emission transects and
their comparison to the simulated relationship in GEOS-
Chem + GFAS. The model shows the strong correlations be-
tween VOCs and CO (r =0.7 to 1.0), suggesting GFAS cap-
tures the regional BB locations and timing sampled by the C-
130 (Sect. 5). We find GFAS ERs agree with observed ERs
within 30 % or better for formaldehyde, acetaldehyde, ben-
zene, toluene, and lumped > Cy4 alkanes. GFAS is either too
high or too low by 50 %—70 % for ethane, propane, and ace-
tone. Overall, GEOS-Chem + GFAS tends to produce higher
and more accurate ERs than the other two inventories (Figs. 7
and S8). Some notably large errors in simulated ERs (> a fac-
tor of 2) include acetaldehyde in QFED and acetone, MEK,
benzene, and toluene in GFED4.

The modeled abundance and ERs of xylenes and lumped
> C3 alkenes are significantly underestimated across all in-
ventory experiments. These two lumped VOC groups are
highly reactive, with lifetimes of ~ 1h (assuming an av-
erage in-plume OH concentration of 1 x 107 molec.cm™3
and an OH reaction rate constant kop of 23.1 x 10712—
25.0 x 10712 cm3 molec. ™! s™1). Errors in their loss via
OH reactions due to incorrect OH concentration or kog could
distort their simulated abundance and ERs. Model bias in
OH concentration would affect all primary species in the
same direction, and reactive VOCs would be particularly sen-
sitive to such error. Thus, we use aromatic hydrocarbon—
hydrocarbon relationships to diagnose if there are any major
model OH biases in the current version. Figure S9 shows that
the base model can capture the observed toluene—benzene re-
lationship, in terms of both emission ratios and their relative
decay rates. This agreement indicates the good reproduction
of the OH level in the model, and future analysis is needed
for evaluating current koy in the model.

Further, we find that kog for xylenes in recent GEOS-
Chem versions has been updated based on new assump-
tions. The GEOS-Chem version 12.5.0 used in this analysis
assigns 23.1 x 10712 cm®molec.~'s™! as koy for xylenes,
based on the assumption that m-xylene is the domi-
nant isomer (Fischer et al., 2014). Other studies using
the fractions of xylene isomers observed in urban atmo-
spheres for a weighted koy have suggested values of
13.2 x 10712-17.0 x 10712 cm® molec. ' s~!, about 25 %-
40 % lower than used here, which, if updated, would result
in higher simulated xylenes (Atkinson and Arey, 2003; Hu
et al., 2015b; Bates et al., 2021). Therefore, correcting ko
could partly reconcile the negative model bias for xylene
ERs (i.e., 0.15 in corrected simulations vs. 0.32 ppbppm ™!
in observations). The isomer fractional information for other
lumped species and their chemistry in various environments
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Figure 7. Summary of biomass burning VOC emission ratios for western US wildfires observed on the C-130 during WE-CAN and the
DC-8 during FIREX-AQ. Also shown are the emission ratios in simulations driven by three different BB emission inventories. Model
results are sampled along the flight tracks at the time of flights every 1 min, and observations (and model outputs) are regridded to model
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the species were not included in the BB emission inventory in the standard GEOS-Chem or the ER calculation fails to reach the statistical
threshold (r2 < 0.4) in the RMA regression.
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is less known; thus future investigation is needed to refine
and assess the chemical impact of these lumped species.

7 Model evaluation with ground-based observations

The national wildland fire burned area in 2019
was only about half that in 2018 (https://www.nifc.
gov/fire-information/statistics/wildfires, last access:
21 May 2023). This is also reflected in the different
acetonitrile distributions measured between the two aircraft
campaigns (median 295 ppt during WE-CAN versus 205 ppt
during FIREX-AQ; Fig. S2). To examine the year-to-year
variability and regional representativeness of findings in-
ferred from the WE-CAN C-130 measurements, we expand
the analysis to observations from nine ground-based sites
in 2018 and the FIREX-AQ DC-8 aircraft in 2019. The
ground stations span several urban areas that are regularly
affected by wildfire smoke. More importantly, the longer-
term stationary measurements are further downwind in a
better-mixed environment and physically unable to target
plumes, and they can thus provide a counter-test to the
contribution of the other factors from fire sub-grid features
to model bias relative to aircraft observations that target the
plumes (Sect. 4).

Figure 8 shows that most of the nine ground sites were
heavily impacted by wildfire smoke in the 2018 summer,
as indicated by elevated CO mixing ratios up to 250 ppb
or higher lasting for a few days at times, while the general
urban background CO is about 150-200 ppb (Pfister et al.,
2011; Kim et al., 2013; Lopez-Coto et al., 2020; Gonzalez
et al., 2021). Using the noBB and the base simulations, we
define “BB-impacted days” as days when the modeled CO
daily mean is increased by more than 20 % relative to the
noBB run, and the rest of the days are termed low-/no-smoke
days. By this definition, Seattle and Denver were least af-
fected by BB in 2018 among the nine sites but still experi-
enced 7-8 BB-impacted days out of 55 d. The rest of the sites
all experienced > 25 BB-impacted days, according to GEOS-
Chem + GFAS. In general, the base model captures the daily
variation in the observed CO (r > 0.40 at all sites, with six
sites having r> 0.65). In Seattle and Denver, anthropogenic
emissions dominated local CO abundance and variability in
2018. The US EPA NEI appears to have spatial biases as the
base simulation captures observed CO in Denver but over-
predicts CO in Seattle.

Tables S6-S8 summarize the mean bias, root mean square
error (RMSE), and observation—model correlations for the
entire data period, BB-impacted days, and low-/no-smoke
days. Results show that GEOS-Chem + GFAS underpredicts
observed CO at the other seven sites by 95-140 ppb on aver-
age for the entire period. The negative model mean biases
are larger on BB-impacted days, pointing to model errors
in BB-related processes. The base model does overpredict
a few BB-impacted events, i.e., 4 and 17 August in Califor-
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nia (Chico, Stockton, or Fresno), likely because local me-
teorological processes affecting smoke transport or the tim-
ing of BB emissions of certain individual fires are not cap-
tured in the model (O’Neill and Raffuse, 2021). Even so,
the simulated CO abundance is underpredicted by > 100 ppb
on 40 %—-60 % BB-impacted days for all seven sites, while
the model background bias (loosely calculated by the Sth-
percentile CO mixing ratio) tends to be less than 70 ppb.
Thus, similar to the findings in Sect. 4, correcting the model
background CO bias (due to anthropogenic emissions or
global background) is not enough to reconcile the large
model—observation discrepancy. We find that the 3 x GFAS
simulation systematically improves the model mean bias
to various degrees across the western USA for the seven
fire-influenced sites without degraded correlation coefficients
with observations.

8 Model evaluation with FIREX-AQ aircraft
observations

Figures 9 and S10 show the model evaluation with FIREX-
AQ DC-8 VOC observations for the western USA. Observed
VOC mixing ratios during FIREX-AQ are lower than in WE-
CAN for this region partly due to fewer BB emissions in
2019 (Sect. 3). Overall, our findings for 2019 FIREX-AQ are
consistent with the 2018 WE-CAN evaluation: the base sim-
ulation tends to underestimate all observed VOCs but MEK
by a factor of 2—12 in the middle to lower troposphere. When
we restrict the analysis to the low-/no-smoke environment,
the base model also underestimates OVOCs and these nega-
tive model biases tend to be 40 %—100 % for the entire cam-
paign average (Fig. S11). The model improvement for pri-
mary VOCs from tripling BB emissions is significant across
the troposphere but not as obvious as during WE-CAN due
to smaller BB emissions in 2019 (Sect. 3). Both WE-CAN
and FIREX-AQ observations imply that the model misses
substantial sources for OVOCs, particularly formaldehyde,
formic acid, acetic acid, and lumped > C3 aldehydes.

We do not attempt to evaluate the modeled ERs for
FIREX-AQ because the inventories do not update ERs for
different years. Figure 7 shows the observed ERs in WE-
CAN and FIREX-AQ are consistent within the combined
instrument uncertainty (40 %) for a majority of VOCs in
western fuel types. Given the observational constraints in
ERs and primary BB emissions, we infer that the above miss-
ing OVOC sources in the model are most likely from photo-
chemical reactions in smoke plumes.

9 Implications for total biomass burning
VOC emissions in the western USA

We infer the systematic underestimation of simulated CO and

individual VOCs in the western USA is mostly driven by the
low bias of effective dry matter burned in fire-detected areas
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Figure 8. Time series of daily averaged CO mixing ratios from nine ground sites in the western USA during the 2018 WE-CAN campaign.
Also shown are three GEOS-Chem simulations (the base simulation GFAS in blue, 3 x GFAS in gray, and noBB in pink). Biomass burning
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format is month-day.

across three global BB emission inventories. This finding is
also supported by the low bias of inventories’ DM burned per
area (Sect. 3), the analysis of fire detections, injection heights
(Sect. 5), ERs from airborne measurements (Sect. 6), addi-
tional model evaluations with long-term stationary ground
measurements (Sect. 7), and aircraft observations in a differ-
ent year (Sect. 8). Nevertheless, the 3-times underestimation
of effective dry matter burned can be recognized as the upper
limit as the negative model bias could also be attributed to
the Eulerian models not being able to resolve sub-grid fea-
tures such as fire plumes (Sects. 2.3 and 4). It is impossible
to rule out and quantify these sub-grid uncertainties in the
0.25° x 0.3125° GEOS-Chem nested simulation (Rastigejev
etal., 2010; Eastham and Jacob, 2017), though our evaluation
using ground measurements helps support the argument of
the dry matter burned underestimation. Novel methods such
as adaptive grids or embedded Lagrangian plumes are needed
to fully resolve local conditions of the plume in future stud-
ies.

https://doi.org/10.5194/acp-23-5969-2023

Sensitivity tests with tripled BB emissions result in bet-
ter agreement between observations and model outputs, par-
ticularly for primary VOCs. Thus, our best estimate of the
BB primary emissions of the 14 modeled VOCs for the west-
ern US 2018-2019 fire seasons is 120-1020 GgC, which is
3 times the default emission estimates in three BB inven-
tories. This is also ~ 5 %-30 % of the total VOC emissions
from primary sources for the western US fire seasons. How-
ever, the model still underpredicts OVOCs, even with tripled
BB primary emissions; we are thus unable to constrain sec-
ondary production of BB VOCs in this work.

The above BB emission estimates are derived from
14 modeled VOCs with BB representation in three BB in-
ventories (Table 1). However, the total ER of these 14 BB
VOCs only accounts for half of the total measured VOC
ERs from 161 species observed during WE-CAN (75 ver-
sus 150 ppbppm™—'; Permar et al., 2021). The uncharacter-
ized BB VOCs in the model mean that there is a significant
quantity of missing reactive organic carbon fluxes in many
major BB emission inventories and CTMs. Their chemical
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and health impacts on the regional and global scale remain
largely unexplored (Carter et al., 2022; Permar et al., 2023).
Considering both underpredicted dry matter burned and un-
characterized VOCs, we infer that BB contributed ~ 10 %—
45 % (or 240-2040 GgC) of the total VOC primary emis-
sions in the western USA during the 2018-2019 fire seasons,
which is far more significant than common model represen-
tations as in Fig. 1.

10 Conclusions

We performed nested GEOS-Chem simulations and com-
pared them with observations from two recent airborne cam-
paigns and nine surface sites to constrain the BB CO and
VOC emissions in the western USA. We evaluated three
widely used global BB emission inventories including poten-
tially significant errors in their dry matter burned, fire detec-
tion efficiency, injection heights, and emission ratios. Based
on the model-observation comparison, we provided updated
emission estimates of BB VOCs for both modeled and un-
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characterized VOCs during two different fire seasons in the
western USA.

In the standard GEOS-Chem, BB VOC emissions in the
western USA rank as third in the rankings of total VOC pri-
mary sources (including biogenic and anthropogenic emis-
sions). Despite large interannual variability, the western USA
accounted for 60 %—90 % of BB VOC emissions over the
CONUS in 2018 and 2019. Across three global BB inven-
tories, total BB VOC emission estimates in the western USA
agreed with each other within 30 %—40 %. However, esti-
mates for individual VOCs can differ by a factor of 1-5,
mostly driven by regionally averaged emission ratios (re-
flecting a combination of assigned ERs for specific biome
and vegetation classifications) rather than effective biomass
burned.

We found that simulations driven by three different BB
inventories produce similar CO and VOC abundances. The
model reproduced the plume enhancements in the locations
observed in WE-CAN but showed negative biases for CO
and VOCs (except MEK). Better model performance was
found in relatively clean environments. By comparing BB-
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impacted abundance enhancements between no-/low-smoke
times and the entire campaign, we found that the model, re-
gardless of which BB inventory was used, underestimated
the BB emissions for primary compounds by a factor of 3—
7; these include CO, benzene, toluene, and propane. For
OVOCs that have both primary and secondary sources in-
cluding formaldehyde, formic acid, acetic acid, and lumped
> C3 aldehydes, tripling the BB emissions cannot fully ex-
plain the negative model bias; the model-observation com-
parison likely pointed to a large amount of missing sec-
ondary production in BB-impacted conditions in GEOS-
Chem, which could account for the remaining bias. Unlike
other VOCs, MEK was overestimated by a factor of 24
throughout the middle to lower troposphere, due to the over-
estimation of MEK itself or its precursors in the EPA NEI and
MEGAN emission inventories. Tripling the BB emissions in
GFAS reproduced observed mixing ratios for primary com-
pounds but showed no or less significant improvement for
OVOCs.

We found that the fire detection products in all the in-
ventories detected the large fires sampled in the WE-CAN
campaign. GEOS-Chem vertical profiles were not strongly
sensitive to the various tested BB injection height schemes,
as constrained by the observed VOC vertical profiles dur-
ing WE-CAN. This is likely because strong and efficient
vertical mixing during hot and dry summers in the west-
ern USA dominates the vertical transport processes. How-
ever, different injection height assumptions influenced the
modeled downwind surface ozone mixing ratios (i.e., daily
mean ozone differed by up to 14 % or 4 ppb); thus, the in-
fluence of injection heights on surface air quality requires
further investigations.

We evaluated modeled ERs with WE-CAN (and FIREX-
AQ) observations and found that GFAS performs slightly
better than the QFED or GFED4 inventories for both
VOC-CO correlations and ER values. GEOS-Chem 4 GFAS
captured the observed ERs in aircraft emission tran-
sects within 30 % for formaldehyde, acetaldehyde, benzene,
toluene, and lumped > C4 alkanes and within 50 %—70 % for
ethane, propane, and acetone. We also found the modeled
abundance and ERs of xylenes and lumped > C3 alkenes
are significantly underestimated across all inventory experi-
ments, likely reflecting the overestimation of the OH reaction
rate constant ko used in the model.

Given that the errors in fire detection, plume injection, and
ERs are relatively small, we infer that the underestimation of
BB emissions in these inventories (a factor of 3-7) is likely
due to underpredicted dry matter burned, which is also sup-
ported by our back-of-the-envelope calculation of effective
DM burned. However, we cannot rule out the uncertainties in
the nested GEOS-Chem (0.25° x 0.3125°) not being able to
fully resolve the sub-grid features of BB emissions. There-
fore, the above findings revealed by 2018 WE-CAN obser-
vational constraints are further tested for their regional rep-
resentativeness and interannual variability with observations
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from nine western US ground sites and the 2019 FIREX-AQ
airborne campaign. Compared to the ground-based “down-
wind” CO measurements, GEOS-Chem + GFAS captures
the observed BB smoke events but underpredicts the mix-
ing ratios in most cases. Tripling the BB emissions reduces
the model’s negative bias across the western USA without
degrading the correlation coefficients with observations. Re-
peating the analyses with FIREX-AQ observations also con-
firms the above conclusions.

Constrained by 2018 and 2019 airborne and ground mea-
surements, the 14 BB VOCs included in the model con-
tributed to 120-1020 Gg C of primary emissions in the west-
ern US 2018-2019 fire seasons. However, the total emis-
sion ratio relative to CO for these 14 VOCs in GEOS-Chem
only accounted for half of that from the 161 measured VOCs
in wildfire smoke, pointing to a significant quantity of un-
characterized reactive organic carbon fluxes that were miss-
ing in many current BB emission inventories and CTMs.
Thus, accounting for both these missing species and under-
estimated DM burned, the total BB VOC emission estimates
can reach 240-2040 Gg C or 10 %—45 % of the total primary
VOC emissions in the western US fire seasons, highlighting
a significant role of wildfires in US air quality.
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