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As Within, so Without, as Above, so Below: Common Mechanisms Can
Support Between- and Within-Trial Category Learning Dynamics
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Two fundamental difficulties when learning novel categories are deciding (a) what information is relevant
and (b) when to use that information. Although previous theories have specified how observers learn to
attend to relevant dimensions over time, those theories have largely remained silent about how attention
should be allocated on a within-trial basis, which dimensions of information should be sampled, and how the
temporal order of information sampling influences learning. Here, we use the adaptive attention represen-
tation model (AARM) to demonstrate that a common set of mechanisms can be used to specify: (a) How the
distribution of attention is updated between trials over the course of learning and (b) how attention
dynamically shifts among dimensions within a trial. We validate our proposed set of mechanisms by
comparing AARM’s predictions to observed behavior in four case studies, which collectively encompass
different theoretical aspects of selective attention. We use both eye-tracking and choice response data to
provide a stringent test of how attention and decision processes dynamically interact during category
learning. Specifically, how does attention to selected stimulus dimensions gives rise to decision dynamics,
and in turn, how do decision dynamics influence which dimensions are attended to via gaze fixations?

Keywords: categorization, learning, decision dynamics, eye tracking

When asked to describe an object, we instinctively do so in terms
of its components, or dimensions. To describe a jacket, we might
note dimensions like its color or size, where its pockets are placed, or
any insignia it has. When assigning objects to different categories,
certain dimensions are often more relevant than others depending on
the demands of the task. Distinguishing between spring and winter
jackets, for example, might require us to specifically note dimen-
sions like material, thickness, and types of closures, whereas
distinguishing between formal and casual jackets might depend
on dimensions like length and style.

How do we figure out which dimensions are relevant to a
particular task, and how do we use that information to categorize
new items? Theoretical accounts of category learning have sug-
gested that over the course of experience with many items, humans
gradually build up associations between features (i.e., “linen” and
“wool” could be considered to be features of the “material” dimen-
sion) and the available category labels (i.e., spring and winter
jackets). As more pairings between stimuli and category labels
are presented, the observer learns that a subset of dimensions is
particularly relevant for identifying category membership among all
sources of information that are available.
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Several models have described learning as a process of selectively
attending to the most category-diagnostic dimensions to support an
increase in accuracy across trials (e.g., Kruschke, 1992; Love et al.,
2004; R. Nosofsky, 1986). Although attention is often described as a
latent mechanism, the general mode of learning via selective atten-
tion has garnered theoretical support from eye-tracking work.
Results consistently show an increase in the proportions of fixations
to task-relevant dimensions, which co-occur with increasing cate-
gorization accuracy (McColeman et al., 2014; Rehder & Hoffman,
2005a, 2005b). Despite these findings, the impact of learning on
subsequent, generalized behaviors of information sampling and
decision-making has remained underexplored. In other words,
how does the knowledge we acquire through learning, such as
memories of previous items and the task relevance of individual
dimensions, impact the manner in which we seek out information
about new stimuli? As suggested by Rehder and Hoffman (2005a,
2005b), one might reasonably assume that dimensions are fixated
during each trial in proportion to their respective attention weights.
Intriguing experimental work by Blair and colleagues (Blair et al.,
2009; Chen et al., 2013; McColeman et al., 2014; Meier & Blair,
2013), however, has indicated that there might be more to the story.
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WITHIN-TRIAL ATTENTION DYNAMICS 1105

In the paradigm illustrated in Figure 1A, stimuli were constructed
using a hierarchical category structure where one superordinate
dimension (i.e., rotation of the green square) indicated which of two
subordinate dimensions was relevant to each trial (i.e., rotation of
the orange triangle or the purple cross). While fixations were evenly
distributed across dimensions early in the task, participants soon
learned to consistently orient to the superordinate dimension as each
new trial was presented (Figure 1B, C). Importantly, participants
subsequently fixated to one subordinate dimension and ignored the
other, depending on the feature identity within the superordinate
dimension. In other words, participants tended to only fixate to the
two dimensions that were relevant to each trial before making a
response, despite all dimensions being equally predictive of cate-
gory membership on average. These results indicate that humans not
only prioritize the most relevant dimensions to make accurate
categorization decisions, but also make ongoing decisions within-
trial about which sources of information to sample next and when to
terminate the sampling process with a response.

The goal of the current article is to establish a common set of
mechanisms for allocating attention to relevant dimensions between
trials over the course of learning, and sampling sources of informa-
tion within trials over the course of individual decisions. We focus
on the adaptive attention representation model (AARM), which was
described and validated using data from five benchmark category
learning paradigms in our previous work (Galdo et al., 2021).
AARM inherits its conceptual basis from context theory, which
suggests that the feature and category information associated with
previously-experienced items are stored in memory as discrete
episodic traces (Medin & Schaffer, 1978). As a dynamic extension
to the generalized context model (GCM; R. Nosofsky, 1986),
AARM describes how category representations are formed accord-
ing to the similarity between new stimuli and stored exemplars, and
are influenced by attention. The amount of attention allocated to
each dimension is updated according to trial-level feedback, in a
manner that is intended to optimize future responses with respect to
the learner’s goals.

Figure 1
Within- and Between-Trial Dynamics

(A)

(B)

(C)

0

Note. AARM =  adaptive attention representation model. (A) Illustration of a hierarchical stimulus structure. Feature values
(i.e., 0° or 45° rotation) in the superordinate dimension (green squares) indicated which of the two subordinate dimensions
(orange triangles or purple crosses) were relevant for identifying category membership. (B) Attention weights generated by
AARM’s between-trial module, given the sequence of stimuli shown in the top row. Weights were normalized for illustration.
Line colors correspond to the colors of the stimulus dimensions. (C) 100 sequences of dimension fixations were generated
using the within-trial module. Plots show mean fixation probabilities to each dimension as a function of the percentage of time
within-trial, between stimulus onset and self-termination. Within-trial attention weights were initialized according to the
outputs of the between-trial module for the relevant stimulus. See the online article for the color version of this figure.
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One major innovation of AARM is that it can be fit to both choice
and eye-tracking data simultaneously, such that model-generated
attention weights are informed by observed proportions of fixations
to each dimension. With these constraints in place, Galdo et al. (2021)
demonstrated that AARM could predict increasing proportions of
fixations to task-relevant dimensions that co-occurred with increasing
accuracy across paradigms of varying complexity (e.g., McColeman et
al., 2014; Shepard et al., 1961). Like similar adaptive attention models
of category learning (Attention Learning COVEring map [ALCOVE];
Kruschke, 1992; Supervised and Unsupervised STratified Adaptive
Incremental Network [SUSTAIN]; Love et al., 2004), however, trial-
level attention updates in AARM occur only after feedback has been
observed. While attention weights on Trial i may covary with
proportions of fixations on Trial i +  1 on average, the standard model
lacks the specificity required to predict stimulus-dependent effects of
information sampling like those observed by Blair et al. (2009). Here,
we therefore extend the mechanisms of AARM that were presented by
Galdo et al. (2021) to explain how humans leverage their experiences
to construct a representation of a new stimulus.

As illustrated in Figure 2, the current work presents the AARM
framework as two interrelated modules: (a) a between-trial
module to account for feedback-mediated changes in accuracy
and attention, and (b) a within-trial module to account for
information sampling and decision dynamics. Using insights
from accumulation-to-bound decision models (e.g., Ratcliff,
1978) and theoretical notions of pattern completion (Estes,
1994), the within-trial module of AARM makes predictions about
how participants decide which dimensions of information to
sample (i.e., via fixations), when to sample them, and when to
make a response. Taking both modules of AARM together, the
current article provides a comprehensive theoretical and compu-
tational framework for explaining how knowledge acquisition is
fundamentally shaped by the experiences of the learner. Before
introducing the mathematical details of AARM, we will first
introduce four assumptions that are central to our approach.

Attention Is the Mechanism of Learning

Categorization tasks provide a unique opportunity to study the
relationship between learning and attention. From work with
animals (Hall, 1991; Le Pelley, 2004) and humans (Bonardi
et al., 2005; Kruschke, 1996) demonstrating that learned dimension
relevance influences how future stimuli are represented, we gain
insight into how attention changes over the course of a task. In a
standard type of categorization paradigm, stimuli are designed from
a common set of dimensions, each of which can take on one of a
unique set of possible feature values. In experiments conducted by
Kruschke (1996), for example, stimuli were line drawings of box
cars consisting of three dimensions, each of which could take on two
possible features: height (tall or short), door position (left or right),
and wheel color (black or white). Participants were asked to assign
stimuli to arbitrary categories (e.g., Categories “A” and “B”) without
receiving explicit instructions about how each category was defined.
Instead, participants learned the experimentally defined feature-to-
category mapping through trial and error with corrective feedback,
and learning was assessed through changes in accuracy over
multiple trials.

For the sake of illustration, consider an example in which tall box
cars belong to Category A, and short box cars belong to Category B.
Assuming features are counterbalanced across dimensions, the only
way a participant can achieve perfect accuracy is by categorizing
stimuli according to the “height” dimension. Although a participant
can categorize stimuli on the basis of another dimension like wheel
color and be correct on a subset of trials by chance, humans do
indeed achieve ceiling-level accuracy in these types of tasks when
given sufficient training. In addition to simple “component” map-
pings (e.g., tall box cars belong to Category A; short box cars belong
to Category B) humans can learn more complex “compound”
mappings as well (XOR categories; e.g., short, black-wheeled,
and tall, white-wheeled box cars belong to Category A; tall,
black-wheeled, and short, white-wheeled box cars belong to

Figure 2
Within- and Between-Trial Modules of AARM

(A) Between-trial Updating (B) Within-trial Updating

Representation Representation

1 3

2 4

Attention Feedback Decision Attention
Decision

Evidence

Note. AARM =  adaptive attention representation model. (A) Between-trial updates to the category
representation occur via influences of attention and decision components from the previous trial. (B)
Within-trial updates require dynamic interactions among representation, attention, and decision
components. First, the representation guides attention to a relevant dimension (1). Attention drives an
encoding process for a fixated feature (2) to then update the amount of evidence (3) for each of a set of
category responses. The representation is consulted (4) to guide subsequent attentional deployment. See
the online article for the color version of this figure.
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WITHIN-TRIAL ATTENTION DYNAMICS 1107

Category B; Shepard et al., 1961). In general, findings across
category learning studies have indicated that human learners (a)
gradually acquire knowledge about which dimensions are relevant
to the task and (b) make categorization decisions according to which
dimensions are perceived to be most relevant (see Ashby &
Maddox, 2005; Markman & Ross, 2003, for review).

Categorization models often explain learning as a gradual
shift in how stimuli are represented in psychological space.
The influential GCM and its descendants have described suc-
cessful categorization as an outcome of “stretching” multidimen-
sional stimulus representations along relevant dimensions and
“shrinking” them along irrelevant dimensions (Kruschke, 1992;
Lamberts, 2000; R. Nosofsky, 1986; R. Nosofsky & Palmeri,
1997). As such, stimuli that differ along the relevant dimensions
will be perceived as being more dissimilar to one another (i.e.,
belonging to different categories) than items that differ along the
irrelevant dimensions. This manipulation of the psychological
object representation comprises the definition of attention among
many category learning models, such that allocating attention to a
particular dimension distorts the representation across trials
accordingly.

The typical use of GCM in explaining attentional phenomena has
been to freely estimate attention weights independently across
different blocks of an experiment, but the model does not specify
a mechanism through which learning occurs. Instead, attention is
allocated based on the properties of the category structure, and
learning is retrospectively inferred. In the current article, we use
intuitions from GCM to outline specific hypotheses about how
learning and attention interact, suggesting that attention itself is
the mechanism for learning.

The between-trial module of AARM uses gradient-based
mechanisms to update attention upon observation of category
feedback. Because the attention vector weights the influence of
plausible feature-to-category mappings when the observer assigns
an item to a category, gradient-based updating serves to reallocate
attention on every trial in a manner that reduces the likelihood of
future errors. As mentioned in the introductory section, our previous
work demonstrated that AARM’s combination of iterative exemplar
storage and attention updating were sufficient for predicting
learning-related behaviors across paradigms of varying difficulty
(Galdo et al., 2021; Shepard et al., 1961). Here, we additionally
describe attention as the mechanism by which information is
sampled from individual stimuli, such that fixations at each
within-trial timestep are calculated directly from the model’s pre-
dicted distribution of attention.

AARM’s specification of attention as the mechanism for
learning departs conceptually from alternative rule-based (RB)
classification and Bayesian updating accounts. RB classification
models seek to identify the boundary between categories, such
that the category label can be determined through a conditional
relation or weighted combination of feature values within the
current stimulus (Goldberg & Jerrum, 1995; Vapnik, 1998). The
Bayesian approach is to construct an internal model of each
category through iterative belief updating, and assume that a
latent category variable is responsible for generating a distribu-
tion of feature values (Anderson, 1991a; Oaksford & Chater,
1998; Tenenbaum & Griffiths, 2001). The sampling emergent
attention model (SEA; Braunlich & Love, 2021) combines intui-
tions from RB and Bayesian learning to account for both information

sampling and learning behaviors in the context of categorization
problems. Like AARM, SEA consists of two interrelated parts: (a) a
concept-learning component, which sorts stimuli into clusters (i.e.,
Anderson, 1991a) and determines the probability that a new item
belongs to each one; and (b) a utility-sensitive sampling component,
which performs preposterior analysis to balance the expected infor-
mation gain of each dimension against a prespecified cost of addi-
tional sampling.

Because SEA provides a similarly comprehensive account of
within-trial dynamics, we will refer to it throughout the article to
provide theoretical contrast to AARM. In particular, we describe
SEA as a “rational” alternative to AARM’s “mechanistic” approach.
As described by Sakamoto et al. (2008), rational theories assume
that humans learn to behave optimally within the constraints of the
environment. Mechanistic theories, by contrast, aim to predict
behavior by defining how information is processed and represented
in the brain. For example, parameters representing costs in SEA are
primarily used to instantiate different goals (e.g., responding accu-
rately vs. responding quickly), but also comprise the time and effort
involved in the perceptual encoding and processing of a stimulus
feature. As such, if the observer elects to sample information from a
dimension as a result of preposterior analysis, then the relevant
feature value is automatically used to update the observer’s state
of belief about the appropriate category label. Feature encoding
in SEA is, therefore, considered to be rational because it uses all
known information about the task environment to select the
action that will maximize gain and minimize loss: sample
information, or make a choice. AARM’s within-trial module
instead samples information from the dimension with the largest
attention weight at each timestep. Attention weights are updated
continuously throughout the trial, relative to an evolving work-
ing representation of the stimulus. Using familiar terms from the
visual search literature (see Itti & Koch, 2001, for review), overt
attention (i.e., describing the movement of the eyes) in AARM is
explicitly linked to endogenous covert attention (i.e., reflecting
latent, goal-directed processing). Encoding a feature value
occurs as a function of the cumulative covert attention that is
applied to an overtly attended spatial location. We consider
feature encoding in AARM to be mechanistic by Sakamoto
et al.’s definition because it occurs as a direct consequence of
latent theoretical subprocesses. Whereas rational approaches are
often considered to have an advantage of precision in terms of
the predicted behavior and justification (Anderson, 1991b),
mechanistic models are more appropriate for generating novel
predictions and understanding nuanced behaviors (Sakamoto
et al., 2008). Given the relative merits of each, we use this
distinction to highlight how AARM’s mechanisms give rise to
detailed predictions in various novel contexts, as well as poten-
tial departures from the predictions of SEA.

Attention Is Not a Zero-Sum Game

Since seminal work by Sutherland and Mackintosh (1971),
attention has often been understood as a fixed-quantity resource
that observers use until its limit is reached. The authors presented the
inverse hypothesis of animal learning, which described stimulus
dimensions in terms of attention units that were modulated by
reinforcement (e.g., food reward for correct category discrimination;
Mackintosh & Little, 1969). Importantly, the theory imposed the
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1108 WEICHART, GALDO, SLOUTSKY, AND TURNER

constraint that attention activation across all dimensions must sum
to a constant value, such that increasing the strength of one unit
will decrease the strength of the others. Follow-up empirical and
theoretical work by Mackintosh (1975), however, rejected the
inverse hypothesis in light of evidence that attending to one
dimension did not prevent learning of a second dimension in
complex stimuli. Nevertheless, the convention of treating atten-
tion as a “zero-sum game” persists across many contemporary
category learning models, such that attention weights across
dimensions are constrained to sum to a constant of one (chosen
arbitrarily by, e.g., GCM). Similar intuitions about attention being
represented as a constant sum have appeared in perceptual work as
well; for example, the assumption that attending to a target
stimulus in an array requires equivalent inhibition of distractors
(White et al., 2011).

While we do not contest that attentional capacity limitations
exist (Brydges et al., 2012; Janssens et al., 2018; Muller et al.,
2007; Muller & von Muhlenen, 2000), there is little empirical
evidence to suggest that the reserve of attention remains fixed
across trials and tasks such that a sum-to-constant constraint is
justified. Instead, an expansive literature has shown that task
difficulty, perceptual load, and parallel processing affect the
extent to which the capacity of the attention system becomes a
limiting factor (see Chun et al., 2011, for review). For example,
Lavie et al. (Lavie, 1995; Lavie & Cox, 1997; Lavie & Tsal, 1994)
have shown that both relevant and irrelevant items are processed
in visual search tasks when perceptual load is low, and inhibition
of task-irrelevant items only occurs when perceptual load is
sufficiently high. The sum-to-constant constraint, however,
implies that the capacity limit is reached across tasks, regardless
of difficulty.

Other studies have noted fluctuations in attention related to
aspects of the stimuli themselves, including perceptual and emo-
tional salience (Theeuwes, 1992, 2010), novelty (Johnston &
Schwarting, 1997), and motion (Anderson et al., 2011; Yantis &
Egeth, 1999). For example, visual search work showed that the
presence of high-salience, task-irrelevant cues significantly
impaired subsequent overt attention to task-relevant targets relative
to low-salience cues (Baker et al., 2021; Most et al., 2005). One
interpretation of the results is that a greater quantity of covert
attention continued to be allocated to the high-salience cues despite
being removed from the screen before the target even appeared.
Considering findings of flexible attention together, it is potentially
overly constraining to assume that all attention is known and is
entirely allocated to the stimuli intended by a given experimental
manipulation, as would be required for inhibition to occur in the
presence of a sum-to-constant constraint.

In line with connectionist models such as ALCOVE (Kruschke,
1992) and SUSTAIN (Love et al., 2004) which will be reviewed in
detail below, AARM does not adhere to a sum-to-one constraint.
Instead, attention to each dimension can fluctuate within and
between trials depending on a learned history of predictive reliabil-
ity, and the sum reserve of available attention is unconstrained.
In previous work, Galdo et al. (2021) used model-fitting
and comparison methods to evaluate various forms of attentional
constraints during category learning. In addition to the standard
sum-to-constant constraint, the authors implemented the following
within AARM’s basic between-trial structure: (a) A norm-to-
constant constraint, which allows for different forms of competition

between dimensions in addition to the assumption of fixed-quantity
attention (e.g., Extended adIT [EXIT]; Kruschke, 2001; Paskewitz
& Jones, 2020); (b) least absolute shrinkage and selection operator
(LASSO) regularization, which limits the number of dimensions
that can be attended within a trial (Park & Casella, 2008); and
(c) Ridge regularization, which imposes an upper bound on attention
to individual dimensions (Busemeyer Townsend, 1993). The results
provided evidence against fixed-quantity attention constraints
across five studies, with the model variant containing LASSO
regularization and between-dimension competition performing
the best overall. These results are considered to be consistent
with findings from other empirical and modeling work, which
similarly demonstrated that humans prefer to form representations
based on a subset of the available dimensions (Lee, 2001; Shepard &
Arabie, 1979; Sloutsky, 2003; Tversky, 1977; Ullman et al., 2002).
Galdo et al. (2021), therefore, concluded that humans demonstrate a
bias toward parsimonious solutions during learning, but neverthe-
less maintain some ability to flexibly allocate attention in order to
improve performance.

We designed the within-trial module of AARM with these results
in mind, given that the between-trial module is insufficient for
explaining how humans decide when to terminate the information
sampling process and commit to a choice during individual trials.
The within-trial module predicts self-termination through a combi-
nation of stochastic feature imputation and bounded evidence
accumulation. In the decision-making literature, accumulation-to-
bound models specify mechanisms through which an observer
samples information from a stimulus through time, and a response
is made when evidence in favor of a particular choice exceeds a
prespecified threshold. Unlike standard implementations (Brown &
Heathcote, 2008; Ratcliff, 1978; Usher & McClelland, 2001) or
extensions to multiattribute choice (Busemeyer & Townsend, 1993;
Krajbich et al., 2010; Trueblood et al., 2014), however, AARM
makes no assumption that moment-to-moment samples of informa-
tion are independent, but rather are integrated with information from
other dimensions to activate memories of exemplars and contribute
evidence toward a category response. To determine which sources
of information to sample, AARM first forms expectations about
which features might occur in each dimension (based on past
exemplars), and randomly draws potential feature values into a
working representation of the stimulus. The observer then orients to
dimensions that provide additional evidence in favor of the leading
category option at each timestep and updates the working represen-
tation as features are encoded. This “confirmatory search” behavior
naturally arises from the within-trial module’s gradient-based
mechanisms for updating attention, as will be discussed in the
Attention as an Optimization Problem section below. For now, it
is sufficient to establish that AARM continuously reorients attention
to encode stimulus features into its working representation, and self-
terminates when it samples enough information to surpass a decision
threshold.

Although SEA’s calculations are driven by predicted utility
rather than a theoretical measure of attention, it is worth noting
that SEA similarly does not impose a sum-to-constant constraint
on its estimates of utility. The model instead implements parsi-
monious resource expenditure by (a) comparing the predicted
utility of sampling a dimension to an expected cost and (b)
limiting the depth of forward search when predicting utility
(i.e., what Braunlich and Love (2021) refer to as a “mypoic”
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rather than full preposterior analysis). Through ongoing utility
calculations, SEA predicts self-termination when the potential
gain of sampling any dimension no longer exceeds the potential
cost of time and energy. Although this strategy is relatively
efficient for low-dimensional stimuli, preposterior analysis re-
quires the observer to determine the likelihood and category
association of every possible combination of feature values across
dimensions. This quickly incurs high-computational cost as more
dimensions are added, even when using the myopic strategy of
only making predictions one step into the future. AARM’s
approach, by contrast, incorporates human-like biases in the
interest of approximating observed behavior. Its approach is
therefore readily extendable to tasks involving higher dimen-
sional stimuli, given that expected feature values are spontane-
ously retrieved from memory rather than being exhaustively
considered.

In this way, AARM is similar to extensions to GCM that allow
for sequential acquisition and retrieval of information. In the
extended generalized context model (EGCM for response times
[EGCM-RT] Lamberts, 2000), stimulus dimensions are sampled
sequentially to facilitate gradual formation of a category repre-
sentation through time. Similarly, the exemplar-based random-
walk model (EBRW; R. Nosofsky & Palmeri, 1997) samples
exemplars from memory and makes a decision when evidence
surpasses a threshold. Unlike AARM, however, neither EGCM-
RT nor EBRW has mechanisms for prioritizing dimensions
according to task relevance, strategically reorienting to additional
dimensions within-trial, or self-terminating the sampling process.
Instead, both models sample and encode all available stimulus
information before making a choice.

Attention as an Optimization Problem

Although GCM made a major theoretical contribution by relating
attention to learning, an open question remained as to how attention
should change as learning occurs. After a few early attempts to solve
this problem (Estes, 1986; Gluck & Bower, 1988), perhaps the most
complete theoretical description was provided by ALCOVE
(Kruschke, 1992). ALCOVE combines exemplar-like representa-
tions used by GCM with an adaptive reinforcement policy engi-
neered by a connectionist architecture. The model consists of three
layers, connected by intervening sets of weights: an input layer
contains the stimulus features, a hidden layer contains a set of
exemplars, and an output layer contains the model’s representation
of a response probability. The set of weights that connect the latter
two layers is referred to as “attention,” given that they fulfill a
similar purpose to the attention weights in GCM. As in the typical
connectionist approach, back propagation is used to alter both sets of
weights after each new experience by minimizing a loss function
that compares the response probability output from the model to a
vector representing the true category label (e.g., provided by
feedback). Over time, adjustments to the attention weights minimize
the total number of categorization errors. This updating process can
be thought of as a first-order optimization process, solved by
gradient descent. The intuition of the problem solved by
ALCOVE is that attention weights should move to a location in
the abstract, multidimensional attention space that minimizes the
squared loss function over time. Later, a similar procedure was
assumed by SUSTAIN (Love et al., 2004).

Although ALCOVE has many similarities to GCM, a major
departure is that it does not allow for explicit storage of new
episodic events as they are experienced. Instead, ALCOVE pre-
supposes that a set of basis exemplars are specified prior to learning,
and the connection weights between experiences and exemplars are
adjusted through time. As clarified by Turner (2019), most learning
models take one of two forms: an “instance” representation or a
“strength” representation. The former consists of models that
assume that each new experience is captured in episodic memory,
creating an “instance” of the event (Estes, 1994; Logan, 1988, 2002;
Medin Schaffer, 1978; R. Nosofsky, 1986). The latter consists of
models that simply adjust a set of weights according to a rule,
leaving no permanent storage of those events for future retrieval (D.
Cohen et al., 1990; Rumelhart McClelland, 1988). Given this
distinction, ALCOVE is a strength-based model because it learns
by modifying its weight structures over time.

When making efforts to distinguish between these two classes of
theories, one pervasive problem is the confound between attention
and representation. Specifically, encoded information affects the
representation of the feature-to-category map, and this representa-
tion can subsequently drive the deployment of selective attention. In
this way, an introspective learner may wonder during a task “Am I
attending this dimension because I have learned that it is relevant, or
is this dimension only relevant because I have attended to it before?”
Assuming a prototypical structure, strength-based models incur
major theoretical limitations due to their lack of an explicit encoding
structure for experienced events.

Recent research has begun to elucidate the interactions between
the information that is stored, and the search for subsequent
information. For example, Rich and Gureckis (2018) have shown
that when only a subset of information is attended, subjects can fall
into “learning traps” by inappropriately generalizing information to
unattended dimensions. In other work, Turner et al. (2021) have
shown that selective attention can cause subjects to falsely believe
that one dimension is more relevant than it actually is, which can
curtail a learner’s willingness to explore new dimensions of infor-
mation. These results suggest that increasingly selective deployment
of attention across trials could be explained by the individual-
specific history of encoded features and their learned relevance.
The notion that attention orients based on an individual’s “selection
history” has become a popular way of thinking about how attention
should be deployed in response to one’s knowledge and one’s goals
(Awh et al., 2006). If we apply such logic in the context of category
learning, there clearly becomes a need to specify which experiences
enter into an observer’s representation when determining how
attention should orient.

To this end, AARM’s within-trial module enables confirmatory
information search, which is well documented in human learning
(Lefebvre et al., 2022; Nickerson, 1998; Talluri et al., 2018). Using
similar mechanisms to ALCOVE, AARM’s between-trial module
updates attention on each trial with respect to the correct category
label, as provided by feedback. To extend the same mechanisms to
account for sampling and decision dynamics, within-trial attention is
first initialized with weights inherited from the previous trial.
Attention is then updated at each timestep with respect to the
category label that currently has the most evidence, given that
the true category label is not known until after within-trial processes
terminate in a response. As such, the observer reorients to dimen-
sions that are expected to provide additional evidence for the
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category that is believed to be correct, given the current state of
knowledge about the stimulus.

By contrast, SEA specifies unbiased information search via
preposterior analysis. The observer samples dimensions that are
expected to serve the overall goal (i.e., increase the probability of
making a correct category response) in excess of the potential cost.
Broader sampling beyond the relevant dimensions is made possible
in the model by adjustments to an exploration parameter. The
distinction between confirmatory and unbiased information search
exemplifies the differences between AARM and SEA and their
respective purposes. For example, developmental work has shown
that while adults tend to categorize new items according to a
perfectly reliable dimension, children often make decisions in
consideration of multiple dimensions with less regard for overall
reliability (Blanco & Sloutsky, 2019; Deng & Sloutsky, 2015).
While AARM can be used to identify which cognitive mechanisms
potentially account for observed group-level differences in behav-
ior, SEA can be used to assess the efficiency of the two strategies
relative to rational predictions for behavior. Although confirmatory
search in AARM provides a natural extension to between-trial
mechanisms related error minimization to account for the unsuper-
vised aspects of within-trial dynamics, this notable departure from
optimal sampling may have limitations beyond the context of
category learning. These potential limitations and directions for
future investigation on its relevance to human behavior are ad-
dressed in the General Discussion section.

ALCOVE, SUSTAIN, AARM, and SEA all fundamentally spec-
ify learning as an optimization problem with respect to the ob-
server’s goals, but use different mechanisms to solve it. Given that
the models make very clear predictions for how dimensions of
information are attended over time in order to predict learning
(Braunlich & Love, 2021; Galdo et al., 2021; Kruschke, 1992;
Love et al., 2004; Mack et al., 2013, 2016), constraining and
adjudicating between their respective theoretical assumptions poten-
tially requires insights beyond what behavioral data alone can
provide.

The Necessity of Eye-Tracking Data

A central theme of this article is to use measures of gaze fixation
as a guide for developing a model of category learning that
considers both between- and within-trial dynamics. We are cer-
tainly not the first to use eye-tracking data to shed light on theories
of category learning (see Lai et al., 2013, for review). To investi-
gate the connection between latent and observable correlates of
attention, Rehder and Hoffman (2005a) collected eye-tracking
data while participants completed category learning tasks with
different levels of complexity (Shepard et al., 1961). The authors
demonstrated that eye-tracking data can distinguish among alter-
native model-based assumptions about how attention is allocated
at the beginning of the task as opposed to the end after learning has
occurred. ALCOVE (Kruschke, 1992), for example, predicts that
observers initially distribute attention evenly across all dimen-
sions before identifying which dimensions are most relevant. An
alternative theory outlined by the rule-plus-exception model
(RULEX; R. Nosofsky et al., 1994) assumes that observers
implicitly form and test hypotheses during learning, and therefore
predicts that observers would initially attend to a single dimension
until its relevance could be sufficiently ascertained. It is important

to note that these divergent assumptions could not have been
examined with a measure as coarse as trial-level accuracy. One
reason is that the distinction between pre- and postlearning was
essential to the question of interest. Given that only the first trial
contains information about attention in the absence of learning,
using accuracy as the outcome measure would require conclusions
to be heavily based on what is effectively a single data point. A
second reason is that observers could use either an ALCOVE-like
strategy of distributing attention evenly across dimensions, or a
RULEX-like strategy of fixating on one dimension at random, and
the predicted accuracy would be approximately equivalent on
average. With eye-tracking data, however, Rehder and Hoffman
identified fixation probabilities that were consistent with
ALCOVE rather than RULEX: participants fixated to all dimen-
sions with approximately equal probability at the beginning of the
task and attended only to the most relevant dimensions toward
the end.

While the results of Rehder and Hoffman (2005a) relied on trial-
level fixation probabilities, additional evidence suggests that gaze
fixation data can be used as a continuous measure of within-trial
attention as well (Blair et al., 2009; Chen et al., 2013; Krajbich et al.,
2010; Krajbich & Rangel, 2011; Rehder & Hoffman, 2005a; S.
Smith & Krajbich, 2019a, 2019b; Thomas et al., 2019). In work by
Blair et al. (2009), gaze fixation data were recorded while partici-
pants completed a category learning task with hierarchically orga-
nized stimulus dimensions (see Figure 1). As described in the
introductory section of the current article, the feature value in
one superordinate dimension indicated which of two subordinate
dimensions would be relevant for determining the category label for
each stimulus. If one were to fit a model like ALCOVE, SUSTAIN,
or AARM’s between-trial module to data from an experiment like
this (see Palmeri, 1999, for an application of ALCOVE), we should
expect the superordinate dimension to be preferentially weighted
because it is relevant across all trials. The two subordinate dimen-
sions would be weighted equally because they are each relevant to
50% of trials (Figure 1B). If one were to predict proportions of gaze
fixations directly from these attention weights, one might expect a
high probability of fixating to the superordinate dimension, and
lower, but equal, probabilities of fixating to the two subordinate
dimensions. In reality, Blair et al. (2009) noted distinct stimulus
effects on the trajectory of within-trial fixations, such that partici-
pants conditionally fixated to only one subordinate dimension per
trial after observing the feature identity of the superordinate dimen-
sion (see Chen et al., 2013; McColeman et al., 2014; Meier Blair,
2013, for replication). The results suggest that in addition to using
learned information about dimension relevance to sample informa-
tion, humans prioritize dimensions dynamically within a trial in
response to the stimulus itself. Although Braunlich and Love (2021)
demonstrated that SEA could predict a reduction in the number of
dimensions sampled across learning instances, the computation-
ally parsimonious “myopic” variant of SEA does not predict the
ordering effects observed by Blair et al. (2009). Given that SEA
considers all dimensions to have equal utility on average, it does
not produce preferential orienting behaviors that are consistent
with the hierarchical structure of the task. As we will show in Case
Study 2, however, AARM’s within-trial module can produce
stimulus-dependent information prioritization effects through
its combination of attention-mediated orientation and confirma-
tory information search.
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In light of empirical and theoretical work indicating that the
hierarchical organization of information is ubiquitous in human
learning (e.g., Barto & Mahadevan, 2003; Botvinick, 2012;
Botvinick et al., 2009), we suggest that the within-trial attention
effects that emerge from hierarchical category structures can poten-
tially make a more general statement about how humans sample
information from naturalistic environments. For example, contex-
tual features of the environment may serve as a set of superordinate
dimensions for deciding which sources of information to attend
when making judgments about new examples of recognizable
objects that people encounter in everyday life. We, therefore, place
particular emphasis on hierarchical category structures in the
demonstrations of AARM’s predictions in sections to follow.

As a final example to motivate the use of eye-tracking data in
developing our theory of category learning, it is relevant to note that
multiple modes of information sampling could yield inseparable
patterns of behavior under certain conditions (Figure 3). Consider
two hypothetical learners who are assigning four-dimensional sti-
muli to Categories A and B. One dimension (D1) is perfectly
predictive of category membership, such that an observer could
achieve 100% accuracy by learning the appropriate D1 feature-to-
category mapping (e.g., when D1 =  1, respond Category “A,” and
when D1 =  2, respond Category “B”). The three other dimensions
(D2, D3, and D4) are each 75% predictive of category membership.
Learner 1 is very efficient and identified the most reliable dimension
and exclusively sampled information from D1 after gaining

Figure 3
Information Sampling and Decision Dynamics

Note. AARM =  adaptive attention representation model. Hypothetical fixation paths were generated by AARM’s within-trial
module, such that one of four spatially segregated dimensions was fixated at each timestep up to a response. Left panels show the
probabilities of fixating to each dimension (y-axis), plotted as a function of the percentage of time within trial between stimulus
onset and response (x-axis). Right panels show the decision evidence for each of two possible category choices as a result of the
information sampling behavior (i.e., fixation paths) in corresponding left panels. Choice probability (y-axis) is plotted as a
function of absolute time in milliseconds (x-axis). Dotted lines indicate when self-termination (i.e., a response) occurred. Each
row shows the timecourses of fixations and decision evidence for: (A) a hypothetical subject who learned to attend to the
deterministic (100% predictive of category; D1) dimension; (B) a hypothetical subject who received conflicting evidence across
three probabilistic dimensions (D2, D3, and D4). Although each simulation reflects different information sampling behaviors,
Category A was selected in both examples. See the online article for the color version of this figure.
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experience with the task. In Figure 3A–B, we show an example in
which a learner fixated to D1, and concurrently accumulated
considerable evidence to support a Category “A” decision.

By contrast to Learner 1, Learner 2 happened not to notice that
D1 was the most reliable dimension. Instead, they found that by
attending to some combination of D2, D3, and D4, they could
achieve very high accuracy that in fact rivaled that of Learner 1.
Figure 3C–D shows an example in which a learner prioritized D4,
which provided some initial evidence for a “B” response. Sam-
pling information from D2 subsequently contradicted the infor-
mation in D4 and created uncertainty in the choice. To resolve this
conflict, the learner sampled information from D3, which pro-
vided sufficient information for making an “A” response. Given
that these two divergent learning profiles could yield identical
accuracy, responses alone may say very little about whether or not
a model is accurately capturing which dimensions are attended.
While different modes of information sampling could be dissoci-
ated by clever task design (e.g., Blanco & Sloutsky, 2019; Deng &
Sloutsky, 2015), measures of attention such as those provided by
eye-tracking data provide strong constraints on how attention is
deployed over time within a trial. In particular, a viable model of
category learning that uses latent attention to predict behavioral
changes should be able to account for multiple modes of observ-
able attention allocation as well. We will further explore the
impact of different sampling paths on response probability in
Case Study 1.

The examples highlighted in this section seek to clarify that
there are at least two problems in using behavioral data as the
lone metric for validating the assumptions of attentional deploy-
ment. First, when stimuli are multidimensional, it is possible for
many patterns of attention allocation to produce identical re-
sponses. Rehder and Hoffman (2005a) showed that eye-tracking
data could be used to support a broad distribution of attention
early in the learning period, as opposed to a systematic testing of
one dimension at a time. Relatedly, Figure 3 illustrated how
different sequences of fixation patterns within a trial could
ultimately produce the same category choice. Second, dimension
relevance may be highly contextualized within a trial, based on
the properties of the stimulus itself. A particularly striking
example comes from hierarchical category learning experiments
in which participants fixate to dimensions in a stimulus-
dependent manner before feedback is even observed (Figure 1,
Blair et al., 2009).

Despite overwhelming evidence that eye-tracking data provide a
rich source of information about the timecourse of selective atten-
tion during individual decisions, few efforts have been made to
extend the logic of categorization models to account for within-trial
dynamics (but see Braunlich & Love, 2021). Taking these findings
together, we assert that gaze fixations serve as a viable, necessary
means for evaluating category learning models in terms of predicted
attention allocation. By using eye-tracking data in the current work,
we are equipped to examine the theoretical mechanisms put forth by
AARM using a new standard of specificity, to which other models of
category learning have been infrequently subjected.

Summary and Outline

The introductory sections have supported the notion that
attention is a critical component for learning problems: It

accelerates learning by increasing the influence of relevant
dimensions on decision processes, and thereby limits the
time-consuming search for information when making decisions.
Our conceptualization of how attention should be deployed
follows those of Kruschke (1992), Love et al. (2004), and
Galdo et al. (2021) by treating attention as an optimization
problem. At face value, the problem of optimizing attention
should be similar at the between- and within-trial level, but there
are important differences that make for an interesting challenge.
Across trials, the learning problem is well-defined: One needs
only to specify how attention should be modified in response to
feedback (i.e., supervised learning). However, within a trial, the
problem is made more complex because the learner does not
know the true category label until after they make a response, but
must nevertheless decide which dimensions to sample (i.e.,
unsupervised learning).

The gold standard in solving the problem of unsupervised
learning is some type of forward computing, whereby relevance
is determined by considering all possible values of a dimension and
then aggregating the results to form an expected utility of each
(Nelson & Cottrell, 2007; Yang & Lengyel, 2016). SEA is perhaps
the most striking display of this approach, in which the utility of
sampling is computed for all dimensions prior to making a decision
to act (e.g., sample a dimension or make a response). Although this
approach has considerable promise, one potential weakness is that
it assumes an incredible amount of computation at each moment in
time to assess the potential utility of every sampling outcome. It is
possible that humans do indeed make these computations, but it
certainly is not an economical approach if suitable heuristic
alternatives were available, particularly in consideration of
high-dimensional stimuli.

By contrast, AARM focuses on the representation of the
current stimulus information rather than on the utility of
would-be collected information. The rationale behind this strat-
egy is that subjects maintain a sense of the distribution of
features that occur within each dimension, and they use this
distribution to form expectations about the current stimulus. By
dynamically updating the expectations, a “working” representa-
tion can subserve attention and the search for subsequent infor-
mation. To solve the unsupervised aspect of this problem, we
critically assume that information accumulates in a confirmatory
manner until category evidence surpasses a decision threshold.
This assumption appears to be vital to our approach, as it
naturally extends the between-trial module of AARM (Galdo
et al., 2021) to account for within-trial dynamics. To articulate
our proposed framework, we consider how latent attention is
updated between trials to facilitate learning, and within trials to
facilitate individual categorization decisions. Mathematical de-
tails and justification will be provided in the sections to follow,
but our theoretical framework can be summarized by the fol-
lowing core components:

•     Both within- and between-trial dynamics are described by
a common set of mechanisms. Interactions among
attention, representations, and decisions extend across
timescales to account for how humans acquire information
about individual stimuli and learn how to distinguish
between categories.
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• Over the course of learning, humans form simplified stim-
ulus representations composed of the dimensions that are
most relevant to the current task. Within-trial dynamics of
information sampling and decision-making describe how
these simplified representations are formed, such that only a
subset of information needs to be attended before a cate-
gorization response is made.

• Attention is optimized with respect to the current goal.
Gradient-based mechanisms typically require the observa-
tion of feedback to update the attention weighting structure
between trials. If we extend the same logic to the within-
trial level, we must define how the observer orients atten-
tion before the correct category label is known. We there-
fore describe how representations gradually evolve within
trial according to experience-based predictions and confir-
matory information search.

Second, the model maintains a representation of the current
stimulus probe, which it updates through time as it encodes new
information about each feature (i.e., a within-trial update). This type
of update entails (a) an encoding process where attention is applied
to a stimulus dimension in order to access the feature value con-
tained therein, (b) an imputation process where the model uses the
available information to form expectations about which feature
values will occur in unattended dimensions, and (c) an attention
rule that allows the model to reorient according to its updated
knowledge and expectations about the current stimulus probe.
We begin with a general overview of the between-trial module
and expand this model structure to accommodate within-trial
dynamics. For reference, a notation table and parameter definitions
are provided in Appendix B.

Between-Trial Updating Rule

• Hierarchical category structures are ideal for studying
within-trial dynamics, due to an implicit temporal ordering
of relevant information. In addition to giving rise to gaze
prioritization effects in an experimental setting, hierarchical
structures are ubiquitous in nature. We suggest that in real-
world scenarios, learners use environmental context as a
superordinate cue for processing the dimensions of new
stimuli.

To explicate these theoretical components, the remainder of this
article is organized as follows. First, we discuss the mathematical
details of AARM in terms of two separable but interacting modules.
We begin with a description of how AARM is applied to between-
trial learning, and then describe how expectations about features can
be managed dynamically to create a working representation of the
stimulus probe. We then describe how attention orients to confirm
the existing beliefs about a stimulus to complete our description of
within-trial dynamics. Second, we examine AARM’s ability to
capture important empirical effects by simulating its behavior in
four case studies. The case studies examine how attention is
deployed in several unique situations: (a) when expectations are
violated, (b) when relevance is contextualized within a stimulus
(e.g., as in the hierarchical category learning task), (c) when multiple
stimulus dimensions occupy the same location in space, and (d)
when learning occurs incidentally (e.g., dimensions are not relevant
to the learning process but become relevant when tested). We close
the article with a discussion about future directions and alternative
mechanisms.

Model Specification

To present the details of AARM, we separate our description into
distinct between- and within-trial updating processes as shown in
Figure 2. First, as described by Galdo et al. (2021), the model
updates the category representation in response to feedback on each
successive trial (i.e., a between-trial update). This type of update
entails (a) storing a new episodic trace containing the stimulus
information on the current trial, (b) storing information about the
category label (e.g., from feedback), and (c) updating the quantity of
attention that is allocated to each dimension.

The relevant mechanisms of AARM’s between-trial updating rule
will be provided here, but we refer the reader to Galdo et al. (2021)
for additional details. On each trial i of a categorization task, the
observer is asked to assign a D-dimensional stimulus e(i) to one of C
categories. To do this, the observer is thought to retrieve memories
of previously experienced exemplars X( i)  =  [x(1) : : : x(i) : : : x(Ni )]T

and their associated category labels F( i) =  [ f (1) : : : f (i) : : : f (Ni)]T

(i.e., as supplied by corrective feedback). As in GCM, AARM
assumes that memories of stored exemplars are “activated” in
proportion to their similarity to the current stimulus. Similarity is
computed by way of a factorizable exponential kernel (R. Nosofsky,
1986; Shepard, 1987), such that activation a(n) of the nth exemplar in
response to probe e(i) is as follows:

aðnÞ =  exp −δB αðiÞjeðiÞ −  xðnÞj mðnÞ: (1)
j=1

Here, δ is the specificity of the between-trial similarity kernel
function, M(n) =  [m(1) : : : m(Ni)]T contains the memory strength
associated with each exemplar, and α(i) =  [αðiÞ : : : αðiÞ] quantifies
the attention allocated to each of the D stimulus dimensions.
Although Galdo et al. (2021) assumed M was determined by a
weighting function that incorporates primacy and recency biases
(Pooley et al., 2011), we assumed all exemplars had equivalent
memory strength to provide constraint in our simulation case
studies. The probability of choosing Category c is the summed
similarity of the exemplars associated with that category, normal-
ized by the total across all exemplars (i.e., a weighted average).
Specifically, the choice probability VðiÞ associated with Category c is
as follows:

VðiÞ =  
P N  

1 aðnÞ I ðf ðnÞ =  cÞ
, (2)

n=1

where Iðf ðnÞ =  cÞ is an indicator function returning a one if the
statement is true and a zero otherwise.

After a response is made and feedback is observed, two actions
occur. First, the features of stimulus e(i) are stored in exemplar
matrix X  as a memory trace, and the true category label is stored in
feedback matrix F. Second, attention α(i) is updated in the direction
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of an error gradient, similarly to the adaptive attention models
described in the Attention as an Optimization Problem section
(i.e., ALCOVE and SUSTAIN):

αði+1Þ =  αðiÞ −  γB�α loss ðαðiÞÞ: (3)

Here, γB is a positive constant describing a between-trial learning
rate, and �α is a shorthand denoting a “gradient operator” for
computing the set of partial derivatives of a loss function f(α)
with respect to each element of the vector α:

�α fðαÞ� =      ∂α1 
fðαÞ     ∂α2 

fðαÞ      : : :      ∂αD 
fðαÞ :

To define the loss function, ALCOVE and SUSTAIN use the
so-called “humble teacher” rule, which allows for variability

in category activation between exemplars. Specifically, more
category-typical exemplars elicit greater activation than those
that are more peripheral (Kruschke, 1992). For the purposes
of our previous work on simplicity biases in human learning
(Galdo et al., 2021), we instead selected a cross-entropy loss
function because it allows for faster training and more reliable
extension to multiclass problems than squared-loss alternatives
(Demirkaya et al., 2020). Given successful fits to behavioral and
eye-tracking data with our previous specification for between-
trial attention updating, we apply cross-entropy loss in the
current work as well.

When using a soft-max rule (such as Luce-choice), the cross-
entropy loss function is simply the negative log-likelihood of correct
classification (Goodfellow, 2016):

 �α
loss ðαðiÞÞ =  −�α  log VðiÞ       ,

where VðiÞ is the choice probability associated with the feedback
given on the ith Trial (i.e., the correct response). Hence, to derive
the gradient, we need only take the partial derivative of Equation 2
with respect to α(i) along each of the D dimensions. We provide
this derivation in Appendix A. Our update equation for the
attention vector α(i) after observing feedback f (i) therefore
becomes:

αði+1Þ =  αðiÞ +  γB�αlog Vð
ðiÞ        : (4)

We stress that this updating procedure departs from strength-
based connectionist architectures in which back propagation solu-
tions provide the rule to update both the attention vector α(i) and
hidden layer weights. As shown by Galdo et al. (2021), simply
defining how attention should be updated across time within an
instance representation is sufficient to predict human categorization
behaviors.

Within-Trial Updating Rule

Figure 2B illustrates the important components of the within-trial
updating process, as well as its “default” temporal order (i.e., nodes
with numbers). Upon stimulus presentation, a set of initial attention
weights inherited from the previous trial of the between-trial module

dictates which information will be sampled. In this process, the eyes
orient to the location of the prioritized dimension (Node 1 in
Figure 2B). Once the eyes have fixated upon the intended dimen-
sion, a feature encoding process begins. Feature information is then
passed to the representation (Node 2 in Figure 2B), and similarity-
based activation of the stored exemplars is used to calculate evi-
dence for each category response (Node 3 in Figure 2B). The model
reorients attention in a confirmatory manner, according to which
dimension is most likely to provide further evidence that would
support whichever choice currently has the largest amount of
supporting evidence. This dynamic process self-terminates and
makes a response when a sufficient amount of evidence has accu-
mulated for an option.

For ease of exposition, we organize this section into the
following four stages of processing: stimulus encoding, exemplar
activation, evidence for category response, and attention orienta-
tion. Figure 4 provides an illustrative example of how each of
these components contributes to within-trial dynamics, and we
will use this figure as a working example to facilitate descriptions
of each component.

Stimulus Encoding

Memory theories often describe the psychological representations
of stored items or events as memory “traces,” which are organized
into discrete features of perceptual, contextual, and conceptual
information. While the contents of a memory trace cannot be
directly observed, recall and recognition paradigms provide insight
into which features are encoded under various conditions. For
example, if a lure item is falsely recognized among previously
studied targets at test, it indicates overlap between the features of the
lure and some subset of target memory traces (Deese, 1959;
Roediger & McDermott, 1995). Additional work has shown that
the distribution of features across stored traces and the extent to
which they can be associated with one another influence which
information will be encoded and subsequently retrieved (Dosher,
1984; Dosher & Rosedale, 1991; Greene & Tussing, 2001). With
these insights in mind, a recent dynamic model of encoding and
retrieval (Cox & Criss, 2020; Cox & Shiffrin, 2017) described trace
formation as a time-varying process. In this account, the iterative
encoding of individual probe features selectively activates memory
traces on the basis of similarity, and drives an evolving familiarity
signal toward a recognition threshold. Similarly, AARM’s within-
trial module was designed to build up an informative representation
of the probe throughout the trial, using retrieval of previous ex-
emplars to drive an evidence accumulation signal for making a
category response. Our specification of encoding in AARM’s
within-trial module builds upon mechanisms of prediction and
pattern completion observed in the hippocampus, in which previ-
ously observed item representations are reinstated during encoding
in order to fill-in missing information or properly orthogonalize
overlapping cues (see Bowman Zeithamova, 2020; Hunsaker
Kesner, 2013, for review). Prior to encoding any information about
a new stimulus, we assume that a working representation is popu-
lated by experience-based expectations of feature values. Expecta-
tions are gradually replaced with the true features of the stimulus as
they are attended and concurrently encoded over the course of
the trial.
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Figure 4
Illustration of Within-Trial Dynamics

Note. (A) An example stimulus is presented on the screen, and a stimulus dimension is sampled for processing (e.g., prioritized
from the between-trial module). (B) The observer generates a working representation of the stimulus and predicts what features
might occur in each dimension. As a feature is attended, predictions are replaced with true feature values. (C) Previously stored
exemplars are activated in proportion to their similarity to the probe. (F) The category labels associated with retrieved exemplars
accrue noisy response evidence. (E) Attention updates to discriminate among the currently most active category options. (D)
Gaze fixations are determined from the attention process, resulting in reorientation to new dimensions as needed to sample more
category-relevant information. See the online article for the color version of this figure.

To incorporate the logic of pattern completion into AARM’s
encoding mechanism, we follow a procedure outlined by Estes
(1994). Borrowing his example, suppose an observer experiences
the following three-dimensional stimuli: e(1) =  [1, 1, 1], e(2) =  [1, 2,
1], and e(3) =  [1, 2, 2]. Further suppose that on Trial 4, the observer is
presented with a partial stimulus e(4) =  [1, 1, ?] and is asked to guess
which feature value will occur in Dimension 3. We assume that an
observer will predict the feature value based on memories of
previous items and the current state of knowledge about the stimu-
lus. To make and evaluate predictions, one can impute each feature
value that was previously observed in Dimension 3 (i.e., [1, 2]) into
the partial stimulus, and evaluate which feature value is more likely
to represent the missing information.

Starting arbitrarily with a candidate feature value of 1 as shown in
Table 1 below, we compare the imputed stimulus (i.e., 111) to all
stored exemplars and determine whether the feature values match or
mismatch in each dimension. In the Comparison column of Table 1,
“matches” and “mismatches” are indicated by values of 1 and y
respectively, where y represents a baseline level of perceptual
discriminability. We then compute the product across comparison
values to determine the Similarity column (Medin & Schaffer,
1978). Finally, we compute the sum similarity across all stored
exemplars to determine the activation of imputed stimulus 111.

Similarly, we can calculate the activation when “2” is the missing
value using the same strategy (Table 2).

The probability of selecting a value is simply the activation of its
respective imputed stimulus, normalized by the total activation

across all candidates. In our example, the probability that the
stimulus e(4) has a feature value of 1 in Dimension 3 (i.e., eð4Þ) is
as follows:

 
ð4Þ 1 +  y +  y2

3                          1 +  3y +  2y2

As long as y is small enough to indicate sufficient perceptual
discriminability among candidate feature values, P(eð4Þ =  1)
will approach 1. In other words, when asked to complete the
partial stimulus e(4) =  [1, 1, ?], the observer is most likely to
respond “1.”

In extending the intuition of Estes’s example for the purposes of
dynamic encoding, it is necessary to distinguish between the “true”
identity of the stimulus and a “working” representation that changes
through time. As in our description of the between-trial module, we
use the notation e(i) to denote the true identity of the probe on the ith
trial. We denote the working representation of the stimulus probe at
Timestep t of Trial i as eðtÞ =  ½e, : : : ,e  and omit the “i” trial
notation for convenience. We next require a general expression for
the probability that a candidate feature value will occur in a
particular dimension. We define the set of H unique feature values
that were previously observed in Dimension j as R j  =  ½r1,r2 : : : rH .
We then use the following equation:

zðnÞðt, rhÞ =  exp ð−δW αðtÞjrh −  xðnÞjÞ mðnÞ, (5)
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Table 1
Projected Similarity (1)

Imputed stimulus Stored exemplars Comparison Similarity

111 111 1
111 121 1y1 y

122 1yy y2

Sum: 1 +  y +  y2

to calculate activation zðnÞ (t, rh) of stored feature value xðnÞ in
response to an imputed feature value rh, drawn from R j  . This
equation is a more general form of the exemplar activation calcula-
tion provided in Equation 1. Here, however, δ     is the within-trial
specificity of the similarity kernel function, M*(n) =  [m*(1) : : :
m*(N)]T indicates the encoding status of exemplar features, and αj (t)
indicates the attention weight at moment t. We will describe how
attention changes through time in the Attention Orientation section,
but for now it is sufficient to acknowledge that attention is updated
throughout the trial and will affect how stimuli are encoded.

Using the relation exp i xi      = i expðxiÞ, the probability that

the “true” feature value eðiÞ is equal to rh is as follows:

P
n = 1  ½zðnÞðt, rhÞ

Q 
zðnÞðt, ek ðtÞÞ

PðtÞðeðiÞ =  rhÞ =  P
s �R j       

P
n = 1  ½zðnÞðt,sÞ

k≠j 
zðnÞðt, ek ðtÞÞ

: (6)

Note that Equation 6 takes the same form as the feature proba-
bility calculation from Estes’s example. Here, the numerator is
simply the activation associated with an imputed feature value rh,
and the denominator is the total activation associated with all values
in Rj.  To specify a feature value in the working representation e (t)
at moment t, we randomly draw a value from the distribution defined
by the probability mass function in Equation 6. Importantly, a new
value of ej is redrawn at each timestep within the trial, such that the
working representation is nonstationary. This imputation process
continues until sufficient attention has been applied to Dimension j
for a true feature value to be encoded, at which point eðiÞ is
predominantly represented in e. Although Equation 6 expresses
the pattern matching probabilities for discrete feature values, it can
easily be extended to continuous values by replacing the summation
over the set R j  to be an integration over the space Rj ,  in the same
way that the similarity kernel (e.g., Equation 5) was generalized
from Medin and Schaffer’s (1978) context model to R. Nosofsky’s
(1986) GCM. We demonstrate an extension to a paradigm with
continuously valued dimensions in Case Study 3.

Table 2
Projected Similarity (2)

Imputed stimulus Stored exemplars Comparison Similarity

111 11y y
112 121 1yy                          y2

122 1y1 y

Sum: 2y +  y2

Our specification of a prediction-based working representation is
somewhat related to utility predictions in SEA. Both models assume
the observer maintains an ongoing sense of what features might
occur in each dimension, with an associated likelihood of occur-
rence that depends on the state of knowledge about the current
stimulus. One critical distinction is how each model uses these
insights to decide which sources of information to sample. While
SEA requires a pairwise assessment of every possible combination
of features in order to determine a single utility prediction for each
dimension, AARM’s working representation is more reflective of
spontaneous, noisy retrieval of features that are unbounded by
specific exemplar representations. As such, our approach has a
similar intuition to Monte Carlo algorithms in which probability
distributions are approximated through repeated sampling, some
specifications of which can be recursively updated as more infor-
mation is obtained (Doucet et al., 2001; Gilks et al., 1996). Random
sampling approaches have been suggested to provide an advantage
of cognitive plausibility over rational models on the grounds of
computational parsimony (Sanborn et al., 2010). Relative to SEA,
the feature imputation strategy in AARM is arguably more consis-
tent with the capabilities of resource-limited humans because there
is no requirement that every possible feature combination is assessed
within the working representation. Expected or observed feature
values are instead drawn from a distribution, and attention and
decision components are updated accordingly.

Our specification is also similar to other extensions to GCM that
were designed to characterize the timecourse of stimulus encoding
during category learning tasks (Brockdorff & Lamberts, 2000; A.
Cohen & Nosofsky, 2003; Lamberts, 2000). As mentioned previ-
ously, the EGCM-RT (Lamberts, 2000) incorporated a stochastic
stimulus representation mechanism into GCM, which resulted in a
similarity output that changes throughout the trial as probe dimen-
sions are encoded. Unlike AARM, however, EGCM-RT does not
specify a precise order in which dimensions should be encoded, only
that encoding is sequential and that all feature values of the stimulus
need to be encoded before a response is made. A variant of EBRW
(R. Nosofsky & Palmeri, 1997) for perceptual encoding (EBRW-
PE; Cohen & Nosofsky, 2003) contains similar stochastic
dimension-sampling mechanisms, such that exemplars race toward
a threshold at rates that are proportional to their total similarity to the
probe. At each timestep within a trial, there is an increasing
probability that a feature will be encoded and thus included in
the continuous similarity calculation. As such, encoding a feature
value within the stimulus representation is strictly probabilistic. By
contrast, AARM offers a mechanism for encoding individual feature
values that are driven by attention and are gated by gaze fixations.

Instead of populating the working representation with random
draws from an expected distribution of feature values, an alternative
approach would have been to define the working representation as
an empty vector prior to encoding. The retrieving effectively from
memory model (REM; Shiffrin & Steyvers, 1997), for example,
assumes that observers begin with an empty trace vector of zeros.
Over time, the zero elements of the trace are replaced with samples
from a prespecified distribution (e.g., a Geometric distribution) with
properties intended to reflect the details of the stimulus set. In the
context of a model designed to capture within-trial dynamics,
however, we found that the expectation-formation component of
the working representation was essential for the model to reorient to
additional dimensions after processing the first. In hierarchical
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paradigms like the one illustrated in Figure 1 (Blair et al., 2009),
various iterations of the model in which the stimulus representation
was initialized with an uninformed (e.g., zero or average) basis
vector provided no impetus for the model to reorient to one
dimension over the other. As we will show in Case Study, our
implementation achieves human-like reorientation to the stimulus-
relevant subordinate dimension by updating its feature predictions
after initial encoding, and fixating to a second dimension through
confirmatory search.

Figure 4B illustrates how the encoding dynamics occur in
AARM’s within-trial module after initial orientation to a dimension
(e.g., food source; Figure 4A) when an observer is categorizing
images of animals. Before a new image is even presented, the
observer has some expectation about what feature values each
dimension could possibly take on, given their experience with
previous stimuli. After the food source dimension is sufficiently
attended and the observer encodes the “true” feature value (e.g.,
acorn), the working representation of the stimulus is updated to
accommodate this information. As shown in Figure 4C and dis-
cussed below, this shift in the probe representation directly affects
which stored exemplars are subsequently activated to facilitate the
reorientation of attention.

Exemplar Activation

We assume that encoding (and by extension, attention) is the
primary mechanism driving the activation of previously stored
exemplars. This is in contrast to EBRW (R. Nosofsky &
Palmeri, 1997) which assumes that the similarity of previously
stored exemplars to the stimulus probe is what dictates how
frequently each exemplar is retrieved. In AARM, attention is
what guides the similarity computation itself, causing rapid nonlin-
ear activation in both the activation of past exemplars and the
evidence for a category response.

Exemplars are activated in a nearly identical way as described in
the between-trial case (see Equation 1), with the one exception that
activation is based on the working representation of the stimulus
probe, e*(t), and not the true contents of the stimulus probe itself. In
addition, activation is expressed as a function of time, given by the
following equation:

anðtÞ =  exp −δW αðtÞjeðtÞ −  xðnÞj mðnÞ, (7)
j=1

where we denote the attentional state at Time t as αj (t).
As discussed in the previous section, the working stimulus

representation in AARM’s within-trial module is nonstationary
and gradually comes to resemble the stimulus’s true identity as
features are encoded. As a consequence, the distribution of expected
feature values in Equation 6 will change dynamically through time
and affect which dimensions are prioritized, given the information
available at Time t. Pertaining to the hierarchical paradigm shown in
Figure 1 (Blair et al., 2009), Figure 5 shows how attention and
exemplar activation mutually impact one another. At the beginning
of the trial, memories for all exemplars are equally active (left panel,
t =  1). Attention initially orients to the D1 dimension (right panel;
x-axis) per weights inherited from the between-trial module. As the
working representation is updated with D1 feature information,

there is a concurrent retrieval bias for exemplars belonging to “A”
categories (left panel, t =  2 and t =  3). When attention then updates
again, the observer will reorient to D2 in an effort to distinguish
between the categories associated with the most active exemplars
(right panel; y-axis). When sufficient attention is applied to encode
the feature value of D2, exemplars with similar features in both D1
and D2 are selectively activated (left panel, t =  3 and t =  4).

To account for potentially imprecise mappings between the
visual properties of matching probe and exemplar features, we
incorporated the notion of perceptual variability into the calcu-
lation for exemplar activation (Equation 7). As it stands, the
distance calculation jeðtÞ −  xðnÞj within Equation 7 assumes the
observer will perceive all matching feature values in a precisely
identical way. This is unlikely to be the case for human subjects,
whose visual perception depends on noisy neuronal firing and
elements of bottom-up salience. For example, stimuli like
Gabor patches (see Case Study 3) that allow for continuous
dimensions of frequency and tilt angle are unlikely to be mapped
to their true feature values such that all stimuli are precisely
distinguishable. When attempting to generate human-like behav-
ior in our case studies, we therefore added random noise drawn
from a normal distribution with standard deviation σ to the distance
calculation at each Time t. SEA provides an alternative method for
accounting for imprecise feature perception and storage, in that
memories are stored as clusters (Anderson, 1991a) and the likeli-
hood of a stimulus belonging to each cluster is represented as a
continuously updated distribution of belief. The probability that
a given stimulus belongs to a particular category is determined by a
weighted combination of cluster probabilities. Uncertainty is there-
fore inherent to the Bayesian belief-updating process in SEA,
whereas AARM assumes precise mappings between stimulus and
exemplar features unless otherwise specified (e.g., with noise).

In summary, exemplars that are more similar to the working
representation of the probe will be more strongly activated in
AARM and will have more relevance to the response choice. As
a simplification of Figure 5, Figure 4C provides an illustration of
how exemplar activation occurs. After the “acorn” feature is en-
coded as the food source of the probe stimulus, memories for
animals that eat acorns are selectively activated, (e.g., chipmunks
and squirrels) whereas memory traces for animals that eat cheese are
deactivated (e.g., rats). In the next section, we will discuss how
exemplar retrieval manifests in the accumulation of evidence in
favor of an available category label.

Evidence for Category Response

We assume within-trial choice probability is calculated in a way
that mirrors the between-trial case (see Equation 2). Here, however,
we reconceptualize “choice probability” as “decision evidence,” and
specify evidence at each time point using the following equation:

VðiÞ ðtÞ =  
P

n = 1  anðtÞ I ðf 
tÞ 

=  cÞ
, (8)

where an(t) is defined in Equation 7. The numerator represents the
activation of the subset of exemplars associated with feedback c, and
the denominator represents the total activation across all stored
exemplars.
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Figure 5
Illustration of Attention Gradient

Note. (A) Heatmaps show the activation of each unique exemplar in the task paradigm shown in Figure 1. Y-axis labels
show trial numbers and the feedback associated with each exemplar. Activation at four different time points within an
individual trial is shown, given a probe with a true category label of A2. (B) The plot shows the progression of within-trial
attention weights assigned to dimensions D1 and D2, which are the relevant dimensions for determining the category
membership of the given stimulus. As time progresses (as indicated by black arrows), the attention weights (x- and y-axis
values) move in a direction to support a category response (contour values). See the online article for the color version of this
figure.

EGCM-RT (Lamberts, 2000) uses a similar calculation to Equa-
tion 8 to approximate within-trial dynamics, and the output is
interpreted as a probability of making each possible response, given
an observed RT. In order to implement self-termination behavior
into AARM’s within-trial module, we instead assume that VðiÞ (t) for
each Category c represents category evidence that accumulates up to
a threshold. Alternative specifications would have been to use a
race-like structure and calculate decision evidence as the sum of
category-relevant exemplar activation without normalization
(Brown & Heathcote, 2008; Usher & McClelland, 2001), or apply
a log-ratio calculation similar to the sequential probability ratio test
(SPRT; Wald & Wolfowitz, 1948). For our purposes of extending
mechanisms for between-trial learning to account for within-trial
sampling dynamics, however, it was important to use the same
specification of the choice rule in order to ensure predictable
behavior of the gradient-based attention update that will be dis-
cussed in the next section.

In specifying a decision rule, several options were available for
consideration. We adopted a simple relative decision rule, such that
the difference between the response with the largest evidence minus
the response with the second-largest evidence must be greater than

some value, ϕ. This specification is similar to extensions of the drift-
diffusion model (DDM; Ratcliff, 1978) and the SPRT for modeling
multialternative choice, where the decision terminates according to a
thresholded distance between the two leading outcomes (McMillen
& Holmes, 2006). Other approaches would have been to apply an
absolute decision rule in which the threshold was applied to evi-
dence for the leading option, or to apply a threshold to the distance
between evidence for the leading option and the average evidence
across alternatives (Niwa & Ditterich, 2008). Through testing, we
found that our chosen specification provided the most stringent
requirement for category-disambiguating evidence, such that multi-
ple sources of task-relevant information were consistently sampled
before decisions were made in a manner that was reflective of
observed behavior.

Returning to Figure 4, Panel F shows how exemplar activation
dynamically affects category evidence. In the example, the observer
maps the most active exemplars to the “squirrel” and “chipmunk”
categories, respectively, thus increasing the probability of making a
“squirrel” or “chipmunk” response. The probability of responding
“rat” concurrently decreases, given that the corresponding exem-
plars do not match the current stimulus with respect to the encoded
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food source: acorn. As we will describe in the next section, category
evidence at each timestep is used to continuously update attention
and concurrent information sampling behaviors.

Attention Orientation

On a between-trial basis, the attention vector α(i) reflects the
quantity of attention deployed to each stimulus dimension on the ith
trial. We assume that attention in the within-trial module initially
orients according to learned experiences, which are synthesized by
these between-trial attention weights. For example, if a subject
learns that the most relevant stimulus dimension is likely to occur
in a particular spatial location across trials, the subject could begin
orienting attention to this location in an anticipatory fashion before a
stimulus is even revealed on trial (i +  1).1 To keep the notation for
between- and within-trial dynamics separate, we use α*(t) to denote
the within-trial attention vector at the tth moment in time, and we
have dropped the superscript designating trial number for conve-
nience. To initialize α*(t) on Trial i, we set αðtÞ =
αði−1ÞðtÞ=      j α

ði−1ÞðtÞ, such that the within-trial module is initialized
with normalized between-trial weights from the most recent update.
We made this choice in order to inform orientation in the within-trial
module using between-trial weights, but in a way that does not make
strong assumptions about scale equivalence between feedback-
based and search-related updates to attention.

Because it is central to our theory that between-trial learning and
within-trial information sampling involve a common set of mechan-
isms, we needed a way to modify the feedback-based attention
update mechanism in Equation 3 to account for the unsupervised
aspect of within-trial dynamics. The between-trial module reduces
the probability of future errors by redistributing the attention
weights in a gradient-based manner, given the model’s predicted
response probabilities for each available option as well as the true
category label. Because the true category label is not known by the
observer until after the within-trial process terminates, however, we
made the choice to calculate the within-trial attention update in
reference to the model’s current best guess about the true category
label. Using Equation 8 as the specification for momentary evi-
dence, we define a dynamic loss function as follows:

GðtÞ =  �αðtÞf log ½Vleading ðtÞg, (9)

where G(t) =  [g (t) : : : g (t)] is the gradient-based update vector,
and VðiÞ (t) denotes maximum evidence across response options
at moment t. Mirroring Equation 4, attention is updated at each
timestep using the equation:

αðt +  1Þ =  αðtÞ +  γw GðtÞ, (10)

where γw is the within-trial learning rate. Because fixations are
calculated directly from the attention update described by Equation 9,
this specification supports confirmatory search behavior, such that
attention will orient toward the dimensions that support further gains
in evidence for the leading accumulator. We acknowledge that
other, more balanced approaches could have been taken instead.
For example, we could have calculated a separate G vector that
maximizes evidence for each of the C  candidate category labels. In
this case, the update to attention in Equation 10 could have been the
sum or a weighted combination of all G vectors, or we could have

applied a maximum gain selection criterion similar to SEA. While
alternative approaches merit additional investigation in future work,
the selected implementation is consistent with observed confirma-
tory biases in human learning (Lefebvre et al., 2022; Nickerson,
1998; Talluri et al., 2018), has an advantage of computational
parsimony over some unbiased alternatives, and was demonstrably
sufficient for predicting human-like attention dynamics across the
four simulation case studies that will be presented in sections to
follow.

An important contribution of our work is to put forth a generative
framework that makes explicit predictions for what dimensions will
be fixated at each moment in time. To achieve this, we must consider
two cases of dimension spatial arrangements. In the first case,
stimulus dimensions are separated into different spatial locations
(i.e., segregated dimensions). Here, eye-tracking measures provide
direct measures of attention for specific dimensions, assuming only
one spatial location can realistically be fixated at a time. In the
second case, stimulus dimensions overlap in space (i.e., integrated
dimensions). Fixation information therefore cannot distinguish
between dimensions that are selectively attended (i.e., via covert
attention), and dimensions that are ignored.

In the segregated case, we can identify the fixated dimension
directly from the most recent update to the attention vector. Letting
Lj(t) denote the fixation index for each Dimension j at Time t, we can
define the following equation:

1 if maxjjgjðtÞj =  jgjðtÞj 0
otherwise

In other words, we assume that a fixation will be directed
toward the dimension that is expected to provide the largest
absolute amount of information, according to one’s current
representation.

In the integrated case, the specification is similar but additionally
accounts for the fact that at least one subset of dimensions spatially
overlap. Letting S  denote the set of dimensions that have a spatial
location that is identical to that of the most informative dimension,
we can specify:

1 if fj � S�maxjjgjðtÞj =  jgjðtÞjg 0
otherwise

Hence, if one dimension is deemed to be the most informative at a
given moment in time, then any dimensions that occupy the same
location in space (i.e., shape and color dimensions of a particular
item) will also be fixated within the same moment.

The distinction between the segregated and integrated cases
exemplifies the fact that fixation data provide only minimal con-
straints on encoding. Although we assume that fixating to a dimen-
sion is a necessary condition for encoding a feature value, it is not
guaranteed to be sufficient. In the case of selective attention, an
observer could be overtly fixating on a particular spatial location, but
only attending covertly to a subset of information contained therein

1 It would be possible to define attention as a global optimization process
for each individual trial; however, the presence of anticipatory attention
orientation suggests to us that attention can be roughly approximated as a
combination of single updates across trials, along with attention on each trial
that is inherited from the between-trial dynamics. In other contexts, global
definitions of the relevance of dimensions may prove more effective.
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(Rutman et al., 2010). In these cases, it would be problematic to
assume that fixation data alone give us complete and direct infor-
mation about how time spent looking at a dimension relates to the
probability of encoding. As such, we assume that encoding is based
on a thresholded, cumulative sum of attention over the course of
dwell time, such that:

1 if 
P  

L  ðtÞα ðtÞ ≥  κ j 0
otherwise

Hence, when the cumulative attention applied to a fixated dimen-
sion exceeds the threshold κ, a feature is considered to be “encoded.”
After a trial terminates (t =  RT), the information in Q(RT) is stored in
M* so that only encoded feature values can be imputed on subse-
quent trials (Equation 7). As discussed in the Attention Is the
Mechanism of Learning section, this specification is considerate
of findings of improved memory for items that are covertly attended
through endogenous means (Addleman et al., 2018; Botta et al.,
2019; Foster et al., 2020). Recent neuroimaging work has suggested,
however, that both endogenous and exogenous (i.e., related to
salience) modes of covert attention facilitate perceptual encoding,
but endogenous attention uniquely facilitates subsequent readout of
visual information, such as what would be required for a category
judgment (Dugue et al., 2020). While we do not account for the
potential impact of exogenous covert attention on encoding proba-
bility here, this is a topic of future work that will be considered in the
General Discussion.

Relating encoding dynamics back to the working representation
of the stimulus probe as described in the Stimulus Encoding section,
we again note that encoding a feature alters the distribution of values
that are imputed into the working probe representation e*(t). At the
beginning of a trial when the feature value that occupies dimension j
has not been encoded yet, Q (t) will be equal to zero, and feature
values rh will be imputed into ej (t) with probability P (t) (eðiÞ) =
rh) (Equation 6). After the cumulative attention applied to the spatial
location of dimension j exceeds κ, Q (t) is set to 1 to indicate that a
feature was encoded. From that point on, the value eðiÞ will be
imputed into the working representation ej (t) with probability
θQj(t), where θ represents encoding fidelity. With the remaining
probability 1 − θQj(t), we assume that feature values will continue to
be drawn from the distribution of previously observed values.
Mathematically, we can write this process as a mixture of two
probability mass functions, one containing a distribution
π1ðej ðtÞ =  rhÞ =  PðtÞðeðiÞ =  rhÞ over all expected feature values
in R j ,  and one defining a Dirac delta distribution:

ðiÞ

π2ðeðtÞ =  rhÞ =       
0 if r

h 

≠  eðiÞ ,

where all probability mass is centered at the true representation eðiÞ.
Hence, we can write the mixture of these two distributions as
follows:

π1ðeðtÞ =  rhÞ     with prob. 1 −  θQjðtÞ j

π2ðeðtÞ =  rhÞ     with prob:θQjðtÞ

With this specification, the working representation of a probe
dimension continues to be stochastic after the encoding threshold
has been surpassed, but is biased in the direction of the true

stimulus feature value with magnitude θ. This allows the observer
to continue to represent feature values that have occurred within
the broader task context with some probability, even after the true
feature value of the stimulus is known. This appears to be
important in situations where novel features or combinations
of features are introduced (e.g., Case Studies 1 and 4), such that
the observer is able to reorient if the fixated dimension provides
information with unknown or contrary category information. For
these types of situations, SEA contains a mechanism for a
“sampling bonus,” which can be artificially imposed to induce
continued sampling. AARM’s proposed way of balancing en-
coded stimulus information with available task feature informa-
tion, however, naturally produces reorientation behavior in the
presence of novel stimuli without modification.

A brief example of how attention reorients within a trial is shown
in Figure 4E. Essentially, attention orients to the dimensions that
have the best chance of resolving the conflict among the active
choice options. In this case, the first encoded dimension (i.e., the
food source) activated the chipmunk and squirrel categories, and so
the deliberation now turns toward dimensions that accentuate
differences between them. The next most important dimension is
the tail. Attention, therefore, reorients to the tail dimension so that it
will be subsequently fixated in Figure 4D. Additional elaboration of
the attention updating process is provided in Figure 5 using the
stimulus structure from Figure 1, as described in the Exemplar
Activation section. In summary, the gradient update is initially
maximized in Dimension D1, given that D1 is relevant to categori-
zation across all exemplars (t =  1). After a D1 feature value is
encoded for the current stimulus, exemplars from Categories “A1”
and “A2” are selectively activated on the basis of similarity to the
encoded information (t =  2 and t =  3). Attention then reorients to D2
in order to distinguish between the two most active categories, and
encoding a D2 feature value facilitates retrieval of exemplars from
Category “A2” (t =  3 and t =  4).

Summary

In this section, we provided the technical details of AARM as they
relate to between- and within-trial dynamics. Although the notation
can become complex when dealing with dynamics at two different
time scales, the intuition of the model is far simpler. When provided
with a stimulus (Figure 4A), observers sample information selec-
tively in order to make an accurate and time-effective choice. With
experience, observers learn to prioritize dimensions that help them
separate stimuli into categories. When faced with a choice, obser-
vers deploy selective attention in a manner that is consistent with a
learned prioritization map and begin encoding relevant stimulus
features accordingly. The encoding process constructs a psycholog-
ical representation of the stimulus probe (Figure 4B), which in turn
activates memory traces of similar exemplars (Figure 4C). The
retrieved exemplars are typically associated with a category label,
such that the observer can accumulate evidence for a response
(Figure 4F). For complex stimuli, these response options compete
for selection and necessitate sampling of additional stimulus dimen-
sions. Consequently, attention reorients to the dimensions that
would facilitate a comparison among the most competitive
options (Figure 4E) and can produce a shift in the fixated location
(Figure 4D). This process continues until a decision threshold is
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reached, based on the relative difference between the evidence
among the response options.

In the next part of the article, we describe the results of four
theoretical case studies that demonstrate how the between- and
within-trial modules of AARM contribute to human-like predictions
of choice and eye-tracking behavior across a comprehensive set of
challenging scenarios. Case studies are divided into two sections to
explicate the theoretical tenets of AARM: (a) humans seek out
information about new stimuli in a manner that is influenced by their
individual learning experiences and (b) attention is sensitive to
hierarchically organized information, such that the current state of
knowledge guides future information sampling.

This study was not preregistered. Model code will be made
available upon publication at https://github.com/MbCN-lab. The
data used in Case Study 1 will be available upon reasonable request.
The data used in Case Study 2 were made freely available online by
Meier and Blair (2013) at https://doi.org/10.1016/j.cognition.2012
.09.014.

Experience-Based Representations

Behavioral and modeling work has indicated that humans tend to
form representations based on a subset of the available dimensions
(Lee, 2001; Shepard & Arabie, 1979; Sloutsky, 2003; Tversky,
1977; Ullman et al., 2002). Eye-tracking work has further shown
that after sufficient training with the structure of a task, humans tend
to fixate to only a few informative dimensions before making a
response (Blair et al., 2009; Rehder & Hoffman, 2005a, 2005b), and
features that are overtly fixated are more likely to be stored in
memory for later use (Irwin, 1996; Loftus, 1985). In cases where
multiple sources of information might be equally sufficient for
correctly identifying the category label across trials (see Figure 3,
for a hypothetical example), the extent to which features are encoded
during training potentially impacts how the observer elects to sample
information from stimuli encountered at test.

The relationship between the storage of individual memories and
generalized category representations has garnered great interest,
particularly in regard to the role of the hippocampus in episodic
inference and concept formation (Bowman & Zeithamova, 2018;
Mack et al., 2016, 2018; Schapiro et al., 2017). Several theoretical
accounts have suggested that generalization does not require the
formation of integrated concept representations, but rather can be
achieved by the encoding and strategic retrieval of discrete memory
traces (Hintzman, 1984; Kruschke, 1992; Kumaran & McClelland,
2012; R. Nosofsky, 1988). While some functional magnetic reso-
nance imaging (fMRI) work has supported exemplar-based accounts
by identifying similar hippocampal activation for both recognition
and categorization judgments (Mack et al., 2013; N. Nosofsky et al.,
2012), other work has provided evidence of associative inference
functions of the hippocampus that arguably extend beyond item-
specific memory storage. For example, repetition effects in the
hippocampus have provided evidence that overlap between the
current stimulus and existing memories impact how new items
are encoded (Richter et al., 2016; Zeithamova et al., 2012, 2016;
Zeithamova & Preston, 2017). In addition to encoding new infor-
mation in reference to recent experiences, other work has provided
evidence that humans make predictions about future events that are
shaped by memories of the past (De Brigard et al., 2016; Van Hoeck
et al., 2013), often recruiting the same networks that are involved in

encoding and retrieval (De Brigard et al., 2013; De Brigard et
al., 2015).

Given these insights on the impact of memory on category
representations, Case Study 1 investigates memory-dependent sam-
pling and decision dynamics in a category learning paradigm with
multiple informative dimensions (Blanco & Sloutsky, 2019). In its
original presentation by Galdo et al. (2021), the between-trial
module of AARM is not equipped to account for variability in
feature encoding over the course of learning. With the within-trial
module, however, we can gain insight into how encoding variability
related to selective attention during training might give rise to
different patterns of information sampling behaviors in the presence
of novel stimuli.

Case Study 1: Dimension Biases

To investigate the impact of attention-mediated encoding vari-
ability on subsequent information sampling and retrieval, we used a
paradigm that was developed by Blanco and Sloutsky (2019). Here,
we discuss behavioral and eye-tracking data that were collected
from a cohort of 38 adults while they completed the same paradigm
(Blanco et al., under review). The task paradigm will be summarized
here, but the reader is directed to Blanco and Sloutsky (2019) for
additional details.

As illustrated in Figure 6, categories were defined with a rule-
plus-similarity structure, such that one “deterministic” dimension
was perfectly predictive of category membership, and five “proba-
bilistic” dimensions provided good but imperfect category informa-
tion across trials (80% cue validity). An additional “irrelevant”
dimension contained the same feature value across stimuli, and
therefore contained no category-diagnostic information. Stimuli
were images of alien-like characters that were composed of seven
dimensions: antenna, head, body, button, hands, feet, and tail. Each
dimension could take on one of a discrete set of features that varied
on the basis of color and shape (i.e., the terminal ends of antennae
could be either beige rectangles or gray triangles; hands could be
either blue crosses or red half-moons, etc.). During the instructions,
participants were informed that they would be seeing different
creatures called Flurps and Jalets, and that their task was to figure
out which species each creature belonged to. Participants also
received instructions about the category structure. The features of
each dimension were shown to participants in isolation, along with
the message that “most” (for probabilistic dimensions) or “all” (for
the deterministic dimension) creatures belonging to a particular
category shared that feature. No information about the irrelevant
dimension was provided during the instructions.

The task was divided into two phases that contained complemen-
tary sets of stimuli. Each stimulus in Phase 1 had a counterpart in
Phase 2 that contained the identical configuration of probabilistic
features, and was mapped to the same category label. The deter-
ministic and irrelevant dimensions, however, switched roles
between Phases 1 and 2. As shown in Figure 6A, for example,
“feet” features that were deterministic in Phase 1 were replaced with
a novel irrelevant feature in Phase 2, and the irrelevant “button”
feature that occurred in all Phase 1 stimuli was replaced with one of
two novel deterministic features in Phase 2. Participants were not
informed that the switch would occur and did not receive any
explicit instructions about the postswitch feature mappings.

https://github.com/MbCN-lab
https://doi.org/10.1016/j.cognition.2012.09.014
https://doi.org/10.1016/j.cognition.2012.09.014
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Figure 6
Paradigm and Stimuli Used in Case Study 1

(A)

(B)

Note. (A) Illustration of stimuli, which participants were asked to sort into fictional “Flurp” and
“Jalet” species types. Each stimulus contained seven dimensions (antennae, head, button, body, hands,
feet, and tail). In Phase 1, one dimension (e.g., feet; outlined by solid box) was deterministic, one was
irrelevant (e.g., button; outlined by dashed box), and five were probabilistic (all un-outlined features) in
terms of cue validity. After an undisclosed “switch,” the deterministic dimension from Phase 1 became
irrelevant in Phase 2 and the irrelevant dimension became deterministic. (B) Characteristics of stimuli
presented at test. Match items were drawn directly from the training set, such that deterministic and
probabilistic dimensions carried the same feature-to-category mappings. Conflict items contained novel
configurations of features, such that the deterministic and probabilistic dimensions carried opposite
category mappings. In the table, unique feature values within each dimension are indicated by 0, 1, and 2.
See the online article for the color version of this figure.

Each phase consisted of a training stage (with feedback), followed
by a testing stage (without feedback). In the training stages, each of
10 unique items (5 from each category) from the relevant stimulus
set were presented three times in random order (30 trials total). All
stimuli were presented in the center of the screen, and each

dimension occupied the same spatial location across trials. Partici-
pants made category responses by pressing buttons on a controller.
After a response was made, participants were given corrective
feedback. During Phase 1 training, feedback was very descriptive
in an effort to encourage both attention to the overall appearance of
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the stimulus as well as the deterministic dimension. For correct
responses, feedback took the form of “Correct this is a Flurp. It looks
like a Flurp and has the Flurp feet.” Feedback following incorrect
response took the form “Oops this is actually a Jalet. It looks like a
Jalet and has the Jalet feet.” Feedback during Phase 2 training was
simplified so that participants were free to learn the postswitch
feature-to-category mappings on their own. As such, feedback for a
correct response was “Correct this is a Flurp,” and feedback for an
incorrect response was “Oops this is actually a Jalet.”

Testing stages consisted of 10 trials from each of two conditions
that were presented in random order (20 trials total). Participants
responded to each item by selecting a category label, but no
feedback was provided. Items in the “match” condition were
identical to the stimuli presented during training. Items in the
“conflict” condition contained novel configurations of previously
encountered features. As shown in Figure 6B, each conflict item
contained a feature in the deterministic dimension that was associ-
ated with one category label and features in the probabilistic
dimensions that were associated with the opposite category label.

Continuous eye-tracking data were collected while participants
completed the task using an EyeLink 1000 eye tracker at a sampling
rate of 250 Hz. To preprocess the data, eight nonoverlapping
rectangular areas of interests (AOIs) were defined surrounding
the spatial locations of features in each dimension. Six out of seven
dimensions occupied only one AOI, and the “hands” dimension
occupied two. Fixation points were mapped to a particular dimen-
sion if they fell within the bounds of the relevant AOI, and were
otherwise excluded from the analysis.

In the sections to follow, we consider the data from Blanco et al.
(under review) in two parts. Case Study 1A uses data from the
training and testing stages of Phase 1 to observe how information
sampling during training relates to response probabilities in the
presence of previously seen items (match) and novel configurations
of features (conflict). Case Study 1B uses data from the transition
between the testing stage of Phase 1 to the training stage of Phase 2
to observe how participants redistribute attention after the most
reliable source of information suddenly becomes irrelevant for
identifying category membership. In both sections, we provide
simulation results from AARM alongside the observed data in order
to demonstrate the model’s ability to predict human-like information
sampling and decision behaviors. Throughout, we will refer to
deterministic, probabilistic, and irrelevant dimensions as “D,”
“P,” and “I,” respectively.

Case Study 1A: Conflicting Information

The within-trial module of AARM makes specific predictions
about how feature encoding over the course of learning impacts
information sampling behaviors and decision processes in the
presence of new stimuli. The paradigm developed by Blanco
and Sloutsky (2019) provides a unique opportunity to test these
predictions, given that multiple dimensions provide information
that is independently relevant to the task. Like the example
provided in Figure 2, participants may achieve similarly high
accuracy during training whether they selectively attend to the
D dimension, a subset of P dimensions, or a combination of the
two. In addition to the emergence of fixation preferences for
particular dimensions, responses to test items in the current para-
digm provide insight into how attention was distributed.

Specifically, test items drawn from the conflict condition contain
a combination of features that are associated with opposite cate-
gory labels. Responses consistent with information in the D
dimension (i.e., RB responses) could therefore be interpreted as
evidence that the participant learned to selectively attend to that
dimension during training. Similar logic holds for the P dimension
as well, such that selective attention to any combination of P
dimensions could manifest in P-consistent responses.

For our purposes, we performed analyses and simulations that were
considerate of individual differences in fixation preferences at test.
Because feedback was only provided during training, we considered
fixations at test to be a stable indicator of postlearning attention. A
histogram of fixation preferences across subjects is shown in Figure
7A. Considering only the first 10 test trials of Phase 1, we observed a
relatively balanced distribution of fixation preferences for the D
dimension as determined by normalized dwell times in the form

DwellD +
 
DwellP 

(mean =  0.541, min =  0.00, max =  1.00). We organized

subjects into three groups on the basis of these fixation preferences:
Group (1) looking preference for P dimensions

(DwellD +
D

wellP 
≤  0.25; 12 subjects); Group (2) mixed looking prefer-

ence (0.25 <  DwellD +
D

wellP 
<  0.75,12 subjects); and Group (3) look-

ing preference for the D dimension (DwellD +  DwellP 
≥  0.75,14 subjects).

Panels B–D of Figure 7 show mean trajectories of fixations within
Phase 1 test trials (line plots) and subsequent response proportions to
match and conflict stimuli (bar plots) for Groups 1, 2, and 3,
respectively. Within-trial fixations to each of the seven stimulus
dimensions were calculated as percentages of the RT, binned by
steps of 0.1%, averaged across trials, and smoothed using a moving
window of size 1%. P dimensions were rank ordered within subject
according to mean fixation probability across trials prior to aggrega-
tion in an effort to account for spurious differences among P dimen-
sion preferences when interpreting the results.

To simulate fixations and responses with AARM, we used a
single set of parameters across subjects for the between-trial module
(Table B2 in Appendix B). Though other approaches could have
been taken, we made this choice in an effort to isolate individual
differences in sampling trajectories to feature-level encoding fidel-
ity, as used by the within-trial module. For each subject, we
interpolated the number of encoded D features across unique
training stimuli based on each subject’s observed mean proportion
of fixations to D at test (Figure 7A). Subject-level proportions of D
fixations were split into quantiles and mapped to a discrete value U
between 5 and 9 (inclusive) to represent the number of unique
training trials out of a possible 10 during which the D feature was
encoded (i.e., fewer fixations to D at test implied fewer D features
were encoded during training). The matrix M*, which contains the
encoding status for the features of the stored exemplars (Equation 5),
was then modified for each subject accordingly. A random selection
of U elements in the column of M* corresponding to the D
dimension was set to 1 (meaning “encoded”) and was otherwise
set to 0 (meaning “unencoded”). All elements in M* that corre-
sponded to P and I  dimensions were set to 1. We then simulated
1,000 match and conflict trials for each subject. The parameter
values and initialized attention weights used for our simulations
were otherwise fixed across subjects and task conditions and were
optimized with respect to the observed patterns of data in aggregate.
Because no feedback was given at test, trials were simulated in
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Figure 7
Case Study 1A: Conflicting Information

(A)

(B) (C) (D)

(E) (F) (G)

(H) (I) (J)

Note. CIs =  confidence intervals; RB =  rule-based; AARM =  adaptive attention representation model. (A) Subject-level mean
proportions of fixations to the deterministic dimension. (B–D) Left panels show mean proportions of fixations (y-axis) to each of the
seven dimensions through time (x-axis). Right panels show observed means and 95% CIs of proportions of RB (i.e., responses consistent
with the deterministic feature) responses across match and conflict trials. (E and F) Fixation and response data were generated using
AARM’s within-trial module. (H–J) Mean proportions of fixations to the deterministic, probabilistic, and irrelevant dimensions across
observed (filled bars) and model-generated (unfilled bars) trials, collapsed across groups. (H) Fixation proportions across match trials. (I)
Fixation proportions across conflict trials on which responses were consistent with the deterministic dimension. (J) Fixation proportions
across conflict trials on which responses were consistent with the majority of probabilistic dimensions. See the online article for the color
version of this figure.
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isolation without subsequent updating of the stored exemplars in
matrix X. Parameter values used for our simulations are provided in
Table B2 in Appendix B.

As shown in Figure 7E–G, AARM’s predictions reflect several
important elements of the observed data. By simply accounting for
encoding variability for feature values observed in the D dimension,
AARM was able to predict the observed effect of increasing
proportions of fixations to D from Group 1 to Group 3. Considering
response probabilities, AARM further predicted the observed effect
of increasing proportions of RB responses to conflict trials from
Group 1 to Group 3. Although there are discrepancies between the
observed data and the simulations in terms of, for example, the
probabilities of initial fixations and mean response probabilities
within each group, we consider these results to be promising overall.
While we intentionally relegated individual differences in test
behavior to encoding efficiency and held all other mechanisms
constant, future work will more thoroughly investigate how partial
encoding of individual items impacts the trajectory of between-trial
learning in addition to within-trial sampling.

For our current purposes of qualitatively assessing AARM’s
theoretical assumptions about within-trial dynamics, Figure 7H–J
provides a proof-of-concept. Proportions of observed and simulated
(same simulations shown in Panels E–G) fixations to D, P, and I
dimensions were averaged across subjects within each test condition
of Phase 1. Panel H shows that correct responses to Match stimuli (D
and P features have matching category mappings) were preceded by
a slight fixation preference for D compared to P when the data are
considered in aggregate. Because D and P dimensions carried
opposite category mappings on conflict trials, we back-sorted the
data by response in order to observe potential differences in fixation
probabilities. Panel I shows that responses consistent with the D
feature-to-category mapping were preceded by a fixation preference
for D over P dimensions. Panel J shows the opposite fixation bias,
such that responses consistent with the P feature-to-category map-
ping were preceded by a fixation preference for the P dimensions
over D. As shown by the unfilled bars in Panels H–J, AARM
predicts patterns of response-dependent fixations that closely match
what we see in the data.

Here, we demonstrated AARM’s predictions about attention
allocation and decision-making as a result of successful learning
and encoding efficacy. In the decision-making literature, the widely
supported integrate-to-bound perspective suggests that information
is sampled from multiple sources of information within a trial, and
choices are made when the cumulative evidence in favor of one
option exceeds a predetermined threshold (e.g., Ratcliff, 1978).
Other work used eye-tracking methods to show that proportions of
fixations to two competing options in value- and preference-based
decision tasks are directly related to choice probability (Krajbich &
Rangel, 2011; Krajbich et al., 2010; S. Smith & Krajbich, 2019a,
2019b; Thomas et al., 2019). Extending this logic to categorization
decisions, the intuition is simple: If an observer does not look at a
particular dimension during a trial, the unseen feature will not
contribute to the choice. While models that conceptualize attention
as trial-level weights can adequately predict average proportions of
responses in a variety of cases, the relationship between attention
weights and information sampling behaviors has remained under-
explored. AARM, however, makes specific predictions about which
stimulus dimensions will be prioritized, attended, and sampled
within a trial, and how sampling affects subsequent responses in

the presence of new stimuli. Our simulations show that AARM not
only predicts the same contingency between fixations and responses
that are observed across experimental conditions of information
consistency (Figure 7H–J), but can also predict individual differ-
ences in dimension prioritization as a result of encoding individual
features (Figure 7E–G).

Case Study 1B: Shifting Information Relevance

We next explored how within- and between-trial attention
dynamics interact over the course of learning. Previous work has
demonstrated that adult learners use selective attention to prioritize
the most relevant information (e.g., Desimone & Duncan, 1995) and
can adapt to changing categorization rules via set shifting (e.g., Chiu
& Yantis, 2009). Although engaging selective attention can lead to
faster, more efficient categorization, it can also result in learned
inattention (Hoffman & Rehder, 2010). When an observer ignores a
dimension after learning that it is uninformative for the task, it is
often difficult for the observer to identify if and when the ignored
feature becomes relevant at some point in the future. The Blanco and
Sloutsky’s (2019) paradigm provides an opportunity to observe how
learners adapt to abrupt changes in information relevance when the
D and I dimensions from Phase 1 switch roles during the transition
to Phase 2. With the addition of eye-tracking data (Blanco et al.,
under review), we gain insight into how selective attention and
feature encoding modulate the impact of the switch on information
sampling. Here, we discuss the observed effects of the switch on
information sampling behaviors, and how these effects are ex-
plained by AARM. For clarity, we refer to the dimension that
was deterministic in Phase 1 and irrelevant in Phase 2 as “D/I,”
and we refer to its counterpart as “I/D.” The observed and model-
predicted fixation results that are relevant to the current discussion
are shown in Figure 8. Note that all panels in Figure 8 show data
from the final trial in Phase 1 (Trial 20 of the Phase 1 test stage) and
the first three trials in Phase 2, separated by a vertical black line.

We first discuss the observed results, as shown in Figure 8C,
D–H. Although participants were not informed of the switch, the
aggregate data shown in Figure 8C indicate that participants
quickly realized that the dimension that was most reliable for
identifying category membership in Phase 1 (left-most panel;
green line) was no longer reliable in Phase 2 (remaining panels;
purple line). Across the four trials of interest, we observe a steady
decrease in the proportion of fixations to the D/I dimension. This
awareness, however, did not extend to the change in relevance for
the formerly irrelevant dimension: Participants continued to
ignore I/D in Phase 2, presumably as a result of learned inatten-
tion incurred during Phase 1 (Hoffman & Rehder, 2010). Instead,
participants reoriented attention to a P dimension after the switch.
Prioritization of P and inattention to I/D persisted across the
entirety of Phase 2, beyond the initial three training trials shown
in Figure 8 (mean proportion of fixations across Phase 2: I/D =
0.168, P =  0.629, D/I =  0.203).

In Case Study 1A, we observed how dimension-level fixation
preferences related to choice behavior during conflict trials. We
expected similar effects in the current case study, such that parti-
cipants who tended to fixate to D during Phase 1 would demonstrate
larger effects of attention reorientation after the switch to Phase 2.
We specified two groups on the basis of proportions of
D/I fixations across the last ten test trials of Phase 1. This differs
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Figure 8
Case Study 1B: Shifting Information Relevance

(A)

(B)

(C)

(D) (E) (G) (H)

Note. The final trial of Phase 1 and the first three trials of Phase 2 are of primary interest. In all panels, the
vertical black bar represents the “switch” from Phase 1 (left) to Phase 2 (right). (A) Between-trial module-
generated attention weights (points) for unique stimulus configurations. (B) 100 sequences of within-trial fixation
and decision behaviors were generated by the within-trial module, using the specific sequence of stimulus
configurations that each participant experienced. (C) Within-trial probabilities of fixating to each dimension were
aggregated across subjects and plotted as a function of the percentage of observed response time. (D–H) Data and
simulations for two groups, specified according to the proportion of fixations to D dimensions during the latter 10
trials of Phase 1 test. Group 1 showed a looking preference for D, whereas Group 2 showed a looking preference
for P. Probabilities of fixating to the deterministic (D and G), or any of the five probabilistic (E and H) dimensions
were averaged across observed (filled bars) and model-generated (unfilled bars) sequences. See the online article
for the color version of this figure.
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from the group delineations in Case Study 1A (proportions of
D fixations across the first ten test trials of Phase 1) in order to
be considerate of potential effects of the conflict trials on informa-
tion sampling. Here, we specify Group 1: Looking preference for

D/I (D
wellD

+D
wellP 

≥  0.75 ); and Group 2: Looking preference for P

(D
wellD

+D
wellP 

≤  0.25). As shown in Figure 8D–E, Group 1 showed

rapid deprioritization of D/I across the trials of interest, such that the
mean proportion of fixations to D/I dropped from 0.72 to 0.14. This
was accompanied by increased prioritization of P, such that the
mean proportion of fixations across P dimensions rose from 0.26 to
0.78. Switch effects were substantially less severe in Group 2, as
shown in the left panels of Figure 8G–H. The mean proportion of
fixations to D/I dropped from 0.26 to 0.12 over the relevant trials,
and the mean proportion of fixations to the P dimensions increased
slightly from 0.72 to 0.81 over the same period.

To simulate data in AARM, we first used the between-trial
module to determine a set of initialization weights for the four
trials of interest. As in Case Study 1A, we made the decision to
relegate differences in sampling behavior to mechanisms for feature
prediction in the within-trial module. As such, the set of weights
from the between-trial module was generated with a single set of
parameters and was therefore constant across all subject-level
simulations. Figure 8A shows the progression of attention weights
generated by the between-trial updating mechanism in AARM,
given the 10 unique training stimuli in Phase 1 and three training
trials in Phase 2. Over the course of Phase 1, the model learns to
increase attention to D/I and decrease attention to I/D. Following the
switch, attention to D/I decreases and is redistributed among the
P dimensions, while attention to the I/D dimension remains consis-
tently low.

For within-trial simulations, each subject’s proportion of D/I
fixations during the last 10 test trials of Phase 1 was mapped to
a discrete value between 6 and 9 (inclusive) to represent the number
of training trials out of a possible 10 on which the D/I feature was
encoded (i.e., fewer fixations to D at test implied fewer D features
were encoded during Phase 1). The feature encoding matrix, M*,
was then modified as described in Case Study 1A. We probed the
within-trial module with the exact sequence of stimuli that each
participant actually observed; specifically, the last test trial of Phase
1 and the first three training trials of Phase 2. For each simulated
trial, the model outputs were as follows: (a) a category response; (b)
a response time equal to the number of iterations between initiali-
zation and self-termination; (c) a vector of predicted fixations with
length equal to the RT, in which each element corresponded to a
discrete dimension; and (d) a binary vector Q, which indicated whether
each dimension was encoded (Qj(RT) = 1) or not (Qj(RT) = 0) by the
end of the trial. After each trial in a sequence, the feature identity of
the probe (ei) was added to the matrix of stored exemplars (X) along
with the corrective category feedback received by the participant.
Similarly, Q was added to the exemplar encoding matrix, M*.
Elements that were set to 0 in M* functioned as a mask over the
corresponding feature values in X, such that feature information
about a stimulus in a sequence was only accessible to the model on
subsequent trials if it was encoded during training. We simulated
1,000 sequences of the four relevant trials for each subject. All
simulations used the same set of parameters, which were optimized
with respect to the observed data in aggregate (Table B2 in
Appendix B). Figure 8B shows the model-predicted timecourse

of fixation probabilities within each trial, averaged across subjects.
At the end of Phase 1, the model predicts initial orientation to D/I on
the basis of learned relevance (green line), but gradually reorients to
a P dimension upon observing that the novel feature value in D/I is
no longer relevant in Phase 2 (purple line). In Figure 8D–H, we
observe that the model additionally predicts stronger effects of D/I-
deprioritization and corresponding prioritization of P in Group 1
compared to Group 2. Despite minor qualitative discrepancies
considering the precise timecourse of fixation probabilities, we
consider these effects to be consistent with the observed data.
With AARM’s specification, the necessity of redistributing attention
after the switch is contingent upon the extent to which the observer
encoded features in the D/I dimension to begin with.

Hierarchical Category Structures

For decades, it has been known that hierarchical structures play an
important role in guiding goal-directed behaviors, such that humans
instinctively use superordinate sources of information to determine
appropriate actions (e.g., Estes, 1972; Lashley, 1951; Miller et al.,
1960). In task-cueing and task-switching paradigms, for example,
humans are able to engage in different sets of RB behaviors in
response to a stimulus-independent indicator (see Monsell, 2003, for
review). In work by Meiran (1996), participants learned to classify
digit stimuli as either odd/even or high/low depending on the shape
or color of a background cue. While the authors observed notable
switch costs, such that participants were slower to respond on the
first trial after a rule switch, participants were indeed able to learn the
mapping between background cues and the current rule in both
predictable and unpredictable conditions of subtask sequences (see
Allport et al., 1994; Rogers & Monsell, 1995, for similar results).
Given that digit stimuli were drawn from a common distribution
across odd/even and high/low subtasks, one interpretation of
Meiran’s (1996) results is that the background cue served as a
hierarchically superordinate indicator of whether participants should
attend to the digit’s parity or magnitude on each trial.

Other work has suggested that humans use sources of contex-
tual information to determine how to selectively allocate atten-
tion as well (e.g., Chun & Jiang, 1998; Chun & Turk-Browne,
2007; Crump et al., 2018; Egner, 2008; Vecera et al., 2014). In a
contextual-cueing task conducted by Chun and Jiang (1998), for
example, participants were able to use the global arrangement of
stimuli as a cue for identifying the spatial location of a visual
search target. These results are in line with seminal theories of
memory and attention, in which contextual cues are bound to
stimuli during encoding, and influence automatic attentional
processing at test (Norman, 1968; Norman & Shallice, 1986;
Shiffrin & Schneider, 1977).

In the three case studies to follow, we will use AARM to explore
how hierarchical category structures give rise to distinct patterns of
information sampling behaviors and within-trial changes in selec-
tive attention. We will first discuss results originally reported by
Blair et al. (2009), which showed that humans prioritize information
in a manner that is consistent with hierarchically organized stimulus
dimensions. We will then expand the concept of hierarchical
structures to environmental context as a superordinate dimension
for determining how to appropriately distribute attention across the
dimensions of the stimulus itself.
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Case Study 2: Dimension Prioritization

In Case Studies 1A and 1B, we discussed how learning and
memory impact the way humans decide which dimensions to sample
when provided with a new stimulus. Case Study 2 further considers
how the feature information contained within the current stimulus
can impact the path and timecourse of attention allocation. As shown
in Figure 1C, for example, hierarchically organized category struc-
tures contain jointly deterministic dimensions, such that the feature
value contained in the superordinate (green squares) dimension
indicates which of the available subordinate dimensions (orange
triangles or purple crosses) is relevant to category membership.
Such structures are ideal for studying within-trial dynamics, as they
give rise to distinct temporal ordering effects of dimension-sampling
behaviors between stimuli.

First, we present eye-tracking data from 41 subjects that were
provided freely online by Meier and Blair (2013). The “1:1 condi-
tion” (equal frequency across category exemplars during training;
Experiment 2) used the same stimuli and study design that were
originally developed by Blair et al. (2009). Stimuli were fictional
microorganisms, each containing a triad of equally spaced dimen-
sions (organelles). Each dimension could take on one of two
possible features, resulting in eight unique stimulus configurations.
Stimuli were assigned to four categories (A1, A2, B1, and B2) based
on a hierarchical category structure, such that one dimension (D1)
indicated membership in an A or a B category, the second dimension
(D2) differentiated between A1 and A2, and the third dimension
(D3) differentiated between B1 and B2 (i.e., Figure 1). Participants
completed 480 trials with feedback and were excluded from further
analyses if they failed to exceed an accuracy criterion of 80% within
the latter 120 trials (10 subjects; Meier and Blair, 2013). Following
the analyses presented by the original study, we aggregated fixations
to each dimension separately across Categories A and B items in the
final 72 trials of the experiment. Mean fixation probabilities shown
in Figure 9A, reflect striking differences in dimension prioritization
between trial types. Replicating the findings from Blair et al. (2009),
the results from Meier and Blair (2013) show that participants
tended to fixate to the superordinate dimension first, then shift their
gaze to the subordinate dimension that was relevant to the current
trial while ignoring the alternative.

For our simulations, we first used the between-trial module to
generate postlearning initialization weights after a single exposure
to all eight unique stimulus configurations. After normalization (see
the Attention Orientation section) D1 received the highest weight
(0.505) and D2 and D3 each received lower but equivalent weights
(0.248). We then used the within-trial module to simulate 1,000
isolated trials without feedback using A- and B-labeled probes as
inputs. Outputs of each simulated trial were as follows: (a) a
category response; (b) an RT equal to the number of iterations
between initialization and self-termination; and (c) a vector of
predicted fixations with length equal to the RT, in which each
element corresponded to a discrete dimension (i.e., D1, D2, or D3).
For generating dwell times, iteration units were converted to milli-
seconds by simple scalar multiplication. The simulated paths of
fixations generated by AARM shown in Figure 9B closely resem-
ble the observed behavior shown in Figure 9A. Across A and B
probes, the model predicts a fixation bias toward the superordi-
nate D1 dimension for the first 30%–40% of the trial’s full
duration before reorienting to the relevant D2 or D3 dimension.

As a reconfiguration of the results shown in Figure 9A–B, Figure
9C shows total dwell times to each dimension, averaged across
trials. Both observed (filled bars) and model-predicted (unfilled
bars) results show approximately equal dwell times (600–650
ms) to the two dimensions that were relevant to each trial (D1
and D2 for Category A stimuli; D1 and D3 for Category B stimuli)
and substantially shorter dwell times to the irrelevant dimension (D3
for Category A stimuli; D2 for Category B stimuli). Blair et al.’s
(2009) original study provided compelling evidence that humans
allocate attention in way that (a) favors features that are relevant
within the current trial and (b) is observable via within-trial gaze
fixation paths. Until recently (see Braunlich & Love, 2021), how-
ever, category learning models have not been subjected to con-
straints related to temporal ordering of prioritized dimensions. By
explicitly defining how mechanisms for between-trial attention
weights manifest in distinct paths of information sampling,
AARM demonstrates the unique ability to relate latent theoretical
constructs of attention to observable timecourses of within-trial
behavior.

Case Study 3: Task Cueing

Here, we extend the concept of hierarchical structures to contex-
tual cues as a superordinate dimension. Specifically, we used AARM
to simulate response data across a set of RB and information-
integration (II) subtasks in which a context dimension (i.e., back-
ground color) indicated which stimulus information was relevant for
categorizing a common set of stimuli. While two-dimensional RB
tasks require observers to categorize stimuli on the basis of a single
dimension, II tasks require integration of feature information across
multiple dimensions (Ashby et al., 1998; Maddox & Ashby, 2004;
D. Smith et al., 2012). Humans and nonhuman primates have
demonstrated an ability to learn both RB and II tasks, but are
notably faster and more accurate at learning in the former case
(Maddox & Ashby, 2004; D. Smith et al., 2012). Even when
stimulus dimensions co-occur in space, behavioral evidence sug-
gests that humans can selectively attend to task-relevant dimensions
while ignoring the others (Ashby & Maddox, 2005).

We designed a simulation paradigm after O’Donoghue et al.
(2020) to provide what we consider to be a clear demonstration of
context-dependent learning and selective attention with AARM.
However, we do not draw comparisons to observed data in the
current case study. Given that data from O’Donoghue et al. (2020)
were collected from pigeons rather than humans in an effort to study
behavior in the absence of an analytic category learning system, we
do not expect a model of human category learning like AARM to
produce analogous behavioral results. Instead, the goal of Case
Study 3 is to demonstrate AARM’s ability to extend to categoriza-
tion problems with (a) continuously valued dimensions; (b) spatially
co-occurring dimensions; and (c) multiple levels of complexity
(where II trials are assumed to be more complex than RB).

Figure 10A illustrates the hypothetical paradigm used here. Each
point represents a combination of frequency (x-axis) and tilt angle
(y-axis) feature values for a single Gabor patch that was created from
a common, normally distributed stimulus space across trials. Con-
texts 1 and 2 denote RB subtasks, such that category membership
was determined by high versus low frequency or large versus small
tilt angle, respectively. Contexts 3 and 4 denote II subtasks, such that
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Figure 9
Case Study 2: Hierarchical Category Structures

Note. AARM= adaptive attention representation model; CIs = confidence intervals. (A) Observed fixation data
from Experiment 2 (1:1 condition) from Meier and Blair (2013) while participants categorized stimuli that
belonged to categorized A (left panel) and B (right panel). (B) Within-trial fixation predictions generated by
AARM aggregated across 1,000 probes from Categories A (left panel) and B (right panel). (C) Means and 95%
CIs of dwell times to each stimulus dimension in milliseconds, calculated across Category A (left set of bars) and
B (right set of bars) trials. Filled bars show observed data and unfilled bars show model predictions. See the online
article for the color version of this figure.

category membership was determined by the integration of both
frequency and tilt angle information.

To represent Gabor patches that varied continuously on frequency
and tilt angle dimensions, we randomly drew 400 points (X, Y) from
a bivariate normal distribution with means of 0 and standard
deviations of 1. One hundred points were randomly allocated to
each of the four contexts, and category labels were assigned
according to the relevant rule as follows (Table 3).

Training stimuli with category labels matrix X, with the first two
elements taking on continuous values, and the third element taking
on a discrete value between 1 and 4 (inclusive) to represent context.
All 400 training stimuli were iteratively introduced to AARM’s
between-trial module, and the posttraining weights for each dimen-
sion were as follows: 0.195 (X; frequency), 0.194 (Y; tilt angle), and

0.611 (context). As in the previous case studies, attention weights in
the within-trial module were initialized to the posttraining values
determined by the between-trial module. Four probes (ei) were each
introduced to the within-trial module 1,000 times without feedback.
Feature values corresponding to the X and Y dimensions were set to
1 across probes (shown as crosses in Figure 10A), and context
feature values corresponded to each of the four unique contexts in
the task. By contrast to the previous case studies in which dimen-
sions were spatially segregated, encoding probability was not gated
by the output of the error gradient (i.e., gaze fixations). Instead, both
attention weights and encoding probability were continuously up-
dated throughout the trial for all dimensions simultaneously, given
that context, tilt, and angle dimensions co-occurred in space.
Outputs of each simulation were as follows: (a) a category choice
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Figure 10
Case Study 3: Task Cueing

Note. RB =  rule-based. II =  information integration. (A) Illustration of stimuli and category delineations from four subtasks of a hypothetical experiment.
Points represent Gabor patch stimuli that each take on a frequency value (x-axis) and a tilt angle value (y-axis). Background colors served as an indicator of the
categorization rule for each subtask: frequency distinguished between Categories A and B in Context 1 (RB), angle distinguished between Categories C and D in
Context 2 (RB) both frequency and angle were necessary for distinguishing between Categories E and F in Context 3, and Categories G and H in Context 4 (II). (B)
Mean encoding probabilities of each dimension (y-axis) are plotted as a function of the percentage of time in between stimulus onset and response (x-axis). Solid,
dotted, and dashed lines represent context, frequency, and angle dimensions, respectively. (C) Probabilities of making an A–H response (y-axis) plotted as a
function of the percentage of time within trial between stimulus onset and response (x-axis). Each color represents an available category label, as shown in Panel
A. See the online article for the color version of this figure.

(A–H); (b) a matrix of choice probabilities across categories at each
timestep prior to self-termination; (c) an RT (number of iterations);
and (d) a binary matrix indicating whether each dimension was
encoded.

Table 3
Categorization Rules for Case Study 3

Context Rule Category

1                                                 X ≥  0                                               A
X <  0                                               B

2                                                 Y ≥  0                                               C
Y <  0                                              D

3                                              −Y ≥  X                                                    E
−Y <  X                                                    F

4                                                 Y ≥  X                                                   G
Y <  X                                                   H

Within-trial averages of dimension encoding and choice prob-
ability across simulated trials are shown in Figure 10. As a
reflection of the inherently hierarchical structure of the paradigm,
we observe that context is prioritized across both RB (Contexts 1
and 2) and II (Contexts 3 and 4) subtasks, as illustrated by
consistently early encoding of the context dimension (approxi-
mately 25% of the response time; Panel B). Analogs of selective
attention emerge, however, when we observe which stimulus
dimensions were encoded in each context. In accordance with the
RB category structure learned in Context 1, the model tended to
encode the frequency (X) dimension but not the tilt angle (Y)
dimension across probes. By contrast, the model encoded tilt
angle but not frequency when presented with a probe in Context
2. Humans are known to engage similar selective attention
processes in the presence of integrated dimensions (see van
Moorselaar & Slagter, 2020, for recent review), and these
effects are accompanied by reduced subsequent memory for
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task-irrelevant stimulus features (e.g., Olivers et al., 2011; van
Moorselaar et al., 2014).

While context and only one stimulus dimension were encoded in
RB Contexts 1 and 2, both frequency and tilt angle dimensions
were encoded when probes were presented in II Contexts 3 and 4.
This behavior is appropriate given the demands of the two II
subtasks, in which integration of both stimulus dimensions is
required to correctly identify category membership. Given probes
with identical frequency and tilt angle feature values, AARM
predicts maximum probabilities of correctly responding “B,”
“C,” and “F” when presented in Contexts 1, 2, and 3, respectively.
Because the stimulus probe is located on the category boundary in
Context 4, AARM predicted an equal probability of selecting
Categories G or H at the time of the response. Overall, the
timecourses of choice probability predicted by AARM indicate
both successful mapping of context to relevant candidate re-
sponses, as well as successful adoption of learned RB and II
categorization rules.

The current case study is similar in scope to Case Study 2 in
that context serves as a superordinate hierarchical indicator of
the rule. Case Study 3 was meant to build upon the results of
Case Study 2 in two important ways: (a) the RB versus II
distinction demonstrates that AARM encodes spatially co-
occurring dimensions independently or simultaneously, depend-
ing on the demands of the task; and (b) the use of continuous
dimensions demonstrates that AARM can generalize learned
information to categorization decisions about novel stimuli.
Although the exact combination of probe feature values intro-
duced at test was never observed during training, AARM was
still able to use information about context to engage selective
attention (Figure 10B) and predict responses consistent with
learned RB and II subtasks (Figure 10C). Building upon the
simulation results presented here, Case Study 4 will investigate
how the nature of the learning environment can potentially
modulate attention to context during training, and subsequent
context-dependent behavior at test.

Case Study 4: Incidental Context

Empirical evidence has suggested that environmental context
plays a role in memory encoding and retrieval even when the
context is not directly relevant to the goals of the task (i.e.,
Godden& Baddeley, 1975; S. Smith et al., 1978). These effects
extend from complex place to simple computerized manipula-
tions of context (i.e., background color: Dulsky, 1935; Isarida
and Isarida, 2007; Murnane et al., 1999; screen location: Dix and
Aggleton, 1999; font size: Perfect, 1996). In the memory litera-
ture, these two types of context have been characterized as
“local” and “global” context, respectively (Baddeley, 1982;
Eich, 1985; Murnane et al., 1999). Whereas local context is
associated with a subset of items and influences the representa-
tion of stimuli during encoding, global context refers to aspects
of the learning environment that are independent of the to-be-
remembered information (Hockley, 2008). Building from our
examination of local context in Case Study 3, Case Study 4 tests
the extent to which AARM can predict context-related differ-
ences in behavior, even if context is not an independently
relevant dimension during learning.

Case Study 4A: Context Integration

In the current case study, we focus on a paradigm that was developed
by Sloutsky and Fisher (2008) to examine context-dependent generali-
zation of learned concepts in 4- to 5-year-old children. Global contex-
tual features (i.e., the color of a background rectangle and the stimulus’s
location on the computer screen; Figure 11A) co-occurred with
categorization rules during training but were not independently relevant
to the task. In the presence of novel test items with conflicting stimulus
features, however, observed response biases indicated that participants
had indeed learned the contingencies between contexts and categori-
zation rules. Simulations with AARM provide an explanation for how
the observed pattern of results might occur.

Stimuli were triads of items, with each item varying on the basis
of shape (circle or triangle) and color (red or blue). Triads consisted
of a target and two choice options, and the task on each trial was to
select the choice option that matched the target on either the shape or
the color dimension. Forty-two participants underwent training in
which they responded to two types of trials with feedback: (a) in
Context 1, all items in a triad had the same color, and participants
had to respond on the basis of shape (Figure 11B, top: yellow arrows
show paths from target to correct response); and (b) in Context 2,
items had the same shape, and participants had to respond on the
basis of color (Figure 11B, bottom). After 48 training trials,
participants completed 16 test trials without feedback. By contrast
to the training phase in which triad items only varied on a single
dimension per trial, test triads were ambiguous. As shown in Figure
11C, one choice option matched the target on the basis of shape (and
mismatched on color) while the other matched the target on the basis
of color (and mismatched on shape). Half of the participants
completed the test phase in Context 1, and the other half in Context
2. As a point of comparison, a separate group of 32 participants
completed the test phase in both contexts after receiving no training
at all. The behavioral results of the test phase are shown in Figure
11F. When tested in Context 1, participants who underwent training
were more likely to respond on the basis of shape than the untrained
participants. When tested in Context 2, trained participants were
more likely to respond on the basis of color than the untrained
participants. We ran simulations with AARM using two sets of
training stimuli. Here, we discuss simulation results from Training
Set A, which had the same characteristics as the training stimuli
described above. Results from simulations that used the hypothetical
Training Set B will be discussed in Case Study 4B. We first
introduced each unique training stimulus to the between-trial mod-
ule to generate initialized weights for the within-trial module.
Because context co-occurred with the relevant target dimension
and did not contain independently relevant information, AARM
allocated minimal attention to context. As shown in Figure 11E
(Training A), the shape and color of the target received the highest
attention weights (0.312), and context received the lowest weight
(0.040), with shape and color of the choice options falling in
between (0.084). After initializing the within-trial model’s attention
weights, probe stimuli ei containing each of the two possible context
feature values were introduced to the model separately. Within each
of the two probes, one choice option matched an arbitrarily chosen
target according to shape, and the other choice option matched the
target according to color as follows (Table 4).

Using each probe, we ran 1,000 independent within-trial simula-
tions without feedback. Each simulated trial yielded a binary
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Figure 11
Case Study 4: Incidental Context

(A) (B) (C)

(D) (E)

(F) (G) (H)

Note. AARM =  adaptive attention representation model. Figure adapted with permission from Child Development. (A) Illustration of
contexts. (B) Training stimuli. Stimuli were triads of items, and the task was to select one of the two choice options (top two items)
that matched the target (bottom item) according to a rule. Yellow arrows indicate a path from the target to the correct choice option. (C)
Test stimuli. Note that identical stimulus configurations were shown in Contexts 1 and 2, but yellow arrows indicate that different
responses are appropriate according to the context. (D) Hypothetical training stimuli for simulation purposes. (E) Attention weights are
generated by the between-trial module of AARM before (left bar) and after exposure to each set of training stimuli and their category
labels. Each color represents a stimulus dimension, and larger segment heights correspond to larger attention weights. (F) Observed
proportions of shape-based responses in each context. (G and H) Model-generated proportions of shape-based responses in each
context at test, following Training A and B. The context dimension in our simulations was either considered to be integrated
(perceptually overlapping) with the dimensions of the stimulus triad (G) or segregated (separate in space and requiring independent
perceptual processing) from the dimensions of the stimulus triad (H). See the online article for the color version of this figure.

response corresponding to either the left or the right choice option in
the stimulus triad.

We assumed that shape and color of a given triad item could be
encoded simultaneously, given that they occupied the same location

in space. Mechanisms for contextual encoding, however, were much
less straightforward. We therefore, performed two sets of simula-
tions using Training Set A, each representing a different hypothesis
for how context is processed and encoded. In one set, contextual
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Table 4
Probes for Case Study 4

Item Dimension Probe 1 features Probe 2 features

Context 0 1
Target Shape 0 0

Color 0 0
Option 1 Shape 0 0

Color 1 1
Option 2 Shape 1 1

Color 0 0

information was considered to be integrated with the item-level
information at each respective spatial location, such that the proba-
bility of encoding context was updated continuously within trial. In
the other set, the context was considered to be a segregated
dimension, such that the observer had to fixate to context indepen-
dently from the items in the triad in order to encode its information.
As shown in Panel G, AARM predicts behavioral results that are
consistent with the observed data when contextual information is
integrated with stimulus information. Specifically, AARM predicts
a higher proportion of shape-based responses to test items presented
in Context 1 compared to Context 2. When the context is considered
to be a segregated dimension, however, Figure 11H shows that
AARM does not predict the observed response bias on ambiguous
test items following Training A. Instead, the model predicts an
approximately equal probability of making a shape-based response
in both Contexts 1 and 2. Because context is not independently
relevant to the task during training and the observer has therefore not
learned to explicitly attend to it, context will only be used during the
decision process if it is encoded by other, passive means. Our results
suggest that attention in AARM is a possible mechanism for the
effects of global context on behavior, such that contextual informa-
tion can be passively encoded along with the features of a stimulus
despite a lack of known predictive utility at the time of learning.

Case Study 4B: Context Relevance

We ran an additional set of simulations using a hypothetical
Training Set B, in which context was a hierarchically superordinate
indicator of whether shape or color was relevant on each trial.
Training B stimuli were configured identically to the test set in
Sloutsky and Fisher (2008), such that one choice option matched the
target according to shape, and the other choice option matched the
target according to color (Figure 11D). Although observed re-
sponses using the alternative Training B were not published, we
performed these additional simulations to provide direct contrast
between the influences of global and local context in AARM’s
specification. We first used the between-trial module to calculate a
set of attention weights after observing all 16 unique stimuli in
Training B. As shown in Figure 11E, the context dimension was
assigned the highest weight (0.471) followed by target shape and
color (0.168) and shape and color of the two choice options (0.048).
The posttraining weights from the between-trial module were used
to initialize the within-trial model on 1,000 simulations. We used the
same two probes that were used to examine the learning effects of
Training A.

As previously described, context was implemented as an inte-
grated (passively encoded along with fixated stimulus information)
or segregated (encoding requires independent fixation) dimension in
two separate sets of simulations. AARM predicts the same pattern of
responses at test as a result of Training B, regardless of whether
context is considered to be an integrated (Figure 11G) or a segre-
gated (Figure 11H) dimension: In both cases, AARM predicts a
higher proportion of shape-based responses when triads are pre-
sented in Context 1 compared to Context 2. Because the model is
able to learn the hierarchical structure of the Training B stimulus set
in which context is the superordinate dimension, it responds to test
stimuli by orienting to and encoding context independently from the
items in the triad. Therefore, Training B does not require AARM to
overcome reduced attention to context via passive encoding related
to feature integration.

As part of a study that investigated the context-mediated transfer
of learning in categorization tasks, George and Kruschke (2012)
used model simulations to demonstrate that the results from
Sloutsky and Fisher (2008) could be explained by associative
learning alone, without the involvement of additional selective
attention mechanisms. More specifically, the authors used two
associative learning models (Pearce, 1994; Rescorla & Wagner,
1972) to show that context-consistent responses at test could arise on
the basis of asymmetrical feature-level similarity between the given
test stimulus and a subset of training items. As shown by our AARM
simulations in which context is instantiated as an independent
dimension relative to the elements of the stimulus triad, however,
the influence of context on behavior is not guaranteed from the
experimental design of Sloutsky and Fisher (2008; Figure 11H). If
we can, for the purposes of argument, assume that the role of
attention is ubiquitous in category learning, AARM’s within-trial
mechanisms offer an alternative to the purely association-based
explanation provided by George and Kruschke (2012) that over-
comes reduced attention to context incurred as a result of training.
By incorporating global context as an integrated dimension that is
peripherally attended during item-level processing at test, AARM
predicts context-mediated patterns of behavior consistent with the
results of Sloutsky and Fisher (2008; Figure 11G). Although several
studies have found evidence that global context during learning
influences future decision-making behavior (Geiselman & Glenny,
1977; George & Kruschke, 2012; Murnane & Phelps, 1993, 1994; S.
Smith, 1986; S. Smith & Vela, 1992), other studies observed the
opposite pattern of results (Griffiths & Le Pelley, 2009; S. Smith &
Vela, 2001). Given that AARM makes dissociable predictions about
the influence of global context depending on the extent of feature
integration, AARM can potentially be used in future work to
identify which elements of context are bound to stimuli during
encoding, and which are not.

General Discussion

The between-trial module of AARM comprises a theoretical
framework for how attention allocation, decision-making, and
item representations interact to facilitate learning. Here, we
extended AARM to account for within-trial dynamics as well:
specifically, the mutually influential timecourses of dimension-level
information sampling and response evidence. Like AARM’s
between-trial module, several models predict learning as a conse-
quence of the strategic manipulation of attentional resources over
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the course of a task. Most, however, do not make explicit
assumptions about how the latent distribution of attention might
affect how dimensions are prioritized within a trial. AARM
therefore stands apart from other accounts of category learning
because it seeks to close the loop between updating latent
attention according to trial-level feedback, and subsequently
deploying attentional resources to acquire relevant information
when the next stimulus appears.

As discussed in the introductory sections, there were four over-
arching theoretical components to the current work. First, both
within- and between-trial dynamics are described by a common
set of mechanisms. For AARM to be viable, it was important that the
within-trial module be constructed from the same cognitive machin-
ery and operations that were purported by our previous work to be
engaged in service of the broader learning problem (Galdo et al.,
2021). As such, the Model Specification section provides a core set
of mechanisms that operates at multiple timescales to explain how
humans both learn about new categories and acquire information
about new stimuli.

Second, humans form simplified representations of stimuli
from the features that are perceived to be relevant to the task.
Given our previous findings that dimensions compete for atten-
tion and that only the attended subset appears to contribute to
categorization decisions, the within-trial module was necessary
to explain how strategic reorientation and self-termination be-
haviors might emerge. We therefore specified dynamic processes
through which attention, decision evidence, and an evolving
stimulus representation inform one another, but only until the
observer has acquired enough information about the stimulus to
map it to a particular category.

Third, attention allocation is optimized with respect to a goal. The
learning problem in the between-trial case is well defined, such that
the observer can conceivably redistribute attention upon observation
of feedback in an effort to reduce the probability of future errors.
Indeed, rational theories of psychological processes predict beha-
viors via optimization of a cost function given some set of environ-
mental constraints (Sakamoto et al., 2008; Sanborn et al., 2010). The
costs of sampling information from a feature that provides support
for an incorrect category label cannot be ascertained and avoided,
however, before the correct label has been provided by feedback.
The within-trial module therefore assumes observers seek additional
support for the category label that they believe to be correct at each
moment in time. The result is a parsimonious extension to attention
optimization that is consistent with observable human biases of
confirmatory search.

Fourth, attention processes are sensitive to hierarchical structures.
Given eye-tracking results showing distinct temporal ordering
effects that are consistent with hierarchical structures (Blair et al.,
2009), it was important that the within-trial module be able to
produce similar trajectories of orienting. In several of our case
studies (i.e., 2, 3, and 4), hierarchical organization of information via
selective attention was essential for producing the expected patterns
of information sampling behaviors and responses. We argue that
hierarchical structures are not a special case of experimental manip-
ulations, but are rather ubiquitous in nature given observable
impacts of environmental context on information processing and
behavior.

Across four case studies, we used model simulations to demon-
strate AARM’s capacity for predicting plausible patterns of

behavioral responses (Case Studies 3 and 4), eye-tracking data
(Case Study 1B), or both simultaneously (Case Studies 1A and
2). Our preliminary results provide qualitative support for the
within-trial mechanisms proposed by AARM. In Case Study 1,
we demonstrated how individual differences in information sam-
pling and response probabilities could emerge due to selective
attention and encoding variability, despite all participants experienc-
ing the same stimuli during training. In Case Study 2, we showed
that distinct temporal ordering effects of information sampling
emerge in the presence of hierarchical stimuli through a combination
of experience-biased orienting and mechanisms for ongoing feature
predictions. Case Study 3 used hypothetical stimuli to present the
possibility that even when dimensions co-occur in space, selective
attention could be a mechanism through which only the information
that is relevant to individual trials will be encoded and concurrently
contribute to the choice. Case Study 4 explored how contextual
features could bias decisions at test even if they were not explicitly
attended during training. In the sections to follow, we will discuss
the implications of our results and suggest future extensions that
pertain to AARM’s component mechanisms.

Self-Termination

Most models of category learning assume that observers access
all feature information across stimulus dimensions when making
category judgments. While this may be plausible in laboratory
tasks that include stimuli with only a few dimensions, it is
potentially unreasonable to assume that humans encode all avail-
able perceptual information from the complex stimuli that they
encounter in the real world. To make efficient decisions, humans
therefore need to identify the dimensions of information that are
relevant to their current goals. Using variants of AARM that
instantiated different modes of simplicity bias, Galdo et al. (2021)
provided evidence that humans tend toward low-dimensional
representations as they learn. One interpretation of these findings
is that while humans strive to achieve high accuracy in a task
setting, they concurrently seek to reduce time and resource
expenditure on individual trials (Boureau et al., 2015; Cisek
et al., 2009; Thura et al., 2012; Yau et al., 2021).

Given evidence that memories for past events influence how we
make predictions about the environment (S. Smith & Vela, 1992)
and encode new information (Bowman & Zeithamova, 2020) it
stands to reason that the construction and storage of low-
dimensional representations might bear a meaningful impact on
how the observer interfaces with new stimuli. In Case Study 1, we
used the within-trial module of AARM to investigate the potential
impact of feature-level encoding variability on subsequent informa-
tion sampling behaviors in a paradigm with multiple independently
relevant sources of information (Blanco & Sloutsky, 2019). In
particular, we manipulated the extent to which previously presented
features of the deterministic dimension were successfully encoded
in memory, such that they were accessible when the observer forms
expectations about what features a new stimulus might take on. If
humans form simplified representations based on only a few dimen-
sions, selective attention to a subset of probabilistic dimensions
should reduce encoding of deterministic features across trials.
Although attention was initialized with the same values across
simulations, we found that manipulating feature expectations via
the encoding structure of the model was sufficient for predicting
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notable differences in fixation paths when new stimuli were pre-
sented. Importantly, this manipulation also produced differences in
proportions of responses in the presence of novel stimuli with
conflicting feature-to-category mappings (Case Study 1A), and
the extent of reorientation after a categorization rule change
(Case Study 1B) that were consistent with observed effects.

Two contributions of the within-trial module, then, are that it (a)
provides an explanation for how low-dimensional representations
are formed through self-terminating attention and decision processes
and (b) allows us to investigate potential impacts of low-
dimensional representations on how observers seek out information
and respond when presented with new stimuli. While our interest in
the current article was to articulate a theory for how learned
information (i.e., memories and goal-directed attention) fundamen-
tally shapes how future knowledge is sought after and acquired, the
effects of partial or variable encoding of individual stimuli during
learning require further investigation. The between-trial module of
AARM and other iterations of GCM allow for variable memory
strength at the level of the global stimulus, such that traces of
exemplars are subject to decay as they recede into the past. It is
generally assumed, however, that all features are encoded and are
available for similarity comparisons as new stimuli are presented. As
a future direction, we will therefore use insights provided by the
current work to extend the between-trial module of AARM to
problems of partial encoding. In high-dimensional environments
in particular, the sources of information that are fixated and encoded
early in learning may have profound impacts on how attention is
selectively distributed in the future. As such, accounting for partial
encoding during the learning process would be essential for asses-
sing the relative contributions of initialized attention weights and
feature-level memory in generating patterns of behavior like those
observed in Case Study 1.

Confirmatory Search

We have made efforts to contrast AARM with SEA, an alterna-
tive theory of learning and information sampling (Braunlich &
Love, 2021). As a rational account, SEA’s purpose is to identify the
most cost-effective action within a set of environmental constraints
(Sakamoto et al., 2008). While the two models often make similar
predictions, AARM fulfills a different purpose of characterizing
plausible mechanisms that manifest in human-like behaviors. Its
base implementation was therefore, designed to be amenable to
influences from observable biases in human learning, whereas SEA
was developed to generate optimal sampling paths under various
environmental conditions. One major way that AARM departs from
SEA is the specification of confirmatory information search.
Although unbiased approaches are demonstrably effective at pro-
ducing optimal sampling trajectories, behavioral effects of confir-
matory search have been widely observed in causal judgment
tasks (Rabin & Schrag, 1999; Schustack & Sternberg, 1981;
Shaklee & Fischhoff, 1982; Wason & Johnson-Laird, 1972), and
more recently in visual search as well (Rajsic et al., 2017; Rajsic
et al., 2015).

Although the two models have not been directly compared, both
AARM and SEA have been shown to produce human-like beha-
viors of reorientation and self-termination in the presence of
hierarchical stimuli from Blair et al. (2009). The manner in which
the models perform the task after training, however, differ in

interesting ways. As discussed in the case studies that pertain to
hierarchical category structures, AARM’s between-trial module
upweights attention to the superordinate dimension over the course
of training. The within-trial module then orients to the superordi-
nate dimension on the basis of posttraining attention weights.
When sufficient cumulative attention is applied for a feature value
to be encoded, active retrieval of similar exemplars coupled with
ongoing updates to attention causes the observer to reorient to a
subordinate dimension, depending on the feature identity that was
encoded from the superordinate dimension. After accumulating
sufficient evidence for a single category label, the model self-
terminates with a response.

Braunlich and Love (2021) performed two sets of simulations of
the paradigm from Blair et al. (2009): one using the standard model
with full preposterior search and the other using the myopic
version of the model. The standard model forecasts all possible
sequences of feature values across dimensions at trial onset,
calculates the probability of observing each response via cluster
activation, and condenses that information into an expected utility
of sampling each dimension. The observer then samples informa-
tion from the dimension with the maximum utility, or terminates
the search process in a response if no available dimensions are
expected to provide gain beyond a prespecified cost of sampling.
The myopic version of the model works similarly to the standard
version of SEA, except that feature predictions are made only one
step into the future. Given the massive computational load of full
preposterior search, the myopic variant of the model was presented
in an effort to account for human-like limitations on memory and
attention resources.

As shown in Figure 9, AARM predicted trajectories of fixa-
tions and dwell times that were consistent with the hierarchical
structure of the task, varied appropriately between trial types,
and consistently self-terminated after the two trial-relevant
features were encoded. We consider the level of detail at which
AARM is able to predict behavior to be an advantage of its
mechanistic approach; as shown in Figure 9, its predictions
closely match the observed timecourse of sampling behavior
across participants. SEA, by contrast, only makes predictions
about the order in which features are sampled before a response
is made. This level of specificity is of course sufficient for a
rational account, as the model was designed to determine the
probability of discrete actions (e.g., sample a dimension; make a
response) given a particular goal and task environment. As such,
the standard version of SEA was reported to make predictions
that were consistent with observed postlearning behavior insofar
as it sampled the superordinate dimension first, self-terminated
after sampling the two relevant dimensions on each trial, and
correctly categorized items on 93.3% of trials (Braunlich &
Love, 2021).

The more parsimonious myopic variant, however, was less
successful. Because a one-step forecast produces equal utility
predictions across dimensions, the myopic model only oriented
to the superordinate dimension on one-third of the trials. Across
a majority of trials, the myopic model generated fixation trajectories
that were not consistent with the observed effects shown in Figure 9.
This discrepancy potentially highlights an important instance in
which human behavior departs from the optimal action sequence,
even when capacity limitations are considered. The myopic
model does not predict effects of initial orientation that are
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consistent with the hierarchical design of the task because its
balanced, single-step prediction determines that all dimensions
are equally likely to support a correct response. While this
explanatory issue can be overcome by exhaustive preposterior
search, AARM produces the target pattern of behavior by
incorporating human-like biases and a nonstationary working
representation of the stimulus.

Confirmatory search mechanisms in AARM supported behaviors
in Blair et al.’s paradigm that were consistent with rational predic-
tions provided by full preposterior search in SEA, but this approach
has potential limitations. For instance, it is often the case that false
negatives incur a greater cost than false positives, such that dis-
confirmatory search would be advantageous. Real-world medical
diagnosis is an extreme example, but this balance of costs is relevant
to various recognition-primed decision-making tasks as well (Fadde,
2009). Additionally, work investigating search strategies has shown
that while people tend to maximize probability gain (i.e., sample
dimensions that yield the highest probability of a correct response),
strategies that maximize information gain or impact are used in some
cases as well (Nelson et al., 2010). Although confirmatory search
was an effective way of extending the error-minimization updating
rule from the between-trial module of AARM to account for the
unsupervised aspect of within-trial dynamics, it may not be a viable
solution in all contexts.

Given the diverging theoretical bases of AARM and SEA, a
direction of future work will be to conduct quantified comparisons
between their predictions. Because SEA determines optimal beha-
viors with respect to the environment while AARM is more flexible
with regard to the influences of individual biases, comparing the
predictions of these two models may provide important insight into
when and why humans deviate from optimal modes of behavior.
One potential avenue is to compare AARM and SEA’s predictions
in a task like the one designed by Blanco and Sloutsky (2019) and
discussed in Case Study 1. Both models can purportedly produce
learning traps such that an initially irrelevant dimension continues to
be ignored even if it becomes relevant at some point in the future.
Nevertheless, the switch from Phase 1 to Phase 2 in the Blanco and
Sloutsky (2019) paradigm might provide interesting contrast
between AARM and SEA because the optimal behavior is not
well defined. When the deterministic dimension is no longer rele-
vant, is it more advantageous to exploit a probabilistic dimension
and at least be correct on a subset of trials, or reexplore in order to
find the new deterministic dimension?

Endogenous Covert Attention

The proposed AARM framework specifies how latent attention
dynamics might give rise to patterns of gaze fixations. It is,
therefore, relevant to highlight the theoretical distinction between
overt and covert attention as it exists in the visual search literature.
Whereas covert attention is a latent psychological construct that may
be distributed according to feature salience (exogenous) or in a goal-
directed (endogenous) manner, overt attention refers specifically to
the movements of the eyes (see Itti & Koch, 2001, for review).
Previous work has indicated that overt shifts of attention, or
saccades, are preceded by covert shifts in attention resulting from
anticipation of a visual target’s spatial location (Deubel &
Schneider, 1996; Hoffman & Subramaniam, 1995). To explain
these results, the influential premotor theory suggests that overt

and covert attention are tightly coupled, such that they involve a
common set of processing and planning streams and the only
difference is that motor processes are specific to overt attention
(Rizzolatti et al., 1987, 1994). With these insights in mind, we
assumed that latent attention in the within-trial module was contin-
uously updated for all dimensions simultaneously, but fixations
were directed to the spatial location corresponding to the most
informative dimension. Synchronous updates to latent attention
across dimensions, therefore, could result in changes to the fixated
location. In light of work demonstrating more successful encoding
of task-relevant features that incur selective attention over the course
of learning (Deng & Sloutsky, 2015), we additionally specified that
feature encoding occurs as a function of cumulative latent attention.
With this specification, it is possible to overtly attend to a feature,
but to fail to encode it if endogenous covert attention is low.

The decoupling of overt and endogenous covert attention is
exemplified by Case Study 3, in which multiple stimulus dimen-
sions could occupy the same location in space, but differed in
terms of their relevance to the current trial. In the example, angle,
frequency, and context dimensions all overlapped in space and
thus could be fixated simultaneously. Nevertheless, as shown in
Figure 10B, the angle and frequency dimensions were only
encoded when they were necessary for identifying the appropriate
category label within the relevant task context. Behavioral and
neuroimaging work has supported the idea that humans can
selectively attend to a subset of dimensions occupying a common
spatial location as well. For example, Rutman et al. (2010)
collected electroencephalography (EEG) data while participants
viewed overlapping face and scene stimuli. The authors identified
differences in event replated potentials (ERPs) that depended on
whether participants were cued to focus on the face or the scene,
and these differences correlated with subsequent memory for cued
and uncued stimulus components (see Gazzaley & Nobre, 2012,
for additional review).

Although the current specification of AARM’s within-trial
module assumed feature encoding was determined from endoge-
nous covert attention alone, influences of exogenous covert
attention (driven by bottom-up perceptual salience) are likely
to play a role as well. Dugue et al. (2020), for example, recently
found that both endogenous and exogenous covert attention
facilitate encoding, but endogenous attention uniquely facilitates
the read out of feature information. Future work will therefore
investigate the extent to which overt attention and feature encod-
ing in AARM should be determined from covert attention in
general (i.e., both endogenous and exogenous), or endogenous
covert attention specifically. One potential avenue is to contrast
fixations to salient features early and late in learning. Studies have
shown that overt attention initially orients to salient features, but
that these effects can be overcome by increasing endogenous
covert attention to task-relevant dimensions (Theeuwes, 2010;
Vanunu et al., 2021). With AARM’s specification for uncon-
strained total attention (see the Attention Is Not a Zero-Sum Game
section), it would be possible to specify a different baseline
attention value for each dimension. This would bias information
sampling to salient dimensions early in the task, and overcoming
this bias would depend on the observer’s ability to explore the
other dimensions rather than exploiting information from the
salient dimensions alone.
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Conclusions

With the specification of the between- and within-trial modules of
AARM that were outlined here, we have provided a comprehensive
theory for how learning impacts how humans interact with their
environment, both in terms of the dimensions they attend and the
decisions that they make.

AARM stands apart from previous models of category learn-
ing in that it presents a common set of mechanisms that operate
at both between- and within-trial timescales of attention alloca-
tion and decision-making. Our theory broadly suggests that as
humans learn, they make decisions on the basis of simplified
representations of the stimuli they encounter. These simplified
representations gradually emerge through a combination of
selective attention to relevant dimensions, and early termination
of information search when an evidence threshold is reached.
Accumulation of category evidence occurs concurrently with
confirmatory information search, such that humans intuitively
direct their attention toward dimensions that are expected to
support their current beliefs. When testing AARM’s theoretical
predictions, we focused on hierarchical category structures in
particular, due to the natural emergence of temporal ordering
effects alongside attention updating. Beyond the results pre-
sented here, we believe that AARM comprises a broader
theoretical statement about how humans learn in naturalistic
environments as well, with contextual dimensions serving as
superordinate cues to guide information sampling. This work
therefore serves to highlight aspects of category learning that
are frequently overlooked, but are crucial for gaining a
complete understanding of how humans acquire knowledge
about the world.
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Appendix A

Derivations

Starting with Equation 2 where evidence for Category c on Trial i is a weighted sum of exemplar activations and their associated category
labels, we need to compute the partial derivative of this ratio to specify how the attention vector should change so as to minimize the cross-
entropy loss. Although we used vector representation in the main text, our derivation here will show the partial derivative on a dimension-wise basis.
Letting f (i) again denote the feedback provided on the ith trial, the partial derivative of the cross-entropy loss is as follows:

∂αðiÞ log VðiÞ      =  
∂αðiÞ    

 log an I  f ðnÞ =  f ðiÞ −  log an

1 ∂ X
ðnÞ ðiÞ

1 ∂ X       n an I ð f ðnÞ
 =  f ðiÞÞ ∂αðiÞ

n

i an ∂αðiÞ
n

Here, the partial derivative operator can be applied linearly to each individual element within the summations, and so we need only compute
the derivative of the activation expression in Equation 1 for a single exemplar:

ðiÞ
 an = ðiÞ

 

(

exp  −δ  
D       

αðiÞjeðiÞ −  xðnÞ j

!

mðnÞ

) 

= ðiÞ
 

 D  

exp −δαðiÞjeðiÞ −  xðnÞj
mðnÞ

j j j

=

1 j j=1

=  mðnÞ 

k≠j 

exp −δαðiÞjeðiÞ −  xðnÞj     
∂αðiÞ exp −δαðiÞjeðiÞ −  xðnÞj =  mðnÞ 

j=1 

exp −δαðiÞjeðiÞ −  xðnÞj     
∂αðiÞ f−δαðiÞjeðiÞ −  xðnÞjg 

=  −δmðnÞ exp −δαðiÞjeðiÞ −  xðnÞj jeðiÞ −  xðnÞj:
j=1

The partial derivative in Equation 9 can be calculated in a similar manner, where here the feedback associated with Trial i would be replaced
with the index corresponding to the leading accumulator at Time t.

(Appendices continue)
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Appendix B

Notation and Parameters

Table B1
Nomenclature

Symbol

Indices
i
j
h
n
t
c

Task environment
D
C
S

Common elements
e
x
f

m
α
a
V
N
H

Additional within-trial elements
e*
α*
m*
r
z
g
L
Q

Description

Trial
Dimension
Feature
Exemplar
Within-trial timestep
Category label

Number of dimensions per stimulus
Number of possible category labels
Set of dimensions at spatial location

True stimulus representation
Episodic memory trace
Feedback
Exemplar memory strength
Between-trial attention weight
Exemplar activation
Category evidence
Number of exemplars stored
Number of observed features

Working stimulus representation
Within-trial attention weight
Exemplar dimension encoding
Imputed feature value
Imputed feature activation
Within-trial gradient update value
Dimension fixation prediction (true/false)
Feature encoding status (true/false)

Note. Reference table for the notation used in the technical specifications.

Table B2
Parameter Values

Case study

Parameter

δB

γB

δW

γW

κ
θ
ϕ
σ

Description 1A

Kernel specificity (between trial).                    0.05
Learning rate (between trial)                           2.50
Kernel specificity (within trial)                        0.20
Learning rate (within trial)                               0.20
Encoding threshold                                            62
Feature sampling bias                                      0.70
Evidence threshold                                           0.90
Perceptual variability                                       0.10

1B 2

0.02                    1.50
2.00                    1.50
0.20                    0.35
0.20                    0.08
62                       28

0.70                    0.80
0.90                    0.99
0.10                    0.15

3 4A 4B

0.01                      1.50                    1.50
0.001                    0.20                    0.20
0.25                      0.24                    0.24
0.20                      0.17                    0.17
202                       74                       74

0.95                      0.70                    0.70
0.99                      0.90                    0.90
0.10                      0.10                    0.10

Note. Table of parameter values that were used to simulate behavioral and eye-tracking data in each case study.
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