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Abstract: The connection between abrupt high-latitude warming during the Last Glacial Period —
Dansgaard-Oeschger (DO) events— and rapid climate changes at lower latitudes has revealed inter-
hemispheric teleconnections in the ocean-atmosphere system. Links between DO events and
climate variability in mid-latitude, mid-continent settings remain, however, poorly understood,
especially in North America where climate archives with sufficient time resolution are scarce. Here
we examine a speleothem that grew from ~70-50 ka in Wisconsin (USA), and combine fluorescent
imaging of its growth banding with an annual-resolution oxygen isotope (8'*0) record. Eight large
(2.0-3.0%0) negative-8'*0 excursions, each with an onset in <10 annual growth bands, occur
between 61-55 ka, when DO events 17-14 are recorded in the NGRIP ice core. Although the age
model does not allow these 8'%0 excursions to be matched to specific DO events, their magnitude
and rapid onset support a credible link. Isotope-enabled climate simulations suggest that abrupt
DO warming would increase the §'®0 of annual precipitation in the study area, and corroborate

that warming of >10°C in <10 years is thus required to produce the observed negative 8'*0



30 excursions. Our findings of expansive abrupt DO warming in central North America has

implications for environmental, climate, and ice sheet dynamics.
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Dansgaard-Oeschger (DO) events' are a pervasive climate feature of the Last Glacial
Period (~115-11 ka), and the rate and magnitude of these climatic events has been directly linked
to ocean circulation of the North Atlantic?>. Other abrupt climate changes outside of the high
latitudes, including rapid changes in speleothem-derived records of oxygen isotopes (5'30), have
revealed an inter-hemispheric coupling between the North Atlantic and large-scale atmospheric
circulation®, such as changes in the position of the Intertropical Convergence Zone (ITCZ)*. The
nature of these abrupt climate changes outside of the ITCZ and monsoon regions, however, is still
largely an open question, specifically in regions such as the mid-continent of North America where
the most dynamic ice sheet of the late Pleistocene once existed® and the impact of these abrupt
climate changes on the ice sheet mass balance remains unknown®.

Of the existing high-resolution climate reconstructions from North America, speleothem
830 records from the American southwest and west best capture a rapid regional climate response
to DO Events in the last 60 ka. These records invoke a contemporaneous northward displacement
of the polar jet stream during DO events that lead to decadal-scale increases in regional aridity’
. These findings are consistent with other regional reconstructions on other continents that
demonstrate a strong coupling between lower latitude climate changes associated with a shifting
ITCZ position*!? or change in the regional monsoon with DO events'>!4.

As for continental interior locations, the few speleothem §'%0 records from the central and
eastern United States report unremarkable changes during the Last Glacial Period!>!” (Figs. 1, 2)
that either cannot be tied to millennial-scale events or suggest small (<1%o) negative excursions
during DO events. These results contrast with records from other continental interior locations that
show rapid, notable climate changes in response to DO events'®!?. One explanation for these

muted proxy responses in mid-continental North America is that the §'*0 of seasonal moisture is
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invariant and by extension temperature changes are negligible!>. Large uncertainties remain
regarding these interpretations, however, given the geographically sparse data from the mid-
continents and whether decadal to centennial-scale climate changes can be fully resolved given the
resolution of most mid-continental datasets during the Last Glacial Period.

Here we reconstruct climate changes from a 5.65 cm long speleothem collected from the
mid-continent of North America in Cave of the Mounds (COM; 43.0°N, 89.8°W; 415 m a.s.1.; Fig.

t20. Stalagmite

1), which is uniquely positioned near the former margin of the Laurentide Ice Shee
“CM-5” (Extended Data Fig. 1) grew from 68-48 ka during the Last Glacial Period?'. This record
provides close insight into the magnitude and rate of climate changes adjacent to the southern
margin of the ice sheet, and outside of the North American monsoon region’ .
Resolving a high-resolution speleothem climate record

Given the relatively slow growth rates of stalagmite CM-5, a combination of specialized
imaging (confocal laser fluorescent microscopy, CLFM) and micro-scale analysis (secondary ion
mass spectrometry, SIMS) were used to resolve a sub-annual- to annual-resolution §'%0 record
across the sample (Fig. 2). The presence of annually-laminated fluorescent growth bands?? (Fig.
3, Extended Data Fig. 2) allow for interpretations of annual-resolution timeseries for the sections
of the stalagmite where banding was visually coherent and uninterrupted by any growth hiatus.
These bands range from 10-100s pm in thickness and by targeting high-precision SIMS §'%0
measurements in 10-pum spots across them we are able to reconstruct annual-resolution
climatological signals. A total of 1,693 880 measurements were completed along the central
growth axis of stalagmite CM-5 (Extended Data Fig. 3) with '%0 values ranging from -7.8 to -

3.3%0 (VPDB; Table S1). Based on 12 U-Th ages that were previously measured along its central

growth axis?!, the speleothem grew from 68 to 48 ka spanning the end of Marine Isotope Stage
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(MIS) 4 and the beginning of MIS 3 during the last glacial period. Analytical uncertainty (2 s.d.)
on the U-Th ages ranged from +102 to +1432 years, and the error envelope on the Bayesian age
model of the timeseries ranged from +£520 to £2802 years. We note that the five U-Th ages that
span the growth period where abrupt 5'%0 changes occur in our record (61-55 ka, see Fig. 2 gray
bar) have much lower analytical uncertainty than other U-Th ages that span the rest of the record.
The 2 s.d. on the five U-Th ages that span 61-55 ka ranged from +134 to +192 years, and the error
envelope on the Bayesian age model of the time series ranged from +603 to +667 years.
Millennial-scale climate variability

Overall, 3'%0 values in CM-5 are higher during MIS 4 than MIS 3, and the isotope record
largely resembles millennial-scale climate variability observed in both Greenland ice cores and
Chinese monsoon records (Fig. 2). A dominant feature in our 'O record is the presence of eight
large-magnitude (2.0-3.0%o0) negative-3'%0 excursions. According to the age model error, these
negative 8'%0 excursions occurred within a time window when several high-latitude DO events
occurred in Greenland®® (events 17-14; Fig. 2). We clarify that we lack the age control to align our
5'%0 excursions with the occurrence of specific DO events, however, we use annual band counting
to provide physical evidence — similar to that of annually-layered ice cores — that each excursion
has a rapid onset of 10 years or less. This finding supports a credible link between the occurrence
of rapid 8'%0 excursions at our field site from 61-55 ka and when DO events 17-14 are recorded
in the NGRIP ice core®® (Fig. 2).

The 8'%0 of speleothem calcite reflects, in part, the §'®0 of cave dripwaters, which
themselves represent a smoothed signal of rainfall §'*0 above the cave?*. Thus, speleothem §'30

records can respond to several climatic factors including changes in rainfall (amount, source),
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and/or surface temperature’®. The interaction of these climate factors, specifically in a mid-
continental setting, complicates the interpretation of §'30 variability in speleothems.
Climate model simulations

To help evaluate the most plausible factors driving the abrupt decreases of 8'*0O in our
record, the global rainfall isotopes were simulated for DO event 1/Greenland interstadial 1 (GI-1,
Bolling warming®?°2°) based on the TraCE-21K simulation®’*® between the late interval of
Greenland Stadial 2 (GS-2, ~17.0 ka) to the peak of GI-1 (~14.5 ka?®) (Methods and
Supplementary Table S5). These simulations of DO event 1 were used as their climate states are
analogous to other DO events during Last Glacial Period?, with stronger AMOC and higher
atmospheric CO2 and CH4 during the peaks of DO events (Greenland interstadials) and weaker
AMOC and lower CO2 and CH4 during the Greenland Stadials prior to the DO events*>2. One
isotope simulation was run with boundary conditions from the peak of GS-1 in TraCE-21K to
simulate global rainfall isotopes during the peaks of DO events, and another with boundary
conditions derived from the late interval of GS-2 to simulate global rainfall isotopes during the
stadial condition prior to the peaks of DO events. Thus, the differences of simulated global rainfall
isotopes from the two simulations provide the best opportunity to evaluate the most plausible
factors driving the abrupt decreases of 8'%0 in our record in response to the DO events during the
Last Glacial Period. The monthly climatology of surface temperature, precipitation rate, and
precipitation §'%0 from each simulation were collected from the COM regional grid cell (43°N,
90°W) (Fig. 4a-c). Comparing the monthly data between the two simulations (Fig. 4d-f) highlights
key differences between the two climate states that were used in our interpretation of the CM-5

speleothem §'%0 record.
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The climate simulations (Fig. 4, Table S3) suggest there was an overall increase in annual
precipitation at COM during abrupt warming events of the Last Glacial Period, mostly related to
an increase in summer precipitation (Fig. 4b, Extended Data Fig. 4). The annual amount-
weighted 8'80 of precipitation during the peak of DO warm period is simulated to increase by
2.1%o versus the stadial condition prior to the DO events (Fig. 4¢). The elevated 5'%0 is likely
explained by an increase in the amount of higher-8'*0 precipitation delivered to the mid-continent
from Eastern Tropical Pacific and Gulf of Mexico****. Notably, this mechanism has been identified
in other climate reconstructions of DO events in North America’®!°. We therefore conclude that
rainfall 3'®0 over COM likely increased during DO events, leaving another climatic factor
responsible for the rapid 2.0-3.0%o decreases in the CM-5 §'%0 record (Fig. 2, 3).

Decadal warming events

Temperature affects the §'%0 of speleothem calcite during fractionation by a known
relationship of -0.18 to -0.24%0/°C*. Thus, increases in annual temperature inside COM could
explain the decreasing excursions in the CM-5 record. On average, 8'30 excursions of 2.5%o (2.0-
3.0%0) were likely caused by temperature increases of >10°C based on the temperature
fractionation effects of -0.18 to -0.24%0/°C*. We note, however, that the actual magnitude of
temperature change is likely to be larger than 10°C due to the counteracting effect of increased
rainfall §'®0 that originated from tropical regions as suggested by the model simulation (Fig. 4c).
This increase of mean annual surface temperature in mid-continent North America during DO
events is consistent in magnitude with warming at much higher latitudes®. Further corroborating
this interpretation, the modeled annual warming at COM amounts to 8-10°C for DO event 1 (Fig.

1 and 4d, Table S3, Extended Data Fig. 5) and is attributed to the superposition of climatic
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responses to the abrupt AMOC recovery and the increase of atmospheric CO2 during DO event
177,
;

Rapid, ~10°C warming at COM during DO events is consistent with North American®’,

1938 which demonstrate millennial-

southern European and Mediterranean pollen reconstructions
scale vegetation changes during the Last Glacial Period likely driven by sharp temperature swings.
Our study highlights, however, that the magnitude of temperature change in the region of COM
during DO events was likely greater than previously interpreted.

Furthermore, the fluorescent growth banding in the sample provides an unprecedented
level of temporal resolution across these warming events and establishes that their full magnitude
occurred within a decade (Fig. 3). Outside of a few records***, this is a first look at a record that
both corroborates the magnitude of temperature change and provides direct evidence for the
subdecadal rate of change. We propose that other speleothem records in central and eastern United
States that record muted (<1%o) millennial-scale 8'%0 shifts during the Last Glacial Period do so
for a number of plausible reasons, including: the comparatively low temporal resolution of drill-
sampling methods, their proximity to an oceanic moisture source and thus reduced Rayleigh
distillation, or perhaps because of the counteracting effects of different regional moisture source
changes and temperature on their isotopic signals.

The ability to resolve high-magnitude, abrupt climate changes in the CM-5 record provides
the evidence that warmings of >10°C occurred in mid-continental North America over a time span
of decades or less during the last glacial period. This finding shows that temperatures outside of
Greenland also warmed abruptly during DO events*!, and implies that the underlying processes

driving these changes occurred on similar timescales and were rapidly propagated to the

continental interior of North America. These findings have important implications when
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considering how widespread and quickly warming spread in the Northern Hemisphere during DO
events — especially across a large ice sheet and into continental interiors — and how dynamically

the climate system can react on human timescales.
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Figure 1. North American speleothem 8'30 records from the last glacial period and their
corresponding magnitude of 880 change that occurred during a time of Dansgaard
Oeschger (DO) events in Greenland. The location of Cave of the Mounds (this study) is shown,
as well as all other North American speleothem records that show distinct 8'%0 changes during
DO Events with their corresponding reference number in the bottom right’!"1>-17. Note the
magnitude of §'%0 change during DO Events is scaled to the size of the sample location dot. The
MIS 4 Laurentide Ice Sheet approximate extent is shown?’. The base map was plotted from the R
package ‘maps’ from Brownrigg et al., (2022) and is overlain with the modeled warming during
DO events (the simulated difference between Greenland Interstadial event 1, GI-1, and Greenland

Stadial event 2, GS-2).

Figure 2. Stalagmite CM-5 '80 record in comparison to other regional $'®0 records of the
last-glacial period. a, Cave of the Mounds (COM; this study) 8'%0 record (black line with 2
standard deviation analytical error shown by gray envelope), with associated U-Th ages (black
dots with 2 standard deviation error bars). Data are presented as mean values +/- standard

deviation. Note the error of our age model ranged from 520 to 2800 years and was on average 730



220

225

230

235

240

years. b, A stalagmite 5'30 record from Buckeye Creek Cave, WV’ (red line) showing relatively
low-magnitude 8'®0O changes during the last glacial period. ¢, A compilation of Chinese
speleothem 8'®0 records'? (orange line), showing high-magnitude §'30 changes, which reflects
the sensitivity of the East Asian monsoon system to high-latitude warmings (DO events) during
the last glacial period. Note the scale of the y-axis in panels A-C are the same to allow for one-to-
one comparison. d, The North Greenland Ice Sheet Project (NGRIP) §'%0 record®® (blue line),
showing the timing of abrupt warming DO Events (labeled #s). The gray shaded bar corresponds

to the panels in Fig. 3.

Figure 3. The timing and rate of negative 8!®0 excursions in the CM-5 stalagmite record.
CLFM images of fluorescent banding in stalagmite CM-5 (top panels), and the corresponding §'%0
record of CM-5 (bottom panel, black line) where 3'30 negative excursions are identified (gray
shading). The age scale is based on U-Th ages that ranged from +102 to +£1432 years, and the error
envelope on the Bayesian age model of the timeseries ranged from +520 to 2802 years, thus the
relative ages are precise, but the absolute ages are uncertain. The magnitude (%o) and distance (um)
of each rapid §'%0 excursion is also labeled, as well as where in the sample §'®0 measurements
were made (dashed white lines). The zoomed-in images show the number of bright-to-dark
fluorescent band couplets (I “band”=1 year) each sharp §'*0 excursion occurs in, which is
consistently 10 bands or less. For scale, in the zoomed-in images, the black ovals (outlined in

white) are the 10-um diameter §'%0 measurements by SIMS.

Figure 4. Modeled monthly climate data from two isotope-enabled climate model simulations
of analogous DO conditions. a-c, Modeled values of surface temperature (°C), precipitation rate

(mm/month) and precipitation '30 values (%o) for two climate model simulations. One was run
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to reflect abrupt warm conditions during DO Events (GI-1; red solid line), and another was run to
reflect background mean glacial state conditions (GS-2; blue solid line). Note the precipitation-
weighted annual §'*0 for each simulation is shown in panel (¢) (dashed lines), demonstrating the
+2.11%o difference from GI-1 to GS-2. d-f, Differences between the warm (GI-1) and cold (GS-
2) simulation show how surface temperature (d) and rainfall (e) potentially changed precipitation
580 (f) during abrupt DO Events. Raw data used to make this graph can be found in

Supplementary Table S3.
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Methods
Seasonal fluorescent bands

Speleothems can form fluorescent growth bands as a result of groundwater flushing organic
acids from the overlying soil into the cave, eventually coprecipitating in speleothem calcite*?.
Former studies have suggested the occurrence of fluorescence in speleothem samples are a result
of seasonal variability of organic acids in cave drip waters***’. This seasonal signal is a result of
climate-driven changes in the input of organic substances into cave drip waters. Fluorescent
growth bands in COM speleothems are preserved as couplets of bright (high fluorescence,

interpreted as relatively high organic acid content) and dark (non-fluorescent, interpreted as
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relatively low organic acid content) bands. These couplets typically range in thickness from 10-
200pum. We interpret one bright-to-dark couplet to represent one annual cycle.

To quantify the amount of time each sharp negative §'0 excursion occurred in within the CM-
5 record, we identified where in the sample these 6'%0 changes occurred and visually counted the
number of bright-to-dark fluorescent band couplets (“/ band”) that spanned the sharp onset of the
excursion. This visual inspection revealed that each sharp §'%0 decrease happened in 10 bands or

less (Fig. 3), thus often within a decade.

Sample preparation, confocal laser fluorescent microscopy. To prepare stalagmite sample CM-
5 for SIMS analysis, a thin, 5-mm wide slab was cut along the entire length of the central growth
axis. This thin slab was then cut into four separate ~15 x 3 mm sized chips that were cast, along
with 5 grains of UWC-3* (calcite standard; 8'%0 of -12.49%0 VSMOW) for each mount, into two
2.5-cm-diamter epoxy rounds with two chips in each round. The epoxy rounds were ground flat
with a fixed diamond-pad and then polished with 6, 3, and 1 pm diamond suspensions on a lapping
wheel. A final polish of 0.05 pm was applied with a colloidal alumina solution, followed
immediately by a gentle rinse by water and drying by air blast. These two sample epoxy rounds
were then cleaned with soap and dried with air, then imaged both on the optical microscope and
confocal laser fluorescent microscope (CLFM) at the University of Wisconsin-Madison. The
CLFM imaging was completed at the Optical Imaging Core at the Wisconsin Institutes for Medical
Research using a Nikon AIRS HD Confocal Microscope with a 488-nm-wavelength excitation
laser. Images of speleothem fluorescence were collected using an emission filter that allows light
with wavelengths between 505 and 539 nm (visible, green), and linear image adjustments were

applied to increase the contrast and brightness of published images.
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SIMS 6'30 analysis, QGIS, and the age-depth model. Oxygen isotope data in speleothem CM-
5 were analyzed in the WiscSIMS lab at the University of Wisconsin-Madison using a CAMECA
IMS 1280 large radius multicollector ion microprobe—the Secondary Ion Mass Spectrometer
(SIMS). A total of 1,760 10-um-diameter SIMS §'*0O analyses were collected across all four
sample chips of CM-5 during four separate analysis sessions (Table S1). Broadly, these
measurements were made by spacing 5'50 measurements every 50-um, though sections of the
speleothem were sampled at higher resolution (10-pm spacing) to target individual growth bands.
A sampling “bracket” method, consisting of four standard UWC-3 calcite measurements made
every 20-25 sample analyses measurements, was also implemented to calculate the associated
standard deviation (2SD) error for each analysis point. To assess quality control of the collected
SIMS §'%0 data, two metrics were monitored. The first metric is the relative yield (% units, Table
S1), which is the yield ('O cps/primary beam intensity) of each sample analysis divided by the
average yield of the bracketing standards. The second metric is the background-corrected OH/O
ratio (Table S1), which has been interpreted by earlier studies*° to be a qualitative measure of
water and/or organic content in low-temperature carbonates. Once these metrics were calculated,
outliers were identified statistically by using a Tukey outlier definition®', and those outliers (n=67)
were removed from further consideration in the manuscript. As such, the final SIMS §'%0 record

of CMS5 consisted of 1,693 analyses and had an average sampling resolution of 25 um/analysis.

An open-source geographic information system software, QGIS, was used to generate a
microspatial database of sample CM-5 to produce an accurate age-depth model between already-
measured U-Th ages?!' and SIMS §'%0 analyses (Extended Data Fig. 3, Table S2). Prior work>>>3
at the WiscSIMS lab established the guidelines used for constructing the microspatial database for

this study. The age model used was a Bayesian model for sedimentary deposition, specifically
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OxCal 4.4%, with a static k-value of 0.1°*. The resulting age model revealed relatively linear
growth of sample CM-5 (Extended Data Fig. 1) with no visual evidence for prolonged growth
hiatuses or dissolution, except for a hiatus at ~44k that is evident from an unconformity in the
fluorescent banding (Extended Data Fig. 1-2).
Climate model simulations

Rainfall isotope simulations. We performed the global rainfall isotope simulations for
DO event 1 between GS-1 and GS-2 with isotope-enabled Community Atmosphere Model version
3 (isoCAM3)>. The isoCAM3 model incorporates stable water isotopes into CAM3 with
fractionation associated with surface evaporation and cloud processes. We ran the isotope-enabled
1s0CAM3 atmosphere model with boundary conditions at 14.4ka for GS-1 and 17.0ka for GS-2
from the TraCE-21K simulation, a transient simulation of the past 21,000 years forced by Earth’s
orbital variations, greenhouse gases, ice-sheet variations, and FW forcing?’?%. Previous studies
have demonstrate that the TraCE-21K simulation exhibit reasonable agreements with the data
reconstructions of transient evolution of surface temperature over Greenland, sea surface
temperature from both Northern and Southern Hemisphere and tropical rainfall between GS-2 to
the peak of GI-127-3%38, We note there are variations of the sizes of Northern Hemisphere ice sheets
between DO event 1 and other DO events, but the uncertainties of ice sheet reconstructions during
the last glacial period prevent us from making definitive investigations. We used the same
preindustrial surface ocean §'30 values in both GS-1 and GS-2 isoCAM3 simulations to isolate
the fractionation associated with atmospheric processes. Each experiment is forced by a 50-year
history of monthly sea surface temperature and sea ice from the deglaciation experiment. Ocean
water 8'%0 in this model does not respond to runoff or meteoric water. Computational resources

were provided by the Cheyenne: HPE/SGI ICE XA System (University Community Computing)®.
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To demonstrate the feasibility and sensitivity of our interpretation given the magnitude of
rainfall §'%0 change suggested by the climate model, we ran the ISOLUTION proxy-system

190, using reasonable estimates of cave conditions and a conservative range of rainfall §'30

mode
values, to model relative changes in calcite §'%0 at the magnitude we observe. Results support our

interpretation and are reported in the Supplementary Information (Extended Data Table 6).

Data availability
The data that support the findings of this study are available in the NOAA paleoclimate

database: https://www.ncei.noaa.gov/products/paleoclimatology.
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Supplementary information
This file contains a Supplementary Discussion and Supplementary References.



Supplementary Discussion

Climate model simulation

To help evaluate the most plausible factors driving the abrupt decreases of 8'*0 in our
record, the global rainfall isotopes were simulated for DO event 1/Greenland interstadial 1 (GI-1,
Beolling warming)'- based on the TraCE-21K simulation*> between the late interval of Greenland
Stadial 2 (GS-2, ~17.0 ka) to the peak of GI-1 (~14.5 ka)’ (Methods and Supplementary Table 5).
These simulations of DO event 1 were used as their climate states are analogous to other DO events
during Last Glacial Period!, with stronger AMOC and higher atmospheric CO> and CHs during
the peaks of DO events (Greenland interstadials) and weaker AMOC and lower CO> and CH4
during the Greenland Stadials prior to the DO events®®. We note there are variations of the sizes
of Northern Hemisphere ice sheets between DO event 1 and other DO events, but the uncertainties
of ice sheet reconstructions during the last glacial period prevent us from making definitive
investigations. Previous studies have demonstrate that the TraCE-21K simulation exhibit
reasonable agreements with the data reconstructions of transient evolution of surface temperature
over Greenland, sea surface temperature from both Northern and Southern Hemisphere and
tropical rainfall between GS-2 to the peak of GI-1*!%12, One isotope simulation was run with
boundary conditions from the peak of GI-1 in TraCE-21K to simulate global rainfall isotopes
during the peaks of DO events, and another with boundary conditions derived from the late interval
of GS-2 to simulate global rainfall isotopes during the stadial condition prior to the peaks of DO
events. Thus, the differences of simulated global rainfall isotopes from the two simulations provide
the best opportunity to evaluate the most plausible factors driving the abrupt decreases of 5'30 in
our record in response to the DO events during the Last Glacial Period.

Proxy-system model: ISOLUTION

We used a proxy-system model to test the feasibility and sensitivity of our interpretation
that the observed negative excursions in calcite 8'%0 (8'®Ocalcite) Tepresent large increases in
temperature given the relative shift in precipitation 880 (8'®Oprecip) suggested by our modeling.
We used the proxy-system model ISOLUTION, developed by Deininger and Scholz (2019)!3, that
can be used to explore equilibrium and disequilibrium isotope fractionation processes in
speleothems. This model can investigate the dependence of §!30caicite On the variation of one or
multiple cave-specific parameters, such as cave air temperature, drip interval, cave air pCOz,
relative humidity, and wind velocity. The ISOLUTION model is run in MATLAB and requires 9
input parameters:

1. Fractionation factor (we use Kim and O ’neil, 1997)

Temperature in C
Drip interval (s)
Drip water pCO: (ppm)
Cave air pCO: (ppm)
Relative humidity (0<h<=1, where 0.9 = 90%)
Wind velocity inside the cave (m/s)
Mixing parameter phi (0<phi<=1)
8'80 value of drip water (%o, which we equate to 3'*Oprecip)

O N AN

From these input parameters, ISOLUTION calculates modeled 8'30caicite values.



Model Experiments: Inputs

Cave of the Mounds was a completely closed cave system prior to the 1930s. It is also a
relatively shallow cave system (overburden of 10-15 meters), and observations indicate that this
shallow setting allows for rapid drip response to rain events!#. Due to its closed-setting and shallow
location in the subsurface, we assigned the following parameters to all simulations:

¢ Drip interval: 300 (seconds)

Drip water pCO;: 1000 (ppm)
Cave air pCO2: 700 (ppm)
Relative humidity: 99%
Wind velocity: 0 m/s
Mixing parameter: 1

ISOLUTION experimental setup

For our model simulations and experiments, we changed two values to test our hypothesis:
1. Temperature and 2. Drip water 8'30 (8'%0qw). We assume 88 0aw= 8" Oprecip due to the shallow
cave setting as discussed above, we use annual amount-weighted average of 8'®*Oprecip from the
isoCAM3 model to assign the test '®Oqw values, and we assume cave temperature equals annual
average surface temperature. We emphasize that, conservatively, this test is most useful for
assessing relative changes in 8'®Ocalcire inferred from relative changes in our climate model output.
In order to demonstrate that the warming over Cave of the Mounds could be much larger than
10°C due to the positive 8" Oprecip (from GOM-sourced moisture) during GI, we first ran a “GS”
simulation to produce a reference value of 8'8Ocatcite. In Extended Data Table 6, we present three
“GI” simulations that demonstrate the warming required to overcome the effect of COM-sourced
moisture increasing 8'*Oprecip at our site (by increments of +1%o from 0 to the modeled value of
+2%o0) and result in a negative 8'80calcite €xcursion of the magnitude we observe in our sample
(~2%0). The GI-GS temp column (bolded, below) confirms that warming of 10°C or more could
be reflected in the negative 8'®Ocarcite €xcursions we observe.
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