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ABSTRACT: A highly enantioselective synthesis of chiral dihydro-3H-carbazole-2-carboxylate derivatives is reported via a “one-
pot” cyclopentannulation-rearrangement cascade reaction that is sequentially catalyzed by nickel(II) perchlorate hexahydrate and
scandium(III) trifluoromethanesulfonate with 3-methylindole and non-racemic donor−acceptor cyclopropanes in high yields and
enantioretention under mild reaction conditions. Highly diastereoselective [3+2]-cycloaddition is dependent on 3-methylindole
substituents. In addition, a further transformation of these dihydro-3H-carbazole-2-carboxylates via hydrolysis and decarboxylation
under unexpectedly mild reaction conditions provides straightforward access to the decarboxylated compounds in moderate yields
with high retention of enantiomeric purity.
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■ INTRODUCTION

[3+n]-Cycloaddition reactions have become useful trans-
formations for the construction of carbocyclic and hetero-
cyclic compounds.1 Major contributions have come from
catalytic reactions of vinyldiazo compounds2 and methods
that employ donor−acceptor cyclopropanes,3 with both
processes offering mechanistic and structural advantages in
ring formation. For the asymmetric synthesis of chiral
compounds, the use of vinyldiazo compounds requires a
metal catalyst with chiral ligands (Scheme 1a), and although
the vast majority of asymmetric cycloaddition reactions of
donor−acceptor cyclopropanes are performed with racemic
cyclopropane compounds catalyzed by Lewis acids with chiral
ligands, optically active cyclopropane compounds can serve
the same role using Lewis acids without chiral ligands.4

Cycloaddition with catalyst-activated donor−acceptor cyclo-
propanes can occur by an SN1 pathway, in which the chirality
of the reactant is lost, or by an SN2 pathway, which occurs by
inversion of configuration (Scheme 1b). In most studies, the
SN1 pathway is considered to be a major contributor,3 but a
few reports have described the outcome of cycloaddition
using enantiomerically enriched donor−acceptor cyclopro-
panes.4

Indole and substituted indoles are one of the very few
substrate classes for which both vinylcarbene and donor−
acceptor cyclopropane methodologies have been demonstra-
ted.5 Electrophilic addition to the 3-position is preferred for
cycloaddition, and methyl substitution at the 3-position
facilitates this transformation,6 whereas methyl substitution at
the 2-position often results in formal C−H insertion at the 3-
position.7 Tang and co-workers have described a highly
enantioselective cyclopentannulation of 3-alkyl-substituted
indoles with donor−acceptor cyclopropanes using copper(II)
triflate with a chiral Box ligand (Scheme 2a).8 To
complement this investigation, we have investigated the
cyclopentannulation of 3-methylindole with a comparable
chiral donor−acceptor cyclopropane using achiral Lewis acid
catalysts (Scheme 2b). The outcome reveals a stepwise

Received: December 1, 2022
Revised: December 30, 2022
Published: January 12, 2023

Research Articlepubs.acs.org/acscatalysis

© 2023 American Chemical Society
1621

https://doi.org/10.1021/acscatal.2c05930
ACS Catal. 2023, 13, 1621−1629

D
o
w

n
lo

ad
ed

 v
ia

 U
N

IV
 O

F
 T

E
X

A
S

 S
A

N
 A

N
T

O
N

IO
 o

n
 J

u
n
e 

1
3
, 
2
0
2
3
 a

t 
1
7
:1

2
:4

6
 (

U
T

C
).

S
ee

 h
tt

p
s:

//
p
u
b
s.

ac
s.

o
rg

/s
h
ar

in
g
g
u
id

el
in

es
 f

o
r 

o
p
ti

o
n
s 

o
n
 h

o
w

 t
o
 l

eg
it

im
at

el
y
 s

h
ar

e 
p
u

b
li

sh
ed

 a
rt

ic
le

s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ming+Bao"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Karlos+Lopez"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Raj+Gurung"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Hadi+Arman"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Michael+P.+Doyle"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acscatal.2c05930&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.2c05930?ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.2c05930?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.2c05930?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.2c05930?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.2c05930?fig=abs1&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.2c05930?fig=abs1&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.2c05930?fig=abs1&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.2c05930?fig=abs1&ref=pdf
https://pubs.acs.org/toc/accacs/13/3?ref=pdf
https://pubs.acs.org/toc/accacs/13/3?ref=pdf
https://pubs.acs.org/toc/accacs/13/3?ref=pdf
https://pubs.acs.org/toc/accacs/13/3?ref=pdf
pubs.acs.org/acscatalysis?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acscatal.2c05930?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/acscatalysis?ref=pdf
https://pubs.acs.org/acscatalysis?ref=pdf


cycloaddition process with dominant retention of optical
purity, which is more complex than previously reported.
Catalyst-controlled subsequent transformations form formal
[4+2]-annulation products of indoles and donor−acceptor
cyclopropanes by stepwise bond migration, and hydrolysis/
decarboxylation also occurs without loss of stereocontrol.

■ RESULTS AND DISCUSSION

The first task in this investigation was the preparation of
enantioenriched donor−acceptor cyclopropanes. We chose to
prepare these from 2-diazo-3-ketoesters and styrenes using
dirhodium(II) catalysis (Scheme 3). A survey of catalysts
revealed the formation of only one diastereomer (3a) whose
structure as the dominant (1S, 2S)-enantiomer was confirmed
by X-ray crystallography (Figure 1) and that the highest
enantioselectivities in reactions with styrene were achieved
with Rh2(S-TBPTTL)4 (80% ee)9 and Rh2(S-BTPCP)4 (94%
ee).10 Reactions with these dirhodium(II) catalysts under
standard conditions were sluggish, resulting in low conversion
(see the SI for details), but optimization of the solvent

produced the donor−acceptor cyclopropane in 87 and 93%
yields, respectively. Substituted styrenes gave lower %ee
values with these catalysts. Attempts to prepare these
cyclopropane compounds with diazo esters having a larger
ester group (benzyl or tert-butyl) using the Rh2(S-BTPCP)4

catalyst were not successful.
We selected 3-methylindole (4a) as our target substrate to

investigate in detail its [3+2]-cycloaddition reaction with
donor−acceptor cyclopropane 3a. This indole or its N-methyl
analogue is well known to undergo catalytic [3+2]-cyclo-
addition reactions with vinyldiazoacetates and with donor−
acceptor cyclopropanes.5,6 A range of Lewis acid catalysts was
employed, from which Ni(ClO4)2 hexahydrate was the most
suitable because of its overall conversion and retention of
optical activity (see the SI for details). Reaction products
were fully characterized spectroscopically (Scheme 4), and
our assignments were confirmed with the X-ray structure of
diastereomer (1R,3R)-6a, which is consistent with inversion
of a configuration having occurred at the 2-position of 3a
(Figure 2).

Scheme 1. Catalytic Cycloaddition Reactions with (a) Vinyldiazo Compounds and (b) Donor−Acceptor Cyclopropanes

Scheme 2. Enantioselective Cycloaddition of 3-Methylindole with (a) Racemic Donor−Acceptor Cyclopropanes Using a
Chiral Catalyst and (b) Non-Racemic Donor−Acceptor Cyclopropanes Using an Achiral Catalyst
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Intramolecular rearrangement of 3a to its corresponding
dihydrofuran (eq 1)11 did not occur in the presence of 4a
under these reaction conditions, but 3a was 50% converted to
dihydrofuran 7 in the absence of 4a over 12 h with virtually
complete racemization (80% ee to 5% ee) of 3a. The two
diastereomers formed in the [3+2]-cycloaddition reaction
point to a two-step cycloaddition involving initial nucleophilic
attack from the indole-3-position on the phenyl-substituted
carbon of 3a and then the ring closure. The initial
nucleophilic attack from 4a fixes the absolute configuration
at the phenyl-substituted carbon center of 5a and 6a as R.
The fact that the loss of %ee from 3a in the formation of
diastereoisomer 5a is negligible suggests that both 5a and 6a
arose from SN2 substitution on catalyst-activated 3a by 4a.

The fact that diastereomer 6a has a lower %ee than 5a was
unexpected and prompted us to examine the retention of

configuration in the individual diastereoisomers (5a and 6a)
under the same reaction conditions. The diastereomers were
separated chromatographically, and each was treated with
Ni(ClO4)2 hexahydrate under the same conditions and for
the same amount of time as used for the initial reaction of 3a
with 4a (Scheme 5). Diastereomer isomerization was
observed with both diastereomers, suggesting that the ring-
closing step in the [3+2]-cycloaddition step is reversible
(Scheme 6), but the rate of isomerization for 6a was greater
than that for 5a. However, while the %ee for 5a remained the
same, that for 6a decreased, and the cause of this
racemization is unknown. No other product was discernable
in the reaction mixture after treatment with the Lewis acid
catalyst. All attempts to trap an intermediate with potential
dipoles (styrene, benzaldehyde, sulfur ylide, substituted
indole) under the Lewis acid-catalyzed conditions were
unsuccessful, and the starting material was recovered.
Treatment of 5a/6a with trifluoroethanol with and without
the Lewis acid catalyst left the diastereoisomers unchanged.

For comparison, reactions of the p-methoxyphenyl (3g,
96% ee) and p-trifluoromethylphenyl (3j, 94% ee) analogues

Scheme 3. Enantioselective Cyclopropanation of Styrene with Methyl Aryloyldiazoacetates Using Chiral Dirhodium
Carboxylatesa

aCondition A: To 2 (1.0 mmol, 5.0 equiv), [Rh2(S-TBPTTL)4] (5.0 mg, 1.0 mol %), and 4 Å MS (100 mg) in anhydrous DCM (1.0 mL) was
added a solution of 1 (0.2 mmol) in anhydrous DCM (1.0 mL) via a syringe pump over 3 h at room temperature under an argon atmosphere;
Condition B: to 2 (1.0 mmol, 5.0 equiv), [Rh2(S-BTPCP)4] (3.5 mg, 1.0 mol %), and 4 Å MS (100 mg) in toluene/TBME solvent (v:v = 4:1, 1.0
mL) was added a solution of 1 (0.2 mmol) in the same solvent (1.0 mL) via a syringe pump over 3 h at room temperature under an argon
atmosphere. The yields are given in isolated yields after flash chromatography, and the ee values were determined by chiral HPLC analysis.
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of donor−acceptor cyclopropane 3 with 3-methylindole also
formed the corresponding [3+2]-cycloaddition products in

good yields. A significant loss of enantioselectivity was found
in the reaction with 3g, but very high retention of
enantiocontrol occurred in the reaction with 3j, despite the
lack of any diastereocontrol (eq 2).

Because of the stepwise cycloaddition, diastereocontrol is
lost in these reactions. Is there an indole that could undergo
highly diastereoselective [3+2]-cycloaddition? To address this
question, we surveyed the same reaction with representative
substituted indoles, and the outcome is presented in Scheme
7. All of the 5-substituted-3-methylindoles underwent cyclo-
addition in high isolated yields and with high levels of
enantiocontrol. Notably, although 5-methoxy-3-methylindole
(4b), 6-methyl-3-methylindole (4c), and 4-methyl-3-methyl-
indole (4d) gave the diastereomeric cycloaddition products 5
and 6 in a 1:1 ratio indicative of a stepwise cycloaddition
process, its 5-chloro- (4e) and 5-bromo- (4f) analogues gave
diastereomer 5 in a ratio greater than 10:1 over
diastereoisomer 6.

In initial investigations to determine suitable Lewis acids
for cycloaddition, we discovered that several of the Lewis
acids [Sc(OTf)3, Cu(OTf)2, and Fe(OTf)3] produced a new
compound (8a) in addition to the [3+2]-cycloaddition
products. Previous reports have described a similar process
for carbazole formation with donor−acceptor cyclopropanes
and indoles but without the [3+2]-cycloaddition product as
its precursor.12 However, the formation of 8a occurred in
conjunction with the production of [3+2]-cycloaddition
products 5a and 6a. Considering that the cycloaddition
products could be precursors to 8a, we prepared 5a/6a (93/
85% ee) from the Ni(ClO4)2-catalyzed cycloaddition and then
treated the diastereomeric pair with Sc(OTf)3 under the same
conditions (Scheme 8), obtaining 8a as the sole product with
an enantiomeric excess of 85%. The formation of 8a with the
same enantiomeric excess as that of 6a suggests that this
rearrangement occurs from 6a with isomerization of 5a to 6a,
and a viable pathway to 8a is described in Scheme 9.
Diastereomer 6a has the ketone carbonyl in close proximity
with the basic nitrogen that allows 1,2-migration with
concurrent C−C bond formation with the ketone carbonyl
carbon followed by N to O Lewis acid/proton exchange and
subsequent loss of water. If the alternative ring cleavage/
readdition pathway12 had occurred, the %ee of 8a would have
been the average of the %ee values of 5a and 6a.

To ascertain the breadth of indoles that would be suitable
for cycloaddition, we monitored Sc(OTf)3-catalyzed reactions
between 3a and 2-methylindole (4g), indole (4h), and N-
methylindole (4i). As expected from prior investigations of
vinyldiazo compounds or donor−acceptor cyclopropanes with
2-methylindole or its N-methyl derivatve,7,13 formal C−H
insertion (addition with 1,5-H-transfer) occurred at the
indole-3-position to form a 1:1 diastereomeric mixture (9)
with the two diastereomers enantiomerically enriched (eq 3).

Figure 1. X-ray structure of (1S,2S)-3a (CCDC: 2208962).

Scheme 4. [3+2]-Cycloaddition of 3-Methylindole with
Non-Racemic Donor−Acceptor Cyclopropane 3a Using
Nickel Perchlorate Catalysis

Figure 2. X-ray structure of 6a (CCDC: 2208963) showing the R-
configuration at C-12, consistent with inversion of configuration at
C-2 of 3a.
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[3+2]-Cycloaddition of indole with 3a occurred rapidly at 40
°C to form a 1:1 diastereomeric pair (10) with significant
retention of enantiomeric purity. Diastereoisomers 10 were
stable under these conditions for several hours but underwent
rearrangement in refluxing 1,2-dichloroethane to yield
dihydrocarbazole 11 in high overall yield (eq 4). With the
absence of a methyl group at the indole-3-position, the
reaction of indole (4c) undergoes cycloaddition to form 10,
elimination of water to yield the carbazole structure 11, and

its x-ray structure confirms the assignment. Finally, N-
methylindole underwent the same transformations as indole
and gave similar results (eq 5).

The influence of para substituents (Z) on the 2-aryl
substituent of 3 was determined from various nickel
perchlorate catalyzed cycloaddition reactions of 3-methyl-
indole and for their subsequent scandium triflate catalyzed
rearrangements, and this data is presented in Table 1. Both
electron-donating and electron-withdrawing substituents have

Scheme 5. Isomerization of 3-Methylindole [3+2]-Cycloaddition Products

Scheme 6. Proposed Reversibility of the Ring-Closing Step in the [3+2]-Cycloaddition of 3a with 3-Methylindole

Scheme 7. [3+2]-Cycloaddition Reactions of Substituted 3-Methylindoles with 3a

Scheme 8. [3+2]-Cycloaddition with 3-Methylindole and Subsequent Rearrangement

ACS Catalysis pubs.acs.org/acscatalysis Research Article

https://doi.org/10.1021/acscatal.2c05930
ACS Catal. 2023, 13, 1621−1629

1625

https://pubs.acs.org/doi/10.1021/acscatal.2c05930?fig=sch5&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.2c05930?fig=sch5&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.2c05930?fig=sch6&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.2c05930?fig=sch6&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.2c05930?fig=sch7&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.2c05930?fig=sch7&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.2c05930?fig=sch8&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.2c05930?fig=sch8&ref=pdf
pubs.acs.org/acscatalysis?ref=pdf
https://doi.org/10.1021/acscatal.2c05930?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


little effect on enantiomeric excess in the cycloaddition
reaction, and electron-withdrawing substituents retain enan-
tioselectivity in the rearrangement of 6 to 8. However,
cycloaddition product 6b with an electron-donating methoxy
substituent undergoes a significant loss of enantiomeric excess
in the formation of 8b, and this must have occurred with
cleavage of the C−C bond between the indole-3-position and
the adjacent aryl-substituted carbon.

The gain in %ee in the formation of their cycloaddition
products (5 and 6) for the conversions of cyclopropane
precursors having electron-withdrawing substituents (Table
1) was a matter of concern whose explanation was considered
to be due to the influence of chiral products acting as ligands
for the Lewis acid catalyst.14 To test this hypothesis, we
added 10 mol% of a 1:1 mixture of 5a (93% ee):6a (85% ee)
to the reaction mixture consisting of 3d (70% ee), 3-
methylindole 4a, and 10 mol% Ni(ClO4)2·6H2O in toluene
(eq 6). The reaction was completed after 1 hour at 40 °C
and produced a 1.5:1 mixture of 5d (82% ee) and 6d (81%
ee), which was compared to 5d (76% ee) and 6d (77% ee)
that was obtained without adding 5a/6a. Obviously, the
added 5a/6a mixture enhanced enantiocontrol from that
obtained without its presence.

For reactions of 5a/6a performed in refluxing DCE under
nitrogen without the rigorous exclusion of water, a new
compound began to appear whose structure (14a) was
consistent with hydrolysis and decarboxylation of 8a. This
transformation occurred slowly but was completed over a 50-
h period. The surprising origin of this product was
determined to be from 8a via presumed hydrolysis and
decarboxylation. No reaction occurs in the absence of water,

but with the addition of only 2.0 equivalent amount of water,

just twice the amount that is produced in the conversion of

6a to 8a, hydrolysis and decarboxylation is complete within

50 h (eq 7). The fact that water was involved was

determined by deuterium labeling from the reaction

performed in the presence of 99.9% D2O, which formed

14a-D with 80% deuterium incorporation (eq 8). Despite our

attempts to remove all H2O from the glassware and reaction

solution, some sources of protons continued to donate

hydrogen. When we used 99.4% D2O, the same reaction gave

14a-D with only 33% deuterium incorporation.

Scheme 9. Mechanism for Rearrangement of 6a

Table 1. Influence of Aroyl Substituents on Enantioselectivity and Yield in Carbazole (8) Formationa

3 (Z, % ee, catalyst) cycloaddition products 5 (% ee), 6 (% ee), dr rearranged product 8 (% ee) overall yield, %

3a (H, 94, Rh2(S-BTPCP)4) 5a (93), 6a (85), 1:1 8a (85) 84

3b (MeO, 72, Rh2(S-TBPTTL)4) 5b (71), 6b (72), 1:1 8b (60) 55b

3c (Me, 59, Rh2(S-TBPTTL)4) 5c (59), 6c (55), 4:1 8c (48) 65

3d (Cl, 70, Rh2(S-TBPTTL)4) 5d (76), 6d (77), 1.5:1 8d (74) 76

3e (CF3, 40, Rh2(S-TBPTTL)4) 5e (50), 6e (55), 1:1 8e (45) 71b

aReactions were performed in toluene at 40 °C with Ni(ClO4)2·6H2O for the formation of 5/6 and at 85 °C with Sc(OTf)3 for the formation of 8.
b20 mol % of Sc(OTf)3 was used.
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Decarboxylation reactions have been the subject of
numerous chemical and biochemical studies,15 most of
which involve radical intermediates16 or are catalyzed by
transition metals.17 With few exceptions,18 decarboxylation
reactions are generally carried out at high temperatures or
with oxidants.19 One of the exceptions is indole-3-carboxylic
acid, which undergoes decarboxylation under mild con-
ditions,20 but 8a undergoes both hydrolysis and decarbox-
ylation under even milder conditions.

In an attempt to perform the multistep reaction to 14a
from donor−acceptor cyclopropane 3a and 3-methylindole
(4a) in one pot, the combined reagents with Sc(OTf)3 were
heated at reflux in 1,2-dichloroethane for 24 h without adding
water to form 14a in 70% yield with high retention of
configuration in most cases. This transformation follows the
cascade of steps catalyzed by the Lewis acid that begins with
cycloaddition to 5a/6a, then rearrangement of 6a to 8a that
serves to produce an equivalent amount of water (Scheme 9),
which facilitates hydrolysis of 8a and, finally, decarboxylation.
The same transformation was performed with a variety of
non-racemic donor−acceptor cyclopropanes, and their out-
comes are described in Scheme 10. As can be seen from the
composite data, overall yields are moderate, and the retention
of optical purity basically follows the enantiocontrol achieved
in the formation of 6.

■ CONCLUSIONS

[3+2]-Cycloaddition of chiral non-racemic donor−acceptor
cyclopropane-1,1-dicarbonyl compounds with indoles can

occur with high enantioretention but generally forms two
diastereoisomers in nearly equivalent amounts, and Ni-
(ClO4)2 provides the highest levels of enantiocontrol of the
Lewis acids that were examined. The stepwise transformation
occurs with the inversion of configuration on the reactant
donor−acceptor cyclopropane, and the second step in the
cycloaddition process that forms the product diastereoisomers
is generally reversible with low diastereocontrol. However, 3-
methylindoles with electron-withdrawing substituents at the
5-position show high diastereocontrol. The stepwise reaction
was assumed in prior studies using malonate-derived
cyclopropane reactants,6b,8,12a but without evidence that is
revealed in this study. The presence of the diastereomer
whose ketone carbonyl is proximal to the indole nitrogen
facilitates rearrangement with dehydration to generate a
carbazole derivative with retention of configuration. Prior
studies have reported carbazole formation from reactions of
cyclopropane derivatives with indoles,12 but their explanations
did not reveal the [3+2]-cycloaddition product as an
intermediate. Finally, the carbazole-carboxylate product was
found to undergo catalytic hydrolysis and decarboxylation
under very mild conditions.
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