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We develop the K-theory of sets with an action of a pointed 
monoid (or monoid scheme), analogous to the K-theory of 
modules over a ring (or scheme). In order to form localization 
sequences, we construct the quotient category of a nice regular 
category by a Serre subcategory.
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Over any base field k, a (pointed) monoid A realizes to Spec of the monoid algebra 
k[A], and an A–set realizes to a k[A]-module. Similarly, a monoid scheme S realizes 
to a scheme over k, and a sheaf of monoid sets on S realizes to a sheaf of modules. 
In particular, every toric variety is the realization of a unique monoid scheme S, with 
sheaves of monoid sets on S realizing to sheaves of modules on the toric variety. Thus 
monoid schemes and monoid-sets are a combinatorial model for toric varieties and many 
of their cousins.

When A is a noetherian pointed monoid A, there are several interesting categories of 
A–sets. One is the category of all finitely generated A–sets; it is studied in [8], [5] and 
[9]. Another is the category of all partially cancellative A–sets, which is studied in [11]; 
see Definition 1.1 below. These A–sets are well-behaved, include free A–sets, and turn 
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out to be useful in toric geometry; see [7]. There are similar categories over a noetherian 
monoid scheme, including categories of A–sets with a restriction on the codimension of 
support.

This paper is primarily concerned with the K-theory of these categories. One of our 
themes is that they closely track Quillen’s K ′-theory of noetherian rings and schemes. In 
particular, we show that their K-theory has localization sequences and coniveau spectral 
sequences. In particular, we prove the monoid-scheme analogue of “Bloch’s formula” [16, 
V.9.8.1]; see Theorem 6.2: if S is a 0-smooth monoid scheme, and K′

∗ is the sheaf 
associated to the K-theory of partially cancellative AS–sets, then:

Ep,q
2 = Hp(S, K′

−q).

The fundamental new tool we develop and use is the construction of the localization 
M/C of a nice regular category M (such as the above categories of A–sets) by a “Serre 
subcategory” C. This construction generalizes Gabriel’s localization of abelian categories, 
and is of independent interest. For example, if U is open in a monoid scheme X, and M
is the category of monoid sets on X, the subcategory C of monoid sets vanishing on U is 
a Serre subcategory, and M/C is the category of monoid sets on U ; see Example 4.3. For 
expositional reasons, the lengthy construction of M/C is postponed until Section 7; in 
Section 8, we compare our construction to the double category construction of [3], and 
obtain the K-theory localization sequence

K(C) → K(M) → K(M/C).

This is of course a special case of the localization sequence of [3, 8.6].
This paper organized as follows. In the first few sections, we recall the basic definitions 

of A–sets, quasi-exact categories (such as A–sets) and their K-theory. Section 3 recalls 
the Campbell–Zakharevich notions of CGW and ACGW categories which are needed for 
K-theory localization sequences. Our version of the localization sequence is summarized 
in Section 4, with the technical details relegated to Sections 7 and 8. Sections 5–6 con-
struct the analogues of the Gersten–Quillen spectral sequence associated to the coniveau 
filtration, and establish an analogue of Quillen’s proof of Gersten’s Conjecture.

Acknowledgments. The authors would like to thank Inna Zakharevich for her help in 
understanding CGW-categories in [3].

1. Monoids and monoid sets

By an (abelian) monoid A we mean a pointed set with a commutative product and 
distinguished elements {0, 1} such that a · 1 = a and a · 0 = 0 for all a ∈ A; these are 
sometimes called “pointed monoids.” For example, the free monoid N is {0, 1, t, t2, ...}, 
and if A and B are monoids, so is A ∧B. The initial pointed monoid {0, 1} is called F1 in 
[5]. We call the set A× of invertible elements of a monoid its units; these form a group.
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The monoid spectrum MSpec(A) is the space of prime ideals in A, together with the 
sheaf whose stalk at a prime s is the localization As of the monoid A. A monoid scheme
(S, AS) is a topological space S with a sheaf of monoids AS which is locally MSpec of a 
monoid.

If A is a (pointed) monoid, an A–set is a pointed set (X, ∗) with an action of A; in 
particular, 1 · x = x and 0 · x = ∗ for all x ∈ X. When we regard A as an A–set, we write 
the element 0 as ∗. For example, a free A–set is just a wedge of copies of A. We write 
A−Sets for the evident category of A–sets.

If (S, AS) is a monoid scheme, we write AS−Sets for the category of (quasi-coherent) 
sheaves of AS–sets. If S = MSpec(A), AS−Sets is equivalent to A−Sets.

A monoid A is partially cancellative, or pc for short, if ac = bc �= 0 implies a = b for 
all a, b, c in A. If A is a cancellative monoid then A and A/I are pc for every ideal I of 
A; the prototypical finite pc monoid is {1, t, ..., tN = tN+1 = 0}.

Definition 1.1. If A is a pc monoid, we say that a pointed A–set X is partially cancellative
if for every x ∈ X and a, b in A, if a · x = b · x �= ∗ then a = b. The subcategory of pc 
monoid sets is closed in A−Sets under subobjects and quotients. We do not impose the 
condition that a · x = a · y �= ∗ implies x = y, as this rules out some key examples (see 
Example 1.2).

Similarly, we say a monoid scheme (S, AS) is pc if it is locally pc, and a sheaf of 
AS–sets is pc if it is locally pc. If A is pc, open subschemes of MSpec(A) are pc but are 
not usually affine.

Example 1.2. A (pointed) N-set is just a pointed set X with a successor function x �→ tx. 
Every finite rooted tree is a pc N-set; the successor of x is the adjacent vertex closer 
to the root vertex ∗. In fact, a finite N-set is partially cancellative if and only if it is a 
rooted tree, because for every x ∈ X, the sequence {x, tx, t2x, ...} terminates at the root 
vertex.

An N-set is pc if and only if it contains no loop, i.e., for each element x �= ∗ and 
integer d > 1 we have tdx �= x. A typical non-pc set is {1, t, ..., td, ..., tN , ∗ : tN = td}.

Example 1.3. Let A be Γ+, where Γ is an abelian group, and ‘+’ is a disjoint basepoint. 
Then every A–set is a wedge of copies of cosets (Γ/H)+. If H is a proper subgroup of Γ, 
then (Γ/H)+ is not pc because h · x = 1 · x for h ∈ H. Thus a Γ+-set is pc if and only if 
it is free.

2. K-theory of quasi-exact categories

The notion of exact category [13] has the following generalization.

Definition 2.1. ([8], [16, Ex. IV.6.14]) A quasi-exact category is a category M with a 
distinguished zero object, and a coproduct ∨, equipped with a family S of sequences of 
the form
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X
i−→ Y

p−→ Z, (2.2)

called “admissible,” such that:
(i) any sequence isomorphic to an admissible sequence is admissible;
(ii) for any admissible sequence (2.2), p is a cokernel for i and i is a kernel for p;
(iii) S contains all split sequences (those with X ∼= Y ∨ Z); and
(iv) the class of admissible epimorphisms (resp., admissible monics) is closed under 
composition and pullback along admissible monics (resp., pullback along admissible epi-
morphisms).

We will write admissible monics as X � Y and admissible epics as Y � Z, and will 
often write Y/X for the cokernel of X � Y .

The prototype of a quasi-exact category is a regular category; see Definition 7.1. The 
exact sequences are the sequences (2.2) for which p is a cokernel for i and i is a kernel 
for p.

Example 2.2.1. The category Sets of pointed sets is quasi-exact. More generally, if A is 
a (pointed) monoid, the category A−Sets is quasi-exact; a sequence (2.2) is admissible 
if X � Y is an injection, and Z is isomorphic to the quotient A–set Y/X. If A is a 
noetherian monoid, the category M(A) of finitely generated pointed A–sets is quasi-
exact. (See [16, Ex. IV.6.16].)

Similarly, if (S, AS) is a monoid scheme, AS−Sets is a quasi-exact category; the 
admissible sequences are defined locally.

The wedge X ∧A Y of two A–sets is defined to be the quotient of X ∧ Y by the 
equivalence relation that (xa, y) ∼ (x, ay) for all a ∈ A x ∈ X and y ∈ Y . As noted 
in [5, 5.10], X ∧A Y is exact in both variables; in fact, A–Sets is a symmetric monoidal 
category.

Definition 2.3. If M is quasi-exact, Quillen’s construction in [13] yields a category QM, 
and K(M) is the connective spectrum with initial space ΩBQM; we write Kn(M) for 
πnK(M). The group K0(M) is generated by the objects, modulo the relations that 
[X] = [Y ] + [Z] for every sequence (2.2).

Example 2.3.1. The category Setsfin of finite pointed sets is quasi-exact; every admissible 
sequence is split exact. It is well known that the Barratt–Priddy–Quillen theorem implies 
that K(Setsfin) is homotopy equivalent to the sphere spectrum S. (See [8], [5], [16, Ex. 
IV.6.15].)

Definition 2.4. If A is noetherian, the category M(A) of noetherian A–sets is quasi-exact; 
following [5], we write G(A) for K(M(A)). Similarly, if S is a noetherian monoid scheme, 
the category M(S) of sheaves of noetherian AS–sets is quasi-exact, and we write G(S)
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for K(M(S)). Since ∧A is biexact, G(S) is an E∞-ring spectrum. See [16, IV.6.6] and 
[1, 3.8.2].

G-theory is contravariantly functorial with respect to monoid maps A → B for which 
B is noetherian as an A-module, and covariant for flat maps (a monoid map A → B is 
flat if the base extension X �→ B ∧A X is exact).

If A is a noetherian pc monoid, the category Mpc(A) of noetherian pc A–sets is 
quasi-exact; following [11], we write K ′(A) for K(Mpc(A)). Similarly, if (S, AS) is a 
noetherian pc monoid scheme, the category Mpc(S) of sheaves of noetherian pc AS–sets 
is quasi-exact, and we write K ′(S) for K(Mpc(S)). Mpc(S) is symmetric monoidal, since 
X ∧A Y is pc when both X and Y are, and K ′(A) and K ′(S) are E∞-ring spectra.

As noted in [11, 3.1.1], K ′ is covariantly functorial for flat maps.

Example 2.4.1. Let Γ be a group; the K-theory of the category of finitely generated free 
Γ–sets is written as K(Γ). When A = Γ+, we saw in Example 1.3 that every pc A–set is 
a free A–set, so K ′(Γ+) 
 K(Γ). If X = A∨r, then Aut(X) is the wreath product Γ � Σr. 
By the Barratt–Priddy–Quillen theorem,

K ′(Γ+) 
 K(Γ) 
 S∞(BΓ+) = S∞(BΓ) ∨ S.

Similarly, if Γ is abelian, the category of Γ–sets is the product over all subgroups [H]
of the category of Γ/H–sets.2 By the equivariant Barratt–Priddy–Quillen theorem [4, 
5.1],

G(Γ+) 

∨

H≤Γ
S∞[B(Γ/H)+].

In particular, G0(Γ+) = π0G(Γ+) is the Burnside ring of Γ.

We say that an A–set X has finite length if it has a finite filtration

1 � F1X � · · · � FnX = X

such that each FiX/Fi−1X is irreducible, i.e., isomorphic to (A×)+. If A is noetherian, 
the category Mfin(A) of A–sets of finite length is quasi-exact, as is the category Mpc

fin(A)
of pc A–sets of finite length. By Dévissage (see [3, 6.2] or [11, 3.3, 3.3.1]), we have:

Theorem 2.5. If A is a noetherian monoid, with units Γ = A×, then K(Mfin(A)) 

G(Γ+) and if A is a pc monoid then:

K(Mpc
fin(A)) ∼= K(Γ) 
 S∞(BΓ+) 
 S∞(BΓ) ∨ S.

If A has finite length then G(A) 
 G(Γ+) and K ′(A) 
 K(Γ).

2 If Γ is not abelian, replace Γ/H by the Weyl group NΓ(H)/H.
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The following result is taken from [11, 5.3].

Theorem 2.6. Let S be a pc monoid scheme and Z i−→ S an equivariant closed subscheme 

with open complement U j−→ S. Then there is a fibration sequence of spectra

K ′(Z) i∗−→ K ′(S) j∗

−→ K ′(U).

Remark 2.7. By [9, 1.3], every ideal I in a noetherian monoid has a finite number of 
associated primes. It follows that the support of an equivariant closed subscheme Z of a 
noetherian monoid scheme has a finite number of minimal points.

3. CGW and ACGW categories

Campbell and Zakharevich have defined a CGW-category to be a double category 
satisfying a certain list of axioms; we refer the reader to [3, 2.5] for the precise definition. 
Here is our main example:

If M is a quasi-exact category, we can form a double category M[d] with the same 
objects as M; the horizontal and vertical maps are the admissible monics and epics 
(composed backwards), respectively, and the 2–cells are commutative diagrams of the 
form

X Y

X ′ Y ′

(3.1)

We say that a square (3.1) is distinguished if the natural map of cokernels Y ′/X ′ → Y/X

is an isomorphism. Thus distinguished squares are both pushout squares and pullback 
squares.

As pointed out in [11, 2.3], if M is a quasi-exact category, M[d] is a CGW-category, 
and M is an “ambient category” for M[d] in the sense of [3, 2.3], where k(Y � Y/X)
is its kernel X � Y and c(X � Y ) is its cokernel Y � Y/X. Moreover, the K-theory 
K(M[d]) agrees with K(M).

There is a stronger notion, that of an ACGW-category, defined in [3, 5.6]. If M is 
an ACGW-category and C is an ACGW-subcategory closed under subobjects, quotients, 
and extensions (see [3, 2.12]), the double category M\C is defined in [3, 8.1]. There is a 
canonical morphism of double categories M → M\C.

A key construction in the language of ACGW-categories is [3, 8.6], which we now 
cite in modified form; see Remark 3.2.1. The condition (CGW) is that M\C is a CGW 
category, and condition (W) is described in Section 8 below.

Theorem 3.2. Let M be an ACGW-category and let C be an ACGW-subcategory satisfying 
the technical conditions (CGW) and (W). Then
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K(C) → K(M) → K(M\C)

is a homotopy fiber sequence.

Proof. This is Theorem [3, 8.6], except that we have removed the superfluous hypothesis 
that Condition (E) holds. Indeed, Condition (E) in [3] is used only in the proof of [3, 
10.22], a lemma in service of their main localization theorem. In the absence of condition 
(E), the isomorphism of categories in [3] may be weakened to an equivalence of categories, 
which still induces the requisite homotopy equivalence for the main theorem. �
Remark 3.2.1. We do not know whether condition (E) holds in general for the CGW-
categories associated to a Serre subcategory of an adherent category (see Definition 7.4), 
but fortunately this issue is extraneous.

Example 3.3. By [11, 2.5], if M is a quasi-exact subcategory of A−Sets (or AS−Sets) 
closed under pushouts along pairs of monics, and pullbacks along pairs of epics, then the 
associated double category M[d] is an ACGW-category.

In particular, when A is a noetherian monoid, the associated double categories of 
M(A) and Mpc(A) are ACGW-categories; the same is true for the subcategories M(S)
and Mpc(S) over a monoid scheme.

The difficulty with Theorem 3.2 is that M\C is hard to work with. Since we are 
working with ambient categories having more structure, we have access to a different 
kind of localization, viz., a quotient category M/C, which we establish in Theorem 7.8, 
and summarize in the next section.

4. The localization M/C

To define M/C, we need to introduce some category-theoretic vocabulary. We say 
that a pointed category is regular if it admits all finite limits and has a good intrinsic 
notion of short exact sequence, where the admissible monics are always kernels and the 
admissible epics are always cokernels. (See Definition 7.1.) A regular functor is one that 
preserves this structure, i.e., finite limits and short exact sequences.

Every regular category is quasi-exact; see Remark 7.2. The categories A−Sets and 
M(A) are regular, as are A−Setspc and Mpc(A).

Definition 4.1. A full pointed subcategory C of a regular category M is a Serre subcategory
if it is closed under finite limits and for every exact sequence (2.2), Y is in C if and only 
if both X and Z are in C.
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Proposition 4.2. If F : M → N is a regular functor between regular categories, then the 
full subcategory ker(F ) = F −1(0) is a Serre subcategory of M.

Proof. Clearly, ker(F ) is closed under finite limits. Consider an exact sequence (2.2) in 
M; applying F yields an exact sequence in N ,

F (X) � F (Y ) � F (Z).

It is clear that F (Y ) ∼= 0 if and only if F (X) ∼= F (Z) ∼= 0. �
Example 4.3. Let S be a multiplicatively closed subset of an (abelian) monoid A. Then 
the localization A−Sets → S−1A−Sets is a regular functor, because it preserves exact 
sequences and finite limits. Indeed, the ring-theoretic proofs go through; for example, if 
X

i−→ Y is an injection and i(x)/s = 0 in S−1Y for x ∈ X then some i(s1x) = 0 in Y
and hence s1x = 0 in X.

By Proposition 4.2, the category of S-torsion A–sets is a Serre subcategory of A−Sets; 
this description restricts to Serre subcategories of M(A) and Mpc(A) (see Definition 2.4).

More generally, if U is open in a monoid scheme (S, AS) then the localization 
AS−Sets → AU −Sets is a regular functor. Indeed, exact sequences and finite limits 
are determined locally on affine open subschemes. By Proposition 4.2, the category of 
AS–sets vanishing on U is a Serre subcategory of AS−Sets, and this restricts to Serre 
subcategories of M(S) and Mpc(S) as well.

If C is a Serre subcategory of an adherent category M, there exists a quotient cat-
egory M/C, which is essentially a non-additive version of Gabriel’s construction [10, 
Chapitre III]; the construction is given in Theorem 7.8 below. The definition of an ad-
herent category is given in Definition 7.4; it is a regular category satisfying some technical 
axioms.

Here are the two theorems about M/C which we need.

Theorem 4.4. Let C be a Serre subcategory of an adherent category M. Then there exists 
a quotient category M/C, which is regular, and a regular functor M → M/C, which is 
initial among all regular functors from M which send C to zero.

The full statement of Theorem 4.4, and the proof, can be found in Theorem 7.8. The 
category M/C has the same objects as M, but all maps with kernel and cokernel in C
are forced to be isomorphisms and thus all objects in C are isomorphic to zero.

In Lemma 8.1, we point out that the double category M[d] associated with an adherent 
category M is an ACGW category. A fuller statement of the following theorem (and its 
proof) is given in Lemma 8.2 and Theorem 8.4.
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Theorem 4.5. Let C be a Serre subcategory of an adherent category M. Then the double 
category associated to M/C is a CGW-category, equivalent to the CGW-localization M\C
of M[d] by C[d], and there is a fibration sequence:

K(C) → K(M) → K(M/C).

Example 4.6. Let (S, AS) be a monoid scheme. For brevity, we write M(S) for the cat-
egory AS−Sets. If S = MSpec(A), we will write M(A) for M(S). If U ⊂ S is an open 
subscheme, with complement Z, then M(U) is M(S)/MZ(S), where MZ(S) is the sub-
category of all M in M(S) with M |U = 0. The proof is the same as Gabriel’s in [10, 
p. 380]; use the fact that the exact functor j∗ : M(S) → M(U) has a right adjoint, the 
section functor j∗ : M(U) → M(S), and the universal map j∗ : M(U) → M(S)/MZ(S)
is an equivalence.

Suppose S is noetherian. As in Gabriel [10, p. 379], there is a bijection between 
the Serre subcategories of M(S) and M(S) (noetherian AS-sets), given by M′(S) �→
M′(S) = M′(S) ∩M(S). Hence MZ(S) is a Serre subcategory of M(S). By Theorem 4.5
and Dévissage [3, 6.2], there is a fibration sequence

G(Z) → G(S) → G(U).

Similarly, if S is pc, then Mpc
Z (S) is a Serre subcategory of Mpc(S), and we recover the 

fibration sequence of Theorem 2.6.

Application 4.7. If (S, AS) is a monoid scheme, then the subcategory Md(S) of sheaves 
in M(S) which are supported in codimension ≥ d is a Serre subcategory. It contains 
Md+1(S) and

Md(S)/Md+1(S) ∼=
∨

ht(s)=d
Ms(As),

where Ms(As) is the category of torsion As–sets. Similarly, if S is noetherian then 
Md(S)/Md+1(S) is equivalent to the wedge of the categories Mfin(As) of finite length 
As–sets. The parallel assertion holds for Mpc

d (S)/Mpc
d+1(S).

For example, if S is noetherian, then M1(S) is the category of AS–sets vanishing on 
the open subscheme U consisting of the (finitely many) points of codimension 0. In this 
case, we get the equivalences

M(S)/M1(S) ∼= M(U) =
∨

ht(s)=0
M(As)

and M(S)/M1(S) ∼= M(U) =
∨

ht(s)=0 M(As).
If S has a unique minimal point, j∗ identifies M(S)/M1(S) with the category Q of 

torsionfree objects in M(S), and identifies M(S)/M1(S) with the noetherian objects in 
Q.
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5. The coniveau filtration

We will apply the localization Theorem 4.5 to Md+1(S) ⊂ Md(S) and its pc analogue. 
By 4.7, Mpc

d (S)/Mpc
d+1(S) is equivalent to the coproduct over height d points s of torsion 

pc As-modules.
Let (S, AS) be a noetherian monoid scheme, such as MSpec(A). If s is a point in 

S, we write Γs for the group of units of the pointed monoid As, so (Γs)+ = As/ps. If 
S = MSpec(A), then ps is a prime ideal in the monoid A, and Γs is the group completion 
of the cancellative monoid A/ps. By Example 2.4.1, K ′(Γs) = S∞(BΓs) ∨ S.

Let S be a noetherian monoid scheme. By Theorem 4.5, the quasi-exact category 
Md(S)/Md+1(S) is the ambient category of the double category Md(S)\Md+1(S). By 
4.7, the quotient Md(S)/Md+1(S) is the coproduct over the height d points s ∈ S of 
the category Mpc

fin(As) =
⋃

n M(As/pn
s ) of finite length As–sets.

Now K(Mpc
fin(As)) 
 K(Γs) by Theorem 2.5 (i.e., by Dévissage), so we have long 

exact sequences

· · · → K∗Mpc
d+1(S) →K∗Mpc

d (S) →
⊕

K∗(Γs) → · · · (5.1)

· · · → K∗Md+1(S) →K∗Md(S) →
⊕

G∗(Γs) → · · ·

The direct sums in these sequences are indexed by the points s ∈ S of codimension d. 
Each of these sequences form exact couples, yielding fourth quadrant spectral sequences:

Ep,q
1 =

⊕
ht(s)=p

K−p−q(Γs) ⇒ K ′
−p−q(S) (5.2)

Ep,q
1 =

⊕
ht(s)=p

G−p−q(Γs) ⇒ G−p−q(S)

These are the analogues of the usual coniveau spectral sequence for the K-theory of 
coherent sheaves over a noetherian scheme; see [13, 5.4] or [16, V.9].

Example 5.3. Let D be a discrete valuation monoid with group of units Γ = D× and 
parameter t, i.e., D = Γ+ ∧ N. Since the group completion of D is D0 = (Γ × Z)+, the 
localization sequence [11, 3.5] becomes

· · · Kn(Γ) 0−→ K ′
n(D) → Kn(Γ × Z) d−→ Kn−1(U) · · ·

(Recall that Kn(Γ) = K ′
n(Γ+).) The left map is zero by Additivity [3, 7.15], because for 

every Γ+-set X there is a characteristic exact sequence

X × N
t� X × N � X.
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Thus the E1 page of the spectral sequence (5.2) for K ′(D) has only 2 nonzero columns 
(p = 0, 1), and looks like:

Ep,0
1 : K0(Γ × Z) 0

Ep,−1
1 : K1(Γ × Z) d

K0(Γ) 0

Ep,−2
1 : K2(Γ × Z) K1(Γ) 0 0

Ep,−3
1 : K3(Γ × Z) K2(Γ) 0 0

Now Kn(Γ × Z) ∼= Kn(Γ) ⊕ Kn−1(Γ) by 2.4.1, because BZ = S1, and

K(Γ × Z) = S∞B(Γ × Z)+ = S∞(S1
+ ∧ BΓ+) = S1S∞(BΓ)+ ∨ S∞(BΓ)+.

Hence Kn(Γ × Z) maps onto Kn−1(Γ) = πn−1S∞(BΓ) ∨ S with kernel Kn(Γ). Thus E2
is concentrated on the column p = 0, with K ′

q(D) = E0,−q
2 = Kq(Γ).

Lemma 5.4. If D is a discrete valuation monoid with units Γ,
d0,−1

1 : K ′
1(D0) → K0(Γ) = Z is the surjection sending [t] to ±1.

Proof. By Example 5.3, K ′
1(D0) = (Γ × Z) ⊕ πs

1 and K ′
1(D) = Γ ⊕ πs

1 and 
K ′

1(D0)/K ′
1(D) ∼= K0(Γ) = Z. �

Remark 5.4.1. The analysis of the spectral sequence for G∗(D) is more complicated 
because the formula for G∗(Γ × Z)+ is more complicated.

Weil divisors and K ′
0(S)

We now connect the E1,−1
∞ term to the divisor class group, in the same way that the 

Chow groups are related to the groups Ep,−p
∞ in the classical Gersten spectral sequence 

for G∗(X).
Recall that a monoid scheme is normal if each As is cancellative and if a, b ∈ As

satisfy (a/b)n ∈ As then a/b ∈ As. If (S, AS) is a normal (pc) monoid scheme then 
for each height 1 point x, As is a Discrete Valuation monoid by [9, 2.6]. The following 
definition is taken from [9, 4.2].

Definition 5.5. Let (S, AS) be a normal (pc) monoid scheme. A Weil divisor is an element 
of Div(S), the free abelian group on the height 1 points of S. If a is a nonzero element 
of A0, we can define the principal divisor div(a) in Div(S) by the same formula as in 
Algebraic Geometry. The divisor class group Cl(S) is the quotient of Div(S) by the 
subgroup of principal divisors. Thus there is an exact sequence

1 → AS(X)× → A×
0

div−→ Div(S) → Cl(S) → 0.
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Remark 5.5.1. A monoid scheme S is factorial if and only if Cl(A) = 0; if the stalks As

of A are factorial then Cl(S) = Pic(S) by [9, 6.4].

By Lemma 5.4, the component K ′
1(A0) d−→ K ′

0(As) = Z of the differential d1 is the 
projection K ′

1(A0) → A×
0 , followed by the map div. Thus

Theorem 5.6. If S is a normal (pc) monoid scheme, the differential
E0,−1

1
d1−→ E1,−1

1 is the principal divisor map div, and E−1,−1
∞

∼= Cl(S).
Hence K ′

0(S) surjects onto Z ⊕ Cl(S).

Remark 5.6.1. If A is a 2–dimensional normal monoid, the kernel of K ′
0(A) → Z ⊕Cl(X)

is the subgroup generated by A/m. In general, the groups Ep,−p
2 (S) are the higher class 

groups Wp studied by Claborn and Fossum; see [6] or [16, Ex. II.6.4.3].

The following example shows that the augmented rows of the spectral sequence aren’t 
always exact when A is normal.

Example 5.7. Let A be the (2-dimensional normal) submonoid of N2 generated by x =
(1, 0), z = (1, 1) and y = (1, 2). By [9, 4.2.1], Cl(A) = Z/2 for A. Since A/(y, z) ∼= N, 
and A/(x, y, z) = ∗, it follows that E2,−2

2 = 0 and K ′
0(A) ∼= Z ⊕ Z/2.

6. Gersten’s conjecture for pc monoid schemes

Quillen proved [13, 5.1] that if R is a semilocal ring, smooth/k, then the K-theory 
spectral sequence degenerates at E2. (This result is known as “Gersten’s conjecture.”) In 
this section, we give the analogue for monoids.

The following definition is taken from [7, 6.4]; the terminology reflects Theorem 6.5 
in [7] that a (cancellative) monoid A is 0-smooth if and only if its monoid ring k[A] is 
smooth over k for every field k of characteristic 0.

Definition 6.1. A monoid A is 0-smooth if it is a product Γ+ ∧ (Nn), where Γ is a finitely 
generated abelian group.

Theorem 6.2. If A is a 0-smooth monoid, the sequence

0 → K ′
n(A) →

⊕
ht(s)=0

K ′
n(As) d−→

⊕
ht(s)=1

K ′
n−1(As) d−→ · · ·

is exact for all n, where d is the E1 differential in the spectral sequence (5.2). The 
sequence remains exact if K ′

n is replaced by Gn.

Let K′
n denote the sheaf associated to the K-theory of partially cancellative AS–sets. 

As in [13, (5.9)], this gives a flasque resolution of the sheaf K′
n on any 0-smooth monoid 

scheme S:
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0 → K′
n →

⊕
ht(s)=0

(is)∗Kn(Γs) →
⊕

ht(s)=1

(is)∗Kn−1(Γs) → · · ·

and gives a canonical isomorphism

Epq
2 (S) ∼= Hp(S, K′

q). (6.3)

Formula (6.3) remains valid if K ′-theory is replaced by G-theory.

Proof. We may suppose that A = Γ+ ∧ Nm+1, with the maximal ideal generated by 
x0, . . . , xm. As noted by Quillen [13], it suffices to show that for every non-zerodivisor 
t ∈ A that Md(A/tA) → Md(A) induces the zero map on K-theory. Since A is 0-smooth, 
t = γxn0

0 · · · xnm
m for some γ ∈ Γ, where some ni > 0; we may suppose that n0 > 0.

Set B be the submonoid Γ+ ∧ Nm on x1, ..., xm. Then A is flat over B, so A′ =
A ∧B (A/tA) is flat over A/tA, and A → A/tA factors through p : A → A′. There is a 
canonical splitting u : A′ → A/tA, induced by A → A/tA, so that

Md(A/tA) u∗−→ Md(A′) p∗

−→ Md(A)

is the natural map. Now for any A/tA–set X, there is an exact functor v :
Md(A/tA) −→ Md(A′) sending X to v(X) = X ∧〈x0〉 and an exact sequence in Md(A′):

X ∧ 〈x0〉
x0� X ∧ 〈x0〉 � u∗(X).

By Additivity, u∗ 
 0. Hence the map K(Md(A/tA)) −→ K(Md(A)) is zero, as as-
serted. �
7. Regular localization

We now develop the machinery promised in Section 4. Recall that our goal is to employ 
the localization theorem of [3], which is phrased in the language of (A)CGW-categories. 
Many cases of interest (ours included) arise not from arbitrary double categories, but 
from ordinary categories equipped with distinguish classes of morphisms and squares, 
see [3, 4.1-6].

Were we to work purely in CGW-language, we would need to invoke arguments 
that are needlessly complicated for our purposes. The quotient construction for CGW-
categories does not immediately identify the nature of the quotient category; we are 
able to give a much clearer description of the quotient category (in our cases) and prove 
that it agrees with the CGW-version. Our version is also familiar: the localization con-
struction M → M/C generalizes from abelian categories (due to Gabriel [10]) to regular 
categories, including A−Sets and A−Setspc. As we generalize constructions in algebraic 
geometry to the world of monoid schemes, we show that we can “de-additivize” classical 
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proofs and obtain identical results without requiring the reader to first digest the entire 
theory of CGW-categories.

The following definition is taken from [2, A.5]; see also (Reference [15]).

Definition 7.1. Let M be a category with finite limits. An epimorphism Y
p−→ Z in C is 

regular if it is a coequalizer X ⇒ Y
p−→ Z.

We say that M itself is regular if regular epimorphisms are stable under pullback by 
arbitrary morphisms and every kernel pair admits a coequalizer. Recall that the kernel 
pair for a morphism f : X → Y is the diagram X ×Y X ⇒ X given by the canonical 
maps in the fiber product

X ×Y X X

X Y

The coequalizer of the kernel pair in a (concrete) regular category is the quotient of 
X given by identifying elements which become equal under f , i.e., the image of the 
morphism f .

A sequence X i→Y
p→Z is called exact if i = ker(p) and p = coker(i). Kernels always 

exist in a regular category, but cokernels do not necessarily exist; when they do, they 
are regular epimorphisms and the coequalizer of their kernel pair. Thus given a kernel 
i : X → Y we can always extend it to a short exact sequence.

A functor between regular categories is regular if it preserves finite limits and regular 
epimorphisms (thus short exact sequences as well).

The category of pointed sets is the prototype of a regular category; every surjection 
is a regular epimorphism (see [2, A.5.6]). In fact, the category of pointed objects in any 
elementary topos is regular.

An abelian category is another (particularly nice) example of a regular category. The 
regular epimorphisms are just cokernels. A regular functor between abelian categories is 
just an exact functor.

Remark 7.2. Every regular category is quasi-exact, using the intrinsic notion of short 
exact sequence in the regular category, and its associated double category is a CGW 
category by [11, 2.3]. All of the quasi-exact categories considered in this paper are actually 
regular.

One main feature of a regular category is that every morphism can be factored 
uniquely (up to isomorphism) as a regular epimorphism (onto the image) followed by a 
monomorphism.



I. Coley, C. Weibel / Journal of Algebra 614 (2023) 1–26 15
Example 7.3. If A is a (pointed) monoid, A−Sets is regular, and the forgetful functor 
A−Sets → Sets is a regular functor (because it has both a left and right adjoint; see 
[11, 2.5.1]). If A is a pc monoid, A−Setspc is a regular subcategory of A−Sets.

Every monomorphism in A−Sets (and hence A−Setspc) is a kernel, but not every 
epimorphism is a cokernel. In fact, the short exact sequences in A−Sets and A−Setspc

have the form

X
i� Y

p
� Y/X.

The following definition is weaker than the related notions of a coherent category and 
an adhesive category, but is just right for our purposes; see [12, A.1] for more details.

Definition 7.4. A regular category M is called adherent if it satisfies the following axioms:

(A1) Pushouts along kernels in M are also pullbacks;
(A2) the image of every map is a kernel;
(A3) for each X in M, the category of monics X ′ � X has both pushouts and pullbacks.

In particular, (A2) implies that every monomorphism is a kernel.

Using De Morgan’s laws on the underlying sets, it is easy to see that A−Sets and 
A−Setspc are adherent categories. The category of pointed objects in any elementary 
topos, e.g., pointed finite sets, is adherent; this gives a large class of examples.

Construction 7.5. Let M be a adherent category, and suppose that X ′
i � X � X ′′

i

(i = 1, 2) are exact sequences in M. Let X ′
12 denote the pullback X ′

1 ×X X ′
2. Write X ′

for the pushout of X ′
1 and X ′

2 along X ′
12, which by abuse of notation we will also write 

X ′
1 ∪ X ′

2. Note that X ′ exists and X ′ � X is monic by axiom (A3).
Let X ′′ denote the cokernel of X ′ � X and write X ′′

12 for the pullback of X ′′
1 and X ′′

2
along X ′′. Then we have exact sequences

X ′
12 � X � X ′′

12 and X ′ � X � X ′′

which fit into diagram (7.5.1), where both squares are bicartesian.

X ′
12 X ′

1

X ′
2 X ′ X X ′′

12 X ′′
2

X ′′
1 X ′′

(7.5.1)
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The top-left square is bicartesian by construction. The bottom-right square is cartesian, 
so by [12, A.1.4.3] it is also cocartesian because cokernels are regular epimorphisms. Note 
that X ′ � X � X ′′

12 is not claimed to be an exact sequence.
We obtain Diagram (7.5.1) as follows: by taking iterated pushouts along our string of 

monomorphisms, we obtain

X ′
12 X ′

1 X ′ X

∗ X ′
1/X ′

12 X ′/X ′
12 X ′′

12

∗ X ′/X ′
1 X ′′

1

∗ X ′′.

Note that all instances of � are cokernels. We can repeat this process with the chain

X ′
12 X ′

2 X ′ X

to obtain the square

X ′′
12 X ′′

1

X ′′
2 X ′′.

By construction, this is a pushout; as we have also identified it as a pullback, this 
completes the construction.

Definition 7.6. Let M be an adherent category. A full subcategory C ⊂ M is called Serre
if it is closed under finite limits and, for every short exact sequence X � Y � Z in M, 
Y is in C if and only if X, Z are both in C.

Note that C also forms an adherent category. It admits coequalizers of kernel pairs as, 
for any f : X → Y in C, the coequalizer of
X ×Y X ⇒ Y is just im(f), which is a subobject of Y . Thus C is regular, and axioms 
(A1), (A2), and (A3) hold because C is a full subcategory closed under subobjects.

Remark 7.6.1. The definition of a Serre subcategory of an abelian category does not 
explicitly state that it be closed under finite limits. We need this assumption because we 
do not have biproducts; while there is a canonical short exact sequence X � X ∨Z � Z
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which makes C closed under coproducts (and therefore pushouts, which are quotients of 
coproducts), the product does not sit naturally in a short exact sequence. To prove that 
the quotient category M/C (to be defined shortly) has finite limits, we need C to be 
closed under finite limits.

Before we define the quotient of an adherent category by a Serre subcategory, we have 
the following technical lemma.

Let X, Y be two objects in an adherent category M, and let C be a Serre subcategory 
of M. Let I = IX,Y be the following category: its objects are the pairs (X ′, Y ′′) for every 
pair of short exact sequences
X ′ � X � X ′′ and Y ′ � Y � Y ′′ such that X ′′, Y ′ ∈ C. The maps (X ′

1, Y ′′
1 ) →

(X ′
2, Y ′′

2 ) are induced by composition with maps in M of the form X ′
1 � X ′

2 � X and 
Y � Y ′′

1 � Y ′′
2 . Note that I is equivalent to a partially-ordered set.

Lemma 7.7. Let X, Y be two objects in an adherent category M, and let C be a Serre 
subcategory of M. Then the category I = IX,Y is filtered, and HomM : I → Sets is a 
functor.

Proof. To begin, fix two short exact sequences X ′
i � X � X ′′

i with X ′′
i in C. Then the 

inclusions X ′
i � X yield a span

HomM(X ′
2, Y ′′) HomM(X, Y ′′) HomM(X ′

1, Y ′′)

Setting X ′
12 = X ′

1 ×X X ′′
2 , we claim that (X ′

12, Y ′′) is an upper bound of (X ′
1, Y ′′) and 

(X ′
2, Y ′′) in I, i.e., that the cokernel X ′′

12 of X ′
12 � X is in C. By Construction 7.5, X ′′

12
is the pullback of X ′′

1 and X ′′
2 along X ′′. By assumption, X ′′

1 and X ′′
2 are in C, and X ′′

is a quotient of X ′′
2 (or X ′′

1 ) so is also in C. Thus X ′′
12 is a (finite) limit of objects in C

and is also in this subcategory.
Dually, given short exact sequences Y ′

i � Y � Y ′′
i with Y ′

i in C, we have the span

HomC(X, Y ′′
1 ) HomC(X, Y ) HomC(X, Y ′′

2 )

Setting Y ′′ = Y ′′
1 ∨Y Y ′′

2 , it suffices to prove that the kernel Y ′ of Y → Y ′′ is in C. 
Appealing to Construction 7.5, Y ′ = Y ′

1 ∪ Y ′
2 , and we have an identification of cokernels

Y ′/Y ′
1 = (Y ′

1 ∪ Y ′
2)/Y ′

1
∼= Y ′

2/(Y ′
1 ∩ Y ′

2) = Y ′
2/Y ′

12.

Since Y ′
2 and hence Y ′

2/Y ′
12 is in C, this shows that Y ′/Y ′

1 is in C. Since Y ′
1 is also in C, 

Y ′ is in the Serre subcategory C, as desired. �
Theorem 7.8. Let C be a Serre subcategory of an adherent category M. Then we can 
define the quotient category M/C in the following way: the objects are the objects of M, 
and the morphisms are the sets
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HomM/C(X, Y ) = colim
IX,Y

HomM(X ′, Y ′′)

defined above. Then M/C is a regular category, and M → M/C is a regular functor, 
initial amongst those sending C to zero.

We take inspiration from Gabriel’s thesis [10], where this result is proved for abelian 
categories. We will prove our theorem in a series of steps.

Lemma 7.9. The construction of M/C has well-defined hom-sets, and thus is a category.

Proof. We first prove that our definition of HomM/C behaves well with respect to com-
position. Suppose that f ∈ HomM/C(X, Y ) and g ∈ HomM/C(Y, Z). Then we can take 
specific representatives f : X ′ → Y ′′

1 and g : Y ′
2 → Z ′′. To compose these, we need to 

match the codomain of f to the domain of g by taking equivalent representatives. Con-
sider Y ′

1 � Y ′
1 ∪ Y ′

2 , where Y ′
i is the kernel of Y � Y ′′

i (i = 1, 2). Then the inverse image 
X∗ = f−1(Y ′

1 ∪ Y ′
2/Y ′

1) is a subobject of X ′ (and hence of X), fitting into the pullback 
diagram

X∗

f∗

X ′

f

(Y ′
1 ∪ Y ′

2)/Y ′
1 Y ′′

1 .

The cokernel of X∗ � X fits into a short exact sequence

X ′/X∗ � X/X∗ � X/X ′ = X ′′.

Cf. [11, 2.4]. Because the source and quotient of this exact sequence are in C, so is 
the middle; thus X∗ is a permissible domain in the colimit defining HomM/C(X, Y ). The 
codomain has kernel Y ′

1 , so it is also permissible. The composition f∗ : X∗ → (Y ′
1∪Y ′

2)/Y ′
1

gives the same map as f in the colimit.
For g, consider the pullback Y ′

12 = Y ′
1 ×Y Y ′

2 , and form the quotient Y ′
12 � Y ′

2 �
Y ′

2/Y ′
12; taking the pushout gives a map

Y ′
2

g
Z ′′

Y ′
2/Y ′

12
g∗∗

Z∗∗.

This pushout is constructed as follows: take the image factorization of the map Y ′
12 � Z ′′:
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Y ′
12 J

Y ′
2

g
Z ′′

Because the image of every map in M is a kernel by Axiom (A2), J � Z ′′ is still a 
kernel. The pushout and the map g∗∗ are created by taking cokernels vertically.

By assumption, Y ′
1 and Y ′

2 are in C, so Y ′
12 and Y ′

2/Y ′
12 are in C as well. Thus g∗∗ is 

part of the colimit and represents the same map as g. But by Construction 7.5 we have 
an identification

Y ′
1 ∪ Y ′

2/Y ′
1

∼= Y ′
2/Y ′

12

which allows us to take the actual composition g∗∗ ◦ f∗, which gives the requisite com-
position law. It is clear that composition is associative. �

Having established how composition works, we have the following useful fact: suppose 
that X ′ � X � X ′′ is a short exact sequence with X ′′ in C. Then X ′ ∼= X in M/C. 
Similarly, for any exact sequence Y ′ � Y � Y ′′, if Y ′ is in C, then Y ∼= Y ′′. Therefore 
given a map f : X → Y in M/C, the domain and codomain of the representative X ′ →
Y ′′ are isomorphic to the original ones.

Lemma 7.10. The category M/C admits finite limits, and moreover these are computed 
in M.

Proof. Note that M/C still has a zero object, as the filtered colimits defining 
HomM/C(X, ∗) and HomM/C(∗, Y ) are constant on the singleton set. Therefore the 
existence of finite limits is equivalent to the existence of pullbacks.

Consider a cospan in M/C of the form

X1
f1

Z X2
f2

To find the pullback in M/C, we pick maps in M that represent f1 and f2, and form a 
common codomain Z ′′.

Z1 X ′
2

f ′
2

Z2 Z Z ′′
2

X ′
1

f ′
1

Z ′′
1 Z ′′
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Here, as in (7.5.1), Z ′′ is the quotient of Z by the pushout Z ′ = Z ′
1 ∪ Z ′

2 of the kernels 
Z ′

1 and Z ′
2, along their intersection inside of Z; Z ′ is still in C. Thus Z ′′ is a common 

codomain.
As the total righthand and bottom compositions also represent the maps f1, f2, we 

may pretend (up to renaming the X ′
i as Xi and Z ′′ as Z) that this was our original 

situation. We know the fiber product P = X1 ×Z X2 exists in M and we have projections 
P → X1 and P → X2 that give rise to maps in M/C. We just need to prove that P has 
the requisite universal property.

Suppose that we have T ∈ M/C fitting into a diagram

T

P X2

f2

X1
f1

Z.

Then moving this picture over to M, we can pick representatives h, k for the maps from 
T to obtain

T ′
h

k

P X2

f2

X ′′
2

X1
f1

Z

X ′′
1 Z ′′.

There is a unique map from T ′ to P ′′ := X ′′
1 ×Z′′ X ′′

2 . Moreover, the kernel of P → P ′′ is 
the pullback X ′

1 ×Z′ X ′
2 of the kernels of h and k. Since C is closed under finite limits, P ′′

is an admissible quotient of P . Therefore the map T ′ → P ′′ represents a map T → P in 
M/C. Note that any other choice of representative for h, k will lead to an equivalent map 
T → P in the filtered colimit, which proves uniqueness. Therefore the quotient category 
admits finite limits, and the quotient functor to M/C preserves these, as the limits are 
computed in M. �
Lemma 7.11. The category M/C is a regular category.
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Proof. It remains to check that the quotient still admits coequalizers of kernel pairs 
which are stable under pullback. Suppose that f : X → Y is a map in M/C and that we 
have already replaced the domain and codomain so that f : X → Y is now in M. Then 
we can take the coequalizer of its kernel pair in M to obtain
X ×Y X ⇒ Y

p→ Z. We will show that Y p−→ Z represents the coequalizer in M/C. By 
the previous argument, the kernel pair X ×Y X ⇒ X in M/C is computed in M, as it 
is a finite limit.

Suppose that T ∈ M/C fits into the diagram

X ×Y X Y T.

Pick a representative h : Y ′ → T ′′, and take the pullback in M:

X ′

f ′

X

f

Y ′ Y.

Now X ′ ×Y ′ X ′ ∼= X ×Y X in M/C, because Y ′ � Y and hence X ′ � X are isomor-
phisms in M/C. Thus the kernel pair for f ′ : X ′ → Y ′ in M also represents the kernel 
pair for f in M/C. In particular, the coequalizer

X ′ ×Y ′ X ′ ⇒ Y ′ p′

−→ Z ′

gives us a map Z ′ → T ′′; because Z ′ ∼= Z we obtain a map Z → T in M/C as required. 
Since this map is unique up to picking a different representative for Z → T , it is lit-
erally unique in HomM/C(Z, T ). Because we have already shown that finite limits and 
coequalizers in M/C are computed in M, coequalizers of kernel pairs are stable under 
pullback in M/C. �
Lemma 7.12. The quotient functor M → M/C is initial amongst those regular functors 
sending C to zero.

Proof. Suppose that F : M → N is another regular functor that sends every object in C
to zero. Then for any X, Y ∈ M, we obtain a map of filtered systems I → Sets (where 
I = IX,Y is the category of Lemma 7.7) given by

HomM(X ′, Y ′′) → HomN (F (X ′), F (Y ′′))

for each (X ′, Y ′′) ∈ I. Because both the cokernel of X ′ � X and the kernel of Y � Y ′′

are in C, we obtain isomorphisms F (X ′) ∼= F (X) and F (Y ) ∼= F (Y ′′), so that the 
codomain filtered system is essentially constant with value HomN (F (X), F (Y )). Taking 
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the colimits yields a natural map HomM/C(X, Y ) → HomN (F (X), F (Y )), which defines 
the functor F̃ : M/C → N as required. �

We do not expect the quotient to be adherent in general, nor do we require it for the 
application of [3, 8.6].

8. Comparison of localizations

We now prove the equivalence of the regular localization developed in the previous 
section and the CGW-localization from [3].

Lemma 8.1. If M is an adherent category, then, using the short exact sequences of M, 
the associated double category M[d] is an ACGW-category.

Proof. By Remark 7.2, M[d] is a CGW category. To add the letter ‘A’, we need to check 
a few more axioms, listed in [3, 5.5–5.6]. Axiom (P) is the assertion that monomorphisms 
are closed under pullbacks, and cokernels are closed under pushouts (as we showed in 
the proof of Lemma 7.7).

For axiom (U), we need to check that commutative squares of mono-morphisms give 
rise (upon taking cokernels) to pullback squares of cokernels; this was again proven in 
Construction 7.5 in the specific case of X ′ = X ′

1 ∪ X ′
2, but the proof in the general case 

is identical. The mixed pullback square is defined using the factorizations of morphisms 
in a regular category; the object X �Y Z, defined in [3, 5.6] for a composable pair 
X � Y � Z, is just the image of the composition. The compatibility condition follows 
from the uniqueness of such factorizations.

Axiom (S) concerns the pullback of monomorphisms and their associated cokernels. 
We have already checked everything required for this axiom in Construction 7.5. In par-
ticular, the restricted pushout of this axiom is just the pushout in the ambient category 
M.

Finally, axiom (PP) uses the full strength of an adherent category. Because restricted 
pushouts for us are pushouts, Axiom (A3) guarantees that these always exist. Pushouts 
also exist along cokernels, as we demonstrated in Construction 7.5, and there is no further 
compatibility to check as restricted pushouts are just pushouts (so they are appropriately 
functorial). �
Lemma 8.2. Let C be a Serre subcategory of an adherent category M. Then the CGW-
category (M/C)[d] is equivalent to the CGW-quotient M[d]\C[d].

As noted in Section 3, it follows that K(M/C) ∼= K(M[d]\C[d]).

Proof. The definition of the CGW-quotient can be found at [3, 8.1].
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The m-morphisms V � Z of the CGW-quotient M[d]\C[d] are defined as compositions

V • W X• Y• Z

where the decoration • denotes that the (co)kernel of the map is in the Serre subcategory 
C. The monomorphisms V � Z of M/C are those that have a representative V ′ → Z ′′

which has its kernel in C. Put another way, they are defined by

V V ′• Z ′′ Z.•

We can take the pushout Y of the span of monomorphisms to obtain an equivalent 
expression

V Y Z ′′• Z•

By inspection, kernel and the cokernel of Z → Y belong to C. This means that any 
monomorphism V → Z can be described as a right fraction in a way identical to [3, 8.3]. 
The same reasoning goes through to identify the m-morphisms in M/C with those in 
M[d]\C[d]; the argument for the e-morphisms follows by dual reasoning. �

We will make use of the following lemma concerning isomorphisms in the quotient 
category M/C.

Lemma 8.3. Let C be a Serre subcategory of an adherent category M. Let h : X ��� V

be an isomorphism in M/C. Then there exists a representative h : X ′ → V ′′ of h in M
which is a retract, and hence a monomorphism.

Proof. Because h is an isomorphism, we know there must exist some inverse p : V ��� X

such that p ◦ h = idX in M/C. If we pick representatives in M for h, p and compose 
them as in the proof of Theorem 7.8, we obtain

X ′ h

=

V ′′ p
X ′

for some X ′ � X and V � V ′′. Because h is a retract, it is a monomorphism. �
Theorem 8.4. Let C be a Serre subcategory of an adherent category M. Then the double 
categories C[d] and M[d] satisfy conditions (W) and (CGW) of [3, 8.6]. We therefore 
obtain a homotopy fiber sequence on K-theory:

K(C) → K(M) → K(M/C).

Special cases of Theorem 8.4 are given in [3, 8.3] and [11, 3.5].
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Proof. We can apply [3, 8.6] to obtain the homotopy fiber sequence as soon as we verify 
these conditions. Condition (CGW) holds by Theorem 7.8 because M/C is a regular 
category which is the ambient category of M[d]\C[d].

For condition (W), we will prove that the categories Im
V and Ie

V are filtered for all 
V ∈ M. The category Im

V has objects (X, φ) with φ : X ��� V an isomorphism in M/C; 
the maps of Im

V (under our hypotheses) are maps g : X1 → X2 in M which are sent 
to isomorphisms over V in M/C. The category Im

V is isomorphic to Ie
V by appealing to 

image factorizations, just as in the abelian case, cf. [3, 8.7]. Therefore it suffices to prove 
that Im

V is filtered.
Recall that a nonempty category I is filtered if two conditions hold. First, for any two 

objects X, Y ∈ I, there exists a third object Z and maps X → Z and Y → Z, i.e., Z is 
an upper bound for X and Y . Second, any two parallel arrows g1, g2 : X → Y admit a 
weak coequalizer, i.e., some h : Y → Z such that h ◦ g1 = h ◦ g2. These conditions may 
be combined by saying that any finite diagram in I admits a (non-unique) cocone.

Suppose we have two objects (X1, φ1) and (X2, φ2) of Im
V . If we choose representatives 

of φ1 and φ2 using Lemma 8.3, up to identifying their codomains we obtain

X ′
1

•

φ1
V ′′ X ′

2
φ2

•

X1 V

•

X2

where the vertical arrows are maps in M which become isomorphisms in M/C and the 
horizontal arrows are monomorphisms in M. Taking pushouts on the left and right we 
obtain

X ′
1

•

φ1
V ′′

• •

X ′
2

φ2

•

X1 Y1 V

•

Y2 X2

and finally pushing out the central span gives

X ′
1

•

φ1
V ′′

• •

X ′
2

φ2

•

X1 Y1

•

V

•

Y2

•

X2

Y

ψ
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The map ψ does not exist until we pass to the quotient category. The object (Y, ψ) is 
then an upper bound for (X1, φ1) and (X2, φ2), which proves the first condition of Im

V

being filtered.
Supposing now that we have two parallel morphisms in Im

V

g1, g2 : (X, φ) → (Y, ψ),

we need to find a weak coequalizer. Since these are maps over V , we have an equality of 
isomorphisms ψ ◦ g1 = ψ ◦ g2 = φ in M/C. Therefore ψ is nearly the map we want, but 
it does not exist in M.

To remedy this, we consider the map h = ψ−1 ◦ φ : X ��� Y in M/C. By Lemma 8.3, 
we may take a monic representative h : X ′ → Y ′′ with section p : Y ′′ → X ′ such that 
p ◦h = idX′ in M. Since p represents φ−1 ◦ψ, we obtain a weak coequalizer by composing 
p with gi:

X
g2

g1

Y Y ′′ p
X ′.

Specifically, the weak coequalizer is (Y, ψ) → (X ′, φ|X′) given by the canonical projection 
to Y ′′ followed by p.

We conclude that Im
V and Ie

V are filtered, thus C is both m- and e-well represented in 
M. This proves that C ⊂ M satisfies condition (W), so applying [3, 8.6] we complete 
the proof. �
Remark 8.5. A recent preprint by Sarazola and Shapiro in [14] also studies M\C using 
an alternative approach to ours which focuses more on the double-categorical aspects of 
Campbell-Zakharevich’s original work [3].
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