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Over any base field k, a (pointed) monoid A realizes to Spec of the monoid algebra
k[A], and an A-set realizes to a k[A]-module. Similarly, a monoid scheme S realizes
to a scheme over k, and a sheaf of monoid sets on S realizes to a sheaf of modules.
In particular, every toric variety is the realization of a unique monoid scheme S, with
sheaves of monoid sets on S realizing to sheaves of modules on the toric variety. Thus
monoid schemes and monoid-sets are a combinatorial model for toric varieties and many
of their cousins.

When A is a noetherian pointed monoid A, there are several interesting categories of
A-sets. One is the category of all finitely generated A—sets; it is studied in [8], [5] and
[9]. Another is the category of all partially cancellative A—sets, which is studied in [11];
see Definition 1.1 below. These A-sets are well-behaved, include free A—sets, and turn
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out to be useful in toric geometry; see [7]. There are similar categories over a noetherian
monoid scheme, including categories of A—sets with a restriction on the codimension of
support.

This paper is primarily concerned with the K-theory of these categories. One of our
themes is that they closely track Quillen’s K’-theory of noetherian rings and schemes. In
particular, we show that their K-theory has localization sequences and coniveau spectral
sequences. In particular, we prove the monoid-scheme analogue of “Bloch’s formula” [16,
V.9.8.1]; see Theorem 6.2: if S is a 0-smooth monoid scheme, and K', is the sheaf

associated to the K-theory of partially cancellative Ag—sets, then:
EYT = HP(S, IC’_q).

The fundamental new tool we develop and use is the construction of the localization
M/C of a nice regular category M (such as the above categories of A—sets) by a “Serre
subcategory” C. This construction generalizes Gabriel’s localization of abelian categories,
and is of independent interest. For example, if U is open in a monoid scheme X, and M
is the category of monoid sets on X, the subcategory C of monoid sets vanishing on U is
a Serre subcategory, and M /C is the category of monoid sets on U; see Example 4.3. For
expositional reasons, the lengthy construction of M/C is postponed until Section 7; in
Section 8, we compare our construction to the double category construction of [3], and
obtain the K-theory localization sequence

K({C) —» KWM)— K(M/C).

This is of course a special case of the localization sequence of [3, 8.6].

This paper organized as follows. In the first few sections, we recall the basic definitions
of A-sets, quasi-exact categories (such as A-sets) and their K-theory. Section 3 recalls
the Campbell-Zakharevich notions of CGW and ACGW categories which are needed for
K-theory localization sequences. Our version of the localization sequence is summarized
in Section 4, with the technical details relegated to Sections 7 and 8. Sections 5—6 con-
struct the analogues of the Gersten—Quillen spectral sequence associated to the coniveau
filtration, and establish an analogue of Quillen’s proof of Gersten’s Conjecture.

Acknowledgments. The authors would like to thank Inna Zakharevich for her help in
understanding CGW-categories in [3].

1. Monoids and monoid sets

By an (abelian) monoid A we mean a pointed set with a commutative product and
distinguished elements {0,1} such that a -1 = a and a -0 = 0 for all a € A; these are
sometimes called “pointed monoids.” For example, the free monoid N is {0, 1,¢,t2,...},
and if A and B are monoids, so is AA B. The initial pointed monoid {0, 1} is called Fy in
[5]. We call the set A* of invertible elements of a monoid its units; these form a group.
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The monoid spectrum MSpec(A) is the space of prime ideals in A, together with the
sheaf whose stalk at a prime s is the localization A of the monoid A. A monoid scheme
(S, Ag) is a topological space S with a sheaf of monoids Ag which is locally MSpec of a
monoid.

If Ais a (pointed) monoid, an A-set is a pointed set (X, *) with an action of A; in
particular, 1-z = x and 0-x = « for all x € X. When we regard A as an A-set, we write
the element 0 as x. For example, a free A—set is just a wedge of copies of A. We write
A—Sets for the evident category of A—sets.

If (S, Ag) is a monoid scheme, we write Ag—Sets for the category of (quasi-coherent)
sheaves of Ag—sets. If S = MSpec(A4), As—Sets is equivalent to A—Sets.

A monoid A is partially cancellative, or pc for short, if ac = bc # 0 implies a = b for
all a,b,cin A. If A is a cancellative monoid then A and A/I are pc for every ideal I of
A; the prototypical finite pc monoid is {1,¢,...,tN = tV*+1 = 0}.

Definition 1.1. If A is a pc monoid, we say that a pointed A—set X is partially cancellative
if for every z € X and a,bin A, if a-z = b-x # * then a = b. The subcategory of pc
monoid sets is closed in A—Sets under subobjects and quotients. We do not impose the
condition that a -z = a -y # * implies = y, as this rules out some key examples (see
Example 1.2).

Similarly, we say a monoid scheme (S, .Ag) is pc if it is locally pc, and a sheaf of
Ag—sets is pc if it is locally pc. If A is pc, open subschemes of MSpec(A) are pc but are
not usually affine.

Example 1.2. A (pointed) N-set is just a pointed set X with a successor function = +— tx.
Every finite rooted tree is a pc N-set; the successor of x is the adjacent vertex closer
to the root vertex *. In fact, a finite N-set is partially cancellative if and only if it is a
rooted tree, because for every x € X, the sequence {x,tx,t?z,...} terminates at the root
vertex.

An N-set is pc if and only if it contains no loop, i.e., for each element x # % and
integer d > 1 we have t?x # x. A typical non-pc set is {1,¢, ...t .tV % : N = ¢}

Example 1.3. Let A be Iy, where I is an abelian group, and ‘+’ is a disjoint basepoint.
Then every A-set is a wedge of copies of cosets (I'/H). If H is a proper subgroup of T,
then (I'/H)4 is not pc because h-xz =1-x for h € H. Thus a I'; -set is pc if and only if
it is free.

2. K-theory of quasi-exact categories

The notion of exact category [13] has the following generalization.

Definition 2.1. ([8], [16, Ex. IV.6.14]) A quasi-exact category is a category M with a
distinguished zero object, and a coproduct V, equipped with a family S of sequences of
the form
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X-5y-5z (2.2)

called “admissible,” such that:
(i) any sequence isomorphic to an admissible sequence is admissible;
(ii) for any admissible sequence (2.2), p is a cokernel for ¢ and 7 is a kernel for p;
(iii) S contains all split sequences (those with X 2 Y V Z); and
(iv) the class of admissible epimorphisms (resp., admissible monics) is closed under
composition and pullback along admissible monics (resp., pullback along admissible epi-
morphisms).

We will write admissible monics as X — Y and admissible epics as Y — Z, and will
often write Y/ X for the cokernel of X — Y.

The prototype of a quasi-exact category is a regular category; see Definition 7.1. The
exact sequences are the sequences (2.2) for which p is a cokernel for ¢ and ¢ is a kernel
for p.

Example 2.2.1. The category Sets of pointed sets is quasi-exact. More generally, if A is
a (pointed) monoid, the category A—Sets is quasi-exact; a sequence (2.2) is admissible
if X — Y is an injection, and Z is isomorphic to the quotient A-set Y/X. If A is a
noetherian monoid, the category M(A) of finitely generated pointed A-sets is quasi-
exact. (See [16, Ex. IV.6.16].)

Similarly, if (S,.Ag) is a monoid scheme, Ag—Sets is a quasi-exact category; the
admissible sequences are defined locally.

The wedge X A4 Y of two A-sets is defined to be the quotient of X A'Y by the
equivalence relation that (za,y) ~ (x,ay) for all a € A z € X and y € Y. As noted
in [5, 5.10], X A4 Y is exact in both variables; in fact, .A-Sets is a symmetric monoidal
category.

Definition 2.3. If M is quasi-exact, Quillen’s construction in [13] yields a category QM,
and K (M) is the connective spectrum with initial space QBQM; we write K,,(M) for
T K(M). The group Ko(M) is generated by the objects, modulo the relations that
[X] =[Y]+ [Z] for every sequence (2.2).

Example 2.3.1. The category Setsg, of finite pointed sets is quasi-exact; every admissible
sequence is split exact. It is well known that the Barratt—Priddy—Quillen theorem implies
that K (Setsg,) is homotopy equivalent to the sphere spectrum S. (See [8], [5], [16, Ex.
IV.6.15].)

Definition 2.4. If A is noetherian, the category M(A) of noetherian A—sets is quasi-exact;
following [5], we write G(A) for K (M(A)). Similarly, if S is a noetherian monoid scheme,
the category M (S) of sheaves of noetherian Ag-sets is quasi-exact, and we write G(.5)
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for K(M(S)). Since A4 is biexact, G(S) is an Eo-ring spectrum. See [16, IV.6.6] and
1, 3.8.2].

G-theory is contravariantly functorial with respect to monoid maps A — B for which
B is noetherian as an A-module, and covariant for flat maps (a monoid map A — B is
flat if the base extension X — B A4 X is exact).

If A is a noetherian pc monoid, the category MP¢(A) of noetherian pc A-sets is
quasi-exact; following [11], we write K'(A) for K(MP°(A)). Similarly, if (S, Ag) is a
noetherian pc monoid scheme, the category MP°(S) of sheaves of noetherian pc Ag—sets
is quasi-exact, and we write K'(.S) for K (MP¢(S)). MP°(S) is symmetric monoidal, since
X A4 Y is pc when both X and Y are, and K’(A) and K'(S) are E-ring spectra.

As noted in [11, 3.1.1], K’ is covariantly functorial for flat maps.

Example 2.4.1. Let I" be a group; the K-theory of the category of finitely generated free
T—sets is written as K(I'). When A = T4, we saw in Example 1.3 that every pc A—set is
a free A-set, so K'(I'y) ~ K(T'). If X = AV", then Aut(X) is the wreath product I'? 3,..
By the Barratt—Priddy—Quillen theorem,

K'(T4) ~ K(T') ~ §°(BL,) = S°(BL) VS.

Similarly, if T" is abelian, the category of I'-sets is the product over all subgroups [H]
of the category of I'/H-sets.” By the equivariant Barratt-Priddy—Quillen theorem [4,
5.1],

G =\, _ S¥(BI/H),)

H<
In particular, Go(I'}.) = moG (') is the Burnside ring of T'.
We say that an A-set X has finite length if it has a finite filtration

1— X — . - EFEX=X

such that each F;X/F;_1 X is irreducible, i.e., isomorphic to (4%)4. If A is noetherian,
the category Mgy, (A) of A-sets of finite length is quasi-exact, as is the category ME: (A)
of pc A-sets of finite length. By Dévissage (see [3, 6.2] or [11, 3.3, 3.3.1]), we have:

Theorem 2.5. If A is a noetherian monoid, with units T = A*, then K(Mgn(A)) =~
G(T';) and if A is a pc monoid then:

K(MES(A)) = K(T) ~ S*(BT,) ~ §%(BI) V.

If A has finite length then G(A) ~ G(T'y) and K'(A) ~ K(T).

2 If T is not abelian, replace I'/H by the Weyl group Nr(H)/H.
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The following result is taken from [11, 5.3].

Theorem 2.6. Let S be a pc monoid scheme and Z 5 S an equivariant closed subscheme

with open complement U 25 S. Then there is a fibration sequence of spectra
K'(Z) = K'(S) 25 K'(U).

Remark 2.7. By [9, 1.3], every ideal I in a noetherian monoid has a finite number of
associated primes. It follows that the support of an equivariant closed subscheme Z of a
noetherian monoid scheme has a finite number of minimal points.

3. CGW and ACGW categories

Campbell and Zakharevich have defined a CGW-category to be a double category
satisfying a certain list of axioms; we refer the reader to [3, 2.5] for the precise definition.
Here is our main example:

If M is a quasi-exact category, we can form a double category M4 with the same
objects as M; the horizontal and vertical maps are the admissible monics and epics
(composed backwards), respectively, and the 2—cells are commutative diagrams of the
form

X —Y

T T (3.1)

X —Y

We say that a square (3.1) is distinguished if the natural map of cokernels Y’/ X' — Y/X
is an isomorphism. Thus distinguished squares are both pushout squares and pullback
squares.

As pointed out in [11, 2.3], if M is a quasi-exact category, M4 is a CGW-category,
and M is an “ambient category” for M in the sense of [3, 2.3], where k(Y — Y/X)
is its kernel X »— Y and ¢(X — Y) is its cokernel Y — Y/X. Moreover, the K-theory
K (M) agrees with K(M).

There is a stronger notion, that of an ACGW-category, defined in [3, 5.6]. If M is
an ACGW-category and C is an ACGW-subcategory closed under subobjects, quotients,
and extensions (see [3, 2.12]), the double category M\C is defined in [3, 8.1]. There is a
canonical morphism of double categories M — M\C.

A key construction in the language of ACGW-categories is [3, 8.6], which we now
cite in modified form; see Remark 3.2.1. The condition (CGW) is that M\C is a CGW
category, and condition (W) is described in Section 8 below.

Theorem 3.2. Let M be an ACGW-category and let C be an ACG W-subcategory satisfying
the technical conditions (CGW) and (W). Then
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K(C) —» K(M) = K(M\C)
is a homotopy fiber sequence.

Proof. This is Theorem [3, 8.6], except that we have removed the superfluous hypothesis
that Condition (E) holds. Indeed, Condition (E) in [3] is used only in the proof of [3,
10.22], a lemma in service of their main localization theorem. In the absence of condition
(E), the isomorphism of categories in [3] may be weakened to an equivalence of categories,
which still induces the requisite homotopy equivalence for the main theorem. O

Remark 3.2.1. We do not know whether condition (E) holds in general for the CGW-
categories associated to a Serre subcategory of an adherent category (see Definition 7.4),
but fortunately this issue is extraneous.

Example 3.3. By [11, 2.5], if M is a quasi-exact subcategory of A—Sets (or .4g—Sets)
closed under pushouts along pairs of monics, and pullbacks along pairs of epics, then the
associated double category M4 is an ACGW-category.

In particular, when A is a noetherian monoid, the associated double categories of
M(A) and MP°(A) are ACGW-categories; the same is true for the subcategories M(S)
and MP¢(S) over a monoid scheme.

The difficulty with Theorem 3.2 is that M\C is hard to work with. Since we are
working with ambient categories having more structure, we have access to a different
kind of localization, viz., a quotient category M /C, which we establish in Theorem 7.8,
and summarize in the next section.

4. The localization M /C

To define M/C, we need to introduce some category-theoretic vocabulary. We say
that a pointed category is regular if it admits all finite limits and has a good intrinsic
notion of short exact sequence, where the admissible monics are always kernels and the
admissible epics are always cokernels. (See Definition 7.1.) A regular functor is one that
preserves this structure, i.e., finite limits and short exact sequences.

Every regular category is quasi-exact; see Remark 7.2. The categories A—Sets and
M(A) are regular, as are A—SetsP® and MP°(A).

Definition 4.1. A full pointed subcategory C of a regular category M is a Serre subcategory
if it is closed under finite limits and for every exact sequence (2.2), Y is in C if and only
if both X and Z are in C.
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Proposition 4.2. If F': M — N is a regqular functor between regular categories, then the
full subcategory ker(F) = F~1(0) is a Serre subcategory of M.

Proof. Clearly, ker(F) is closed under finite limits. Consider an exact sequence (2.2) in
M; applying F' yields an exact sequence in N,

It is clear that F(Y) =2 0 if and only if F(X) =2 F(Z)=0. O

Example 4.3. Let S be a multiplicatively closed subset of an (abelian) monoid A. Then
the localization A—Sets — S~!A—Sets is a regular functor, because it preserves exact
sequences and finite limits. Indeed, the ring-theoretic proofs go through; for example, if
X -5 Y is an injection and i(r)/s = 0in SV for # € X then some i(s;2) = 0 in YV
and hence sz = 0 in X.

By Proposition 4.2, the category of S-torsion A—sets is a Serre subcategory of A—Sets;
this description restricts to Serre subcategories of M(A) and MP°(A) (see Definition 2.4).

More generally, if U is open in a monoid scheme (S, Ag) then the localization
Ags—Sets — Ay—Sets is a regular functor. Indeed, exact sequences and finite limits
are determined locally on affine open subschemes. By Proposition 4.2, the category of
Ag—sets vanishing on U is a Serre subcategory of Ag—Sets, and this restricts to Serre
subcategories of M(S) and MP°(S) as well.

If C is a Serre subcategory of an adherent category M, there exists a quotient cat-
egory M /C, which is essentially a non-additive version of Gabriel’s construction [10,
Chapitre III]; the construction is given in Theorem 7.8 below. The definition of an ad-
herent category is given in Definition 7.4; it is a regular category satisfying some technical
axioms.

Here are the two theorems about M /C which we need.

Theorem 4.4. Let C be a Serre subcategory of an adherent category M. Then there exists
a quotient category M /C, which is reqular, and a regular functor M — M/C, which is
initial among all reqular functors from M which send C to zero.

The full statement of Theorem 4.4, and the proof, can be found in Theorem 7.8. The
category M /C has the same objects as M, but all maps with kernel and cokernel in C
are forced to be isomorphisms and thus all objects in C are isomorphic to zero.

In Lemma 8.1, we point out that the double category M9 associated with an adherent
category M is an ACGW category. A fuller statement of the following theorem (and its
proof) is given in Lemma 8.2 and Theorem 8.4.
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Theorem 4.5. Let C be a Serre subcategory of an adherent category M. Then the double
category associated to M /C is a CGW-category, equivalent to the CGW-localization M\C
of MU by Cld | and there is a fibration sequence:

K(C) = K(M) = K(M/C).

Example 4.6. Let (5,.Ag) be a monoid scheme. For brevity, we write M(S) for the cat-
egory Ag—Sets. If S = MSpec(A), we will write M(A) for M(S). If U C S is an open
subscheme, with complement Z, then M(U) is M(S)/M(S), where Mz(S) is the sub-
category of all M in M(S) with M|y = 0. The proof is the same as Gabriel’s in [10,
p. 380]; use the fact that the exact functor j*: M(S) — M(U) has a right adjoint, the
section functor j.: M(U) — M(S), and the universal map j.: M(U) — M(S)/Mz(S)
is an equivalence.

Suppose S is noetherian. As in Gabriel [10, p. 379], there is a bijection between
the Serre subcategories of M(S) and M(S) (noetherian Ag-sets), given by M'(S)
M'(S) = M'(S)NM(S). Hence M z(.9) is a Serre subcategory of M(.S). By Theorem 4.5
and Dévissage [3, 6.2], there is a fibration sequence

G(Z) — G(S) = G(U).

Similarly, if S is pc, then MY°(S) is a Serre subcategory of MP¢(S), and we recover the
fibration sequence of Theorem 2.6.

Application 4.7. If (S, Ag) is a monoid scheme, then the subcategory My(S) of sheaves
in M(S) which are supported in codimension > d is a Serre subcategory. It contains
Mg41(S) and

Md(5>/Md+1(S) = \/ Ms(As)a

ht(s)=d
where M (Ay) is the category of torsion A,—sets. Similarly, if S is noetherian then
Mg(S)/Mg11(8S) is equivalent to the wedge of the categories Mgy, (As) of finite length
As-—sets. The parallel assertion holds for MJ°(S)/ M5, (S).

For example, if S is noetherian, then M;(S) is the category of Ag—sets vanishing on
the open subscheme U consisting of the (finitely many) points of codimension 0. In this
case, we get the equivalences

M(S)/Mi($) = MU) = \/|| - M(A)

and M(S)/M1(S) = M(U) = Voo MIA).
If S has a unique minimal point, j, identifies M(S)/M;(S) with the category @ of
torsionfree objects in M(S), and identifies M(S)/M(S) with the noetherian objects in

Q.
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5. The coniveau filtration

We will apply the localization Theorem 4.5 to Mg41(S) C Mg4(S) and its pc analogue.
By 4.7, ME°(S )/Md_H( ) is equivalent to the coproduct over height d points s of torsion
pc As-modules.

Let (S,As) be a noetherian monoid scheme, such as MSpec(A). If s is a point in
S, we write I'y for the group of units of the pointed monoid Ay, so (I's)y = Ag/ps. If
S = MSpec(A), then p; is a prime ideal in the monoid A, and Ty is the group completion
of the cancellative monoid A/ps. By Example 2.4.1, K'(T's) = S°°(BT5) V S.

Let S be a noetherian monoid scheme. By Theorem 4.5, the quasi-exact category
Mg(S)/M441(S) is the ambient category of the double category My(S)\Mg41(S). By
4.7, the quotient M4(S)/Ma11(S) is the coproduct over the height d points s € S of
the category M. (As) = U, M(As/p?) of finite length A,—sets.

Now K (MZF:(As)) ~ K(I's) by Theorem 2.5 (i.e., by Dévissage), so we have long
exact sequences

- = KM (S) = K MEE(S *)@K (5.1)
o= KoM g1 (S) =K Mg(S —>@G

The direct sums in these sequences are indexed by the points s € S of codimension d.
Each of these sequences form exact couples, yielding fourth quadrant spectral sequences:

Bt = P K, @) =K, (5) (5.2)
ht(s)=p

BV = @ Gop—q(I's) = G_p—q(5)
ht(s)=p

These are the analogues of the usual coniveau spectral sequence for the K-theory of
coherent sheaves over a noetherian scheme; see [13, 5.4] or [16, V.9].

Example 5.3. Let D be a discrete valuation monoid with group of units I' = D* and

parameter ¢, i.e., D = I'; A N. Since the group completion of D is Dy = (I' X Z), the
localization sequence [11, 3.5] becomes

K (D) -5 K,(D) = Ko (D x Z) -5 Koy (U) -

(Recall that K,,(T') = K/ (I'+).) The left map is zero by Additivity [3, 7.15], because for
every I';-set X there is a characteristic exact sequence

XxNro X xN - X.



I. Coley, C. Weibel / Journal of Algebra 614 (2023) 1-26 11

Thus the F; page of the spectral sequence (5.2) for K’'(D) has only 2 nonzero columns
(p =0,1), and looks like:

EPY: Ko(
EPl. K(DxZ
EP™?.  Ky('xZ
EP7 . K

Now K,(I' x Z) = K,(T') ® K,,_1(T') by 2.4.1, because BZ = S*, and
K(I' xZ)=S*B(I x Z)4+ = S®(S} ABI'y) = $'S>°(BI)4+ vV S®(BT),.

Hence K, (I" x Z) maps onto K,,_1(I") = m,—1.5°°(BT") V'S with kernel K,,(T"). Thus Ej
is concentrated on the column p = 0, with K (D) = EY™1 = K, (T).

Lemma 5.4. If D is a discrete valuation monoid with units T,
dV 1 K (Do) = Ko(T) = Z is the surjection sending [t] to 1.

Proof. By Example 5.3, K{(Dy) = (I’ x Z) & n; and K{(D) = I & n} and
K1(Do)/Ki(D) = Ko(I') = Z. O

Remark 5.4.1. The analysis of the spectral sequence for G,(D) is more complicated
because the formula for G, (T' x Z) is more complicated.

Weil divisors and K (5)

We now connect the EL =1 term to the divisor class group, in the same way that the
Chow groups are related to the groups E2 7P in the classical Gersten spectral sequence
for G (X).

Recall that a monoid scheme is normal if each Ay is cancellative and if a,b € A,
satisfy (a/b)" € A, then a/b € A,. If (5, Ag) is a normal (pc) monoid scheme then
for each height 1 point z, A is a Discrete Valuation monoid by [9, 2.6]. The following
definition is taken from [9, 4.2].

Definition 5.5. Let (S, .Ag) be a normal (pc) monoid scheme. A Weil divisor is an element
of Div(S), the free abelian group on the height 1 points of S. If a is a nonzero element
of Ay, we can define the principal divisor div(a) in Div(S) by the same formula as in
Algebraic Geometry. The divisor class group CI(S) is the quotient of Div(S) by the
subgroup of principal divisors. Thus there is an exact sequence

1 Ag(X)* = AX L% Div(S) — C1(S) — 0.
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Remark 5.5.1. A monoid scheme S is factorial if and only if C1(A) = 0; if the stalks Aj
of A are factorial then C1(S) = Pic(S) by [9, 6.4].

By Lemma 5.4, the component K] (Ap) —>K0(.A ) = Z of the differential d; is the
projection K| (Ag) — A, followed by the map div. Thus

Theorem 5.6. If S is a normal (pc) monoid scheme, the differential
E?’f1 A, E11’71 is the principal divisor map div, and EZb~1 = C1(9).
Hence K{(S) surjects onto Z & C1(S).

Remark 5.6.1. If A is a 2-dimensional normal monoid, the kernel of K(A) — Z ® Cl(X)
is the subgroup generated by A/m. In general, the groups EF57(S) are the higher class
groups W, studied by Claborn and Fossum; see [6] or [16, Ex. 11.6.4.3].

The following example shows that the augmented rows of the spectral sequence aren’t
always exact when A is normal.

Example 5.7. Let A be the (2-dimensional normal) submonoid of N2 generated by x =
(1,0), z = (1,1) and y = (1,2). By [9, 4.2.1], Cl(A) = Z/2 for A. Since A/(y,z) = N,
and A/(z,y, z) = *, it follows that Ey > =0 and K}(A) = Z & 7./2.

6. Gersten’s conjecture for pc monoid schemes

Quillen proved [13, 5.1] that if R is a semilocal ring, smooth/k, then the K-theory
spectral sequence degenerates at Fs. (This result is known as “Gersten’s conjecture.”) In
this section, we give the analogue for monoids.

The following definition is taken from [7, 6.4]; the terminology reflects Theorem 6.5
in [7] that a (cancellative) monoid A is 0-smooth if and only if its monoid ring k[A4] is
smooth over k for every field k of characteristic 0.

Definition 6.1. A monoid A is 0-smooth if it is a product I'y A (N™), where T is a finitely
generated abelian group.

Theorem 6.2. If A is a 0-smooth monoid, the sequence

0— K/ (A EB K' (A EB

ht(s)= ht(s)=

is exact for all n, where d is the Ey differential in the spectral sequence (5.2). The
sequence remains exact if K, is replaced by G,,.

Let K!, denote the sheaf associated to the K-theory of partially cancellative Ag—sets.
As in [13, (5.9)], this gives a flasque resolution of the sheaf K',, on any 0-smooth monoid
scheme S:
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0K = P (0):KnTs) > P (i0)eBKna(Ts) = -

ht(s)=0 ht(s)=1

and gives a canonical isomorphism
EYI(S) = HP(S, IC;). (6.3)
Formula (6.3) remains valid if K’-theory is replaced by G-theory.

Proof. We may suppose that A = I'y A N™+! with the maximal ideal generated by
2oy .-, Tm. As noted by Quillen [13], it suffices to show that for every non-zerodivisor
t € Athat Mg(A/tA) — M4(A) induces the zero map on K-theory. Since A is 0-smooth,
t =~xi° -zl for some v € I', where some n; > 0; we may suppose that ng > 0.

Set B be the submonoid I'; A N™ on z1,..., 2. Then A is flat over B, so A" =
ANp (AJtA) is flat over A/tA, and A — A/tA factors through p : A — A’. There is a
canonical splitting u : A’ — A/tA, induced by A — A/tA, so that

Ma(AJtA) 25 Ma(A)) 25 Ma(A)

is the natural map. Now for any A/tA-set X, there is an exact functor v
Ma(A/tA) — My(A’) sending X to v(X) = X A(zo) and an exact sequence in My(A’):

X A (z0) — X A (20) = ul(X).

By Additivity, u. ~ 0. Hence the map K(My(A/tA)) — K(M4(A)) is zero, as as-
serted. O

7. Regular localization

We now develop the machinery promised in Section 4. Recall that our goal is to employ
the localization theorem of [3], which is phrased in the language of (A)CGW-categories.
Many cases of interest (ours included) arise not from arbitrary double categories, but
from ordinary categories equipped with distinguish classes of morphisms and squares,
see [3, 4.1-6].

Were we to work purely in CGW-language, we would need to invoke arguments
that are needlessly complicated for our purposes. The quotient construction for CGW-
categories does not immediately identify the nature of the quotient category; we are
able to give a much clearer description of the quotient category (in our cases) and prove
that it agrees with the CGW-version. Our version is also familiar: the localization con-
struction M — M/C generalizes from abelian categories (due to Gabriel [10]) to regular
categories, including A—Sets and A—SetsP°. As we generalize constructions in algebraic
geometry to the world of monoid schemes, we show that we can “de-additivize” classical
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proofs and obtain identical results without requiring the reader to first digest the entire
theory of CGW-categories.
The following definition is taken from [2, A.5]; see also (Reference [15]).

Definition 7.1. Let M be a category with finite limits. An epimorphism Y -+ Z in C is
regular if it is a coequalizer X =Y -2 Z.

We say that M itself is regular if regular epimorphisms are stable under pullback by
arbitrary morphisms and every kernel pair admits a coequalizer. Recall that the kernel
pair for a morphism f: X — Y is the diagram X xy X =% X given by the canonical
maps in the fiber product

The coequalizer of the kernel pair in a (concrete) regular category is the quotient of
X given by identifying elements which become equal under f, i.e., the image of the
morphism f.

A sequence XY 57 is called ezact if i = ker(p) and p = coker(i). Kernels always
exist in a regular category, but cokernels do not necessarily exist; when they do, they
are regular epimorphisms and the coequalizer of their kernel pair. Thus given a kernel
i: X = Y we can always extend it to a short exact sequence.

A functor between regular categories is regular if it preserves finite limits and regular
epimorphisms (thus short exact sequences as well).

The category of pointed sets is the prototype of a regular category; every surjection
is a regular epimorphism (see [2, A.5.6]). In fact, the category of pointed objects in any
elementary topos is regular.

An abelian category is another (particularly nice) example of a regular category. The
regular epimorphisms are just cokernels. A regular functor between abelian categories is
just an exact functor.

Remark 7.2. Every regular category is quasi-exact, using the intrinsic notion of short
exact sequence in the regular category, and its associated double category is a CGW
category by [11, 2.3]. All of the quasi-exact categories considered in this paper are actually
regular.

One main feature of a regular category is that every morphism can be factored
uniquely (up to isomorphism) as a regular epimorphism (onto the image) followed by a

monomorphism.
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Example 7.3. If A is a (pointed) monoid, A—Sets is regular, and the forgetful functor
A—Sets — Sets is a regular functor (because it has both a left and right adjoint; see
[11, 2.5.1]). If A is a pc monoid, A—Sets® is a regular subcategory of A—Sets.

Every monomorphism in A—Sets (and hence A—Sets®) is a kernel, but not every
epimorphism is a cokernel. In fact, the short exact sequences in A—Sets and A—SetsP*
have the form

xSy Lyx.

The following definition is weaker than the related notions of a coherent category and
an adhesive category, but is just right for our purposes; see [12, A.1] for more details.

Definition 7.4. A regular category M is called adherent if it satisfies the following axioms:

(A1) Pushouts along kernels in M are also pullbacks;
(A2) the image of every map is a kernel;
(A3) for each X in M, the category of monics X’ » X has both pushouts and pullbacks.

In particular, (A2) implies that every monomorphism is a kernel.

Using De Morgan’s laws on the underlying sets, it is easy to see that A—Sets and
A—SetsP¢ are adherent categories. The category of pointed objects in any elementary
topos, e.g., pointed finite sets, is adherent; this gives a large class of examples.

Construction 7.5. Let M be a adherent category, and suppose that X! — X — X/
(i = 1,2) are exact sequences in M. Let X|, denote the pullback X x x X}. Write X’
for the pushout of X{ and X/ along X{,, which by abuse of notation we will also write
X1 U XJ. Note that X’ exists and X’ ~— X is monic by axiom (A3).

Let X" denote the cokernel of X’ — X and write X}, for the pullback of X} and XY
along X”'. Then we have exact sequences

Xiyo— X —>» X5 and X' — X —» X"

which fit into diagram (7.5.1), where both squares are bicartesian.

/ /
X12 Xl

[T\

X} X'

X7, XY (7.5.1)

N

X{/ X//
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The top-left square is bicartesian by construction. The bottom-right square is cartesian,
so by [12, A.1.4.3] it is also cocartesian because cokernels are regular epimorphisms. Note
that X' — X — X7, is not claimed to be an exact sequence.

We obtain Diagram (7.5.1) as follows: by taking iterated pushouts along our string of
monomorphisms, we obtain

X/, X X' X

|

k— X1/ X|o— X'/ X g — X7,

« — X'/ X — XY

* — X,

Note that all instances of — are cokernels. We can repeat this process with the chain

X1 X} X’ X
to obtain the square

Xty ——» XY

L]

Xé/ X// .

By construction, this is a pushout; as we have also identified it as a pullback, this
completes the construction.

Definition 7.6. Let M be an adherent category. A full subcategory C C M is called Serre
if it is closed under finite limits and, for every short exact sequence X — Y — Z in M,
Y isin C if and only if X, Z are both in C.

Note that C also forms an adherent category. It admits coequalizers of kernel pairs as,
for any f: X — Y in C, the coequalizer of
X xy X =Y is just im(f), which is a subobject of Y. Thus C is regular, and axioms
(A1), (A2), and (A3) hold because C is a full subcategory closed under subobjects.

Remark 7.6.1. The definition of a Serre subcategory of an abelian category does not
explicitly state that it be closed under finite limits. We need this assumption because we
do not have biproducts; while there is a canonical short exact sequence X — XV Z —» Z
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which makes C closed under coproducts (and therefore pushouts, which are quotients of
coproducts), the product does not sit naturally in a short exact sequence. To prove that
the quotient category M/C (to be defined shortly) has finite limits, we need C to be
closed under finite limits.

Before we define the quotient of an adherent category by a Serre subcategory, we have
the following technical lemma.

Let X,Y be two objects in an adherent category M, and let C be a Serre subcategory
of M. Let I = Ix y be the following category: its objects are the pairs (X', Y") for every
pair of short exact sequences
X — X —» X"and Y — Y — Y” such that X", Y’ € C. The maps (X{,Y!") —
(X4,Yy) are induced by composition with maps in M of the form X{ — X} — X and
Y — Y/ - Yy'. Note that I is equivalent to a partially-ordered set.

Lemma 7.7. Let X,Y be two objects in an adherent category M, and let C be a Serre
subcategory of M. Then the category I = Ixy is filtered, and Homp,: I — Sets is a
functor.

Proof. To begin, fix two short exact sequences X! — X — X/ with X/ in C. Then the
inclusions X/ — X yield a span

Homp (X4,Y") +—— Homp (X, Y"”) —— Homp (X1, Y")

Setting X1, = X| xx X4, we claim that (X7,,Y") is an upper bound of (X1,Y”) and
(X5,Y") in I, i.e., that the cokernel X15 of X{, — X is in C. By Construction 7.5, X1{5
is the pullback of X7 and X% along X". By assumption, X; and X/ are in C, and X"
is a quotient of X4 (or X7) so is also in C. Thus X7, is a (finite) limit of objects in C
and is also in this subcategory.

Dually, given short exact sequences Y/ — Y — Y/ with Y/ in C, we have the span

Home (X, Y!") +—— Hom¢(X,Y) —— Home (X, YY)

Setting Y = Y{' Vy Yy, it suffices to prove that the kernel Y’ of Y — Y is in C.
Appealing to Construction 7.5, Y/ = Y/ UYJ, and we have an identification of cokernels

YY) = (Y UYy)/Y] 2 Y, /(Y NYy) =Y, /Y],.

Since Yy and hence Yy /Y7, is in C, this shows that Y//Y{ is in C. Since Y7 is also in C,
Y is in the Serre subcategory C, as desired. O

Theorem 7.8. Let C be a Serre subcategory of an adherent category M. Then we can
define the quotient category M /C in the following way: the objects are the objects of M,
and the morphisms are the sets
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Hom /e (X,Y) = cIolim Hom (X', Y")
X,Y

defined above. Then M/C is a regular category, and M — M/C is a reqular functor,
initial amongst those sending C to zero.

We take inspiration from Gabriel’s thesis [10], where this result is proved for abelian
categories. We will prove our theorem in a series of steps.

Lemma 7.9. The construction of M/C has well-defined hom-sets, and thus is a category.

Proof. We first prove that our definition of Hom /¢ behaves well with respect to com-
position. Suppose that f € Homa/c(X,Y) and g € Homag/c(Y, Z). Then we can take
specific representatives f: X’ — Y/ and ¢: Yy — Z”. To compose these, we need to
match the codomain of f to the domain of g by taking equivalent representatives. Con-
sider Y{ »— Y{UYJ, where Y/ is the kernel of Y — Y/ (i = 1,2). Then the inverse image
X* = f~Y(Y]/ uYy/Y/) is a subobject of X’ (and hence of X), fitting into the pullback
diagram

Y{uYy)/ Y] ——Y/.
The cokernel of X* — X fits into a short exact sequence
X'/X"— X/X" - X/X' =X".

Cf. [11, 2.4]. Because the source and quotient of this exact sequence are in C, so is
the middle; thus X is a permissible domain in the colimit defining Hom /¢ (X,Y’). The
codomain has kernel Y7, so it is also permissible. The composition f* : X* — (Y{UY3)/ Y/
gives the same map as f in the colimit.

For g, consider the pullback Y/, = Y{ xy Y7, and form the quotient Y/, — Y, —
Y] /Y{,; taking the pushout gives a map

g
YQI VA

| ]

Y)Y, L 2

This pushout is constructed as follows: take the image factorization of the map Y7, — Z":
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Yio——=J

|,

g9
Yy —— 2"

Because the image of every map in M is a kernel by Axiom (A2), J — Z” is still a
kernel. The pushout and the map g** are created by taking cokernels vertically.

By assumption, Y7 and Y3 are in C, so Y/, and Y5 /Y], are in C as well. Thus g** is
part of the colimit and represents the same map as g. But by Construction 7.5 we have
an identification

Y/ UY; /Y =Y;/Y],

which allows us to take the actual composition ¢g** o f*, which gives the requisite com-
position law. It is clear that composition is associative. O

Having established how composition works, we have the following useful fact: suppose
that X’ — X — X" is a short exact sequence with X" in C. Then X’ = X in M/C.
Similarly, for any exact sequence Y/ — Y — Y” if Y/ isin C, then Y = Y. Therefore
given a map f: X =Y in M/C, the domain and codomain of the representative X' —
Y are isomorphic to the original ones.

Lemma 7.10. The category M/C admits finite limits, and moreover these are computed

m M.

Proof. Note that M/C still has a zero object, as the filtered colimits defining
Hom /¢ (X, *) and Hompy/c(*,Y) are constant on the singleton set. Therefore the
existence of finite limits is equivalent to the existence of pullbacks.

Consider a cospan in M /C of the form

X, f1 7 f2 X,

To find the pullback in M/C, we pick maps in M that represent f; and fo, and form a
common codomain Z”.

A X}

|l

Zor— 7 —» 7Y

Lo

1
X{ Z{I Z//
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Here, as in (7.5.1), Z" is the quotient of Z by the pushout Z’ = Z{ U Z} of the kernels
7z} and Z}, along their intersection inside of Z; Z’ is still in C. Thus Z” is a common
codomain.

As the total righthand and bottom compositions also represent the maps fi, fo, we
may pretend (up to renaming the X/ as X; and Z” as Z) that this was our original
situation. We know the fiber product P = X; x z X5 exists in M and we have projections
P — X; and P — X, that give rise to maps in M /C. We just need to prove that P has
the requisite universal property.

Suppose that we have T' € M/C fitting into a diagram

T\
P—— X5

L, s

Xy — Z

Then moving this picture over to M, we can pick representatives h, k for the maps from
T to obtain

P X XY
[
k
X4 L} 7

There is a unique map from 7" to P” := X{' x z» X¥. Moreover, the kernel of P — P is
the pullback X{ x z X} of the kernels of h and k. Since C is closed under finite limits, P”
is an admissible quotient of P. Therefore the map 1" — P” represents a map T — P in
M /C. Note that any other choice of representative for h, k will lead to an equivalent map
T — P in the filtered colimit, which proves uniqueness. Therefore the quotient category
admits finite limits, and the quotient functor to M /C preserves these, as the limits are
computed in M. O

Lemma 7.11. The category M/C is a regular category.
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Proof. It remains to check that the quotient still admits coequalizers of kernel pairs
which are stable under pullback. Suppose that f: X — Y is a map in M/C and that we
have already replaced the domain and codomain so that f: X — Y is now in M. Then
we can take the coequalizer of its kernel pair in M to obtain

X xy X =Y 5 Z. We will show that Y -2+ Z represents the coequalizer in M/C. By
the previous argument, the kernel pair X xy X = X in M/C is computed in M, as it
is a finite limit.

Suppose that T' € M/C fits into the diagram

Xxy X —Y ——T.

Pick a representative h: Y/ — T”, and take the pullback in M:

Xr— X

A

Y'— Y.

Now X' xy' X' 2 X xy X in M/C, because Y’ — Y and hence X’ — X are isomor-
phisms in M/C. Thus the kernel pair for f': X’ — Y’ in M also represents the kernel
pair for f in M/C. In particular, the coequalizer

X' sy X' =Y 2 7

gives us a map Z' — T"; because Z' = Z we obtain a map Z — T in M/C as required.
Since this map is unique up to picking a different representative for Z — T, it is lit-
erally unique in Homyq/c(Z,T). Because we have already shown that finite limits and
coequalizers in M/C are computed in M, coequalizers of kernel pairs are stable under
pullback in M/C. O

Lemma 7.12. The quotient functor M — M/C is initial amongst those regular functors
sending C to zero.

Proof. Suppose that F': M — A is another regular functor that sends every object in C
to zero. Then for any X,Y € M, we obtain a map of filtered systems I — Sets (where
I = Ixy is the category of Lemma 7.7) given by

Hom (X', Y") — Homp (F(X'), F(Y"))
for each (X', Y") € I. Because both the cokernel of X’ — X and the kernel of Y — Y

are in C, we obtain isomorphisms F(X') &£ F(X) and F(Y) & F(Y"), so that the
codomain filtered system is essentially constant with value Homa (F(X), F(Y)). Taking
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the colimits yields a natural map Hompy/c(X,Y) = Homp(F(X), F(Y)), which defines
the functor F': M/C — N as required. O

We do not expect the quotient to be adherent in general, nor do we require it for the
application of [3, 8.6].

8. Comparison of localizations

We now prove the equivalence of the regular localization developed in the previous
section and the CGW-localization from [3].

Lemma 8.1. If M is an adherent category, then, using the short exact sequences of M,
the associated double category MY is an ACGW-category.

Proof. By Remark 7.2, M4 is a CGW category. To add the letter ‘A’, we need to check
a few more axioms, listed in [3, 5.5-5.6]. Axiom (P) is the assertion that monomorphisms
are closed under pullbacks, and cokernels are closed under pushouts (as we showed in
the proof of Lemma 7.7).

For axiom (U), we need to check that commutative squares of mono-morphisms give
rise (upon taking cokernels) to pullback squares of cokernels; this was again proven in
Construction 7.5 in the specific case of X’ = X U X}, but the proof in the general case
is identical. The mixed pullback square is defined using the factorizations of morphisms
in a regular category; the object X @y Z, defined in [3, 5.6] for a composable pair
X — Y — Z, is just the image of the composition. The compatibility condition follows
from the uniqueness of such factorizations.

Axiom (S) concerns the pullback of monomorphisms and their associated cokernels.
We have already checked everything required for this axiom in Construction 7.5. In par-
ticular, the restricted pushout of this axiom is just the pushout in the ambient category
M.

Finally, axiom (PP) uses the full strength of an adherent category. Because restricted
pushouts for us are pushouts, Axiom (A3) guarantees that these always exist. Pushouts
also exist along cokernels, as we demonstrated in Construction 7.5, and there is no further
compatibility to check as restricted pushouts are just pushouts (so they are appropriately
functorial). O

Lemma 8.2. Let C be a Serre subcategory of an adherent category M. Then the CGW-
category (M /C)9 is equivalent to the CGW-quotient MIU\Cl,

As noted in Section 3, it follows that K (M /C) = K(M\cld).

Proof. The definition of the CGW-quotient can be found at [3, 8.1].



I. Coley, C. Weibel / Journal of Algebra 614 (2023) 1-26 23

The m-morphisms V » Z of the CGW-quotient M!¥\Cl are defined as compositions

V—e W ¢—e—X «o—Y A

where the decoration e denotes that the (co)kernel of the map is in the Serre subcategory
C. The monomorphisms V' »— Z of M/C are those that have a representative V' — Z"
which has its kernel in C. Put another way, they are defined by

VeV s 7" 4keo— 7.

We can take the pushout Y of the span of monomorphisms to obtain an equivalent
expression

|4 Y +—e=<7" 40— 7

By inspection, kernel and the cokernel of Z — Y belong to C. This means that any
monomorphism V' — Z can be described as a right fraction in a way identical to [3, 8.3].
The same reasoning goes through to identify the m-morphisms in M/C with those in
MUN\CU: the argument for the e-morphisms follows by dual reasoning. O

We will make use of the following lemma concerning isomorphisms in the quotient
category M /C.

Lemma 8.3. Let C be a Serre subcategory of an adherent category M. Let h: X --» V
be an isomorphism in M/C. Then there exists a representative h: X' — V" of h in M
which is a retract, and hence a monomorphism.

Proof. Because h is an isomorphism, we know there must exist some inverse p: V --» X
such that po h = idx in M/C. If we pick representatives in M for h,p and compose
them as in the proof of Theorem 7.8, we obtain

X/ h V/I p X/

~_

for some X’ »— X and V — V. Because h is a retract, it is a monomorphism. 0O
Theorem 8.4. Let C be a Serre subcategory of an adherent category M. Then the double
categories C1% and M9 satisfy conditions (W) and (CGW) of [3, 8.6]. We therefore
obtain a homotopy fiber sequence on K-theory:

K() —- KWM)— K(M/C).

Special cases of Theorem 8.4 are given in [3, 8.3] and [11, 3.5].
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Proof. We can apply [3, 8.6] to obtain the homotopy fiber sequence as soon as we verify
these conditions. Condition (CGW) holds by Theorem 7.8 because M/C is a regular
category which is the ambient category of MI¥\cld,

For condition (W), we will prove that the categories Iy and Z{, are filtered for all
V € M. The category Z{? has objects (X, ¢) with ¢: X --» V an isomorphism in M /C;
the maps of Z{? (under our hypotheses) are maps g: X1 — Xy in M which are sent
to isomorphisms over V' in M/C. The category Z{? is isomorphic to I{, by appealing to
image factorizations, just as in the abelian case, cf. [3, 8.7]. Therefore it suffices to prove
that Iy is filtered.

Recall that a nonempty category I is filtered if two conditions hold. First, for any two
objects X,Y € I, there exists a third object Z and maps X — Z and Y — Z, ie., Z is
an upper bound for X and Y. Second, any two parallel arrows g1,g2: X — Y admit a
weak coequalizer, i.e., some h: Y — Z such that h o g; = h o go. These conditions may
be combined by saying that any finite diagram in I admits a (non-unique) cocone.

Suppose we have two objects (X1, ¢1) and (Xq, ¢2) of I{7. If we choose representatives
of ¢1 and ¢o using Lemma 8.3, up to identifying their codomains we obtain

X v L xg
./ ! .
< | N

X, 1% X5

where the vertical arrows are maps in M which become isomorphisms in M/C and the
horizontal arrows are monomorphisms in M. Taking pushouts on the left and right we
obtain

2

X VX

,//T\\
S NN

X1 E— Yl \%4 }/2 — X2
and finally pushing out the central span gives

2

X|r—— V" < X}

//T\\
S NN

Xlﬁyl }/2%)(5

o ¥

e

e

|
V
4\
\

\
Y
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The map v does not exist until we pass to the quotient category. The object (Y,4)) is
then an upper bound for (X1, ¢1) and (X2, ¢2), which proves the first condition of I}
being filtered.

Supposing now that we have two parallel morphisms in I}

g1,92: (Xa ¢) — (K ¢)7

we need to find a weak coequalizer. Since these are maps over V', we have an equality of
isomorphisms 1 o g1 = 1) 0 go = ¢ in M /C. Therefore v is nearly the map we want, but
it does not exist in M.

To remedy this, we consider the map h =9 ' o¢: X --» Y in M/C. By Lemma 8.3,
we may take a monic representative h: X’ — Y with section p: Y — X’ such that
poh = idys in M. Since p represents ¢! oy, we obtain a weak coequalizer by composing
p with g;:

91
X—=Y —»Y"' 5 X
g2

Specifically, the weak coequalizer is (Y, 1) — (X', ¢|x+) given by the canonical projection
to Y followed by p.

We conclude that I/ and I3, are filtered, thus C is both m- and e-well represented in
M. This proves that C C M satisfies condition (W), so applying [3, 8.6] we complete
the proof. O

Remark 8.5. A recent preprint by Sarazola and Shapiro in [14] also studies M\C using
an alternative approach to ours which focuses more on the double-categorical aspects of
Campbell-Zakharevich’s original work [3].
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