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ABSTRACT
We provide reversed Strichartz estimates for the shifted wave equa-
tions on non-trapping asymptotically hyperbolic manifolds using
cluster estimates for spectral projectors proved previously in such
generality. As a consequence, we solve a problem left open in Sire et
al [Trans. AMS 373(2020):7639-7668] about the endpoint case for
global well-posedness of nonlinear wave equations. We also provide
estimates in this context for the maximal wave operator.
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1. Introduction and main results

The goal of this note is to obtain new reversed Strichartz estimates for the (shifted)
wave operator on some complete manifolds with bounded geometry. We are concerned in
particular with asymptotically hyperbolic manifolds. The argument builds on Lp-esti-
mates for the spectral projectors (on the continuous spectrum). We draw also two con-
sequences of the reverse Strichartz estimates: first, the endpoint version of classical
Strichartz estimates and an application to global well-posedness for nonlinear wave
equations on those manifolds; second, a sharp (in Lp spaces) estimate of the maximal
function for the wave operator.

We work on an n þ 1-dimensional complete non-compact Riemannian manifold
ðM, gÞ where n  1 and the metric g is an asymptotically hyperbolic metric. This set-ting is
the same as in Chen-Hassell [1, 2], Mazzeo [3] and Mazzeo-Melrose [4]. Let x be a
boundary defining function for the compactification M of M: We say a metric g is
conformally compact if x2g is a Riemannian metric and extends smoothly up to the
boundary @M: Mazzeo [3] showed that its sectional curvature tends to jdxj22g as x !  0;
In particular, if the limit is such that jdxjx2g ¼  1, we say that the conformally compact
metric g is asymptotically hyperbolic. More specifically, let y ¼  ðy1, :::, ynÞ be local
coordinates on Y ¼  @M, and (x, y) be the local coordinates on M near @M; the
metric g in a collar neighbourhood ½0, Þ  @M takes the form

g ¼  
dx2 

þ  
hðx, yÞ 

¼  
dx2 

þ  
P

hjkðx, yÞdyjdyk 

, (1.1)
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where x 2  C1ðMÞ is a boundary defining function for @M and h is a smooth family of
metrics on Y ¼  @M: In addition, if every geodesic in M reaches @M both forwards and
backwards, we say M is nontrapping. The Poincare disc ðBnþ1, gÞ is a typical example of
such manifold. Indeed, considering the ball Bnþ1  ¼  fz 2  Rn þ 1  : jzj <  1g endowed with the
metric

4dz2

ð1  jzj2Þ2 (1.2)

one can take x ¼  ð1  jzjÞð1 þ  jzjÞ1 as the boundary defining function and x  the coor-
dinates on Sn : Then the Poincare metric takes the form

dx2 1
 ð1  x

2Þ dx2  x2

x2

where dx2  is the standard metric on the sphere Sn:
Let H ¼  Dg  n

2     
where Dg is the Laplace-Beltrami operator on ðM, gÞ: We recall the

following result about estimates for the spectral measure and the spectral projectors by
Chen and Hassell in [12, Theorem 1.6]. We denote by dEðkÞ the spectral measure
associated with the operator H, such that for every F a Borel function on R ,  we have

F
pffiffiffiffi 

¼  FðkÞdEðkÞ
R

with domain
ð  w :      jFðkÞ2j dhw, EðkÞwi <
1  :

R

Theorem 1.1. Let n  1. Suppose ðM, gÞ is a non trapping asymptotically hyperbolic
manifold of dimension n þ 1. Assume that there has no pure point eigenvalue and has no
resonance at the bottom of the continuous spectrum of H ¼  Dg  n

2
. Then for some con-stant C,

we have: for k  1

jjdEðkÞjjp!p0  Ck2, 1  p <  2: (1.3)

For k  1, we have
8
< Ckðnþ1Þð1=p1=p0Þ1,

jjdEðkÞjj 0

: Cknð1=p1=2Þ,

1  p  
2ðn þ  2Þ

,

2ðn þ  2Þ 
 p <  2:

(1.4)

Corollary 1.2. Suppose ðM, gÞ is a non trapping asymptotically hyperbolic manifold of
dimension n þ 1 with n  1. Assume that there has no pure point eigenvalue and has no
resonance at the bottom of the continuous spectrum of H. Let d 2  ð0, 1 and define the
spectral projector on the frequencies ½k,k þ  d

1
vkf ¼ v½k,kþdðkÞdEðkÞf : (1.5)

0



d

n þ  4

d max 1,  p :

t (1.8)

n
1 1 1

s

n2 n
1 1 1

s
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Then for k  0

jjvk jjp!p0  Cdðd þ  kÞ2ð1 þ  kÞðnþ1Þð1=p1=p0Þ3, 1  p  
2ðn þ  2Þ

: (1.6)

In particular, we have

jjvk jjp!p0  Cdðd þ  kÞðnþ1Þð1=p1=p0Þ1,

2ðn þ  1Þ 2ðn þ  2Þ
n þ  4                      n þ  4 (1.7)

Proof. By Theorem 1.1 and integrating the spectral measure on ½k,k þ  d, one gets the
desired result.                                                                                                                         w

Remark. In the case of high frequencies k  1, the previous theorem is known to hold on
asymptotically conic manifold and even on manifolds with bounded geometry (see [5]).
In particular, asymptotically hyperbolic manifolds are examples of manifolds with
bounded geometry in the following sense: suppose (M, g) to be a complete Riemannian
manifold of dimension n þ 1 with n  2: We assume that M has C 1  bounded geometry, i.e.
the local injectivity radius of M has a positive lower bound e, the metric tensor gij,
expressed in normal coordinates in the ball of radius e=2 around any point z 2  M is
uniformly bounded in C1ðBðz, e=2ÞÞ as z ranges over M; and the inverse metric gij is
uniformly bounded in supremum norm. The geometry properties (e.g. Kunze-Stein phe-
nomenon) are implicitly contained in the spectral measure estimate of Theorem 1.1
proved by Chen and Hassell [12].

The previous corollary has the following applications.

Theorem 1.3 (Reversed local-in-time Strichartz estimates). Suppose ðM, gÞ is a non
trapping asymptotically hyperbolic manifold of dimension n þ 1 with n  1. Assume that
there has no pure point eigenvalue and has no resonance at the bottom of the continuous
spectrum of H. Let u be the unique solution of

ð@2 þ  HÞu ¼  0,
ujt¼0 ¼  f , @tujt¼0 ¼  0:

Then for 2ðnþ2Þ  q  1 ,  2  p <  1  and s ¼  ðn þ  1Þ 2  q      p
jjujjLqðM;Lpð½1,1ÞÞ  CjjðId þ  HÞ2f jjL2ðMÞ: (1.9)

Theorem 1.4 (Reversed global-in-time Strichartz estimates). Assume ðM, gÞ and H be in
Theorem 1.3. Let qn ¼  þ 1  when n ¼ 1, 2 and qn ¼  2ðnþ1Þ when n  3. For 2ðnþ2Þ  q  qn, 2  p
<  1  and s ¼  ðn þ  1Þ 2  q      p, the global-in-time estimates hold

jjujjLqðM;LpðRÞÞ  CjjH2f jjL2ðMÞ: (1.10)

Furthermore, if qn <  q  þ 1  with n  3, we have the global-in-time estimates

jjujjLqðM;LpðRÞÞ  CjjðH þ  IdÞs=2f jjL2ðMÞ: (1.11)

The standard Strichartz estimates were established in [13] but with an arbitrary small
-loss of regularity due to the lack of Littlewood-Paley theory in the non-doubling
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setting. Compared with the standard Strichartz estimates, these ones reverse the order of
space-time integration with no loss. Estimates in this form have been extensively
studied in [6, 7] for waves on manifolds, [8] for waves with potentials.

Another application is a sharp maximal function estimate. In [9], Rogers and

Villarroya proved the following sharp
ffi

maximal estimate for the wave operator in Rd  :
k sup je f ðxÞjkLqðRdÞ jjf jjHsðRdÞ (1.12)

provided q  2ðdþ1Þ and s >  d1  1: We get an analogous statement in our context:
Corollary 1.5 (Maximal estimate). Let the manifold ðM, gÞ and the operator H be in

Theorem 1.3. Then the following holds

k sup jeit
p
Hf ðxÞjkLqðMÞ jjf jjHsðMÞ (1.13)

provided q  2ðnþ2Þ and s >  ðn þ  1Þ1
  1:

Proof. This is just a consequence of Theorem 1.4 with p ¼ 2 and the Sobolev embedding
H2þs ðRÞ, ,! L 1 ð R Þ  for any e >  0:                                                                                                 w

2. Proof of Theorem 1.3

In [10, Theorem 2.1], the authors show that the bounds (1.9) follows from Corollary
1.2, and their proof works equally well in our circumstances. Nonetheless, we include a
proof for the sake of completeness which will serve as a model for certain global
Strichartz estimates.

To prove (1.9), it suffices to show that

keit
p
Hf kLqðM;Lpð½1, 1ÞÞ  CjjðI þ  HÞ2f jjL2ðMÞ: (2.1)

There exists a q 2  SðRÞ satisfying supp q  ð2,2Þ such that

keit
p
Hf kLqðM;Lpð½1, 1ÞÞ kqðtÞeit

p
Hf jjLqðM;LpðRÞÞ: (2.2)

Then to prove (2.1), it suffices to prove

kqðtÞeit
p
Hf kLqðM;LpðRÞÞ  CjjðI þ  HÞ2f jjL2ðMÞ: (2.3)

To prove this, we shall change notation a bit, and in particular d ¼ 1 in (1.5), let
1

vkf ¼ v½k,kþ1ðkÞdEðkÞf (2.4)

so that f ¼  
P

k ¼ 0  vkf : Then, for 2ðnþ2Þ  q  1 ,  (1.7) yields

jjvkf jjLqðMÞ ð1 þ  kÞðnþ1Þð2qÞ2jjf jjL2ðMÞ, k ¼  0, 1, 2, :::: (2.5)

To use this, we first note that by Sobolev estimates

kqðtÞeit
p
Hf kLqðM;LpðRÞÞ k jDtj

1=21=pðqðtÞeit
p
Hf ÞkLxLt ðRMÞ:
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Let

Fðt, xÞ ¼  jDtj
1=21=pðqðtÞeit

p
Hf ðxÞÞ

denote the function inside the mixed-norm in the right, then

Fðt, xÞ ¼  
X

Fk ðt , xÞ ,
k¼0

where

Fkðt, xÞ ¼  jDtj
1=21=pðqðtÞeit

p
Hvkf ðxÞÞ:

Consequently, its t-Fourier transform is

Fkðs, xÞ ¼  jsj1=21=p 
ð 1  

qðs  kÞv½k,kþ1ðkÞdEðkÞf ðxÞ: (2.6)
0

Since supp q  ð2,2Þ, we conclude that
ð 1      

Fkðt, xÞ F‘ðt, xÞ dt ¼  ð2pÞ1 
ð 1      

Fkðs, xÞ F ‘ðs, xÞ ds ¼  0 when jk  ‘j  >  100: 
1

1

As a consequence, we obtain

ð
1=2 j jDtj1=21=pðqðtÞeit HfðxÞÞ j2 dt

1
ð 1
1=2

jFkðt, xÞj2 dt ¼  ð2pÞ1=2

1  k¼0

ð 1

1=2 jFkðs, xÞj2 ds
:

1  k¼0

Also, since q  2, we conclude that

k jDtj
1=21=pðqðtÞeit

pffiffiffi
fÞk2

qL2ðRMÞ  
1  ð 1      

jjFkðs, xÞjj2qðMÞ ds: k¼0

Recalling (2.6), the support properties of q, we see that

k jDtj
1=21=pðqðtÞeit

pffiffiffi
fÞk2

qL2ðRMÞ

¼  
X  1      

jsj12=p 
 1  

qðs  kÞv½k,kþ1ðkÞdEðkÞfðxÞ
2

ds
k¼0     1 0 LqðMÞ

¼  
1 kþ10 

jsj12=p
kþ1 

kðnþ1Þð11Þ1

dk jjvkf ðxÞjj 2

2 

ds
k¼0     k10 k

ð1 þ  kÞ12=pð1 þ  kÞðnþ1Þð1qÞ1jjvkf jj22ðMÞ k¼0

1=2

¼ jjð1 þ  kÞðnþ1Þð11Þ1

vkf jj22ðMÞ jjðI þ  HÞs=2f jj22ðMÞ,
k¼0

as desired, which completes the proof.
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3. The proof of Theorem 1.4

In this section, we prove the global result about Theorem 1.4 which is direct conse-
quence of the following Proposition.

Proposition 3.1. Suppose the operator H, q and the manifolds ðM, gÞ to be in Theorem 1.4.
For 2ðnþ2Þ  q  qn, 2  p <  1  and s ¼  ðn þ  1Þ 2  q      p, the global-in-time esti-mates hold

jjujjLqðM;LpðRÞÞ  CjjH2f jjL2ðMÞ: (3.1)

Furthermore, if qn <  q  þ 1  with n  3, we have the global-in-time estimates

jjujjLqðM;LpðRÞÞ  CjjH3=41=ð2pÞðH þ  IÞs=2þ1=ð2pÞ3=4f jjL2ðMÞ: (3.2)

Proof. Consider first the case with q  qn: To prove (3.1), it suffices to show that, for 0
<  e <  1, there is a uniform constant C independent of e so that

jjeit
p
Hf jjLqðM;Lpð½1, 1ÞÞ  Cjjð

p
H þ  eIÞsf jjL2ðMÞ: (9.170Þ

To this end, similar to the proof of Theorem 1.3, it suffices to show that if we fix q 2
SðRÞ with supp q  ð2,2Þ, then we have the uniform bounds

jjqðetÞ eit
p
Hf jjLqðM;LpðRÞÞ  CjjðH þ  eIÞs=2f jjL2ðMÞ: (3.3)

1     1

As before, we use H 2     pðRÞ !  Lt ðRÞ Sobolev estimates to deduce that

jjqðetÞ eit
p
Hf jjLqðM;LpðRÞÞ jj jDtj1=21=pðqðetÞeit

p
Hf Þ jjLqðM;L2ðRÞÞ:

Similarly as before, let

Feðt, xÞ ¼  jDtj1=21=pðqðetÞeit
p
Hf Þ:

If we take the Fourier transform in t, we deduce that

Feðs, xÞ ¼  jsj1=21=p e1 ðqðe1s  
p
HÞf ÞðxÞ ¼  

X
Fk ðs , xÞ ,  k¼0

where

Fe ðs,xÞ ¼  jsj1=21=p e1 ðqðe1 s  
p

H  Þ  ve fÞðxÞ

and vke is the spectral projection operator for Ik associated with 
p

H  which is given by
1

vkef ¼ vIk 
ðkÞdEðkÞf , Ik ¼  ½ke,ðk þ  1ÞeÞ, k ¼  0, 1, 2, 3, :::: (3.4)

Since supp q  ð2,2Þ, one sees the fact that qðe1s  
p

HÞ  ve      vanishes if s 2  ½eðk
100Þ,eðk þ  100Þ: Consequently,

1 1

Feðt, xÞ Feðt, xÞ dt ¼  ð2pÞ Fe ðs,xÞ Feðs, xÞ ds ¼  0 if jk  ‘j  >  100: 1
1
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Since f ¼  
P

k ¼ 0  vkef , as a consequence, it gives
1 1 1 2 1 1

jFeðt, xÞj2 dt ¼ Feðt, xÞ dt jFeðt, xÞj2 dt
1                                                 1         k¼0                                         k¼0     1

1 1

jFe ðs, xÞj2 ds:
k¼0     1

From the above, we deduce that
pffiffiffi 1  ð 1

jjqðetÞ e f jjLqðM;LpðRÞÞ jjFe ðs,

 ÞjjLqðMÞ ds k¼0

1 ðkþ10Þe

¼  e2 jsj jjqðe1 s H Þve f jj q     ds
k¼0     ðk10Þe

e 2
X

e
 ððk þ  10ÞeÞ12=pjjve

ef jj2q : k¼0

When q  qn, it follows from (1.7) of Corollary 1.2 that

jjve
ef jjLqðMÞ e

1=2 ððk þ  1ÞeÞðnþ1Þð2qÞ2     jjve
ef jjL2ðMÞ, k ¼  0, 1, 2, 3, :::: (3.5)

therefore, recall s ¼  ðn þ  1Þ 2  q      p
 , we further obtain

jjqðetÞ eit Hf jj2qðM;LpðRÞÞ e
2 e

 ððk þ  1ÞeÞ12=p e1=2ððk þ  1ÞeÞðnþ1Þð11Þ1

jjve
ef jj2

k¼0

¼  e 2
X

e 2  ððk þ  1ÞeÞ2½ðnþ1Þð11Þ1 jjve
ef jj2 

k¼0

¼  
1  

k ððk þ  1ÞeÞsvkef k2 k ð
p

H þ  eIÞsf k2,
k¼0

as desired.
While for q  qn, we use (1.6) instead of (1.7) in Corollary 1.2 to obtain

jjve
ef jjLqðMÞ e

1=2 ðk þ  1Þeðke þ  1Þðnþ1Þð2qÞ2     kve
ef kL2ðMÞ, k ¼  0, 1, 2, 3, :::: (3.6)

Therefore, we further obtain

jjqðetÞ eit
p

Hf jj2
qðM;LpðRÞÞ e

2
X

e

 ððk þ  1ÞeÞ12=p ðe1=2ðk þ  1Þeðke þ  1Þðnþ1Þð2qÞ2Þ2kve
ef k2 

k¼0

¼  e 2
X

e 2  ððk þ  1ÞeÞ32=pðke þ  1Þ2½ðnþ1Þð11Þ3 jjve
ef jj2 

k¼0

¼  
1  

k ððk þ  1ÞeÞ3=21=pðke þ  1Þðnþ1Þð11Þ3

vkef k2

k

¼

ð
p

H þ  eIÞ3=21=pð
p

H þ  IÞðnþ1Þð11Þ3

f k2,

which completes the proof. w
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4. Small data well-posedness and Strauss conjecture on asymptotically
hyperbolic manifolds

We now draw some consequences of the previous estimates. We provide an application of
the global reversed Strichartz estimates established above about global existence for
nonlinear waves. Consider the wave equation with a nonlinearity satisfying

jFpðuÞj þ  jujjFpðuÞj  Cjujp,

for some constant C > 0,

@
2

uðt,zÞ þ  Huðt, zÞ ¼  FpðuÞ,
uð0Þ ¼  u0ðzÞ, @tuð0Þ ¼  u1ðzÞ: (4.1)

In [13], the authors adressed the small data well-posedness for any power p 2
1, 1 þ  4 , leaving the end-point case open. This issue was raised by the methods we

used which was not allowing us to get the suitable Strichartz estimates for p ¼  1 þ  4 :
We address here the latter and then focus only on p ¼  1 þ  n

 : We prove

Theorem 4.1. Let ðM, gÞ be a non-trapping asymptotically hyperbolic manifold of
dimension n þ 1. Assume that there has no pure point eigenvalue and has no resonance
at the bottom of the continuous spectrum of H. Then there exists a constant 1 >  0 such
that the Cauchy problem

@2u þ  Hu ¼  F1þ4ðuÞ, ðt, zÞ 2  I  M;
uð0Þ ¼  u0ðzÞ, @tuð0Þ ¼  u1ðzÞ,

has a global solution, provided jj  1 and

jjH4u0jjL2ðMÞ þ  jjH4u1jjL2ðMÞ  1:

Proof. Consider the complete space LqðM; LpðRÞÞ for q ¼  p ¼  2ðnþ2Þ , i.e. L
2ðnþ2Þ

ðR
MÞ: Define the map T by v ¼  T u where v solves, given u 2  L

2ðnþ2Þ
ðR  MÞ,

@2v þ  Hv ¼  F1þ4ðuÞ, ðt, zÞ 2  R   M;
vð0Þ ¼  u0ðzÞ, @tvð0Þ ¼  u1ðzÞ:

Estimate (3.1) then gives
jjvðt, zÞjjL2ðnþ2Þ=nðRMÞ jjH4u0jjL2ðMÞ þ  jjH4u1jjL2ðMÞ

 
þ  jjujj1

2ðnþ2Þ=ðnþ4Þð
RM

Þ:

A standard computation shows that if  is small enough, T     maps a ball of
Lpþ1 ðRþ  MÞ into itself and is actually a contraction, hence by the Banach fixed point
theorem this leads to the desired result (see for instance [11] for more details). w
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