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ABSTRACT ARTICLE HISTORY
We provide reversed Strichartz estimates for the shifted wave equa- Received 26 August 2021
tions on non-trapping asymptotically hyperbolic manifolds using Accepted 30 January 2022
cluster estimates for spectral projectors proved previously in such
generality. As a consequence, we solve a problem left open in Sire et
al [Trans. AMS 373(2020):7639-7668] about the endpoint case for ) :

; . . manifolds; reversed
global well-posedness of nonlinear wave equations. We also provide Strichartz estimates; shifted
estimates in this context for the maximal wave operator. wave equation
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1. Introduction and main results

The goal of this note is to obtain new reversed Strichartz estimates for the (shifted)
wave operator on some complete manifolds with bounded geometry. We are concerned in
particular with asymptotically hyperbolic manifolds. The argument builds on LP-esti-
mates for the spectral projectors (on the continuous spectrum). We draw also two con-
sequences of the reverse Strichartz estimates: first, the endpoint version of classical
Strichartz estimates and an application to global well-posedness for nonlinear wave
equations on those manifolds; second, a sharp (in LP spaces) estimate of the maximal
function for the wave operator.

We work on an np I-dimensional complete non-compact Riemannian manifold
O0M, gb where n 1 and the metric g is an asymptotically hyperbolic metric. This set-ting is
the same as in Chen-Hassell [1, 2], Mazzeo [3] and Mazzeo-Melrose [4]. Let x be a
boundary defining function for the compactification M of M: We say a metric g is
conformally compact if x?>g is a Riemannian metric and extends smoothly up to the
boundary @M: Mazzeo [3] showed that its sectional curvature tends to jdxj? as x ! 0;
In particular, if the limit is such that jdxj,., % f, we say that the conformally compact
metric g is asymptotically hyperbolic. More specifically, let y % &yy,::,yop be local
coordinates on Y % @M, and (%, y) be the local coordinates on M near @M; the
metric g in a collar neighbourhood 0P @M takes the form

P .
dx?>  héx yb dx? hj8x, ybdy'dy*

g% b % op (1.1)

x2
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where x 2 C'8MP is a boundary defining function for @M and h is a smooth family of
metrics on Y % @M: In addition, if every geodesic in M reaches @M both forwards and
backwards, we say M is nontrapping. The Poincare disc 8B"!, gb is a typical example of
such manifold. Indeed, considering the ball B®P! % fz 2 R"P! :jzj < 1g endowed with the
metric

» 4dz? (12)
TR '
one can take x % 01 jzjpdl p jzjp' as the boundary defining function and x the coor-
dinates on S": Then the Poincare metric takes the form

dx2 1681 x2p dk2 x2
g% bt
where dx? is the standard metric on the sphere S™:

Let H% D, n’ yvhere D, is the Laplace-Beltrami operator on 6M,gb: We recall the
following result about estimates for the spectral measure and the spectral projectors by
Chen and Hassell in [12, Theorem 1.6]. We denote by dEdkP the spectral measure

associated with the operator H, such that for every F a Borel function on R, we have
o}

(i
F W4 FakpdEskp
R
with domain
8 w: jFakp’j dhw, ESkpwi<
1
R
Theorem 1.1. Let n 1. Suppose 6M,gb is a non trapping asymptotically hyperbolic
manifold of dimension n p 1. Assume that there has no pure point eigenvalue and has no
resonance at the bottom of the continuous spectrum of H % D, o Theg for some con-stant C,
we have: for k 1

jidEGKPj, 0 CK% 1 p< 2: (1.3)
For k 1, we have
zCkanblbﬁlzplzpopl’ 1 ZGnML’
JAEOKPIp 1pe wonpe P Y (14)

'> Ckn61=pl=2P < 2:

© Tapa P

Corollary 1.2. Suppose dM,gb is a non trapping asymptotically hyperbolic manifold of
dimension np 1 with n 1. Assume that there has no pure point eigenvalue and has no
resonance at the bottom of the continuous spectrum of H. Let d 2 80,1 and define the

spectral projector on the frequencies ¥k kp d

01
ng Ya VyﬂgkbdakdeakDf (1 5)
0
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Then for k 0
_ 206np 2p
jiviijpe Cdodp kb6l p kpoeIPotpls, nb 20 (1.6)
' np 4
In particular, we have
26np 1p 206np 2b
jiViiipe Cdodp kpoPIPOIITL max 1, nb4- p —nbd . (L7

Proof. By Theorem 1.1 and integrating the spectral measure on %kkp d, one gets the
desired result. w

Remark. In the case of high frequencies k 1, the previous theorem is known to hold on
asymptotically conic manifold and even on manifolds with bounded geometry (see [5]).
In particular, asymptotically hyperbolic manifolds are examples of manifolds with
bounded geometry in the following sense: suppose (M, g) to be a complete Riemannian
manifold of dimension n p 1 with n 2: We assume that M has C! bounded geometry, i.e.
the local injectivity radius of M has a positive lower bound e, the metric tensor gj;,
expressed in normal coordinates in the ball of radius e=2 around any point z2 M is
uniformly bounded in C'8Bdz,e=2bb as z ranges over M; and the inverse metric gV is
uniformly bounded in supremum norm. The geometry properties (e.g. Kunze-Stein phe-
nomenon) are implicitly contained in the spectral measure estimate of Theorem 1.1
proved by Chen and Hassell [12].

The previous corollary has the following applications.

Theorem 1.3 (Reversed local-in-time Strichartz estimates). Suppose 6M,gb is a non
trapping asymptotically hyperbolic manifold of dimension np 1 with n 1. Assume that
there has no pure point eigenvalue and has no resonance at the bottom of the continuous
spectrum of H. Let u be the unique solution of

@b Hbu% 0,

ujt%() % f’ @tujt%O % 0: (18)
Then forZannbzp ql,2p<1 andsk% dnp 1p , . pl 1 1
iiWiavsraop CHHOIA b HPE]j a0, (1.9)

Theorem 1.4 (Reversed global-in-time Strichartz estimates). Assume 8M,gp and H be in

Theorem 1.3. Let g, % b 1 whenn¥%1, 2 and q, % zanblpﬂhen n 3. For 20m% 92 P
<1 ands% 6np 1P , = the gloBal-in-time estimates hold

Jiujipasm;earen ijHijjﬁLzaMb: (1.10)
Furthermore, if q, < q p 1 with n 3, we have the global-in-time estimates
jitijisanirores CIIOH b 1P i appe: (1.11)

The standard Strichartz estimates were established in [13] but with an arbitrary small
-loss of regularity due to the lack of Littlewood-Paley theory in the non-doubling
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setting. Compared with the standard Strichartz estimates, these ones reverse the order of
space-time integration with no loss. Estimates in this form have been extensively
studied in [6, 7] for waves on manifolds, [8] for waves with potentials.

Another application is a sharp maximal function estimate. In [9], Rogers and

Villarroya proved the following sharpggmaximal estimate for the wave operator in RY :
ksupje VT ExPKy qspap JifTirearts (1.12)
provided q **®'" and s > dlti:R We get an analogous statement in our context:
Corollary 1.31(Maximal estirpated. Let the manifold dM,gb and the operator H be in

Theorem 1.3. Then the following h01d1s1
P
ksup je MfaxPjk;agn Jifiisame (1.13)

(2R
provided q ™ and s > dnp 1p, L

n 2
Proof. This is just a consequence of Theorem 1.4 with p % 2 and the Sobolev embedding
H:Ps 8Rp, ,! LL3RP for any e> O: w

2. Proof of Theorem 1.3

In [10, Theorem 2.1], the authors show that the bounds (1.9) follows from Corollary
1.2, and their proof works equally well in our circumstances. Nonetheless, we include a
proof for the sake of completeness which will serve as a model for certain global
Strichartz estimates.

To prove (1.9), it suffices to show that

o fl .
ke' "fkpaoniran, 1o CLIOT D HPAjjigys: 2.1
There exists a q 2 SGRP satisfying supp § 82,2b such that
_p fifi P
ke' Mfkpomrant, 100 KATEPE" M jjagny i romep (2.2)

Then to prove (2.1), it suffices to prove

. p S
kqotbe "fk; oo CHIOI D HPfjj gt (2.3)
To prove this, we shall change notation a bit, and in particular d % 1 in (1.5), let
0,
vif % Vi kp1 OKPAESKPT 2.4)

0
p
so that f % %, vif: Then, for 2222 q 1, (1.7) yields

n

iivifiiLasus 01 b kP™P1PoP2jjE s ov e, k% 0,1,2,::: 2.5)

To use this, we first note that by Sobolev estimates

,thf{ﬂil N :1=21=p i H i
kqétbel kaan;LpaRpkaDtJ 6q6tpel fpkaLtéRl\‘}ID?:
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Let
1=21= L
Fot,xp % jDij = Pdqdtbe Hfdxbb
denote the function inside the mixed-norm in the right, then
Xt
Fot,xp % F,0t, xb,
k%0
where
T u fl
Fdt,xb % jDj ~ Poqdtbe" v, foxpbp:

Consequently, its t-Fourier transform is

6 1
Bids,xP % jsj'='™  qfis kbvyy .y 0kPAESKPfEXP: (2.6)
0

Since supp & 92,2b, we conclude that
0, 8, 1
Fot,xp F8t,xp dt % &2pp' Fibs,xp Flos,xb ds % 0 when jk ‘j > 100:

1

As a consequence, we obtain

8
o 1
12§ D42 ™aqatpet Hegxbb 7 dt

ox 8
FOtxBP dt % 62pb'? 102 JFiBs.xPy” ds
L k%0 | k0
Also, since q 2, we conclude that
121 pfﬁfﬁf}fll 1 Ox 2
k jD§'™'"Paqatpe’ EPGoy s JiFK0s, i snm (s kn0
1

Recalling (2.6), the support properties of &, we see that

. pfiffitfi p)
k jDj " 70qdtbe"  HEPKy250up
10 ¢!

¥t 01 2

% jsi"™  qd% kbvyy i, OkPAESKPfEXP ds
)k(i/.o 611<b10 %kbl "~ anM;

Y jsj'* P KOPTPOPadk jjvifOxPj 2 | gy p  dS
k%o k10 k

Xt
1 kb2PG1 b kbTPIPOLP v i o k40
1=2

%o X ji6lp kpOmbIPeR i, 8L HP™f | gies
k%0

as desired, which completes the proof.
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3. The proof of Theorem 1.4

In this section, we prove the global result about Theorem 1.4 which is direct conse-
quence of the following Proposition.

Proposition 3.1. Suppose the operator H, q and the manifolds 6M, gb to be in Theorem 1.4.

For zanbzl%qn, 2 p<1 ands¥%dnbp 1P , . p,—thel global-in-time esti-mates hold

JiuiLegm;Lrarep ijHijj126Mp: 3.1
Furthermore, if q, < q p 1 with n 3, we have the global-in-time estimates

jjuijan;LpﬁRDD ijH3=41=62pDaH b Ips=2b1=52pb3=4fij26Mb: (32)

Proof. Consider first the case with q q,: To prove (3.1), it suffices to show that, for 0

< e< 1, there is a uniform constant C independent of e so that

i
jjeit 1 C"apH ﬁlI i anp: 9.17°
Jie" “fliLagmirayasiep, Cli0 H b elPfjjiagy: O.17p

To this end, similar to the proof of Theorem 1.3, it suffices to show that if we fix q 2

SORP with supp § 82,2pb, then we have the uniform bounds
1 p ﬂ =, .
jiadetb e Mfjj on.ioorer CIOH b eIP™fjjagyp (3.3)

11
As before, we use H; "0RP ! L{8RP Sobolev estimates to deduce that
o i N iPry,
jiadetb €™ “fjjlasm.rrorpe i D4 0qdetbe” “fP jijagsni2ombp:
Similarly as before, let
p_fl
Fedt, xp % jDij'~'Péqdetpe™ Hp:

If we take the Fourier transform in t, we deduce that

1=21= P i X '
Bds,xb % jsj ~ © e' dqde's HbfpdxP % F, 8s,xP, ko
where

1= p
}BEGS,XD% jsi'™'™ ! dqdg s H b vﬂlfb(ixl:vk
e
, o : opf
and v, is the spectral projection operator for I associated with  H which is given by
1

Vil % v OKPAEOKPY, I % Ye kb 1beb, k% 0,1,2,3,::: (3.4)

Since supp g 82,2b, one sees the fact that gdels pHD Ve \fgnishe%(eif s 2 ¥k
100p,edk p 100p: Consequently,
01 01
Fit,xp Fe6t,xP dt % &2pb' 12 ds,xp B3s,xb ds % 0 if  jk ‘j > 100:1
1
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. P L
Since f %}, Vi.f, as a consequence, it gives

01 01 X 2 ¥ 01
jFeot, xp® dt % Fedt,xp dt jFeat, xbj” dt
1 1 kuo kso 1
¥ 01
jltf;és,xbjz ds:
ko 1

From the above, we deduce that

flifi , e 9, )
jiodetp e HfijqéM,-LpéRbb jjltf;és,
Pijsavig S k0
akplObe 15, ifififi )
% & jsi iifse' s H bukefjjL, ds
k%0 ok10pe

X 1

e2 e k L

a0k 10pepPjjve f jj%: kuo

When q q,, it follows from (1.7) of Corollary 1.2 that

JVE, FliLaons €72 kb 1Peb®™'P% Give £ st k% 0,1,2,3, (3.5)
11 1

therefore, reﬁall s% Onp 1P , , we further obtain

. it” Hpi:2 2 xP :

jiadetb € “fjj asn.oorep © e 2.4 2 .

11pl

ookp 1pep™™P e2ookp 1pep™PFjjve fjj
k%0
X1

% e? e adkp 1peb™ PR give fii% 0,
1 ' S 2 pfﬂ S 2
% X k 6kp 1pebVif kX k& Hp elp’f k2,

k%0
as desired.
While for q g,, we use (1.6) instead of (1.7) in Corollary 1.2 to obtain
Ve, iy €2 kb 1bedkep 17172 kv2 fkpaqpp, k% 0,1,2,3,2: (3.6
Therefore, we further obtain
o fl X 1
iiadetp ¢ MfiiZguiomen €’ € R
odkp 1pep'*™® 5e'20k p Ipedkep 1p%P1PoPaplkye K kuo
X1

% e? e d0kp Ibeb™Pakep 16PN jhespiiZ iy
1
% X k 80kp 1peb?Pokep 1pOPIPO Py f21@

k%0
i o P i
ko Hp elb™278 Hp TP, 2 ,

which completes the proof.
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4. Small data well-posedness and Strauss conjecture on asymptotically
hyperbolic manifolds

We now draw some consequences of the previous estimates. We provide an application of
the global reversed Strichartz estimates established above about global existence for
nonlinear waves. Consider the wave equation with a nonlinearity satisfying

jE,8ubj b jujjF ;6upj CjujP,

for some constant C >0,
2

@ ydt,zb b Hudt,zb % F,dub, @.1)
udlb % uydzb, @udb % u,0zb: ’

In [13], the authors adressed the small data well-posedness for any power p 2

I,1p r;i , leaving the end-point case open. This issue was raised by the methods we
used which was not allowing us to get the suitable Strichartz estimates for p% 1p ﬁ:
We address here the latter and then focus only on p % 1p #: We prove

Theorem 4.1. Let 6M,gb be a non-trapping asymptotically hyperbolic manifold of
dimension n p 1. Assume that there has no pure point eigenvalue and has no resonance
at the bottom of the continuous spectrum of H. Then there exists a constant ; > 0 such
that the Cauchy problem
@%b Hu % Fyp:0ub, 8t,zb2 I M;
udob % uydzb, @udob % u,0zb, 4.2)

has a global solution, provided jj ; and

i A uojj g b iiH W e 1t

; TP 1 1/ 20np2p . 20mp2>
Proof. Consider the complete space L 6M; L"gRpPP for q% p% "—— ie. L —»0R
20np2p

Mp: Define the map T by v % T u where v solves, given u2 L —6R MBb,
@ZVb Hv % Flbgéup, at,zb 2R M,
vd0P % uydzP, @vd0P % u,0zb: 4.3)

Estimate (3.1) then gives

[3v8t, ZPjj 2ommv=n gt J'jH4u0ij261\/£p b iiH1jj2smp P jjujjllﬁnb2p=5nb4paRMpk:) den

L
A standard computation shows that if is small enough, T maps a ball of
LPPIERP MP into itself and is actually a contraction, hence by the Banach fixed point

theorem this leads to the desired result (see for instance [11] for more details). w
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