

Communications in Partial Differential Equations

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/lpde20

Reversed Strichartz estimates for wave on nontrapping asymptotically hyperbolic manifolds and applications

Yannick Sire, Christopher D. Sogge, Chengbo Wang & Junyong Zhang

To cite this article: Yannick Sire, Christopher D. Sogge, Chengbo Wang & Junyong Zhang (2022) Reversed Strichartz estimates for wave on non-trapping asymptotically hyperbolic manifolds and applications, Communications in Partial Differential Equations, 47:6, 1124-1132, DOI: 10.1080/03605302.2022.2047724

To link to this article: https://doi.org/10.1080/03605302.2022.2047724

Reversed Strichartz estimates for wave on non-trapping asymptotically hyperbolic manifolds and applications

Yannick Sire^a, Christopher D. Sogge^a, Chengbo Wang^b, and Junyong Zhang^c

^aDepartment of Mathematics, Johns Hopkins University, Baltimore, MD, USA; ^bSchool of Mathematical Sciences, Zhejiang University, Hangzhou, China; ^cDepartment of Mathematics, Beijing Institute of Technology, Beijing, China

ABSTRACT

We provide reversed Strichartz estimates for the shifted wave equations on non-trapping asymptotically hyperbolic manifolds using cluster estimates for spectral projectors proved previously in such generality. As a consequence, we solve a problem left open in Sire et al [Trans. AMS 373(2020):7639-7668] about the endpoint case for global well-posedness of nonlinear wave equations. We also provide estimates in this context for the maximal wave operator.

ARTICLE HISTORY

Received 26 August 2021 Accepted 30 January 2022

KEYWORDS

Asymptotically hyperbolic manifolds; reversed Strichartz estimates; shifted wave equation

1. Introduction and main results

The goal of this note is to obtain new reversed Strichartz estimates for the (shifted) wave operator on some complete manifolds with bounded geometry. We are concerned in particular with asymptotically hyperbolic manifolds. The argument builds on L^p-estimates for the spectral projectors (on the continuous spectrum). We draw also two consequences of the reverse Strichartz estimates: first, the endpoint version of classical Strichartz estimates and an application to global well-posedness for nonlinear wave equations on those manifolds; second, a sharp (in L^p spaces) estimate of the maximal function for the wave operator.

We work on an n β 1-dimensional complete non-compact Riemannian manifold $\delta M, gP$ where n 1 and the metric g is an asymptotically hyperbolic metric. This set-ting is the same as in Chen-Hassell [1, 2], Mazzeo [3] and Mazzeo-Melrose [4]. Let x be a boundary defining function for the compactification M of M: We say a metric g is conformally compact if x^2g is a Riemannian metric and extends smoothly up to the boundary @M: Mazzeo [3] showed that its sectional curvature tends to $jdxj^2_{2gx}$ as x ! 0; In particular, if the limit is such that $jdxj_{x^2g}$ ¼ \mathring{f} , we say that the conformally compact metric g is asymptotically hyperbolic. More specifically, let y ¼ $\delta y_1, ..., y_n P$ be local coordinates on Y ¼ @M, and (x, y) be the local coordinates on M near @M; the metric g in a collar neighbourhood $\mathcal{V}\!\Omega P_x$ @M takes the form

$$g \, \frac{dx^2}{x^2} \, \frac{h \delta x, y \triangleright}{x^2} \, \frac{dx^2}{x^2} \, \frac{P}{x^2} \, \frac{P}{h_{jk} \delta x, y \triangleright dy^j dy^k}}{x^2}, \tag{1.1}$$

where x 2 C¹đMÞ is a boundary defining function for @M and h is a smooth family of metrics on Y 1/4 @M: In addition, if every geodesic in M reaches @M both forwards and backwards, we say M is nontrapping. The Poincare disc $\delta B^{n p 1}$, g p is a typical example of such manifold. Indeed, considering the ball $B^{n p 1}$ ¼ fz 2 $R^{n p 1}$: jzj < 1g endowed with the metric

$$g \% \frac{4dz^2}{\tilde{\mathfrak{d}}1 \text{ } jzj^2 \mathsf{P}^2}, \tag{1.2}$$

one can take x ¼ ỗl jzjÞðl þ jzjÞ¹ as the boundary defining function and x the coordinates on Sⁿ: Then the Poincare metric takes the form

g
$$\frac{dx^2}{x^2}$$
 þ $\frac{\frac{1}{4} \tilde{o} 1 x^2 p}{2} \frac{d^2 x^2}{x^2} x^2$,

where dx^2 is the standard metric on the sphere S^n :

Let H ½ D_g $\stackrel{n^2}{\longrightarrow}$ where D_g is the Laplace-Beltrami operator on $\delta M, gp$: We recall the following result about estimates for the spectral measure and the spectral projectors by Chen and Hassell in [12, Theorem 1.6]. We denote by dEðkÞ the spectral measure associated with the operator H, such that for every F a Borel function on R, we have

with domain

$$\tilde{o}$$
 w: $jF\tilde{o}kP^2j$ dhw, $E\tilde{o}kPwi < 1$:

Theorem 1.1. Let n 1. Suppose $\delta M, gP$ is a non trapping asymptotically hyperbolic manifold of dimension n b 1. Assume that there has no pure point eigenvalue and has no resonance at the bottom of the continuous spectrum of H ¼ D_g n². Then for some con-stant C, we have: for k 1

$$jjdE\delta kPjj_{p!p^0} Ck^2$$
, 1 p < 2: (1.3)

For k 1, we have

Corollary 1.2. Suppose $\delta M, g \triangleright$ is a non trapping asymptotically hyperbolic manifold of dimension n b 1 with n 1. Assume that there has no pure point eigenvalue and has no resonance at the bottom of the continuous spectrum of H. Let d 2 00,1 and define the spectral projector on the frequencies $\frac{1}{2}k,k \not b d$

$$v_k^d f \% v_{kk,kpd} v_{kk,kpd} k P d E \tilde{o} k P f$$
: (1.5)

Then for k 0

$$jj\mathbf{v}_{k}^{\mathsf{d}}jj_{p!p^{0}} \quad \mathsf{Cd\tilde{o}d} \, \, \mathsf{b} \, \, \mathsf{kP^{2}\tilde{o}1} \, \, \mathsf{b} \, \, \mathsf{kP^{\tilde{o}n\mathfrak{b}1\mathsf{P}\tilde{o}1=p1=p^{0}\mathsf{P}3}}, \qquad \qquad 1 \, \, \mathsf{p} \, \, \frac{2\tilde{o}n \, \mathsf{b} \, \, 2\mathsf{P}}{n \, \, \mathsf{b} \, \, \frac{\mathsf{c}}{4}} \qquad \qquad (1.6)$$

In particular, we have

$$2\tilde{\mathfrak{o}} \mathfrak{n} \mathfrak{b} \ 1 \mathfrak{P} \qquad 2\tilde{\mathfrak{o}} \mathfrak{n} \mathfrak{b} \ 2 \mathfrak{b}$$

$$\mathfrak{j} \mathfrak{j} \mathfrak{v}_{k}^{\mathsf{d}} \mathfrak{j} \mathfrak{j}_{\mathfrak{p} \mathfrak{p}^{0}} \ \ \mathrm{Cd} \tilde{\mathfrak{o}} \mathfrak{d} \mathfrak{b} \ \ k \mathfrak{p}^{\tilde{\mathfrak{o}} \mathfrak{n} \mathfrak{p} \mathfrak{1} \mathfrak{p} \mathfrak{d} \mathfrak{p} \mathfrak{d} \mathfrak{p} \mathfrak{d} \mathfrak{p} \mathfrak{d}}, \qquad \max \ 1, - \mathfrak{n} \mathfrak{b} \ 4 - \mathfrak{p} \qquad - \mathfrak{n} \mathfrak{b} \ 4 - \mathfrak{c} \qquad (1.7)$$

Proof. By Theorem 1.1 and integrating the spectral measure on 1/2k,kb d, one gets the desired result.

Remark. In the case of high frequencies k 1, the previous theorem is known to hold on asymptotically conic manifold and even on manifolds with bounded geometry (see [5]). In particular, asymptotically hyperbolic manifolds are examples of manifolds with bounded geometry in the following sense: suppose (M, g) to be a complete Riemannian manifold of dimension $n \not = 1$ with n 2: We assume that M has C n bounded geometry, i.e. the local injectivity radius of M has a positive lower bound n, the metric tensor n is uniformly bounded in Cn0 Boz, n2 per as z ranges over M; and the inverse metric n3 is uniformly bounded in supremum norm. The geometry properties (e.g. Kunze-Stein phenomenon) are implicitly contained in the spectral measure estimate of Theorem 1.1 proved by Chen and Hassell [12].

The previous corollary has the following applications.

Theorem 1.3 (Reversed local-in-time Strichartz estimates). Suppose $\eth M, gP$ is a non trapping asymptotically hyperbolic manifold of dimension $n \not = 1$ with $n \mid 1$. Assume that there has no pure point eigenvalue and has no resonance at the bottom of the continuous spectrum of H. Let u be the unique solution of

Then for
$$\frac{2\delta n \flat 2\flat}{n} \neq 1$$
, 2 p < 1 and s ¼ $\delta n \flat 1 \flat \frac{1}{2 \neq p} \frac{1}{p} = \frac{1}{2}$
 $jjujj_{L^q \delta M; L^p \delta \% 1, 1 \flat \flat} Cjj \delta Id \flat H \flat^2 f jj_{L^2 \delta M \flat}^{\frac{s}{2}}$: (1.9)

Theorem 1.4 (Reversed global-in-time Strichartz estimates). Assume δM , gP and H be in Theorem 1.3. Let q_n ½ p 1 when n ½ 1, 2 and q_n ½ p 2 p 4 p 4 p 1 when p 4 p 5 p 4 p 4 p 6 p 6 p 6 p 1 p 9 p 7 the global-in-time estimates hold

$$jjujj_{I,9\delta M:I,P\delta Rbb}$$
 $CjjH_2fjj_{I,2\delta Mb}^s$: (1.10)

Furthermore, if $q_n < q \not = 1$ with n 3, we have the global-in-time estimates

$$jjujj_{L^q\delta M;L^p\delta R\flat\flat}$$
 $Cjj\delta H \flat Id\flat^{s=2}fjj_{L^2\delta M\flat}$: (1.11)

The standard Strichartz estimates were established in [13] but with an arbitrary small -loss of regularity due to the lack of Littlewood-Paley theory in the non-doubling

setting. Compared with the standard Strichartz estimates, these ones reverse the order of space-time integration with no loss. Estimates in this form have been extensively studied in [6, 7] for waves on manifolds, [8] for waves with potentials.

Another application is a sharp maximal function estimate. In [9], Rogers and

Villarroya proved the following sharp maximal estimate for the wave operator in R^d : $k \sup_{j \in \mathbb{R}^d} k \sup_{j \in \mathbb{R}^d} k \lim_{k \to \infty} k \lim_{j \to \infty} k \lim_{k \to \infty} k \lim$

$$k \sup_{j \in \mathcal{U}} j \in \mathcal{U}^{\Pi_{f}} \delta x + j k_{I_{q\bar{q}R^{d_{b}}}} j j f j j_{H^{s} \delta R^{d_{b}}}$$

$$\tag{1.12}$$

provided q $^{2\delta db1b}$ and s > d^{1}_{2} : We get an analogous statement in our context:

Corollary 1.511(Maximal estimate). Let the manifold oM,gP and the operator H be in Theorem 1.3. Then the following holds

$$k \sup_{12R} j e^{it H} f \tilde{o} x P j k_{L^{q} \tilde{o} M P} j j f j j_{H^{s} \tilde{o} M P}$$

$$(1.13)$$

 $k\sup_{j} j e^{it^{\frac{n}{H}}} f \, \tilde{o} x + j k_{L^{q} \tilde{o} M P} \, j j f \, j j_{H^{s} \tilde{o} M P}$ provided q 2 and s > $\tilde{o} n \, p^{\frac{t^{2}R}{n}} \, p_{\underline{1}} \, \underline{1}$:

Proof. This is just a consequence of Theorem 1.4 with p 1/4 2 and the Sobolev embedding $H^{\frac{1}{2}bs}$ δRP , ,! L^{1} δRP for any e > 0:

2. Proof of Theorem 1.3

In [10, Theorem 2.1], the authors show that the bounds (1.9) follows from Corollary 1.2, and their proof works equally well in our circumstances. Nonetheless, we include a proof for the sake of completeness which will serve as a model for certain global Strichartz estimates.

To prove (1.9), it suffices to show that

$$ke^{it} H_{f}^{\dagger} k_{L^{q}\delta M; L^{p}\delta \% 1, 1bb} Cjj\delta I b H^{p_{2}} fjj_{L^{2}\delta Mb}^{s}$$

$$(2.1)$$

There exists a q 2 SoRP satisfying supp & 52,2P such that

$$\begin{array}{ll} & \text{ffl} & \text{ffl} \\ ke^{it} {}^{H}f k_{L^{q}\eth M; L^{p}\eth \% 1, \, 1 \flat \flat} \, kq \eth t \flat e^{it} {}^{H}f jj_{L^{q}\eth M; L^{p}\eth R \flat \flat} . \end{array} \tag{2.2}$$

Then to prove (2.1), it suffices to prove

$$\mathsf{kq\tilde{o}t}\mathsf{be}^{\mathsf{i}t} \overset{\mathsf{pff}}{\mathsf{f}} \mathsf{k}_{\mathsf{L}^{\mathsf{q}}\tilde{o}\mathsf{M};\mathsf{L}^{\mathsf{p}}\tilde{o}\mathsf{R}\mathsf{b}\mathsf{b}} \quad \mathsf{Cjj\tilde{o}I} \,\, \mathsf{b} \,\, \mathsf{H}\mathsf{b}^{\mathsf{2}}\mathsf{f} \mathsf{j} \mathring{\mathsf{j}}_{\mathsf{L}^{\mathsf{2}}\tilde{o}\mathsf{M}\mathsf{b}} \mathsf{E}$$

To prove this, we shall change notation a bit, and in particular d ¼ 1 in (1.5), let

$$\mathbf{v}_{k}f \mathcal{V}_{k} = \mathbf{v}_{\mathbf{v}_{k}, \, \mathbf{k} \neq \mathbf{1}} \mathbf{\tilde{o}} \mathbf{k} \mathbf{P} \mathbf{d} \mathbf{E} \mathbf{\tilde{o}} \mathbf{k} \mathbf{P} \mathbf{f}$$

$$(2.4)$$

so that f % $P_{k \, \text{k} \, 0}^{1} \, v_k f$: Then, for $\frac{2\delta n b \, 2^{b}}{n} \, q \, 1$, (1.7) yields

$$jjv_k f jj_{L^q \bar{\delta} MP} \delta 1 \not b k P^{\bar{\delta} n b 1 P \bar{\delta}_{2q} P_2} j j f j^{1}_{J^2 \bar{\delta} MP}, \qquad k \% 0, 1, 2,$$
 (2.5)

To use this, we first note that by Sobolev estimates

$$\mathsf{kq\tilde{\mathfrak{d}}\mathsf{t}}\mathsf{P}^{\mathsf{pfffi}}_{H}\mathsf{f}\mathsf{k}_{L^{q}\tilde{\mathfrak{d}}M;L^{p}\tilde{\mathfrak{d}}\mathsf{R}\mathsf{P}\mathsf{p}}\,\mathsf{k}\,\,jD_{t}\mathsf{j}^{1=21=p}\tilde{\mathfrak{d}}\mathsf{q}\tilde{\mathfrak{d}}\mathsf{t}\mathsf{P}e^{\mathsf{i}t}^{\mathsf{p}}_{H}\mathsf{f}\,\mathsf{P}\mathsf{k}_{L_{x}L_{t}\tilde{\mathfrak{d}}\mathsf{R}\tilde{\mathbb{M}}\mathsf{p}^{2}}$$

Let

denote the function inside the mixed-norm in the right, then

Fot,
$$x \triangleright \frac{x_1}{F_k \delta t}$$
, $x \triangleright$,

where

$$F_k \delta t, x P \% j D_t j^{1=21=p} \delta q \delta t P e^{it} V_k f \delta x P P$$
:

Consequently, its t-Fourier transform is

$$\mathbf{\tilde{b}}_{k}$$
ðs, \mathbf{x} Þ ¼ \mathbf{j} s $\mathbf{j}^{1=21=p}$ q**g**s \mathbf{k} Þv_{½k, kþ1}ðkÞdEðkÞfðxÞ: (2.6)

As a consequence, we obtain

Also, since q 2, we conclude that

Recalling (2.6), the support properties of ϕ , we see that

as desired, which completes the proof.

3. The proof of Theorem 1.4

In this section, we prove the global result about Theorem 1.4 which is direct consequence of the following Proposition.

Proposition 3.1. Suppose the operator H, q and the manifolds δM , gP to be in Theorem 1.4. For $\frac{2\bar{\sigma} n \dot{p} 2\dot{p}}{q} q_n$, 2 p < 1 and s ¼ $\bar{\sigma} n \dot{p}$ $1\dot{p}$ $\frac{1}{2}$ $\frac{1}{q}$ $\frac{1}{p}$ the global-in-time esti-mates hold

$$jjujj_{L_{0}\delta M:L_{0}\delta Rbb} CjjH_{2}fjj_{L_{0}\delta Mb}^{s}:$$
(3.1)

Furthermore, if $q_n < q \not b 1$ with n 3, we have the global-in-time estimates

$$jjujj_{L^{q}\delta M;L^{p}\delta Rbp} CjjH^{3=41=\delta 2p^{b}}\delta H \ b \ Ip^{s=2p1=\delta 2p^{b}3=4}fjj_{L^{2}\delta Mp} \tag{3.2}$$

Proof. Consider first the case with q q_n : To prove (3.1), it suffices to show that, for 0 < e < 1, there is a uniform constant C independent of e so that

To this end, similar to the proof of Theorem 1.3, it suffices to show that if we fix q 2 SốRÞ with supp **\dagger** 62,2Þ, then we have the uniform bounds

As before, we use $H_t^{\frac{1}{2}-\frac{1}{p}} \delta RP$! $L_t^p \delta RP$ Sobolev estimates to deduce that

$$\begin{array}{ll} \text{ iff} & \text{ iff} \\ \text{ ijqdet} \vdash e^{\text{it} \vdash H} f \text{ ij}_{L^q \delta M; L^p \delta R \triangleright \nu} \text{ ij } j D_t j^{1=21=p} \delta q \delta \text{et} \vdash e^{\text{it} \vdash H} f \vdash j j_{L^q \delta M; L^2 \delta R \triangleright \nu} \end{array} ;$$

Similarly as before, let

If we take the Fourier transform in t, we deduce that

where

$$\mathop{\hbox{\rm Fo}}_k^e \delta s, x \triangleright \mbox{\it \mathcal{Y}} \ j s j^{1=21=p} \ e^l \ \delta q \delta e^l \ s \ ^p H \ \triangleright \sqrt[p]{ } f \triangleright \delta x \triangleright_k$$

and v_{ke}^e is the spectral projection operator for I_k associated with H which is given by

$$\mathbf{v}_{ke}^{e} \mathbf{f} \ \% \quad \mathbf{v}_{I_{k}} \mathbf{\tilde{o}} \mathbf{k} \mathbf{P} \mathbf{d} \mathbf{E} \mathbf{\tilde{o}} \mathbf{k} \mathbf{P} \mathbf{f}, \quad \mathbf{I}_{k} \ \% \ \mathbf{k} \mathbf{P} \mathbf{h} \mathbf{P} \mathbf{P}, \quad \mathbf{k} \ \% \ \mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{3}, \ldots$$
 (3.4)

Since supp **b** $\delta 2,2$, one sees the fact that $q\delta e$ $H > v^e$ vanishes if s = 2 / $e\delta k$ 100Þ, eðk þ 100Þ: Consequently,

From the above, we deduce that

When q_n , it follows from (1.7) of Corollary 1.2 that

as desired.

While for q q_n , we use (1.6) instead of (1.7) in Corollary 1.2 to obtain

$$jjv_{ke}^{e}fjj_{L^{q}\eth M^{b}}e^{1=2}\ \eth k\ \flat\ 1\ \flat e\eth ke\ \flat\ 1\ \flat^{\eth n\flat 1\flat \eth_{2q}b_{2}}\ ^{l}kv_{e}^{l}\ ^{\frac{1}{2}}k_{L^{2}\eth M^{b}}, \qquad \qquad k\ \%\ 0,1,2,3,.... \eqno(3.6)$$

Therefore, we further obtain

which completes the proof.

4. Small data well-posedness and Strauss conjecture on asymptotically hyperbolic manifolds

We now draw some consequences of the previous estimates. We provide an application of the global reversed Strichartz estimates established above about global existence for nonlinear waves. Consider the wave equation with a nonlinearity satisfying

$$jF_p\eth u {\triangleright} j \ | \ jujj F_p \eth u {\triangleright} j \ Cjuj^p,$$

for some constant C > 0,

In [13], the authors adressed the small data well-posedness for any power p 2 $1, 1 \not = \frac{1}{2}$, leaving the end-point case open. This issue was raised by the methods we used which was not allowing us to get the suitable Strichartz estimates for p $\frac{1}{2}$ 1 $\frac{4}{p}$: We address here the latter and then focus only on p $\frac{1}{n}$! We prove

Theorem 4.1. Let $\delta M, gP$ be a non-trapping asymptotically hyperbolic manifold of dimension n \(\beta \) 1. Assume that there has no pure point eigenvalue and has no resonance at the bottom of the continuous spectrum of H. Then there exists a constant 1 > 0 such that the Cauchy problem

@
2
u β Hu ¼ F_{1} $_{1}$ $_{2}$ 4 5 uP, G_{1} $_{3}$ 6 t, zP 2 I M;
u $_{1}$ 6 0P ¼ G_{2} 6 0P ¼ G_{1} 6 0P ¼ G_{2} 6 0P ¼ (4.2)

has a global solution, provided jj 1 and

Proof. Consider the complete space $L_q \delta M$; $L^p \delta RPP$ for $q \not u p \not u \frac{2\delta n \beta 2P}{n}$, i.e. $L^{\frac{2\delta n \beta 2P}{n}} \delta R$ MP: Define the map T by $v \not u$ T u where v solves, given u 2 $L^{\frac{2\delta n \beta 2P}{n}} \delta R$ MP,

@
$$^{2}v \not\models Hv \% F_{1p^{\pm}}\eth u \not\models, \qquad \eth t, z \not\models 2 R M;$$
 $v \not\eth 0 \not\models \% u_{0}\eth z \not\models, \quad @_{t}v \eth 0 \not\models \% u_{1}\eth z \not\models: \qquad (4.3)$

Estimate (3.1) then gives

A standard computation shows that if is small enough, T maps a ball of Lpb1 oRb MP into itself and is actually a contraction, hence by the Banach fixed point theorem this leads to the desired result (see for instance [11] for more details).

Funding

Y. S. was partially supported by the Simons foundation. C. D. S. was supported by the NSF and the Simons foundation. C. Wang was supported in part by NSFC 11971428 and National Support Program for Young Top-Notch Talents. J. Zhang was supported by National Natural Science Foundation of China Grants (12171031,11831004).

References

- [1] Chen, X., Hassell, A. (2016). Resolvent and spectral measure on non-trapping asymptotically hyperbolic manifolds I: Resolvent construction at high energy. Comm. PDE. 41(3): 515–578. DOI: 10.1080/03605302.2015.1116561.
- [2] Chen, X. (2018). Resolvent and spectral measure on non-trapping asymptotically hyperbolic manifolds III: Global-in-time Strichartz estimates without loss. Ann. Inst. H Poincare Anal. Non Lineaire. 35(3):803–829. DOI: 10.1016/j.anihpc.2017.08.003.
- [3] Mazzeo, R. (1988). The Hodge cohomology of a conformally compact metric. J. Diff. Geom. 28:309–339.
- [4] Mazzeo, R., Melrose, R. B. (1987). Meromorphic extention of the resolvent on complete spaces with asymptotically constant negative curvature. J. Funct. Anal. 75(2):260–310. DOI: 10.1016/0022-1236(87)90097-8.
- [5] Guillarmou, C., Hassell, A., Sikora, A. (2013). Restriction and spectral multiplier theorems on asymptotically conic manifolds. Anal. PDE. 6(4):893–950. DOI: 10.2140/apde.2013.6. 893.
- [6] Smith, H. F. (2006). Spectral cluster estimates for C^{1,1} metrics. Amer. J. Math. 128: 1069–1103.
- [7] Smith, H. F., Sogge, C. D. (2007). On the L^p norm of spectral clusters for compact manifolds with boundary. Acta Math. 198(1):107–153. DOI: 10.1007/s11511-007-0014-z.
- [8] Beceanu, M., Goldberg, M. (2014). Strichartz estimates and maximal operators for the wave equation in R³: J. Funct. Anal. 266:1476–1510.
- [9] Rogers, K.M., Villarroya, P. (2008). Sharp estimates for maximal operators associated to the wave equation. Ark. Mat. 46(1):143–151. DOI: 10.1007/s11512-007-0063-8.
- [10] Burq, N., Lebeau, G., Planchon, F. (2008). Global existence for energy critical waves in 3-D domains. J. Amer. Math. Soc. 21(3):831–845. DOI: 10.1090/S0894-0347-08-00596-1.
- [11] Sire, Y., Sogge, C. D., Wang, C. (2019). The Strauss conjecture on negatively curved backgrounds. Discrete Contin. Dyn. Syst. 39(12):7081–7099. DOI: 10.3934/dcds.2019296.
- [12] Chen, X., Hassell, A. (2018). Resolvent and spectral measure on non-trapping asymptotically hyperbolic manifolds II: Spectral measure, restriction theorem, spectral multipliers. Ann. inst. Fourier. 68(3):1011–1075. DOI: 10.5802/aif.3183.
- [13] Sire, Y., Sogge, C. D., Wang, C., Zhang, J. (2020). Strichartz estimates and Strauss conjecture on non-trapping asymptotically hyperbolic manifolds. Trans. Amer. Math. Soc. 373(11):7639–7668. DOI: 10.1090/tran/8210.