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Abstract. We study a generalization of the secretary problem, where decisions do not have 
to be made immediately upon applicants’ arrivals. After arriving, each applicant stays in the 
system for some (random) amount of time and then leaves, whereupon the algorithm has to 
decide irrevocably whether to select this applicant or not. The arrival and waiting times are 
drawn from known distributions, and the decision maker’s goal is to maximize the probabil-
ity of selecting the best applicant overall. Our first main result is a characterization of the opti-
mal policy for this setting. We show that when deciding whether to select an applicant, it 
suffices to know only the time and the number of applicants that have arrived so far. Further-
more, the policy is monotone nondecreasing in the number of applicants seen so far, and, 
under certain natural conditions, monotone nonincreasing in time. Our second main result is 
that when the number of applicants is large, a single threshold policy is almost optimal.
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1. Introduction
The secretary problem is an archetypal stopping prob-
lem whose origin is still being debated, but is usually 
attributed to Gardner (1960), Lindley (1961), or Dynkin 
(1963). In its classical version, n applicants are inter-
viewed in uniformly random order. Only one applicant 
can be hired, and the goal is to maximize the probability 
of hiring the best one. After each interview, the inter-
viewer must make an immediate and irrevocable deci-
sion of whether to hire the applicant. Despite (or because 
of) its simplicity, the secretary problem has become the 
foundation of a host of theoretical decision-making mod-
els, including those for buying or selling an asset, finding 
an apartment (Zwick et al. 2003), selling advertisements 
(or other items) in online auctions (Hajiaghayi et al. 
2004), and, naturally, hiring employees. Despite its wide- 
ranging appeal, the classical problem includes several 
assumptions that reduce the applicability of its solution 
to the problems it models: a decision has to be made 
immediately; the firm obtains no value from hiring any 
applicant that is not the best one; the number of appli-
cants is known a priori; only one applicant can be hired.

In this paper, we address the assumption that a deci-
sion has to be made immediately. In the majority of sce-
narios to which the secretary problem is applied, the 

applicants do not instantaneously depart; nevertheless, 
most of the previous work on the secretary problem and 
its variations does not depart from its truly sequential 
nature: an irrevocable decision has to be made immedi-
ately upon seeing the applicant. In many situations of 
interest, however, it is reasonable to assume that the deci-
sion does not have to be immediate. When interviewing 
prospective employees, it is reasonable to expect that the 
candidates will not be hired by another employer im-
mediately upon leaving the interview; when selling a 
commodity, potential buyers do not typically make 
instantaneous take-it-or-leave it offers. The assumption 
that decisions must be made instantaneously (or a simi-
lar assumption that there is no recall) is often explicitly 
mentioned as a weakness of the classical model (e.g., 
Freeman 1983, Goldstein et al. 2019). In other papers 
(e.g., Bearden et al. 2006), the space of real-world situa-
tions to which the results apply is severely restricted as a 
result of this assumption.1 Relaxing this assumption is 
an important step toward expanding the space of pro-
blems to which many results related to the secretary 
problem apply. In the extant literature, only simple var-
iants have been addressed, the main one being the 
“sliding window” variant, where a decision needs to be 
made only after some fixed number of other applicants 
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has arrived (e.g., Goldys 1978, Ho and Krishnan 2015). 

This model is unrealistic for many applications. For 

example, a bidder on a house would not typically with-

draw the bid after a fixed number of other bidders 

arrived; the amount of time before the bid is withdrawn 

is arguably better modeled using a distribution.
Before describing our model and results, we summa-

rize the optimal solution for the classical problem, as it 
will serve as a basis for comparison. Call any applicant 
that is the best out of all the applicants seen thus far the 
(current) candidate. Interview some fixed number of ap-
plicants, without accepting any, and thereafter accept the 
first applicant that arrives that is a candidate. The precise 
number of applicants that are only observed is deter-
mined by backward induction (Lindley 1961, Gilbert and 
Mosteller 1966) and is asymptotically n/e; the probability 
of hiring the best applicant is asymptotically 1/e. The 
optimal strategy is attractive because of its simplicity: the 
decision of whether to hire a candidate does not depend 
on the complete history; it depends only on the number 
of applicants interviewed so far.

To relax the constraint that the decision of whether to 
hire each applicant must be immediate, we consider the 
scenario in which the applicants arrive according to some 
distribution, and remain in the system for an amount of 
time drawn from some other distribution. Observe that, 
in the classical problem, the precise arrival distribution is 
irrelevant (as long as it does not have a point mass), as the 
only parameter of the decision (other than whether the 
applicant is the best-so-far) is the number of applicants 
that have arrived. We show that, in contrast, in the sto-
chastic departure case, the arrival distribution affects the 
optimal strategy. Our main results are as follows. 

1. The optimal policy has the following characteristics: 
(a) In order to decide whether to hire a candi-

date, the optimal strategy needs to take into account 
only two parameters: the number of applicants that 
have arrived and the time that has passed. We also 
show that this is unavoidable; that is, the optimal 
policy must consider both parameters.

(b) The optimal policy is monotone nondecreas-
ing in the number of applicants, in the following 
sense: for any fixed time, there is some threshold 
such that if the number of applicants that have 
arrived is above the threshold, then the policy 
accepts; otherwise, it rejects.

(c) In the case that the arrival distribution is uni-
form, the optimal policy is monotone nonincreasing 
in the time: for any fixed number of applicants that 
have arrived, the policy is less likely to accept if 
more time has passed. We also show this is not nec-
essarily the case for general arrival distributions.

2. When the arrival distribution is continuous and 
the number of applicants is large, the decisions do 
not have to depend on the number of applicants: a 

single-threshold policy achieves an asymptotically 
optimal success probability.

1.1. Overview of Proofs and Techniques
When facing a decision, the optimal policy accepts a can-
didate if and only if this gives a higher success probabil-
ity than rejecting. The success probability after a rejection 
again depends on the policy. As a result, the success 
probabilities are frequently bounded in different condi-
tional probability spaces. In order to compare these suc-
cess probabilities, we use simulation arguments and 
coupling of the probability spaces. One such argument is 
used to show result 1(a): If the result is not true, then 
there must be two histories, h and h′, with the same t 
(time) and k (number of applicants) on which the optimal 
policy makes different decisions. We then define a new 
policy that follows the decisions of the optimal policy for 
h whenever it encounters h′. We couple the future events 
to show that our new policy does better than the optimal 
policy on h′, a contradiction.

Some arguments require a more detailed look at the 
probability spaces generating the events. For example, to 
show result 1(b), we would like to argue that after having 
seen k applicants at time t, if the success probability for 
accepting the current candidate is higher than for reject-
ing, then the same holds having seen k+ 1 applicants at 
time t. In this case, the simulating policy acts as if k+ 1 
applicants have already arrived, and only n� k� 1 ap-
plicants remain. It does so by ignoring a random future 
arrival. The difficulty comes from the fact that future 
observations conditioned on having seen k applicants are 
not identically distributed to the future observations con-
ditioned on having seen k+ 1 applicants. We overcome 
this by coupling with a suitably chosen conditional prob-
ability space to get an upper bound on the probability of 
a future observation.

To prove result 2, we explicitly construct a threshold 
policy. At any time t, the policy compares two probabili-
ties: (i) the probability that the overall best applicant 
arrives by t, and (ii) the success probability of an optimal 
policy that only accepts applicants arriving after t. When-
ever (i) is greater than (ii), accept the candidate. Note 
that, by definition, (i) is nondecreasing and (ii) is nonin-
creasing in t, so this policy is a threshold policy. To prove 
asymptotic optimality, we observe that the optimal pol-
icy actually compares the same probabilities but in the 
probability space conditioned on the number of appli-
cants that have arrived and the candidate at time t leav-
ing at t. Using concentration bounds, we show that the 
conditional probabilities are in most cases close to the 
unconditional ones, and the newly constructed policy 
differs from the optimal one only when accepting and 
rejecting yield similar success probabilities. To bound 
the loss in success probability by these errors, we com-
pare conditional and unconditional probabilities using 
coupling arguments. The key difference from the proofs 
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of the first three results is that we care not only about 
which policy has a higher success probability but also by 
how much they differ.

1.2. Related Work
The secretary problem and its variants have received 
much attention since the later part of the 20th century. 
We refer the reader to Freeman (1983) and Ferguson 
(1989) for surveys on the classical literature on secretary 
problems and variations thereof.

In this work, we address a major criticism of the classi-
cal secretary problem: that decisions have to be made 
immediately. Many other criticisms of the model have 
been addressed in the literature. Bearden et al. (2006) 
consider variants in which the firm does not obtain value 
only from hiring the best applicant, but instead receives 
a payoff that increases with the quality of the applicant. 
In a follow-up work, Palley and Kremer (2014) compare 
the situations in which the decision maker only has 
access to pairwise comparisons between the applicants, 
and when they observe the actual value. Goldstein et al. 
(2019) consider a variant in which the value of the appli-
cant is sampled from some distribution, and this distri-
bution can be learned as the game is repeated. Cownden 
and Steinsaltz (2014) study the scenario where multiple 
players seek to employ applicants from a common labor 
pool. Alpern and Baston (2017) consider the situation in 
which applicants are interviewed by a search committee 
and may have different values to different members of 
the committee.

Special cases of not making an immediate decision 
have been addressed in the literature: Goldys (1978) 
showed that the expected rank of the accepted applicant 
tends to ≈2.57 as n tends to infinity, when one is allowed 
to choose either the current applicant or the previous 
one. This is in contrast to the expected rank of ≈3.87, 
when one is only allowed to choose the current appli-
cant, shown by Chow et al. (1964). In this setting, the 
value of an applicant is n� i when the ith best applicant 
is accepted, as opposed to 1 if the best applicant is 
accepted and 0 otherwise in the classical setting. The sce-
nario considered by Goldys is sometimes called a sliding 
window. In the online setting, a sliding window of size x 
means that after seeing an applicant, the algorithm does 
not need to make a decision until it has seen x more 
applicants. Goldys’s setting is a sliding window of size 1. 
Smith and Deely (1975), and much later and indepen-
dently Ho and Krishnan (2015), consider sliding win-
dows of length 1<m< n, and show that the optimal 
policy is a thresholding policy. Ho and Krishnan (2015) 
also give a recursive (nonexplicit) formula for the proba-
bility of hiring the best applicant using sliding windows 
of size n/i for constant i; and they give an asymptotic 
bound when the window size is at least n/2.

Vardi (2015) considered the scenario where applicants 
arrive k times each, and the arrival order is uniform over 

the (kn)! possible arrival orders, and gave an optimal 
threshold-based strategy for accepting the best applicant 
and computed the success probability for k� 2; Hoefer 
and Wilhelmi (2021) extended these results to some 
packing domains. Petruccelli (1981) considered the case 
when the interviewer is able to recall some applicant 
from the past with some probability p> 0.

We note that in all of the above cases—in contrast to 
our setting—the optimal policy is uni-variate, depending 
only on the number of observed applicants, and not on 
the time at which the decision is made.

2. Model and Preliminaries
A set S of n applicants arrive and depart over some time 
interval, which we normalize to [0, 1]. For each i ∈ S, an 
arrival time ai is drawn independently from a (known) 
arrival distribution A and a waiting time li (denoting how 
long the applicant stays in the system) is drawn indepen-
dently and identically distributed (i.i.d.) from a (known) 
waiting time distribution L. Applicant i leaves at time 
di � min{ai + li, 1}. There is a total order ρ : [n] → [n] on 
S, and a decision maker wishes to select the best appli-
cant; that is, i ∈ [n] such that ρ(i)�1. We call this problem 
the stochastic departure secretary problem and denote it by a 
triple (n,A,L).

An instance (which we will sometimes refer to as a com-
plete instance for clarity) is represented by a triple (a

→
, d
→

,ρ
→
), 

where | a
→
| � |d

→

| � |ρ
→
| � n. a

→
∈ [0, 1]n is a vector of arrival 

times, a1 ≤ a2 ≤⋯≤ an; d
→

∈ [0, 1]n is a vector of departure 
times, and ρ

→
is the vector of the ranks of the applicants. 

Alternatively, we also denote an instance by a triple 
(a
→

, d
→

, r
→
), where r

→
is a vector of relative ranks of the appli-

cants. The relative rank of applicant i, ri ∈ {1, : : : , i}, indi-
cates the number of applicants among 1, : : : , i that are at 
least as good as i. Formally, ri � |{j ≤ i |ρ(j) ≤ ρ(i)} | : This 
representation has the advantage that it matches the 
knowledge of the decision maker; after i arrivals, the 
decision maker knows r1, : : : , ri but not how these appli-
cants compare with future arrivals. At time t, we call 
applicant j where j � max{i : ai ≤ t, ri � 1} a candidate; at 
any time after the first arrival, there is a unique candi-
date. A history h is an event at which an applicant 
departs. It is denoted by a tuple h � (a

→
, d
→

, r
→

, t), where 
| a
→
| � |d

→

| � | r
→
| � n; there is some k ∈ {1, : : : , n} such that 

for i ∈ {k + 1, : : : , n}, ai � ⊥, denoting that applicant i 
has not yet arrived by time t. Here, a

→
is sorted: it holds 

that 0 ≤ a1 ≤⋯≤ ak ≤ t, for i ≤ k. For i ∈ {1, : : : , n}, 
di ∈ [0, t] ∪ ⊥, where ⊥ indicates that the applicant has 
not departed by time t (clearly, ai � ⊥⇒ di � ⊥). Lastly, 
ri ∈ {1, : : : , i} for i ≤ k, ri � ⊥ for i> k.

Generally, at any point in time, an optimal policy 
makes a decision that maximizes the probability of suc-
cess from this point onward. As ties can occur, the policy 
is not unique. Therefore, we only consider lazy policies. 
A policy is lazy if it rejects whenever acceptance and 
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rejection have identical conditional success probabilities. 
There is always a lazy optimal policy and it is unique. 
Denote this policy by OPT. We first make two standard 
observations regarding the optimal lazy policy OPT (see, 
e.g., Gilbert and Mosteller 1966, Bruss 2000). Given a 
time t, let ACCt be the policy that accepts only at time t 
and only in the event that the candidate at time t departs 
at exactly t. Let REJt be the policy that rejects all departing 
applicants up to and including time t and thereafter con-
tinues with the optimal policy (conditioned on having 
rejected all applicants up to this point). Given any policy 
POL, we denote by SUCCESS(POL) the event that POL selects 
the best applicant. The first observation follows immedi-
ately from the facts that any optimal policy makes deci-
sions that maximize the probability of success and that 
OPT is lazy.

Observation 1. Given a time t, let h be a history until t 
in which the candidate departs at t. Then OPT accepts 
this candidate if and only if it has not accepted any 
applicant before and

Pr[SUCCESS(REJt |h)] < Pr[SUCCESS(ACCt |h)]:

Observation 2. Given a time t, let h be a history in 
which k applicants have arrived by t and the candi-
date departs at t. Then Pr[SUCCESS(ACCt |h)] �

k
n.

To see why the second observation is true, note 
that, as the arrival order of applicants is chosen uni-
formly at random out of all permutations, the proba-
bility that the optimal is among the first k arrivals is 
exactly k/n.

3. Optimal Stopping Rule
In this section, we characterize the optimal stopping rule. 
We use the following definition.

Definition 1. A policy for the stochastic departure sec-
retary problem is bivariate if its decision whether to 
accept or reject a candidate departing at time t given a 
history h, depends only on t and k, the number of 
applicants that have arrived up to t. In other words, 
there exists a function Θn(t, k),

Θn : [0, 1] × [n] → {ACCEPT, REJECT}, 

such that whenever a candidate x departs at time t and k 
applicants have arrived prior to t, the policy accepts if 
and only if x is the candidate and Θn(t, k) � ACCEPT.

Theorem 1. There exists a bivariate optimal policy Θn(t, k)
for the stochastic departure secretary problem; Θn is nonde-
creasing in k for fixed t, and if the arrival distribution A is 
uniform, then it is nonincreasing in t for fixed k.

Theorem 1 implies that, for uniform arrivals, it is possi-
ble to succinctly2 represent the optimal policy using n 
real numbers, t1, … ,tn: if at time t, k applicants have arrived 
and the best leaves, then accept if and only if t ≤ tk. The 

following two examples show that both k and t are neces-
sary; that is, Θn is indeed a function of both k and t, and not 
just of one of them.

Example 1 (The Optimal Policy Depends on k). It is tri-
vial to confirm that for any time t, any n> 2, and any 
arrival and departure distributions, if k� 1 the optimal 
policy rejects, and if k� n, then the optimal policy accepts.

Example 2 (The Optimal Policy Depends on t). Let the 
arrival distribution be the uniform distribution, and 
assume that each applicant stays in the system for 
some very small fixed time ɛ ≤ 1=n3. If the number of 
applicants that have arrived by time t�4/9 is 4n/9, 
then the probability of success for accepting the candi-
date at this time is 4/9 (by Observation 2). To bound 
the probability of success for rejecting, denote such a 
history by h, and denote the event that there will exist 
some time in [t, 1] when there is more than one appli-
cant in the system by I. Then,

Pr[SUCCESS(REJt |h)] ≤ Pr[SUCCESS(REJt |h, I)]Pr[I |h]

+Pr[SUCCESS(REJt |h,¬I)]Pr[¬I |h]

≤ Pr[I |h] + Pr[SUCCESS(REJt |h,¬I)]

≤ 2=5:

This is because Pr[I |h] ≤ 1=n and Pr[SUCCESS(REJt |h,¬I)]
is exactly the probability of success in the classical sec-
retary of rejection at time t conditioned on 4n/9 appli-
cants arriving by this time. The latter is at most the 
maximal probability of success for rejecting in the 
classical case, which is approximately 1/e (the exact 
value depends on the value of n). As the probability 
of success of accepting is greater than that of rejecting, 
we should accept. However, if at time t � 1� ɛ, 4n/9 
applicants have arrived, then we should reject: all the 
remaining applicants will arrive by time 1, and none 
of them will depart by this time. Therefore, the proba-
bility of success if we reject is equal to the probability 
that the best applicant is not one of the first 4n/9 
applicants (i.e., 5/9), while the probability of accept-
ing is 4/9.

In order to prove Theorem 1, we prove three things: 
(a) the optimal policy depends only on t and k (not on 
the complete history at time t; (b) the optimal policy is 
monotone nondecreasing in k; and (c) the optimal policy 
is monotone nondecreasing in t for the uniform arrival 
distribution. The proofs of these results are given in the 
online appendix. The implicit requirement in (a)—that 
the applicants’ arrival or waiting times are identically 
distributed—is necessary. If the applicants’ arrival or 
waiting times are not identically distributed, then t and 
k might be insufficient to define the optimal policy 
might (i.e., (a) does not hold). This can be seen in the fol-
lowing examples.
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Example 3. Let n� 100. Partition the applicants into 
two sets: A has 49 applicants, and these arrive uni-
formly at random in [0, 1]; B has 51 applicants that 
arrive at time 0 with probability x ∈ (0, 1) and at time 
0.51 with probability 1�x. All applicants stay in the 
system for some small ɛ ≤ 10�6. If at time 0.5 all of A 
but none of B have arrived and the candidate departs, 
then we should reject: the probability of success for 
accepting and rejecting is 0.49 and 0.51, respectively. 
If, on the other hand, 49 applicants from B but none 
from A have arrived by this time and the candidate 
departs, then we should accept. The probability of 
success for accepting is 0.49; to bound the probability 
of success for rejecting, denote this history by h, and 
denote the event that there will exist some time in 
[0.5, 1] when there is more than one applicant from A 
in the system by I1, and the event that the best candi-
date is one of the remaining applicants in B by I2. 
Then,

Pr[SUCCESS(REJt |h)] ≤ Pr[I1 |h] +Pr[I2 |h]

+ Pr[SUCCESS(REJt |h,¬I1,¬I2)]

< 0:49, 

as Pr[I1 |h] ≤ 0:01, Pr[I2 |h] ≤ 0:02 and Pr[SUCCESS(REJt |

h,¬I)] is equal to the probability of success in the classi-
cal secretary of rejection at time t conditioned on 49 
applicants arriving by this time, which is approxi-
mately 1/e, and at most (say) 0.45.

Example 4. A similar example shows that the waiting 
time needs to be identically distributed. Here, the arrival 
distribution is the uniform distribution for all applicants, 
and again we partition the applicants into two sets. Set A 
has 49 applicants that depart immediately upon arrival, 
and set B has 51 applicants that stay in the system for 
0.5. If all of A and none of B have arrived by time 0.5, 
then we should reject. If 49 applicants from B have 
arrived, then we should accept.

Theorem 1 gives a sufficient condition for the opti-
mal policy to be monotone nonincreasing in t. Giving 
a necessary condition is left as an open problem, but 
we note that the optimal policy is not monotone non-
increasing in t for all arrival distributions, as the fol-
lowing example shows.

Example 5. Consider the following arrival and depar-
ture distributions: each applicant arrives in [0, 4ɛ] or 
(6ɛ, 1] with probability ɛ, and in (4ɛ, 6ɛ] with probabil-
ity 1� 2ɛ. Conditioned on arriving in each interval, 
the arrival distribution is uniform over the interval. 
Applicants remain in the system for 3ɛ. Assume that n 
is large. If 4n/9 applicants have arrived by time 4ɛ, 
and the candidate leaves, then we should reject, as 
Pr[SUCCESS(ACCt)] � 4=9, Pr[SUCCESS(REJt)] ≈ 5=9. How-
ever, if t�4/9, then we should accept, as the circum-
stances are almost identical to those of the classical 

continuous time secretary model, where agents arrive 
uniformly at random in [0, 1], and we should accept if 
t > 1

e (see, e.g., Freeman 1983).

4. Optimal Policy in the Limit
We now show that, for large n, optimal policies have an 
even simpler structure. To get asymptotically optimal 
performance, it is enough to define a time threshold t∗

such that, irrespective of the number of arrivals, we 
always accept a departing candidate if they depart at 
time t ≥ t∗. To formally define this policy, we first make 
some observations regarding the conditional success 
probabilities that a policy can consider when making 
accept/reject decisions.

Let Et denote the event that the candidate leaves at 
time t. Let REJ

n
t be the policy for n applicants that rejects 

all applicants that depart up to and including time t, and 
thereafter continues with the optimal policy. Let REJA

n
t be 

the best policy for n applicants out of those that reject all 
applicants that arrive up to and including time t. Whereas 
REJA

n
t and REJ

n
t are different, they have the same probabil-

ity of success conditioned on Et (from Theorem 1); that is,

Pr[SUCCESS(REJA
n
t |Et)] � Pr[SUCCESS(REJ

n
t |Et)]:

This is because if Et occurs, then neither policy acce-
pts any applicant that arrived before. Define pn, t � Pr 
[SUCCESS(REJA

n
t )]. In the online appendix, we show that 

the limit pt � limn→∞pn, t exists for any fixed t. Dini’s the-
orem implies that this convergence is uniform, because 
pn, t is continuous for all n. Therefore, limn→∞supt∈R |pt�

pn, t | � 0. As a consequence, the function π : t → pt is 
nonincreasing and continuous.

The cumulative distribution function of the arrival dis-
tribution (A) and π�are continuous, have the same do-
main, and their ranges are [0, 1] and [0,ζ] for some 
ζ ∈ (0, 1), respectively. Therefore, they must intersect. 
That is, there is some t∗ ∈ [0, 1] such that pt ≥ A(t) for 
t < t∗ and pt ≤ A(t) for t > t∗. This allows us to define our 
policy, denoted by POL

∗.

Definition 2. Let t∗ ∈ [0, 1] be the intersection of A and 
π : t → pt. We have POL

∗ as follows. For any t ∈ [0, 1], if 
the candidate departs at time t, then POL

∗(t) � REJECT if 
t ≤ t∗ and POL

∗(t) � ACCEPT if t > t∗.
Our main result in this section is that POL

∗ is asymp-
totically optimal. The proof is given in the online 
appendix.

Theorem 2. Given any continuous arrival distribution A 

and arbitrary waiting time distribution L, there exists a 
policy POL

∗ defined by a threshold t∗ that accepts a candidate 
that leaves at time t if and only if t > t∗. For every ɛ > 0, 
there is an n0 such that for all n > n0, Pr[SUCCESS 

(POL
∗)] ≥ Pr[SUCCESS(POLn)]� ɛ, where POLn is the optimal 

policy for n applicants.
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5. Future Directions
This paper offers a structural analysis of the secretary 
problem with stochastic departures. However, many 
natural questions are more quantitative in nature: How 
does the optimal policy’s probability of success vary 
with parameters of the model, such as the waiting time 
distribution L? Under what conditions on L is the proba-
bility of success guaranteed to be bounded away from 1/ 
e as n tends to infinity? For example, does this hold 
whenever Pr(L > 0) is positive? If we hold the arrival 
time distribution A fixed but vary L to make applicants 
more patient (i.e., substitute L with another distribution 
L
′ that stochastically dominates L), does this always 

increase the probability of success?
Another interesting research direction is relaxing the 

assumption that the system knows when an applicant is 
about to depart. In this work, we assume that the optimal 
policy receives a signal when each applicant departs and 
is allowed to make a decision thereafter. What structure 
does the optimal policy have when we only receive a sig-
nal immediately after an applicant’s departure?

Finally, the stochastic departure aspect of our model 
can be applied to virtually all variations of the secretary 
problem. Of particular interest is the effect of stochastic 
departures on the matroid secretary problem (Babaioff 
et al. 2007), which have a strong connection with online 
auctions (Babaioff et al. 2008).
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Endnotes
1 Bearden et al. (2006) motivate their results using “tight housing 

markets.”
2 To the extent that real numbers can be represented succinctly.
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