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when Λ is a subset of Λ′ in which case it is straightforward which

leakage profile provides more privacy.

Given our insufficient understanding of leakage, academic works

resort to evaluating the privacy of a leakage profile based on the

outcome of known attacks. This introduces a cat-and-mouse game

where slightly tweaked leakage profiles are hypothesized to be

secure until a new customized leakage-abuse attack is proposed

that reconstructs the plaintext data.

Leakage Inversion. In this work we quantify the privacy of

searchable encryption schemes by introducing a rigorous, versatile,

and widely applicable approach. Our starting point is to treat a

leakage profile as a mathematical function that takes as an input

a plaintext database DB and a sequence 𝑄 of queries and outputs

structural characteristics about the plaintext data, i.e., the leaked

information. Much like any mathematical function, one can define

the inversion of the leakage function as the set of plaintext databases

for which the sequence of queries 𝑄 reveals identical structural

characteristics, i.e., the same exact pattern. In other words, the

inversion of leakage gives a set of potential databases that are con-

sistent, and therefore explain, the observed leakage. We refer to this

set of databases 𝑅𝑆 (DB) as the reconstruction space. Fundamental

properties of the reconstruction space, such as its entropy and its

geometry, capture the privacy of the leakage from an SE scheme.

The power of leakage inversion is that (𝑖) it is universal since it

applies to different types of queries, i.e., keyword/range search, etc.,

as well as variations of leakage profiles, i.e., responses with padded

volume, (𝑖𝑖) it permits a foundational algorithmic treatment for

characterizing the structural properties of the reconstruction space,

(𝑖𝑖𝑖) it allows for intuitive and interpretable notions of privacy such

as the entropy of 𝑅𝑆 (DB) and the expected/maximum distance of a

member of 𝑅𝑆 (DB) to the original plaintext DB, and (𝑖𝑣) it allows

for a comparative analysis between leakage profiles, e.g., one can

directly compare the privacy offered by two schemes by comparing

the entropy of their reconstruction spaces.

Leakage inversion can be used not only for SE scheme compari-

son but also for comparing attacks by assessing the contribution of

the auxiliary information towards a successful reconstruction.

Our Contributions. We make the following contributions:

• We define the notion of reconstruction space as the set of databases

with structurally equivalent leakage with respect to a leakage

profile. We define as leakage inversion a quantitative property of

the reconstruction space that captures a notion of privacy. We

put forth the definitions of leakage inversion via entropy which

applies to both keyword and range search as well as leakage in-

version via bounded maximum distance and via expected distance

which apply to range search. These flavors of leakage inversion

capture different dimensions of privacy such as the number of po-

tential databases that explain the leakage as well as the distance

of a random/furthest guess from the original database.

• We revisit the adversarial assumptions from the area of leakage-

abuse attacks under the lens of leakage inversion. Our analysis

quantifies the entropy reduction for varying types of auxiliary

information and leakage. This application of leakage inversion

on attacks quantifies how much of a head start these attacks gain

from assuming access to auxiliary information.

• We apply leakage inversion to SE schemes for range queries.

Our first finding is that for dense databases the reconstruction

space of the standard quadratic scheme (which permits the query

leakage of a quadratic number of queries) is identical to the

reconstruction space of the more recent augmented binary tree

scheme (which permits the query leakage of a linear number of

queries). To the best of our knowledge, this is the first evidence

that less leakage does not always lead to more privacy. We derive

bounds on leakage inversion for the binary tree scheme and

evaluate our findings on real-world databases. Our evaluation

shows that in the case of the binary tree scheme, the distance

between the true plaintext databaseDB and a random guess from

𝑅𝑆 (DB) is very close to the maximum distance between DB and

a member of 𝑅𝑆 (DB).

• We apply leakage inversion to a defense mechanism from the SE

literature called padding. An SE scheme with padding introduces

a redundant retrieval of records to obscure the volumetric leakage

of SE. We use leakage inversion to analyze the entropy of padding

mechanisms from the literature and we apply our analysis to real-

world databases. Our evaluation shows that there exist a sweet

spot of parameterizing the studied defenses where increased

padding does not introduce a significant increase in entropy.

2 PRELIMINARIES

Let V be the universe of values of a database attribute. We denote

the size of the universe of values 𝑁 = |V|. In the context of keyword

search, V is the universe of words; in the context of range search, V

is the set of values of the attribute on which range queries operate.

Let I be the universe of all possible identifiers of a database. Each

identifier is uniquely associated with an encrypted record/file, thus,

these terms are interchangeable. We denote the set of identifiers

that appear in a given database as 𝐼 ⊆ I. A database is denoted asDB

and is the collection of identifier-value pairs, i.e, DB = {(𝑖𝑑, 𝑣) |𝑖𝑑 ∈

𝐼 , 𝑣 ∈ V}. Let Q be the universe of all possible queries on a database

DB. In the context of keyword search, the universe of queries Q

can be a subset (in case not all words are queryable) of V. In the

context of range search, the universe of queries Q consists of pairs

of values from V, i.e., the boundaries of the range, for which the

first value is smaller or equal to the second value. We denote as

𝑛 the number of identifiers from a database DB, i.e., 𝑛 = |𝐼 |. We

denote as 𝜈 the number of values with at least one associated record

in DB. We define as DB𝑛 the universe of all possible databases with

𝑛 documents over an attribute with 𝑁 values. The notation 𝑎
$
←− 𝐴

denotes that 𝑎 is sampled from the set 𝐴 uniformly at random.

Searchable Encryption. In the following, we define the search-

able encryption primitive. The term 𝜆 denotes the security param-

eter. The term PPT refers to a probabilistic and polynomial time

algorithm. We only define static SE schemes, for the definition of

the dynamic case we refer the reader to [41]. A static searchable

encryption scheme consists of algorithms Setup, Trpdr, Search, and

Filter that are executed between a client and a server.

• (𝐾, EDB) ←Setup(𝜆,DB): On input the security parameter 𝜆 and

the plaintext database DB the algorithm outputs client’s secret

key 𝐾 and an encrypted database EDB initialized with DB that is

outsourced to the server.

• 𝑡 ←Trpdr(𝐾,𝑞): On input the client’s secret key and the query

𝑞 ∈ Q the algorithm outputs a token (i.e., a trapdoor) for query 𝑞.
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• 𝑅 ←Search(𝑡, 𝐸𝐷𝐵): On input a token 𝑡 from the client and an

encrypted database 𝐸𝐷𝐵 from the server the algorithm outputs

a set of identifiers 𝑅 ⊆ I to the client.

• 𝑅′ ←Filter(𝑞, 𝑅): On input a set of identifiers 𝑅 and 𝑞 the algo-

rithm returns a set of identifiers 𝑅′ ⊆ 𝑅. The algorithm runs

locally on the client.

Leakage Profile. Following the notation presented in [39],

we define as qeq(𝑞1, . . . , 𝑞𝑡 ) := 𝑀 the query equality pattern that

takes as an input queries 𝑞1, . . . , 𝑞𝑡 and outputs a binary matrix

𝑀 such that 𝑀 [𝑖, 𝑗] = 1 if 𝑞𝑖 = 𝑞 𝑗 and 𝑀 [𝑖, 𝑗] = 0 otherwise.

The above pattern is also known as the search-pattern leakage.

Next, we define the response identity pattern, denoted as rid(𝑞),

as the set of identifiers in DB that are returned when query 𝑞 is

issued on DB. We note here that rid(𝑞) refers to the exact answer

of the query on the plaintext DB. There are response-revealing

schemes, e.g., [23, 27], that generate false positive responses which

means that the returned identifiers are a superset of rid(𝑞). To

capture this behavior that depends on a scheme Σ, we define the

scheme-specific response identity pattern, denoted as srid(𝑞), to be

the set of identifiers of DB that are returned by Σ.Search(𝑡, 𝐸𝐷𝐵)

algorithm where 𝐸𝐷𝐵 is derived as (𝐾, 𝐸𝐷𝐵) ← Σ.Setup(𝜆,DB)

and 𝑡 is derived as 𝑡 ← Σ.Trpdr(𝐾,𝑞). For the simpler case where

the SE scheme returns exact responses, e.g., scheme QD for ranges

and scheme [13] for keyword search, the outputs of srid and rid are

equal sets (assuming EDB is generated from DB via Setup of Σ).

Given a database DB we define vol(𝑞) as the number of iden-

tifiers in DB that are returned when 𝑞 is issued on DB. We call

response-hiding the SE schemes that hide the response identity pat-

tern (which records are retrieved) and only reveal vol(𝑞) (howmany

records are retrieved or else the size of set rid(𝑞)). If a scheme is not

response-hiding then we say it is response-revealing. Analogously to

srid, we define the scheme-specific volume pattern which is denoted

as svol(𝑞) to be the size of the set of identifiers of srid. We call

padding any mechanism that alters the exact set of records rid(𝑞)

that is retrieved by query 𝑞. The goal of padding is to obfuscate

the volumetric information that an attacker observes. We define

as trlen(DB) :=
∑
𝑞∈Q vol(𝑞) the total response length pattern, i.e.,

the setup leakage. We define as leakage profile for the searchable

encryption scheme the collection Λ of setup leakage LSetup and

query leakage LQuery is defined as: Λ =

(
LSetup,LQuery

)
. Typical

constructions in SSE, i.e., without any additional mitigation such

as padding, response-hiding, false positive responses, have leakage

profile Λ =

(
trlen, (qeq, rid)

)
.

Informally, an SE scheme with leakage Λ reveals nothing about

the underlying plaintext DB other than its leakage functions. The

formal security is captured by the real/ideal paradigm with games

Real𝑆𝐸 and Ideal𝑆𝐸 (see [18, 56] for a detailed description).

Definition 1. An SE scheme Σ=(Setup, Trpdr, Search, Filter) is

adaptively secure with respect to leakage profile Λ, iff for any ppt

adversary Adv issuing poly(𝜆) queries, there exists a stateful ppt sim-

ulator Sim and a negligible function negl(𝜆) such that:

| Pr[Real𝑆𝐸
Adv,Σ
(𝜆) = 1] − Pr[Ideal𝑆𝐸

Adv,Sim,Λ
(𝜆) = 1] | ≤ negl(𝜆).

A response-revealing SE scheme is correct if for all queries, the

set of identifiers returned in the scheme-specific pattern srid is a

superset of (or equal to) the identifiers from pattern rid. The next

definition allows schemes with false positive responses (but not

false negatives) to be correct, e.g., [23, 27]. Algorithm Filter removes

the false positive records (if any) and returns the exact response.

Definition 2. An SE scheme Σ=(Setup, Trpdr, Search, Filter) is

correct if for every 𝑞 ∈ Q of DB and (𝐾, 𝐸𝐷𝐵) derived from Σ.Setup,

after the execution of 𝑡 ← Σ.Trpdr(𝐾,𝑞) and𝑅 ← Σ.Search(𝑡, 𝐸𝐷𝐵),

the algorithm Filter(𝑞, 𝑅) returns a set of identifiers 𝑅′ that is equal

to the set of identifiers from pattern rid(𝑞).

Categories of Databases.Wedifferentiate between two types of

databases. The first is a keyword-based database which is a database

that allows keyword search on documents. Each document may

contain multiple keywords therefore there may exist pairs with

the same identifier 𝑖𝑑 and different values, (𝑖𝑑, 𝑣), (𝑖𝑑, 𝑣 ′) ∈ DB.

For the case of keyword-based databases, we define Q as the set of

keywords that can be queried in DB. The second type is a range-

based database which is a database that allows range-based search

on records, e.g., range queries on the attribute AGE of a hospital

patient. In this case, each record is associated with a single value,

therefore, in DB, there exists at most one pair (𝑖𝑑, 𝑣) for any given

𝑖𝑑 . That is, a hospital patient can only have one value associated

with the attribute AGE. To simplify our analysis we assume that the

values of a range-based database are positive and non-zero integers.

Our analysis can be adjusted to address other cases. We define the

span of a query 𝑞 = (𝛼, 𝛽) as the number of values covered by 𝑞, i.e.,

𝛽−𝛼 +1 values. For the case of range-based databases, given a value

𝑣 ∈ V we define as the reflection of value 𝑣 the point 𝑣𝑅 = 𝑁 − 𝑣 + 1.

For the case of range-based databases we define Q as the set of

ranges with boundaries in V. A dense range-based database has at

least one record associated with each value of V. If a range-based

database is not dense then we say that it is sparse.

Distance in Range-Based Databases. From the leakage attack

literature, it is known that without any significant prior knowl-

edge (e.g., known data distribution) plaintext reconstructions are

correct up to reflection [42]. Let a range-based database DB ∈

DB, we define as DB𝑅 the database with the reflected values, i.e.,

DB𝑅 = {(𝑖𝑑, 𝑣𝑅) | where (𝑖𝑑, 𝑣) ∈ DB}. Thus, for two range-based

databases DB𝑖 and DB𝑗 , their distance is defined as:

𝑑 (DB𝑖 ,DB𝑗 ) =
1
𝑛 min




∑
(𝑖𝑑,𝑣) ∈DB𝑖
(𝑖𝑑,𝑣′) ∈DB𝑗

|𝑣 − 𝑣 ′ |,
∑

(𝑖𝑑,𝑣) ∈DB𝑖
(𝑖𝑑,𝑣′) ∈DB𝑅

𝑗

|𝑣 − 𝑣 ′ |



.

We assume that DB𝑖 ,DB𝑗 are defined on the same set of identifiers.

On Range-Based Schemes. Encrypted range schemes can be

categorized as either exact response or approximate response [23,

27]. The approximate response designs allow false positives by

serving only a subset of ranges. This design choice reduces both the

storage overhead (compared to serving all possible ranges) and the

leakage (since the server won’t see the response of some ranges).We

briefly describe both types of range schemes using the definitional

framework of regular structured encryption schemes introduced

by Kornaropoulos et al. (Definition 1 in [46]).

The range queries of Q can be partitioned into groups of queries

with the same span. A scheme with exact responses (one where

the set srid is equal to rid for all queries) answers without false

positives all possible range queries and therefore it stores (in the
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worst-case) a quadratic number of responses for queries across all

spans. We call the above exact response scheme the quadratic range

scheme, denoted as QD. On the other hand, range schemes with

approximate responses only serve a set𝑄 ′ of ranges where𝑄 ′ ⊂ Q.

We call 𝑄 ′ the set of allowable ranges. When the client issues a

range 𝑞 ∈ Q −𝑄 ′ outside the allowable ranges, the scheme maps 𝑞

to a range 𝑞′ ∈ 𝑄 ′ such that the set of identifiers in the response for

𝑞′ is a superset of the response for 𝑞, also called a cover of a range.

Range schemes with approximate responses from the literature

form 𝑄 ′ by allowing only ranges that are powers of 2, i.e., span 2𝑖

for 𝑖 ∈ [0, log𝑁 ]. Furthermore, given a fixed span 2𝑖 , the approx-

imate schemes from the literature only include a limited number

of ranges with a span 2𝑖 . Specifically, the first scheme that we

consider in this work is called the Binary Tree scheme [27], de-

noted as BT. For scheme BT, 𝑄 ′ contains the sequence of ranges

[1, 2𝑖 ], [2𝑖 + 1, 2 · 2𝑖 ], [2 · 2𝑖 + 1, 3 · 2𝑖 ], . . . for all 𝑖 ∈ [0, log𝑁 ]. More

concisely, BT builds the sequence of ranges of span 2𝑖 by starting

from [1, 2𝑖 ] and increasing both boundaries by an additive factor

of 2𝑖 . This additive factor is called the step of the span. Intuitively,

scheme BT can be seen as a binary tree where each leaf maps to

a value of the attribute domain. Then, the set of allowable ranges

𝑄 ′ contains the nodes of the binary tree where each node 𝑢 rep-

resents a range that spans across the leaves that 𝑢 can reach (see

Figure 1). The second scheme that we consider from the literature

is the Augmented Binary Tree scheme [23], denoted as ABT, which

is a binary tree augmented with nodes that are placed in-between

every two consecutive (per level) internal nodes. More formally,

ABT builds the sequence of ranges of span 2𝑖 by starting from

[1, 2𝑖 ] and increasing both boundaries by an additive factor of 2𝑖−1.

For example, for 𝑁 = 8 the ranges/nodes in the BT scheme are

[1, 1], . . . , [8, 8] of span 1, then [1, 2], [3, 4], [5, 6], [7, 8] of span 2,

then [1, 4], [5, 8] of span 4, and [1, 8] of span 8. The corresponding

ABT scheme has all the above ranges/nodes plus the in-between

ranges [2, 3], [4, 5], [6, 7], [3, 6]. The rid (resp. srid) pattern of the

above schemes reveals only the retrieval of the allowable ranges.

In this work, we focus on schemes QD,BT, and ABT since they

are considered standard by the community. We mention that one

can construct different approximate response schemes, e.g., by pa-

rameterizing differently the span/step of the scheme, which requires

leakage inversion analysis beyond the scope of this work.

3 LEAKAGE INVERSION

In this section, we introduce for the first time an approach for

quantifying privacy in searchable encryption. On a high level we

use a leakage profile Λ of an SE scheme on a given database DB to

produce the set of all possible databases that may have produced a

łstructurally equivalentž leakage as the original DB. We formalize

this concept for keyword search and range search and introduce

the concept of leakage inversion which is a function that takes as an

input a plaintext database DB as well as a leakage profile Λ of an

SE scheme and outputs a numerical value that quantifies privacy

based on its reconstruction space.

3.1 Limitations of Current Approaches

Why Can’t We Compare Leakage Directly? Even though SE

is becoming a mature cryptographic primitive [55], we still lack a

rigorous approach for quantifying the privacy of an SE construc-

tion. For example, we still cannot give a satisfactory answer to the

following fundamental question

łDoes leakage Λ provide more privacy than leakage Λ′?ž

The most promising approach is given by Bost and Fouque in [10].

Informally, the proposal in [10] suggests that leakage profileΛ leaks

less than Λ
′ if the output of Λ is simulatable from the output of Λ′.

The simplified version for the static SE reads:

Definition 3. [10] Define two leakage profiles for a static SE

scheme as Λ =

(
LSetup,LQuery

)
and Λ′ =

(
L′
Setup

,L′
Query

)
. We say

thatΛ leaks less thanΛ′, denoted byΛ ⪯ Λ
′, if and only if, there exists

a pair of stateful polynomial-time algorithms S = (SSetup,SQuery),

such that, for any database DB and sequence of queries (𝑞1, . . . , 𝑞𝑚),

LSetup (DB) = SSetup

(
L′Setup (DB)

)
∀1 ≤ 𝑖 ≤ 𝑚,LQuery (𝑞𝑖 ) = SQuery

(
L′Query (𝑞𝑖 )

)
.

As noted in [10] the relation ⪯ is a partial order therefore not all

leakage profiles are comparable under ⪯. We present two cases that

highlight the fundamental shortcomings of using the ⪯ relation.

Case I: Inability to Capture Leakage Granularity. Consider

the case where Λ describes the leakage of a response-hiding SE

augmented by the following padding: pad the volume to the closest

power of 2, an approach proposed in [22]. Next, consider the case

where Λ′ describes the leakage of a response-hiding SE with the

following padding: pad the volume to the closest power of 3. Notice

that each gap between consecutive powers of 3, i.e., padding in Λ
′,

is significantly larger than its counterpart for consecutive powers

of 2, i.e., padding in Λ. In other words, the volumes of Λ′ are of

more coarse-granularity (w.r.t. the plaintext volumes) than Λ. Nev-

ertheless, the larger uncertainty provided by Λ′ can not be captured

by the framework of [10] since we cannot simulate one leakage

from the other. For example, if we attempt to simulate Λ from Λ
′

we may observe a padded volume 34. Even though the simulator

knows that its true volume is larger than 33 it is not possible to

know if it is smaller than 25 (in which case the simulator should

map it to 25) or larger than 25 (in which case it should be mapped to

26). If we attempt to simulate Λ′ from Λ we may observe a padded

volume 25 and even though we know that its true volume is larger

than 24 it is not possible to know if it should be mapped to 33 or 34.

Case II: Less Leakage⇏More Privacy. The shortcomings of

Definition 3 also appear in the context of encrypted ranges. The

fact that QD scheme reveals the leakage of a quadratic number of

ranges whereas ABT scheme reveals the leakage of a linear number

of ranges, implies that the attacker sees strictly less information in

ABT deployments. Nevertheless, Definition 3 is not applicable in

this case either since we cannot simulate one leakage from the other.

Given our inability to quantify privacy in the context of SE, the

community developed heuristics on how to compare leakages. So far,

the rule of thumb is łless leakage means more privacy". Under this

heuristic, one would think thatABT provides more privacy thanQD

since an attacker in ABT attempts to reconstruct with the leakage

from a linear number of distinct queries whereas in QD there are

𝑂 (𝑁 2) distinct queries. In Section 5, we show that this intuition

is not always correct. Specifically, we show that the number of

plaintext databases that łexplainž the leakage from ABT, is identical
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to the number of databases for QD in the case of dense databases.

Therefore, less leakage doesn’t always imply more privacy.

For completeness, we note that the work of Jurado et al. [34, 35]

proposes quantifying information leakage for Order-Revealing En-

cryption (ORE) based on the framework of Quantitative Information

Flow [2]. On a high level, QIF applied to ORE quantifies privacy as

the difference between the probability of correct reconstruction be-

fore revealing the ordering of ORE ciphertexts and after. Proposed

SE schemes for keyword-search and range-search do not reveal the

ordering by ciphertext alone (as opposed to ORE). Thus, the above

results are not directly applicable to the more general case of SE.

3.2 Quantifying Privacy by Analyzing the
Reconstruction Space

In the following, we introduce the technical tools to capture the

intuition that several databases can generate the observed leakage of

a given instantiated EDB. We define the retrieval matrix 𝑅𝑀 which

describes which identifiers are retrieved for each query according

to the leakage from the algorithms of an SE scheme. The retrieval

matrix is a concept that can be applied to different schemes and

classes of queries, even beyond keyword search and range search,

since it only specifies which records are retrieved for each query.

Definition 4. (Retrieval Matrix) Let DB be a database, let Q

be the query universe of DB, let 𝐼 ∈ I be the set of identifiers that

appear in DB, and let 𝐸𝐷𝐵 be derived by running algorithm Setup of

SE scheme Σ with leakage profile Λ. We define as a retrieval matrix

𝑅𝑀 (with respect to profile Λ and DB) the binary matrix with |Q|

rows and |𝐼 | columns such that for each 𝑞 ∈ Q, cell 𝑅𝑀 [𝑞, 𝑖𝑑] takes

value 1 if 𝑖𝑑 ∈ srid(𝑞, 𝐸𝐷𝐵) and value 0 otherwise.

We emphasize that an attacker only observes query tokens and

responses, and does not know which token corresponds to which

plaintext query (i.e., the label of a row of 𝑅𝑀). Therefore, to the eyes

of the attacker, all plaintext databases that produce the 𝑅𝑀 of DB

(up to a permutation of rows) are a valid candidate reconstruction,

e.g., see Figure 1. Based on the above insight, we define the notion

of structurally equivalent leakages and provide a definition of a

reconstruction space that applies to keywords and ranges.

Definition 5. (Structurally Equivalent Leakage) Let DB be a

database, let Σ be an SE scheme with leakage profile Λ. Let DB′ be a

database different fromDB. Let𝑅𝑀 (resp.𝑅𝑀 ′) be the retrieval matrix

of DB (resp. DB′) under scheme Λ. Let 𝑄̂DB ⊆ Q be the set of queries

in 𝑅𝑀 such that if 𝑞 ∈ 𝑄̂DB, then the row vector 𝑅𝑀 [𝑞, ∗] has at least

one cell with value 1. Let 𝑄̂DB′ ⊆ Q be the set of queries in 𝑅𝑀 ′ such

that if 𝑞 ∈ 𝑄̂DB′ then vector 𝑅𝑀
′[𝑞, ∗] has at least one cell with value

1. We say that DB and DB′ have structurally equivalent leakage

under Λ if there exists a bijection 𝜙 : 𝑄̂DB′ → 𝑄̂DB such that for every

𝑞 ∈ 𝑄̂DB′ , we have that 𝑅𝑀
′[𝑞, 𝑖𝑑] = 𝑅𝑀 [𝜙 (𝑞), 𝑖𝑑] for all 𝑖𝑑 ∈ 𝐼 .

We highlight two characteristics of the definition of structural

equivalence. First, the bijection 𝜙 , which can be thought of as a rela-

beling of queries, operates on the set of queries that return at least

one record. If one allows the bijection to extend to empty queries,

i.e., queries fromQ−𝑄̂DB, then we allow relabeling between queries

that return no records. These empty queries play no role in the

content or the retrieval operations of the DB at hand. Relabeling

empty queries artificially augments the set of databases that have

structurally equivalent leakage with DB which may convey a false

sense of security. Second, the definition only considers the bijection

on rows but not on columns. Relabeling columns would be equiva-

lent to swapping content between records which, indeed, generates

distinct databases. However, in a realistic scenario an adversary

observes the query leakage of a given DB under an instantiated

scheme Σ. Relabeling columns would result in databases that con-

flict with the observed leakage. To illustrate this point, consider

the case where Definition 5 allows relabeling of columns of 𝑅𝑀 .

Under such a definition, one could generate a keyword database

DB′′ that is structurally equivalent to the upper-left DB of Figure 1

by swapping the content between 𝑖𝑑1 and 𝑖𝑑3 as well as the content

between 𝑖𝑑2 and 𝑖𝑑4. The resulting database DB′′ wouldn’t explain

the observed leakage of the true DB since 𝑖𝑑1 in DB contains three

words (and is retrieved by 3 queries) while 𝑖𝑑1 in DB′′ contains two

words (and is retrieved by 2 queries).

Definition 6. (Reconstruction Space) Let DB be a database

and let Σ be an SE scheme with leakage profile Λ. We define the recon-

struction space, denoted by 𝑅𝑆 (DB), as the collection of databases

that have structurally equivalent leakage to DB under Λ.

The term reconstruction space was introduced by Kornaropoulos

et al. [44] in the context of encrypted 𝑘-Nearest Neighbor queries.

Later works [28, 47] used a similar notion for two-dimensional

queries. These works [28, 44, 47] used a similar concept to 𝑅𝑆 (DB)

to explain the inherent limitations of geometric leakage attacks,

i.e., the impossibility of distinguishing between symmetries (see

rotations/reflections) or identical Voronoi diagrams. In this work,

we give the first definition of reconstruction space that applies

to keyword search and (one-dimensional) range search but can

also be extended to other queries and response-hiding schemes.

More importantly, our work is the first to study the structure of

the reconstruction space, e.g., the size, the entropy, and the maxi-

mum/expected distance, for the popular cases of keyword search

and range search.

What Properties Capture Privacy? We propose two proper-

ties that capture privacy in SE, the first is a measure of uncertainty

of 𝑅𝑆 (DB) (i.e., the entropy) and the second captures the geome-

try of 𝑅𝑆 (DB) (i.e., the maximum and the expected distance of a

reconstruction from the original plaintext DB). Shannon entropy is

the most used measure of uncertainty. In this context, it formalizes

the uncertainty that an attacker faces in an attempt to choose a

correct reconstruction among 𝑅𝑆 (DB). In several leakage-abuse

attacks works [12, 33], the goal of the adversary is to recover the

exact plaintext database that an SE operates on. In this scenario,

the higher the entropy the harder it is for the attacker to guess the

correct underlying plaintext. In the case where the attacker does

not have any auxiliary information, all the members of 𝑅𝑆 (DB) are

treated as equiprobable and the entropy reduces to the logarithm

of the size of the reconstruction space 𝑅𝑆 (DB).

Additional Filtering based on Auxiliary Information. In

case the attacker has access to auxiliary information, denoted as

aux, then the reconstruction space can be further filtered to reflect

the information exposed by aux. We differentiate between two cate-

gories of auxiliary information. The first category of aux causes the

removal of a set of databases from 𝑅𝑆 (DB) even if it has structurally
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number of possible databases that satisfy the setup leakage we must

consider all valid numbers of documents and all valid numbers of

keywords in each document.

We paint the picture of why it is impractical to calculate the

entropy in this case by using a basic method from combinatorics. At

one extreme, we have the case where each keyword-identifier pair

belongs to a distinct document, i.e., we have as many documents

as pairs 𝑛 = trlen(DB). At the other extreme, we have the case

where all keyword-identifier pairs belong to the same document,

i.e., 𝑛 = 1 with trlen(DB) distinct keywords. In between these two

extremes, one can consider the number of documents as a variable

𝑥 and we have to consider all possible ways that we can assign

keyword-identifier pairs to 𝑥 distinct documents. This question is

a variation of the divider method from combinatorics that counts

the permutations of trlen(DB) + (𝑥 − 1) identical balls and 𝑥 − 1

dividers. By applying the divider method to our problem we get∑trlen(DB)
𝑥=1

(trlen(DB)+(𝑥−1)
𝑥−1

)
ways of assigning trlen(DB) keywords

to 𝑥 documents. For small values such as trlen(DB) = 50 we have

over 1029 ways of assigning keywords to documents. Thus, it is

infeasible to scale the above calculations to realistic datasets. (The

Enron database, for example, has trlen(DB) = 106.) In the above

analysis, leakage inversion confirms the intuition that the setup

leakage is insignificant. Perhaps unsurprisingly, there exists no

reconstruction attacks that rely solely on setup leakage.

Entropy from Query Leakage. In the following, we analyze

the entropy when all keywords in the database have been queried,

that is, the rid pattern is revealed across all queries. In contrast to

the previous case, we note that once all queries have been processed,

the number of documents, the number of distinct keywords that

appear in DB, and the co-occurrence of tokens in documents are all

known. The only unknown is the plaintext values of the keywords.

Given that we assume no auxiliary information, any mapping from

the keyword universe to observed tokens is possible, i.e., we cannot

exclude mappings. It follows that every distinct assignment of 𝜈

(out of 𝑁 ) keywords to 𝜈 tokens constitutes a distinct plaintext

database DB′ that is a member of the reconstruction space 𝑅𝑆 (DB).

Interestingly, there is an exception to the previous statement for

which distinct mappings give the same database. This phenome-

non occurs when we have a set 𝑆 of tokens that always return the

same documents fromDB. That is, if the keyword łleakagež and the

keyword łabusež always appear together it does not matter which

token refers to which word. An exact calculation of the entropy

would treat all possible mappings of keywords to 𝑆 as a single data-

base. For simplicity, we approximate the entropy by overcounting

the above cases (we indicate this by ≈). This approximation is sup-

ported by the observation that in most real datasets, including the

ones in our experiments, there are only a few keywords that always

appear together and, thus, their impact on entropy is small.

Theorem 1. Let DB be a keyword-based database with a keyword

universe of size 𝑁 and 𝜈 distinct keywords that appear in at least

one document. Let Λ = (trlen, (qeq, rid)) be the leakage profile of an

SE scheme. Then, the leakage inversion with respect to entropy after

observing all queries is LeakInvH (DB,Λ,⊥) ≈ log
( (𝑁

𝜈

) )
+ log(𝜈!).

Proof Sketch. After all queries have been issued, 𝜈 tokens will

have been observed. We count the number of possible databases in

𝑅𝑆 (DB) in two steps, (𝑖) by counting the number of ways we can

choose 𝜈 keywords out of the setV, and (𝑖𝑖) by counting the number

of ways we can assign the chosen keywords to the 𝜈 observed

tokens. There are
(𝑁
𝜈

)
ways of choosing 𝜈 active keywords out of a

keyword universe of size 𝑁 , and 𝜈! ways of assigning 𝜈 keywords

to 𝜈 observed tokens. Thus, the possible databases are
(𝑁
𝜈

)
·𝜈!. Since

all possible databases are equiprobable, the Shannon entropy of the

reconstruction space is log
( (𝑁

𝜈

)
· 𝜈!

)
= log

( (𝑁
𝜈

) )
+ log(𝜈!). □

We note that leakage attacks achieve at least some success with

partial query leakage. We assume that all queries have been issued

but one can devise a parameterized version of our approach where

the entropy is computed based on the subset of observed queries.

Entropy from Query Leakage & Known Keywords. In the

following, we analyze the entropy when all keywords in the data-

base have been queried and the set of keywords that appear DB

is given as auxiliary information. Unlike the previous case, the

entropy grows strictly as a function of 𝜈 .

Theorem 2. Let DB be a keyword-based database with 𝜈 distinct

words that appear in a document at least once. Let auxiliary infor-

mation aux = {𝑣 : ∃𝑖𝑑 ∈ 𝐼 , (𝑖𝑑, 𝑣) ∈ DB} . Let Λ = (trlen, (qeq, rid))

be the leakage profile of an SE scheme. Then, the leakage inver-

sion with respect to entropy after observing all possible queries is

LeakInvH (DB,Λ, aux) ≈ log(𝜈!).

Entropy from Query Leakage & Volume Vector. In the fol-

lowing, we analyze the entropy when all keywords in the database

have been queried and there is some available auxiliary information.

Specifically, the auxiliary information is defined as the mapping

from a plaintext query to the number of documents in which it

occurs, i.e., the volume vol(𝑞) of the query. This mapping is called

łvolume vectorž and is used as auxiliary information in the attack by

Oya and Kerschbaum [51]. To illustrate why the entropy is reduced

in this scenario, suppose there is only one token 𝑡 that returns

exactly 10 documents when queried. Then, given access to the vol-

ume vector for DB, there exists only one plaintext keyword that

explains the observed volume leakage of token 𝑡 . We say that the

above mapping respects the volume vector. In general, to count the

size of the reconstruction space, and in turn calculate the entropy,

it is enough to consider the databases that result from all possible

mappings from keywords to tokens that respect the volume vector.

A comparison between the next theorem and Theorem 2 shows a

significant reduction in entropy given auxiliary information.

Theorem 3. Let DB be a keyword-based database and let Λ =

(trlen, (qeq, rid)) be the leakage profile of an SE scheme. Let the col-

lection of sets of keywords with the same volume, i.e.,
{
𝐺𝑖 = {𝑣 :

vol(𝑣) = 𝑖}
}
for all 𝑖 ∈ [1, ..., 𝜈]}, be the auxiliary information aux.

Then, the leakage inversion with respect to entropy after observing

all possible queries is LeakInvH (DB,Λ, {𝐺𝑖 }
𝜈
𝑖=1) =

∑𝜈
𝑖=1 log ( |𝐺𝑖 |!) .

Proof Sketch. Recall that the execution of all queries means

that the volume of every token has been observed. This means

that for every keyword, there is at least one token with the same

volume. If some number of keywords share a volume, however, then

every bijection from those keywords to the set of tokens with the

same volume must be counted as a unique, structurally equivalent

database. Thus, for every set of keywords𝐺𝑖 with the same volume 𝑖 ,
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we count the possible assignments between those keywords and the

equal-volume tokens as |𝐺𝑖 |!, yielding a reconstruction space of size∏𝜈
𝑖=1 |𝐺𝑖 |!. Each of these databases is equiprobable, so the logarithm

of the size of the reconstruction space is
∑𝑛
𝑖=1 log ( |𝐺𝑖 |!). □

Keyword-Based Databases

Cryptanalytic

Enron Apache Ubuntu

# Keywords # Keywords # Keywords

Assumptions 500 5,000 500 5,000 500 5,000

L
ea
k
In
v H

Leakage: All Queries
7,969 79,424 8,246 82,283 10,084 100,830

Aux: ⊥

Leakage: All Queries
3,767 54,232 3,767 54,232 3,767 54,232

Aux: Known Keywords

Leakage: All Queries
71 13,467 25 11,195 1 1,110

Aux: Volume Vector

Number of Records 𝑛 29,461 50,531 26,360,716

Keyword Universe 63,031 92,454 1,179,077

Table 1: Leakage inversion via entropy on cryptanalytic as-

sumptions. The entropy reduction quantifies to what degree

the auxiliary information helps in plaintext reconstruction.

4.1 Evaluation

Methodology.We test our findings on the entropy reduction from

cryptanalytic assumptions using three datasets, all of which come

from real-world communications between individuals. The En-

ron [43] and Apache [4] email corpora consist of around 30,000 and

50,000 emails, respectively, and feature prominently in the attack

literature [6, 12, 19, 33]. We also use the Ubuntu chat corpus, first

introduced to the SE community in 2016, which consists of around

26,000,000 IRC messages from an Ubuntu development channel.

We treat each message as a document. This results in a document

count for Ubuntu that is about 5 times larger than Apache and

9 times larger than Enron. The size of the dataset, as well as the

nature of the messages (anonymous chat concerning a technical

topic) contribute to a high number of unique words in Ubuntu:

about 1.2 million, which is approximately 10 and 15 times larger

than Apache and Enron, respectively. Following the methodology

of the attack literature, we restrict our analysis to łvocabulariesž

that consist of the 500 and 5,000 most frequent words, where a

word’s frequency is the number of documents containing that word.

These numbers reflect the typical range of vocabulary sizes used in

the leakage-abuse attack literature [12].

Experimental Results. Table 1 summarizes the results of our

experiments. Unsurprisingly, we observe decreasing entropy as

greater leakage/auxiliary information is provided. Interestingly,

though, the entropy decreases at different rates for different datasets.

Moreover, we observe that one dataset can have greater entropy

than another under one set of assumptions, but less entropy under

another. E.g., Ubuntu has the highest entropy in the łAux: ⊥ž case,

but the lowest entropy in the łAux: Volume Vectorž case, for both

small and large vocabularies. The high entropy in the first case is due

to Ubuntu’s large number of unique words, while the low entropy

in the second case is due to its high number of frequent words with

unique volumes. This finding highlights the fact that entropy is not

strictly a function of the leakage, the auxiliary information, or the

database alone. Rather, it is determined by all three.

The adversarial assumptions in our experiments come directly

from the attack literature. The case of łAux: ⊥ž reflects the baseline

scenario, against which no attack is proposed so far. In this scenario,

the sensitive data is not known to anybody but the user, i.e., no

publicly accessible plaintexts or statistics about the data in the

form of auxiliary information. The case of łAux: Known Keywordsž,

which decreases the entropy by roughly 50% in our experiments,

reflects the assumption that all attack implementations make: that

the attacker knows which plaintext keywords are in the database,

but does not know the mapping from encrypted queries to plaintext

keywords [6, 12, 19, 33, 51, 53]. The case of łAux: Volume Vectorž,

which is also a common assumption in many attacks [6, 12, 51],

further reduces the entropy by roughly 99% in small-vocabularies

and around 80-99% in large-vocabularies.

Discussion. Recent work by Kamara et al. [36] rightly points to

the need for a better comparative understanding of attacks. We

believe that this change requires a shift away from an empiri-

cal approach for leakage comparison, and towards a theoretically-

grounded metric for measuring privacy. Quantifying privacy typi-

cally assists defense mechanismsś indeed, this is the case with the

next two sections of this work. In this section, however, we demon-

strated that cryptanalytic efforts can also benefit from quantifying

privacy. Typically attacks treat the algorithmic technique and the

cryptanalytic assumption as an inseparable pair. Here, we showed

that we can isolate the contribution of the auxiliary information

towards a successful attack.

5 COMPARING ENCRYPTED RANGE
SCHEMES VIA LEAKAGE INVERSION

In this section, we use leakage inversion to quantify the privacy

provided by known response-revealing encrypted range schemes.

Starting with entropy-based comparison, our first finding shows

that in dense databases the entropy of 𝑅𝑆 (DB) for the quadratic

scheme QD is constant and identical to the entropy of the aug-

mented binary tree ABT. This is a rather surprising finding since

QD reveals the query leakage of 𝑂 (𝑁 2) distinct queries while ABT

reveals the query leakage of 𝑂 (𝑁 ) distinct queries. On the other

hand, the binary tree scheme BT allows𝑂 (𝑁 ) distinct range queries

and results in a significantly larger reconstruction space. In terms

of leakage inversion with respect to maximum/expected distance,

we focus on the binary tree scheme BT and we derive lower and

upper bounds on the above privacy measures. Specifically, for the

case of expected distance, we derive bounds as closed-form expres-

sions (see Theorem 7) while for maximum bounded distance we

propose lower and upper bounds as solutions to a combinatorial

optimization problem (see Theorem 6).

5.1 Entropy Comparison

For the case of encrypted range schemes, one can view each distinct

allowable range query as a constraint on the potential databases that

explain the observed leakage. To illustrate this point, suppose that

we have an SE scheme for ranges that returns the entire database, no

matter what the query is. Thus, any reconstruction is plausible as

long as it respects trlen leakage. If we were to increase the number

of distinct responses (as opposed to returning the entire DB) then

we would decrease the number of plausible databases that explain

the observed leakage. Using this rationale, one might assume that
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5.3 Evaluation

In this evaluation, we use real-world datasets MIMIC-T4 [49], UK-

Salaries [57], and HCUP-AGE [1] and ask:

• What is the error between a randomly chosen reconstruction

from 𝑅𝑆 (DB) and the true plaintext DB?

• What is the maximum possible error between the true plaintext

DB and a member from 𝑅𝑆 (DB)?

• What is the gap between the maximum error and the error from

a randomly chosen reconstruction?

• How does an empirical computation of LeakInvMX (resp. Leak-

InvXP) compare to the lower and upper bound?

Table 2 presents the lower/upper bounds from Theorems 5, 6, and 7

on real data from previous leakage-abuse attacks. The gray rows

show the empirical computation of the maximum error between

the true plaintext DB and a member from 𝑅𝑆 (DB) as well as the

expected error between a randomly chosen member of 𝑅𝑆 (DB) and

DB. To calculate the empirical values we sampled 105 members of

𝑅𝑆 (DB) and computed the maximum error (for the first case) and

the mean and standard deviation of the error (for the second case).

The results on the (white) rows in Table 2 provide the theoretical

guarantees for the reconstruction error which answers the first two

questions posed at the beginning of the evaluation. The experiments

show that the lower and upper bounds of LeakInvMX are close. In

both cases, any minor discrepancy between the empirical value

and the theoretical bound comes from sub-sampling. It is worth

differentiating here between a random reconstruction (which is

a random assignment of records to values) and a randomly sam-

pled reconstruction from 𝑅𝑆 (DB) (which is a reconstruction where

records with the same unknown value are assigned as a group to a

value while also conforming to the responses revealed by ΛBT).

To compare LeakInvXP and LeakInvMX, start by noticing that the

number of databases in 𝑅𝑆 (DB) with respect to ΛBT is larger than

2𝜈−1 (see Theorem 5). For example, in MIMIC-T4 (which is almost

dense) there are 274 databases in 𝑅𝑆 (DB). Given such a large size

of 𝑅𝑆 (DB), the fact that the expected error LeakInvXP is so close to

the maximum error LeakInvMX means that the number of databases

with close-to-maximum error vastly outnumber the databases with

small error. Note that this does not mean that the absolute number

of low-error databases is small.

In general, these findings shed light on the structure of the recon-

struction space. For the tested data, the expected error is as large as

the maximum error for the case of BT. This is the first formal analy-

sis of the privacy offered by an SE scheme that does not rely on an

attack performance, e.g., [46], but rather is based on a theoretical

understanding of the reconstruction space.

6 COMPARING PADDING MITIGATIONS
VIA LEAKAGE INVERSION

In this section, we apply leakage inversion to three padding mitiga-

tions on response-hiding SE for keyword search. We emphasize that

we do not propose new mitigations but rather study the privacy

of already proposed padding approaches. Our contribution is the

application of a theoretically grounded approach, i.e., leakage inver-

sion, for quantifying the privacy of each approach. Using leakage

inversion we can study questions such as:

Range-Based Databases

MIMIC-T4 UK-Salaries HCUP-AGE

LeakInvMX

Upper Bound 34 198 35

Lower Bound 27 163 34

Empirical 31.5 190 32

LeakInvXP

Upper Bound 27.5 148 29

Lower Bound 19.7 122 21

Empirical || 𝜎 23.4 || 3 117 || 25 28 || 1

LeakInvH
Upper Bound 73 78 92

Lower Bound 58 8 90

Size of Universe of Values 𝑁 74 398 93

Number of Records 𝑛 8,058 536 6,772,133

Table 2: Application of leakage inversion via bounded max-

imum distance (denoted as LeakInvMX), leakage inversion

via expected distance (denoted as LeakInvXP), and leakage

inversion via entropy (denoted as LeakInvH) on range-based

datasets. The bounds are calculated fromTheorems 5, 6, and 7.

The gray rows show the empirical measurement (and its stan-

dard deviation 𝜎) based on 105 samples from 𝑅𝑆 (DB).

łHow much more privacy do we get if we accept a larger

communication overhead from padding?ž

Leakage inversion allows us to not only compare different padding

methods but also choose the parameterization that strikes a good

balance between efficiency and privacy for given padding, which, in

turn, results in efficient SE deployments with quantifiable privacy.

En route to cryptographic definitions for padding, we introduce

a new modular leakage profile called łfosž that captures generaliza-

tions of previous proposals, which may be of independent interest.

Padding the Signature of Response-Hiding Schemes. On a

high level, most padding schemes associate additional fake records

with each value. This way, when an encrypted query is received,

the scheme returns a superset of the desired response. Given that

response-hiding schemes hide the identity of the retrieved records,

the leakage boils down to amapping from tokens to padded volumes.

More formally, we define the signature of a (padded or non-padded)

database 𝜎 (DB) as the sequence of pairs (𝑣𝑖 , vol(𝑣𝑖 )) for 𝑖 ∈ [𝑁 ].

Padding mitigations augment the original database DB to get DB′

for which the adversary observes the padded signature 𝜎 (DB′).

Reconstruction Space Over Signatures. From an adversar-

ial perspective, an attacker that observes the leakage of a padded

response-hiding SE may need to first recover the signature of the

non-padded database before attempting to reconstruct the original

plaintext. In some cases, the non-padded signature is the connect-

ing link between the padded leakage observations and the auxiliary

information (common in all leakage attacks [12, 33, 51] on keyword-

databases). For example, the most recent attack by Oya and Ker-

schbaum [51] considers the case where the auxiliary information

is the mapping from plaintext keywords to non-padded volumes (as

opposed to the mapping from tokens to padded volumes which is

revealed by leakage Λ). This auxiliary information is called łvol-

ume vector of keywordsž and is used in part by other attacks [12].

One way to illustrate the connection between signature recovery

and privacy is to consider an attacker that guesses correctly the

non-padded volume of a keyword, e.g., token 𝑡 appears in 22032
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real documents. In this case, the attacker can use the auxiliary in-

formation to unambiguously identify the plaintext of 𝑡 which must

be the only entry in the volume vector with volume 22032.

From a theoretical perspective, as the community expands its

SE-hardening efforts by applying multiple mitigations, it is essential

to understand the individual effect of each mitigation to the overall

privacy. Towards this goal, we want to study the effect of padding

alone on privacy which translates to quantifying the uncertainty

between the padded signature and the non-padded signature.

In this section, we will re-define the reconstruction space so as

to capture the privacy increase offered by padding in the response-

hiding setting. Specifically, the reconstruction space will comprise

all the non-padded signatures (as opposed to plaintext databases)

that could have resulted in the observed padded signature.

6.1 Padding Approaches

On a high level, we consider padding approaches that group to-

gether a number of values 𝑣 ∈ DB to form set 𝑃𝑖 . Instead of revealing

different information for each individual value from 𝑃𝑖 , the con-

sidered padding approaches reveal the same information for all

members of 𝑃𝑖 . For example, a padding approach may reveal the

sum of all the volumes implemented by returning all records associ-

ated with values from 𝑃𝑖 as a single logical unit. We note that the

approach of grouping values appeared in prior works (e.g., see Sec-

tion 4.2 in [12], Section 6 in [31], Section 6 in [38]). This approach

can be generalized, e.g., instead of revealing the sum of volumes in

𝑃𝑖 , one may choose to reveal another function of the volumes in

𝑃𝑖 . In this work, we develop a common definitional framework to

express proposed padding variations and their generalizations.

Notation. The analyzed padding approaches partition values

𝑣 s.t. (𝑖𝑑, 𝑣) ∈ DB into sets of the same size𝑚. After the partition

of values, all the pairs (𝑖𝑑, 𝑣 ′) ∈ DB are also considered part of the

partition set 𝑃𝑖 where value 𝑣
′ belongs, i.e., 𝑣 ′ ∈ 𝑃𝑖 . As a result, even

though each partition set contains the same number of values𝑚, the

total volume of each partition may significantly differ depending

on the number of pairs (𝑖𝑑, 𝑣 ′) associated with 𝑣 ′. For simplicity,

we assume that the number 𝜈 of values that appear in DB is a

multiple of𝑚. We write P = (𝑃1, 𝑃2, . . . , 𝑃𝜈/𝑚) for a partition of

the 𝜈 values into 𝜈/𝑚 non-overlapping sets. That is, the union of the

sets, ∪𝑖∈[𝜈/𝑚]𝑃𝑖 , is equal to the set of values inDB. We denote with

P(𝑣) the partition set of P that contains 𝑣 . To simplify notation, we

write max(𝑃𝑖 , 𝑗) for the volume of the value with the 𝑗-th largest

volume in a set 𝑃𝑖 . We also use max(DB, 𝑗) for the volume of the

value with the 𝑗-th largest volume in the entire set of values in

DB. For the largest volume we omit the second input and simply

writemax(𝑃𝑖 ) = max(𝑃𝑖 , 1) andmax(DB) = max(DB, 1). We write

sum(𝑃𝑖 ) =
∑

𝑣𝑗 ∈𝑃𝑖 vol(𝑣 𝑗 ) for the total volume of all values in 𝑃𝑖 .

Rounding Padding. In this approach the volume of each value

𝑣 is łroundedž to the closest power of a constant 𝑐 . For 𝑐 = 2,

the padded volume becomes 2 ⌈log vol(𝑣) ⌉ . The rationale behind this

previously proposed padding [22] is that the adversary observes

only a set of predetermined padded volumes, i.e., the powers of the

chosen 𝑐 , and as a result, can only observe a coarse-grain volume

leakage. Rounding is inline with the partitioning framework since

each Rounding partition contains a single value.

Alignment Padding. In this approach, the volume of each

value is increased to the largest volume of its partition set.Alignment

is a tunable generalization of a proposed padding approach [52]

that pads all values to the maximum volume of the database which

corresponds to the case of𝑚 = 𝑁 in Alignment.

Bucketing Padding. This previously proposed padding ap-

proach [38] groups values together and treats them as a single

logical unit, which we will call a łbucketž (or bin). When one of

the values is requested then the padded SE scheme returns all the

records associated with the values of the bucket.

On Partitioning Strategies. A common characteristic of the

above paddings is that they all partition the values of the database.

If the partitioning strategy is decided based on the volume of each

value then the SE scheme leaks additional information due to the

partitioning strategy. To illustrate this point, consider a database

where 𝑣1, . . . , 𝑣4 have volumes 50, 47, 49, 48. Next, we fix 𝑚 = 2

and choose Alignment padding which only reveals the maximum

volume of each partition set. Suppose that we partition by grouping

values with large volumes first, then we get 𝑃1 which contains

volumes {50, 49} and 𝑃2 with volumes {48, 47}. If the partitioning

strategy is known to the attacker, then (s)he infers that the smallest

volume of 𝑃1 is at least 48. This is because the largest volume of 𝑃2
is 48, thus 𝑃1’s volumes must be at least as large. On the contrary,

if a random partitioning resulted in the same 𝑃1 and 𝑃2 then the

inference becomes: One of the volumes of 𝑃1 is 50 and the other

volume can be anything from 1 to 50. Thus, in this work, we only

consider the random partitioning strategy which leaks less.

More formally, we define the following parameterizable leakage

profile that applies to all padding algorithms.

Definition 9. (Function-Over-Subset Pattern) Let P be a par-

tition of values of a DB into disjoint sets with𝑚 values each. Let 𝑓

be a (possibly randomized) function with multivariate input and a

single-number output. We define as function-over-subset pattern, or

fos pattern, the function family that takes as input a DB, the partition

P, the function 𝑓 , a value 𝑣 , and outputs:

fos (DB,P, 𝑓 , 𝑣) = 𝑓
({
vol(𝑣 ′) : 𝑣 ′ ∈ P(𝑣)

})
.

For the case of Alignment the function 𝑓 of fos is max(·). For

the case of Bucketing the function 𝑓 of fos is sum(·). For the case

of Rounding, for which each partition set contains a single value,

the function 𝑓 of fos for the chosen rounding constant 𝑐 is 𝑐 ⌈log𝑐 ( ·) ⌉ .

In this section we re-define reconstruction space so that it con-

tains all possible non-padded signatures that explain the revealed

padded signature under a given padding algorithm. More formally,

let Alg be a padding algorithm, let 𝑚 be the number of values

per partition, and let DB′ be the padded database from running

padding Alg(𝑚,DB). We define RSAlg (DB) to be the reconstruction

space with respect to a given signature 𝜎∗ ← Alg(𝑚,DB):

RSAlg (DB) =
{
𝜎 (DBnpad) :(DBpad,P) ← Alg(𝑚,DBnpad),

𝜎 (DBpad) = 𝜎∗,DBnpad ∈ DB𝑛

}
.

6.2 Entropy Comparison

Following in the footsteps of Section 3.2, we define the leakage

inversion for the reconstruction space RSAlg (DB). With the term

ΛAlg we denote the leakage profile when the database is padded

with algorithm Alg and a randomly chosen partition P. With the

term Λ
P
Alg

we denote the leakage under a fixed partition P.

1839



CCS ’22, November 7ś11, 2022, Los Angeles, CA, USA Evgenios M. Kornaropoulos, Nathaniel Moyer, Charalampos Papamanthou, & Alexandros Psomas

Definition 10. Let DB be a database, let SE be a response-hiding

searchable encryption scheme with leakage profileΛ that uses padding

algorithm Alg. Let Γ be a random variable with probability distribu-

tion over RSAlg (DB). We define as leakage inversion via entropy

with respect to padding the function

LeakInvH (DB,ΛAlg) ≜ H(Γ) .

Notice that in this definition we do not consider the auxiliary

information, therefore, all members of RSAlg (DB) are equiprobable.

Entropy of Padding via Rounding. The fos pattern reveals

the closest power of 𝑐 for each volume.

Theorem 8. Let 𝜎 (DB) be the signature of the database DB. Let

Rounding be the padding approach applied to DB. Let 𝑐 be the con-

stant used by Rounding to pad volume vol(𝑣) to 𝑐 ⌈log𝑐 (vol(𝑣)) ⌉ . The

leakage inversion with respect to entropy is:

LeakInvH (DB,ΛRound) =
∑︁𝜈

𝑖=1
(⌈log𝑐 (vol(𝑣))⌉ − 1) log 𝑐.

Entropy of Padding via Alignment. The fos pattern reveals

the maximum volume within each partition 𝑃𝑖 , denoted asmax(𝑃𝑖 ).

From fos, the attacker infers that among the𝑚 volumes of the parti-

tion, there are at least 1 and at most𝑚 volumes with valuemax(𝑃𝑖 ).

The remaining volumes can take any non-zero value that is less than

max(𝑃𝑖 ). As for deriving a general entropy bound that works for any

partition, in the next theorem we prove that the partition P ′ that

maximizes the LeakInvH (DB,ΛAlign) is the one where the top 𝜈/𝑚

volumes are assigned to distinct partitions. Additionally, we prove

that the partition P ′′ that minimizes the LeakInvH (DB,ΛAlign) is

the one where the largest volumes are grouped together.

Theorem 9. Let 𝜎 (DB) be the signature of the database DB. Let

Alignment be the padding approach applied to DB using a given

partition P. The leakage inversion with respect to entropy is:

LeakInvH (DB,Λ
P
Align

) =

𝜈/𝑚∑︁
𝑖=1

log
©­«
𝑚∑︁
𝑗=1

(
𝑚

𝑗

)
(max(𝑃𝑖 ) − 1)

𝑚−𝑗 ª®¬
.

For any partition, the leakage inversion LeakInvH (DB,ΛAlign) is

lower bounded by

𝜈/𝑚−1∑︁
𝑖=0

log
©­
«
𝑚∑︁
𝑗=1

(
𝑚

𝑗

)
(max(DB, 𝑖𝑚 + 1) − 1)𝑚−𝑗

ª®
¬

and upper bounded by log
(∏𝜈/𝑚

𝑖=1

∑𝑚
𝑗=1

(𝑚
𝑗

)
(max(DB, 𝑖) − 1)𝑚−𝑗

)
,

and these bounds are tight.

Entropy of Padding via Bucketing. The fos pattern reveals

the sum of the volumeswithin each partition 𝑃𝑖 , denoted as sum(𝑃𝑖 ).

Given this observation, the attacker infers that the𝑚 volumes of

the partition must add up to sum(𝑃𝑖 ).

Theorem 10. Let 𝜎 (DB) be the signature of the database DB. Let

Bucketing be the padding approach applied to DB using a given

partition P. The leakage inversion with respect to entropy is:

LeakInvH (DB,Λ
P
Bucket

) =

𝜈/𝑚∑︁
𝑖=1

log

(
sum(𝑃𝑖 ) − 1

𝑚 − 1

)
.

To derive a lower bound, the next theorem proves that the mini-

mum entropy for padding via bucketing is given by the partition

that groups the largest volumes together, e.g., the largest𝑚 have

total volume
∑𝑚

𝑗=1max(DB, 𝑗), the next batch of𝑚 largest volumes

have total volume
∑𝑚

𝑗=1max(DB,𝑚 + 𝑗) etc.

Theorem 11. Let 𝜎 (DB) be the signature of the database DB.

Let Bucketing be the padding approach applied to DB. The leakage

inversion with respect to entropy under any partition is lower bounded

by the following expression (and the lower bound is tight):

𝜈/𝑚−1∑︁
𝑖=0

log

( 𝑚∑
𝑗=1

max(DB, 𝑖𝑚 + 𝑗) − 1

𝑚 − 1

)
≤ LeakInvH (DB,ΛBucket) .

For the case where each partition has more than two values, i.e.,

𝑚 > 2, we show that if there exists a partition where each set has

equal total volume, then this partition maximizes the entropy.

Theorem 12. Let 𝜎 (DB) be the signature of the database DB and

𝑚 > 2. If there exists a partition P∗ such that sum(𝑃∗𝑖 ) = sum(𝑃∗𝑗 ),

for all sets 𝑃∗𝑖 , 𝑃
∗
𝑗 in P

∗, then the leakage inversion under Bucketing

is at most

LeakInvH (DB,ΛBucket) ≤ (𝜈/𝑚) · log

(
sum(DB)/(𝜈/𝑚) − 1

𝑚 − 1

)
.

Unfortunately, as we show next, deciding whether such a parti-

tion exists is an NP-hard problem. We leave it as an open problem

whether one can efficiently find partitions that are approximately

balanced (under some definition of łapproximatelyž).

Theorem 13. It is NP-hard to decide if there exists a partition P∗

for the values of 𝜎 (DB), such that sum(𝑃∗𝑖 ) = sum(𝑃∗𝑗 ), for all sets

𝑃∗𝑖 , 𝑃
∗
𝑗 in P

∗, i.e. a partition with maximum possible reconstruction

space size for Bucketing.

The next theorem provides a necessary condition for which the

entropy of Alignment is larger than the entropy of Bucketing.

Theorem 14. For every partition P that satisfies sum(𝑃𝑖 ) ≤
𝑚−1
𝑒 max(𝑃𝑖 ) for all 𝑃𝑖 , the following relation holds between the leak-

age inversion byAlignment and the leakage inversion by Bucketing:

LeakInvH (DB,Λ
P
Align

) ≥ LeakInvH (DB,Λ
P
Bucket

) .

6.3 Evaluation

In this evaluation, we quantify the privacy provided by different

padding parameterizations. We test our analysis on the Enron and

Apache datasets. For padding via Rounding, we evaluate different

𝑐 values which, as discussed, are used to pad vol(𝑣) to 𝑐 ⌈log𝑐 (vol(𝑣)) ⌉ .

For padding via Bucketing and Alignment, we evaluate how the

entropy changes for a different number of values per partition, i.e.,

𝑚 ranges from 5 to 1000. The communication overhead is measured

as the average (across all values of DB) ratio of padded volume over

non-padded volume.

Figure 3 presents our experiments. For the plots on Bucketing

and Alignment, each solid line connects boxplots of entropy (resp.

communication overhead) over 20 random partitions using the

chosen𝑚 value. The derived measurements were concentrated and

as a result, the quartiles are not visible. The shaded blue regions

denote the upper and lower bounds from the theoretical range of
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