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ABSTRACT

Searchable encryption (SE) provides cryptographic guarantees that
a user can efficiently search over encrypted data while only disclos-
ing patterns about the data, also known as leakage. Recently, the
community has developed leakage-abuse attacks that shed light on
what an attacker can infer about the underlying sensitive informa-
tion using the aforementioned leakage. A glaring missing piece in
this effort is the absence of a systematic and rigorous method that
quantifies the privacy guarantees of SE.

In this work, we put forth the notion of leakage inversion that
quantifies privacy in SE. Our insight is that the leakage is a function
and, thus, one can define its inverse which corresponds to the col-
lection of databases that reveal structurally equivalent patterns to
the original plaintext database. We call this collection of databases
the reconstruction space and we rigorously study its properties that
impact the privacy of an SE scheme such as the entropy of the recon-
struction space and the distance of its members from the original
plaintext database. Leakage inversion allows for a foundational al-
gorithmic analysis of the privacy offered by SE and we demonstrate
this by defining closed-form expressions and lower/upper bounds
on the properties of the reconstruction space for both keyword-
based and range-based databases. We use leakage inversion in three
scenarios: (i) we quantify the impact that auxiliary information, a
typical cryptanalytic assumption, has to the overall privacy, (ii) we
quantify how privacy is affected in case of restricting range schemes
to respond to a limited number of queries, and (iii) we study the ef-
ficiency vs. privacy trade-off offered by proposed padding defenses.
We use real-world databases in all three scenarios and we draw
theoretically-grounded new insights about the interplay between
leakage, attacks, defenses, and efficiency.
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1 INTRODUCTION

Searchable Encryption (SE) [55] is the most prominent crypto-
graphic primitive for searching on encrypted data. The proposed SE
schemes strike a balance between efficiency and security and scale
to large databases. The work by Curtmola et al. [18] was the first
cryptographic treatment of SE where schemes were guaranteed to
reveal some formally-defined and superficially harmless informa-
tion, known as a leakage profile (or simply leakage). The academic
community has built an impressive body of work on SE that covers
topics such as dynamic schemes [13, 40, 41, 50], schemes for geo-
metric queries [7, 23, 24, 27], locality-aware schemes [5, 15, 21, 25],
schemes optimized for solid-state drives [8], forward and/or back-
ward private schemes [9, 11, 16, 17, 20, 26, 56], schemes for Boolean
queries [14, 37], techniques for leakage suppression [3, 29, 39], as
well as defenses that decrease the observed leakage [22, 38, 52, 54].

On the offensive end, in the last few years, we have witnessed a
surge of results on leakage-abuse attacks [6, 28, 30-32, 36, 42, 44—
48,51, 51, 58, 59] where the goal is to reconstruct the underlying
plaintext database (or plaintext query) given access to the leakage of
queries. These findings have redefined our perception of an attacker
with access to what was initially thought to be “harmless” leakage.
In terms of the quality of reconstruction, we have seen attacks that
achieve exact reconstruction [28, 30, 31, 42, 48] and attacks that
achieve a reconstruction with approximation guarantees [30, 44, 45].

In this arms race, there is a pressing need to understand the level
of privacy offered by a given leakage profile. This task is challenging
because a leakage profile only tells us what is revealed for each
processed query but it does not tell us what can be inferred from this
piece of information. Therefore, the expression of leakage profile (as
a mathematical formulation) is not as useful for assessing privacy.
One would hope that at least a comparative approach between two
leakage profiles would shed some light on the inner workings of
leakage. Unfortunately, the most promising formal treatment for
leakage comparison, by Bost and Fouque in [10], has very limited
applicability. The authors show that a leakage profile A leaks less
than another leakage profile A’ if the output of A is simulatable
from the output of A’. In practice, simulatability is possible only
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when A is a subset of A’ in which case it is straightforward which

leakage profile provides more privacy.

Given our insufficient understanding of leakage, academic works
resort to evaluating the privacy of a leakage profile based on the
outcome of known attacks. This introduces a cat-and-mouse game
where slightly tweaked leakage profiles are hypothesized to be
secure until a new customized leakage-abuse attack is proposed
that reconstructs the plaintext data.

Leakage Inversion. In this work we quantify the privacy of
searchable encryption schemes by introducing a rigorous, versatile,
and widely applicable approach. Our starting point is to treat a
leakage profile as a mathematical function that takes as an input
a plaintext database DB and a sequence Q of queries and outputs
structural characteristics about the plaintext data, i.e., the leaked
information. Much like any mathematical function, one can define
the inversion of the leakage function as the set of plaintext databases
for which the sequence of queries Q reveals identical structural
characteristics, i.e., the same exact pattern. In other words, the
inversion of leakage gives a set of potential databases that are con-
sistent, and therefore explain, the observed leakage. We refer to this
set of databases RS(DB) as the reconstruction space. Fundamental
properties of the reconstruction space, such as its entropy and its
geometry, capture the privacy of the leakage from an SE scheme.

The power of leakage inversion is that (i) it is universal since it
applies to different types of queries, i.e., keyword/range search, etc.,
as well as variations of leakage profiles, i.e., responses with padded
volume, (ii) it permits a foundational algorithmic treatment for
characterizing the structural properties of the reconstruction space,
(ii1) it allows for intuitive and interpretable notions of privacy such
as the entropy of RS(DB) and the expected/maximum distance of a
member of RS(DB) to the original plaintext DB, and (iv) it allows
for a comparative analysis between leakage profiles, e.g., one can
directly compare the privacy offered by two schemes by comparing
the entropy of their reconstruction spaces.

Leakage inversion can be used not only for SE scheme compari-
son but also for comparing attacks by assessing the contribution of
the auxiliary information towards a successful reconstruction.
Our Contributions. We make the following contributions:

o We define the notion of reconstruction space as the set of databases
with structurally equivalent leakage with respect to a leakage
profile. We define as leakage inversion a quantitative property of
the reconstruction space that captures a notion of privacy. We
put forth the definitions of leakage inversion via entropy which
applies to both keyword and range search as well as leakage in-
version via bounded maximum distance and via expected distance
which apply to range search. These flavors of leakage inversion
capture different dimensions of privacy such as the number of po-
tential databases that explain the leakage as well as the distance
of a random/furthest guess from the original database.

o We revisit the adversarial assumptions from the area of leakage-
abuse attacks under the lens of leakage inversion. Our analysis
quantifies the entropy reduction for varying types of auxiliary
information and leakage. This application of leakage inversion
on attacks quantifies how much of a head start these attacks gain
from assuming access to auxiliary information.

e We apply leakage inversion to SE schemes for range queries.
Our first finding is that for dense databases the reconstruction
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space of the standard quadratic scheme (which permits the query
leakage of a quadratic number of queries) is identical to the
reconstruction space of the more recent augmented binary tree
scheme (which permits the query leakage of a linear number of
queries). To the best of our knowledge, this is the first evidence
that less leakage does not always lead to more privacy. We derive
bounds on leakage inversion for the binary tree scheme and
evaluate our findings on real-world databases. Our evaluation
shows that in the case of the binary tree scheme, the distance
between the true plaintext database DB and a random guess from
RS(DB) is very close to the maximum distance between DB and
a member of RS(DB).

e We apply leakage inversion to a defense mechanism from the SE
literature called padding. An SE scheme with padding introduces
aredundant retrieval of records to obscure the volumetric leakage
of SE. We use leakage inversion to analyze the entropy of padding
mechanisms from the literature and we apply our analysis to real-
world databases. Our evaluation shows that there exist a sweet
spot of parameterizing the studied defenses where increased
padding does not introduce a significant increase in entropy.

2 PRELIMINARIES

Let V be the universe of values of a database attribute. We denote
the size of the universe of values N = |V|. In the context of keyword
search, V is the universe of words; in the context of range search, V
is the set of values of the attribute on which range queries operate.
Let I be the universe of all possible identifiers of a database. Each
identifier is uniquely associated with an encrypted record/file, thus,
these terms are interchangeable. We denote the set of identifiers
that appear in a given database as I C I. A database is denoted as DB
and is the collection of identifier-value pairs, i.e, DB = {(id, v)|id €
I,v € V}. Let Q be the universe of all possible queries on a database
DB. In the context of keyword search, the universe of queries Q
can be a subset (in case not all words are queryable) of V. In the
context of range search, the universe of queries Q consists of pairs
of values from V, i.e., the boundaries of the range, for which the
first value is smaller or equal to the second value. We denote as
n the number of identifiers from a database DB, i.e., n = |I|. We
denote as v the number of values with at least one associated record
in DB. We define as DB, the universe of all possible databases with

n documents over an attribute with N values. The notation a <~ A
denotes that a is sampled from the set A uniformly at random.

Searchable Encryption. In the following, we define the search-
able encryption primitive. The term A denotes the security param-
eter. The term PPT refers to a probabilistic and polynomial time
algorithm. We only define static SE schemes, for the definition of
the dynamic case we refer the reader to [41]. A static searchable
encryption scheme consists of algorithms Setup, Trpdr, Search, and
Filter that are executed between a client and a server.

o (K, EDB) «Setup(A, DB): On input the security parameter A and
the plaintext database DB the algorithm outputs client’s secret
key K and an encrypted database EDB initialized with DB that is
outsourced to the server.

o t «Trpdr(K, q): On input the client’s secret key and the query
q € Q the algorithm outputs a token (i.e., a trapdoor) for query q.
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e R «Search(t,EDB): On input a token ¢ from the client and an
encrypted database EDB from the server the algorithm outputs
a set of identifiers R C I to the client.

e R’ «Filter(q, R): On input a set of identifiers R and q the algo-
rithm returns a set of identifiers R’ C R. The algorithm runs
locally on the client.

Leakage Profile. Following the notation presented in [39],
we define as qeq(qu, ..., q:) = M the query equality pattern that
takes as an input queries qi, ..., q; and outputs a binary matrix
M such that M[i, j] = 1if g; = q; and M[i, j] = 0 otherwise.
The above pattern is also known as the search-pattern leakage.
Next, we define the response identity pattern, denoted as rid(q),
as the set of identifiers in DB that are returned when query q is
issued on DB. We note here that rid(q) refers to the exact answer
of the query on the plaintext DB. There are response-revealing
schemes, e.g., [23, 27], that generate false positive responses which
means that the returned identifiers are a superset of rid(g). To
capture this behavior that depends on a scheme X, we define the
scheme-specific response identity pattern, denoted as srid(g), to be
the set of identifiers of DB that are returned by X.Search(t, EDB)
algorithm where EDB is derived as (K, EDB) « X.Setup(A, DB)
and t is derived as t « 3.Trpdr(K, q). For the simpler case where
the SE scheme returns exact responses, e.g., scheme QD for ranges
and scheme [13] for keyword search, the outputs of srid and rid are
equal sets (assuming EDB is generated from DB via Setup of %).

Given a database DB we define vol(g) as the number of iden-
tifiers in DB that are returned when gq is issued on DB. We call
response-hiding the SE schemes that hide the response identity pat-
tern (which records are retrieved) and only reveal vol(q) (how many
records are retrieved or else the size of set rid(g)). If a scheme is not
response-hiding then we say it is response-revealing. Analogously to
srid, we define the scheme-specific volume pattern which is denoted
as svol(q) to be the size of the set of identifiers of srid. We call
padding any mechanism that alters the exact set of records rid(g)
that is retrieved by query q. The goal of padding is to obfuscate
the volumetric information that an attacker observes. We define
as trlen(DB) := 240 vol(q) the total response length pattern, i.e.,
the setup leakage. We define as leakage profile for the searchable
encryption scheme the collection A of setup leakage Lgetyp and
query leakage Lqyery is defined as: A = (Lsetup, Lquery)- Typical
constructions in SSE, i.e., without any additional mitigation such
as padding, response-hiding, false positive responses, have leakage
profile A = (trlen, (qeq, rid)).

Informally, an SE scheme with leakage A reveals nothing about
the underlying plaintext DB other than its leakage functions. The
formal security is captured by the real/ideal paradigm with games
Real®F and IdealSE (see [18, 56] for a detailed description).

DEFINITION 1. An SE scheme X=(Setup, Trpdr, Search, Filter) is
adaptively secure with respect to leakage profile A, iff for any ppt
adversary Adv issuing poly(A) queries, there exists a stateful ppt sim-
ulator Sim and a negligible function negl(A) such that:

|Pr[Realy), < (1) = 1] = Pr[ldealy); o, (2) = 1]] < negl(2).
A response-revealing SE scheme is correct if for all queries, the

set of identifiers returned in the scheme-specific pattern srid is a
superset of (or equal to) the identifiers from pattern rid. The next
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definition allows schemes with false positive responses (but not
false negatives) to be correct, e.g., [23, 27]. Algorithm Filter removes
the false positive records (if any) and returns the exact response.

DEFINITION 2. An SE scheme X=(Setup, Trpdr, Search, Filter) is
correct if for every g € Q of DB and (K, EDB) derived from X.Setup,
after the execution oft « X.Trpdr(K, q) andR « X.Search(t, EDB),
the algorithm Filter(q, R) returns a set of identifiers R’ that is equal
to the set of identifiers from pattern rid(q).

Categories of Databases. We differentiate between two types of
databases. The first is a keyword-based database which is a database
that allows keyword search on documents. Each document may
contain multiple keywords therefore there may exist pairs with
the same identifier id and different values, (id,v), (id,v") € DB.
For the case of keyword-based databases, we define Q as the set of
keywords that can be queried in DB. The second type is a range-
based database which is a database that allows range-based search
on records, e.g., range queries on the attribute AGE of a hospital
patient. In this case, each record is associated with a single value,
therefore, in DB, there exists at most one pair (id,v) for any given
id. That is, a hospital patient can only have one value associated
with the attribute AGE. To simplify our analysis we assume that the
values of a range-based database are positive and non-zero integers.
Our analysis can be adjusted to address other cases. We define the
span of a query q = (a, ) as the number of values covered by g, i.e.,
B —a+1 values. For the case of range-based databases, given a value
v € V we define as the reflection of value o the point o = N =0 +1.
For the case of range-based databases we define Q as the set of
ranges with boundaries in V. A dense range-based database has at
least one record associated with each value of V. If a range-based
database is not dense then we say that it is sparse.

Distance in Range-Based Databases. From the leakage attack
literature, it is known that without any significant prior knowl-
edge (e.g., known data distribution) plaintext reconstructions are
correct up to reflection [42]. Let a range-based database DB €
DB, we define as DBR the database with the reflected values, i.e.,
DBR = {(id, v®)| where (id,v) € DB}. Thus, for two range-based
databases DB; and DB, their distance is defined as:

d(DB;, DB;) = 2 min S =o', Y |u-0
(id,D)EDBi (id,U)EDBi
(id,v") €DB; (id,o') eDBX

We assume that DB;, DB are defined on the same set of identifiers.

On Range-Based Schemes. Encrypted range schemes can be
categorized as either exact response or approximate response [23,
27]. The approximate response designs allow false positives by
serving only a subset of ranges. This design choice reduces both the
storage overhead (compared to serving all possible ranges) and the
leakage (since the server won’t see the response of some ranges). We
briefly describe both types of range schemes using the definitional
framework of regular structured encryption schemes introduced
by Kornaropoulos et al. (Definition 1 in [46]).

The range queries of Q can be partitioned into groups of queries
with the same span. A scheme with exact responses (one where
the set srid is equal to rid for all queries) answers without false
positives all possible range queries and therefore it stores (in the
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worst-case) a quadratic number of responses for queries across all
spans. We call the above exact response scheme the quadratic range
scheme, denoted as QD. On the other hand, range schemes with
approximate responses only serve a set Q" of ranges where Q” c Q.
We call Q' the set of allowable ranges. When the client issues a
range g € Q — Q’ outside the allowable ranges, the scheme maps ¢
to arange q’ € Q such that the set of identifiers in the response for
q’ is a superset of the response for g, also called a cover of a range.

Range schemes with approximate responses from the literature
form Q’ by allowing only ranges that are powers of 2, i.e., span 2!
for i € [0,log N|. Furthermore, given a fixed span 2, the approx-
imate schemes from the literature only include a limited number
of ranges with a span 2. Specifically, the first scheme that we
consider in this work is called the Binary Tree scheme [27], de-
noted as BT. For scheme BT, Q’ contains the sequence of ranges
[1,27], [28+1,2- 2], [2- 20+ 1,3-2f],... forall i € [0,log N]. More
concisely, BT builds the sequence of ranges of span 2 by starting
from [1, 2] and increasing both boundaries by an additive factor
of 2!, This additive factor is called the step of the span. Intuitively,
scheme BT can be seen as a binary tree where each leaf maps to
a value of the attribute domain. Then, the set of allowable ranges
Q’ contains the nodes of the binary tree where each node u rep-
resents a range that spans across the leaves that u can reach (see
Figure 1). The second scheme that we consider from the literature
is the Augmented Binary Tree scheme [23], denoted as ABT, which
is a binary tree augmented with nodes that are placed in-between
every two consecutive (per level) internal nodes. More formally,
ABT builds the sequence of ranges of span 2! by starting from
[1,2!] and increasing both boundaries by an additive factor of 2/~1.
For example, for N = 8 the ranges/nodes in the BT scheme are
[1,1],...,[8,8] of span 1, then [1,2], [3,4], [5,6], [7, 8] of span 2,
then [1,4], [5, 8] of span 4, and [1, 8] of span 8. The corresponding
ABT scheme has all the above ranges/nodes plus the in-between
ranges [2,3], [4,5], [6,7], [3,6]. The rid (resp. srid) pattern of the
above schemes reveals only the retrieval of the allowable ranges.

In this work, we focus on schemes QD, BT, and ABT since they
are considered standard by the community. We mention that one
can construct different approximate response schemes, e.g., by pa-
rameterizing differently the span/step of the scheme, which requires
leakage inversion analysis beyond the scope of this work.

3 LEAKAGE INVERSION

In this section, we introduce for the first time an approach for
quantifying privacy in searchable encryption. On a high level we
use a leakage profile A of an SE scheme on a given database DB to
produce the set of all possible databases that may have produced a
“structurally equivalent” leakage as the original DB. We formalize
this concept for keyword search and range search and introduce
the concept of leakage inversion which is a function that takes as an
input a plaintext database DB as well as a leakage profile A of an
SE scheme and outputs a numerical value that quantifies privacy
based on its reconstruction space.

3.1 Limitations of Current Approaches

Why Can’t We Compare Leakage Directly? Even though SE
is becoming a mature cryptographic primitive [55], we still lack a
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rigorous approach for quantifying the privacy of an SE construc-
tion. For example, we still cannot give a satisfactory answer to the
following fundamental question

“Does leakage A provide more privacy than leakage A’ ?”

The most promising approach is given by Bost and Fouque in [10].
Informally, the proposal in [10] suggests that leakage profile A leaks
less than A’ if the output of A is simulatable from the output of A”.
The simplified version for the static SE reads:

DEFINITION 3. [10] Define two leakage profiles for a static SE
scheme as A = (Lsetup» Lauery) and A’ = (L;etup, .Eb\uery). We say
that A leaks less than A, denoted by A < A, if and only if, there exists
a pair of stateful polynomial-time algorithms S = (Ssetup, SQuery)s
such that, for any database DB and sequence of queries (q1, . .., qm),

-ESetup(DB) = SSetup (Léetup(DB))

Vi<is<m, LQuery(qi) = Squery (LlQuery(qi)) .

As noted in [10] the relation < is a partial order therefore not all
leakage profiles are comparable under <. We present two cases that
highlight the fundamental shortcomings of using the < relation.
Case I: Inability to Capture Leakage Granularity. Consider
the case where A describes the leakage of a response-hiding SE
augmented by the following padding: pad the volume to the closest
power of 2, an approach proposed in [22]. Next, consider the case
where A’ describes the leakage of a response-hiding SE with the
following padding: pad the volume to the closest power of 3. Notice
that each gap between consecutive powers of 3, i.e., padding in A/,
is significantly larger than its counterpart for consecutive powers
of 2, i.e., padding in A. In other words, the volumes of A" are of
more coarse-granularity (w.r.t. the plaintext volumes) than A. Nev-
ertheless, the larger uncertainty provided by A’ can not be captured
by the framework of [10] since we cannot simulate one leakage
from the other. For example, if we attempt to simulate A from A’
we may observe a padded volume 3*. Even though the simulator
knows that its true volume is larger than 33 it is not possible to
know if it is smaller than 2° (in which case the simulator should
map it to 23) or larger than 2° (in which case it should be mapped to
20). If we attempt to simulate A’ from A we may observe a padded
volume 2° and even though we know that its true volume is larger
than 2% it is not possible to know if it should be mapped to 33 or 3%.
Case II: Less Leakage = More Privacy. The shortcomings of
Definition 3 also appear in the context of encrypted ranges. The
fact that QD scheme reveals the leakage of a quadratic number of
ranges whereas ABT scheme reveals the leakage of a linear number
of ranges, implies that the attacker sees strictly less information in
ABT deployments. Nevertheless, Definition 3 is not applicable in
this case either since we cannot simulate one leakage from the other.
Given our inability to quantify privacy in the context of SE, the
community developed heuristics on how to compare leakages. So far,
the rule of thumb is “less leakage means more privacy". Under this
heuristic, one would think that ABT provides more privacy than QD
since an attacker in ABT attempts to reconstruct with the leakage
from a linear number of distinct queries whereas in QD there are
O(N?) distinct queries. In Section 5, we show that this intuition
is not always correct. Specifically, we show that the number of
plaintext databases that “explain” the leakage from ABT, is identical
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to the number of databases for QD in the case of dense databases.
Therefore, less leakage doesn’t always imply more privacy.

For completeness, we note that the work of Jurado et al. [34, 35]
proposes quantifying information leakage for Order-Revealing En-
cryption (ORE) based on the framework of Quantitative Information
Flow [2]. On a high level, QIF applied to ORE quantifies privacy as
the difference between the probability of correct reconstruction be-
fore revealing the ordering of ORE ciphertexts and after. Proposed
SE schemes for keyword-search and range-search do not reveal the
ordering by ciphertext alone (as opposed to ORE). Thus, the above
results are not directly applicable to the more general case of SE.

3.2 Quantifying Privacy by Analyzing the
Reconstruction Space

In the following, we introduce the technical tools to capture the
intuition that several databases can generate the observed leakage of
a given instantiated EDB. We define the retrieval matrix RM which
describes which identifiers are retrieved for each query according
to the leakage from the algorithms of an SE scheme. The retrieval
matrix is a concept that can be applied to different schemes and
classes of queries, even beyond keyword search and range search,
since it only specifies which records are retrieved for each query.

DEFINITION 4. (Retrieval Matrix) Let DB be a database, let Q
be the query universe of DB, let I € I be the set of identifiers that
appear in DB, and let EDB be derived by running algorithm Setup of
SE scheme % with leakage profile A. We define as a retrieval matrix
RM (with respect to profile A and DB) the binary matrix with |Q)|
rows and |I| columns such that for each q € Q, cell RM|q, id] takes
value 1 if id € srid(q, EDB) and value 0 otherwise.

We emphasize that an attacker only observes query tokens and
responses, and does not know which token corresponds to which
plaintext query (i.e., the label of a row of RM). Therefore, to the eyes
of the attacker, all plaintext databases that produce the RM of DB
(up to a permutation of rows) are a valid candidate reconstruction,
e.g., see Figure 1. Based on the above insight, we define the notion
of structurally equivalent leakages and provide a definition of a
reconstruction space that applies to keywords and ranges.

DEFINITION 5. (Structurally Equivalent Leakage) Let DB be a
database, let 3. be an SE scheme with leakage profile A. Let DB’ be a
database different from DB. Let RM (resp. RM’ ) be the reirieval matrix
of DB (resp. DB’) under scheme A. Let QDB C Q be the set of queries
in RM such that if q € QDB; then the row vector RM|q, *] has at least
one cell with value 1. Let Qpg C Q be the set of queries in RM” such
that ifq € Qpp then vector RM’ [q, %] has at least one cell with value
1. We say that DB and DB’ have structurally equivalent leakage
under A if there exists a bijection ¢ : Qpgy — Opg such that for every
g € Opg, we have that RM’[q, id] = RM[$(q), id] for all id € I.

We highlight two characteristics of the definition of structural
equivalence. First, the bijection ¢, which can be thought of as a rela-
beling of queries, operates on the set of queries that return at least
one record. If one allows the bijection to extend to empty queries,
i.e., queries from Q—Qpg, then we allow relabeling between queries
that return no records. These empty queries play no role in the
content or the retrieval operations of the DB at hand. Relabeling
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empty queries artificially augments the set of databases that have
structurally equivalent leakage with DB which may convey a false
sense of security. Second, the definition only considers the bijection
on rows but not on columns. Relabeling columns would be equiva-
lent to swapping content between records which, indeed, generates
distinct databases. However, in a realistic scenario an adversary
observes the query leakage of a given DB under an instantiated
scheme X. Relabeling columns would result in databases that con-
flict with the observed leakage. To illustrate this point, consider
the case where Definition 5 allows relabeling of columns of RM.
Under such a definition, one could generate a keyword database
DB’ that is structurally equivalent to the upper-left DB of Figure 1
by swapping the content between id; and id3 as well as the content
between idy and ids. The resulting database DB”” wouldn’t explain
the observed leakage of the true DB since id; in DB contains three
words (and is retrieved by 3 queries) while id; in DB” contains two
words (and is retrieved by 2 queries).

DEFINITION 6. (Reconstruction Space) Let DB be a database
and let 3 be an SE scheme with leakage profile A. We define the recon-
struction space, denoted by RS(DB), as the collection of databases
that have structurally equivalent leakage to DB under A.

The term reconstruction space was introduced by Kornaropoulos
et al. [44] in the context of encrypted k-Nearest Neighbor queries.
Later works [28, 47] used a similar notion for two-dimensional
queries. These works [28, 44, 47] used a similar concept to RS(DB)
to explain the inherent limitations of geometric leakage attacks,
i.e., the impossibility of distinguishing between symmetries (see
rotations/reflections) or identical Voronoi diagrams. In this work,
we give the first definition of reconstruction space that applies
to keyword search and (one-dimensional) range search but can
also be extended to other queries and response-hiding schemes.
More importantly, our work is the first to study the structure of
the reconstruction space, e.g., the size, the entropy, and the maxi-
mum/expected distance, for the popular cases of keyword search
and range search.

What Properties Capture Privacy? We propose two proper-
ties that capture privacy in SE, the first is a measure of uncertainty
of RS(DB) (i.e., the entropy) and the second captures the geome-
try of RS(DB) (i.e., the maximum and the expected distance of a
reconstruction from the original plaintext DB). Shannon entropy is
the most used measure of uncertainty. In this context, it formalizes
the uncertainty that an attacker faces in an attempt to choose a
correct reconstruction among RS(DB). In several leakage-abuse
attacks works [12, 33], the goal of the adversary is to recover the
exact plaintext database that an SE operates on. In this scenario,
the higher the entropy the harder it is for the attacker to guess the
correct underlying plaintext. In the case where the attacker does
not have any auxiliary information, all the members of RS(DB) are
treated as equiprobable and the entropy reduces to the logarithm
of the size of the reconstruction space RS(DB).

Additional Filtering based on Auxiliary Information. In
case the attacker has access to auxiliary information, denoted as
aux, then the reconstruction space can be further filtered to reflect
the information exposed by aux. We differentiate between two cate-
gories of auxiliary information. The first category of aux causes the
removal of a set of databases from RS(DB) even if it has structurally
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equivalent leakage with the original DB. E.g., if aux gives away
that the keyword “cost” is definitively in the plaintext database,
then all the members of RS(DB) that do not contain this keyword
are removed from RS(DB). The second category of aux causes an
adjustment of the probabilities for each database in RS(DB). E.g., if
aux is the data distribution P, then the probability associated with
a DB’ € RS(DB) is the probability that DB’ is generated by P. In
this work, we focus on the first category of auxiliary information.

For generality, we capture both the case with auxiliary infor-
mation and the case without, with the term I which is a random
variable (r.v.) over RS(DB). In the case of aux = L, r.v. I has a uni-
form probability distribution over RS(DB). In the case of aux # L,
r.v. T has (a potentially nonuniform) probability distribution over
RS(DB) that respects the given auxiliary information (e.g., removed
databases from RS(DB) are assigned probability 0).

DEFINITION 7. Let DB be a database, let ¥ be an SE scheme with
leakage profile A. Let aux be the auxiliary information that an attacker
has access to. LetT' be a random variable with probability distribution
over RS(DB) which is computed as a function of aux. We define a
leakage inversion via entropy as the function

Leakinvy (DB, A, aux) = H(T).

The Geometry of the Reconstruction Space. Besides exact
reconstruction, we are interested in capturing privacy with respect
to approximate reconstruction which appears mainly in the context
of range-based databases [44-46]. In this scenario, not only the
size but also the geometry of the reconstruction space matters in
defining privacy. We propose the study of the maximum distance
between the true plaintext DB and a member from RS(DB). This
privacy measure provides an upper bound on the quality of the
approximation for an attacker reconstructing among RS(DB).

Additionally, we study the expected distance between a ran-
domly chosen database from RS(DB) and the true plaintext DB.
This measure describes how close (in expectation) a random mem-
ber of RS(DB) is to the original plaintext database. If the expected
distance is small then even if the size of RS(DB) is large, an at-
tacker can accurately approximate the original DB by choosing a
random reconstruction from RS(DB). The term supp(T') refers to
the support of the probability function of T.

DEFINITION 8. Let DB be a database with numerical values, let
3 be an SE scheme with leakage profile A. Let aux be the auxiliary
information that an attacker has access to. LetT' be a random variable
with probability distribution over RS(DB) which is computed as a
function of aux. We define:

o leakage inversion via bounded maximum distance as:

Leaklnvpyix(DB, A, aux) = max d(x, DB),

xesupp(T)

o leakage inversion via expected distance as:

LeakInvxp(DB, A, aux) = E[d(x, DB)|x <isupp(r)].

4 LEAKAGE INVERSION ON
CRYPTANALYTIC ASSUMPTIONS
In the infancy of SE, the community focused its defensive efforts

on the assumption that adversaries would use query leakage to
reconstruct the underlying plaintexts. This changed in 2012 when
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Figure 1: An illustration of databases with structurally equiv-
alent leakages for the case of keyword-based (first row) and
range-based (second row).

Islam et al. [33] demonstrated that an attacker with partial knowl-
edge of DB and auxiliary information (i.e., knowledge of keyword
frequency statistics and a number of known queries) could mount
a query-recovery attack. Since then, researchers have developed a
number of attacks [6, 12, 51] that leverage a variety of cryptanalytic
assumptions. Most of the attacks focus on keyword query recovery
but it is possible to re-purpose a successful query recovery attack
to infer the content of the encrypted DB. In this section, we study
the reconstruction of the contents of the encrypted records of DB.

When benchmarking leakage attacks [36] one typically com-
pares the reconstruction accuracy across various datasets, but there
is another dimension that is ignored. This is the role of cryptan-
alytic assumptions in the success of an attack. As mature as the
cryptanalytic efforts are, we still do not know how much of an
advantage these assumptions offer to an attacker. This is because
we compare the results of attacks but not their starting points. It
is hypothesized that not all types of auxiliary information are the
same but we do not have the tools to quantify this intuition.

In this section, we focus on response-revealing keyword-based
databases and use leakage inversion to quantify the privacy reduc-
tion from cryptanalytic assumptions. Specifically, we give closed-
form expressions to calculate the entropy of the reconstruction
space under common cryptanalytic assumptions. We consider cases
of varying degrees of leakage and types of auxiliary information:

(1) Setup leakage, no queries issued, no auxiliary information

(2) Leakage after observing all queries, no auxiliary information

(3) Leakage after observing all queries, known keywords

(4) Leakage after observing all queries, mapping from plaintext query-
to-volume as auxiliary information

Entropy from Setup Leakage. Setup leakage reveals the num-
ber of keyword-identifier pairs in DB, i.e., the trlen pattern. Notice
that this number does not disclose the number of distinct documents
or the number of unique keywords in DB. Therefore, to count the
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number of possible databases that satisfy the setup leakage we must
consider all valid numbers of documents and all valid numbers of
keywords in each document.

We paint the picture of why it is impractical to calculate the
entropy in this case by using a basic method from combinatorics. At
one extreme, we have the case where each keyword-identifier pair
belongs to a distinct document, i.e., we have as many documents
as pairs n = trlen(DB). At the other extreme, we have the case
where all keyword-identifier pairs belong to the same document,
ie., n = 1 with trlen(DB) distinct keywords. In between these two
extremes, one can consider the number of documents as a variable
x and we have to consider all possible ways that we can assign
keyword-identifier pairs to x distinct documents. This question is
a variation of the divider method from combinatorics that counts
the permutations of trlen(DB) + (x — 1) identical balls and x — 1
dividers. By applying the divider method to our problem we get
Z;rlzeln(DB) (tr]en(l)ﬁ);(x_l)) ways of assigning trlen(DB) keywords
to x documents. For small values such as trlen(DB) = 50 we have
over 10%° ways of assigning keywords to documents. Thus, it is
infeasible to scale the above calculations to realistic datasets. (The
Enron database, for example, has trlen(DB) = 10°.) In the above
analysis, leakage inversion confirms the intuition that the setup
leakage is insignificant. Perhaps unsurprisingly, there exists no
reconstruction attacks that rely solely on setup leakage.

Entropy from Query Leakage. In the following, we analyze
the entropy when all keywords in the database have been queried,
that is, the rid pattern is revealed across all queries. In contrast to
the previous case, we note that once all queries have been processed,
the number of documents, the number of distinct keywords that
appear in DB, and the co-occurrence of tokens in documents are all
known. The only unknown is the plaintext values of the keywords.
Given that we assume no auxiliary information, any mapping from
the keyword universe to observed tokens is possible, i.e., we cannot
exclude mappings. It follows that every distinct assignment of v
(out of N) keywords to v tokens constitutes a distinct plaintext
database DB’ that is a member of the reconstruction space RS(DB).

Interestingly, there is an exception to the previous statement for
which distinct mappings give the same database. This phenome-
non occurs when we have a set S of tokens that always return the
same documents from DB. That is, if the keyword “leakage” and the
keyword “abuse” always appear together it does not matter which
token refers to which word. An exact calculation of the entropy
would treat all possible mappings of keywords to S as a single data-
base. For simplicity, we approximate the entropy by overcounting
the above cases (we indicate this by ~). This approximation is sup-
ported by the observation that in most real datasets, including the
ones in our experiments, there are only a few keywords that always
appear together and, thus, their impact on entropy is small.

THEOREM 1. Let DB be a keyword-based database with a keyword
universe of size N and v distinct keywords that appear in at least
one document. Let A = (trlen, (geq, rid)) be the leakage profile of an
SE scheme. Then, the leakage inversion with respect to entropy after

observing all queries is Leaklnvy(DB, A, 1) ~ log ((}‘Y)) + log(v!).

ProoF SKETCH. After all queries have been issued, v tokens will
have been observed. We count the number of possible databases in
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RS(DB) in two steps, (i) by counting the number of ways we can
choose v keywords out of the set V, and (ii) by counting the number
of ways we can assign the chosen keywords to the v observed
tokens. There are (IX) ways of choosing v active keywords out of a
keyword universe of size N, and v! ways of assigning v keywords
to v observed tokens. Thus, the possible databases are (1‘\/]) -v!. Since
all possible databases are equiprobable, the Shannon entropy of the

reconstruction space is log ((I\V]) . v!) =log ((I;])) +log(v!). O

We note that leakage attacks achieve at least some success with
partial query leakage. We assume that all queries have been issued
but one can devise a parameterized version of our approach where
the entropy is computed based on the subset of observed queries.

Entropy from Query Leakage & Known Keywords. In the
following, we analyze the entropy when all keywords in the data-
base have been queried and the set of keywords that appear DB
is given as auxiliary information. Unlike the previous case, the
entropy grows strictly as a function of v.

THEOREM 2. Let DB be a keyword-based database with v distinct
words that appear in a document at least once. Let auxiliary infor-
mation aux = {v : 3id € I, (id,v) € DB} . Let A = (trlen, (geq, rid))
be the leakage profile of an SE scheme. Then, the leakage inver-
sion with respect to entropy after observing all possible queries is
LeakInvy (DB, A, aux) =~ log(v!).

Entropy from Query Leakage & Volume Vector. In the fol-
lowing, we analyze the entropy when all keywords in the database
have been queried and there is some available auxiliary information.
Specifically, the auxiliary information is defined as the mapping
from a plaintext query to the number of documents in which it
occurs, i.e., the volume vol(g) of the query. This mapping is called
“volume vector” and is used as auxiliary information in the attack by
Oya and Kerschbaum [51]. To illustrate why the entropy is reduced
in this scenario, suppose there is only one token ¢ that returns
exactly 10 documents when queried. Then, given access to the vol-
ume vector for DB, there exists only one plaintext keyword that
explains the observed volume leakage of token ¢. We say that the
above mapping respects the volume vector. In general, to count the
size of the reconstruction space, and in turn calculate the entropy,
it is enough to consider the databases that result from all possible
mappings from keywords to tokens that respect the volume vector.
A comparison between the next theorem and Theorem 2 shows a
significant reduction in entropy given auxiliary information.

THEOREM 3. Let DB be a keyword-based database and let A =
(trlen, (geq, rid)) be the leakage profile of an SE scheme. Let the col-
lection of sets of keywords with the same volume, i.e., {Gi = {ov:
vol(v) = i}} foralli € [1,..,v]}, be the auxiliary information aux.
Then, the leakage inversion with respect to entropy after observing
all possible queries is Leaklnvy (DB, A, {G;}}_,) = X;_; log (IGy[!) .

ProoF SKETCH. Recall that the execution of all queries means
that the volume of every token has been observed. This means
that for every keyword, there is at least one token with the same
volume. If some number of keywords share a volume, however, then
every bijection from those keywords to the set of tokens with the
same volume must be counted as a unique, structurally equivalent
database. Thus, for every set of keywords G; with the same volume i,
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we count the possible assignments between those keywords and the
equal-volume tokens as |G;|!, yielding a reconstruction space of size
[1,2; IGil!. Each of these databases is equiprobable, so the logarithm
of the size of the reconstruction space is Y ; log (|G;[!). o

Keyword-Based Databases
Enron Apache Ubuntu
Cryptanalytic # Keywords # Keywords # Keywords
Assumptions 500 [ 5,000 500 [ 5,000 500 [ 5,000
Leakage: All i
cakage: All Queries | 500 | 70 4oy ||| 5246 | 82,283 ||| 10,084 | 100830
- Aux: L
> n
2 -
£ | Leakage: All Queries 1| oo | oy o0y Wl 3767 | 54232 ||| 3767 | 54232
S | Aux: Known Keywords
5
Leakage: All Queries
Aux: Volume Vector 71 | 13,467 25 | 11,195 1 1,110
[ Number of Recordsn [[ 29461  [][ 50531 ][ 26360716 ||
| KeywordUniverse || 63031 [[[ 92454 || 1179077 |

Table 1: Leakage inversion via entropy on cryptanalytic as-
sumptions. The entropy reduction quantifies to what degree
the auxiliary information helps in plaintext reconstruction.

4.1 Evaluation

Methodology. We test our findings on the entropy reduction from
cryptanalytic assumptions using three datasets, all of which come
from real-world communications between individuals. The En-
ron [43] and Apache [4] email corpora consist of around 30,000 and
50,000 emails, respectively, and feature prominently in the attack
literature [6, 12, 19, 33]. We also use the Ubuntu chat corpus, first
introduced to the SE community in 2016, which consists of around
26,000,000 IRC messages from an Ubuntu development channel.
We treat each message as a document. This results in a document
count for Ubuntu that is about 5 times larger than Apache and
9 times larger than Enron. The size of the dataset, as well as the
nature of the messages (anonymous chat concerning a technical
topic) contribute to a high number of unique words in Ubuntu:
about 1.2 million, which is approximately 10 and 15 times larger
than Apache and Enron, respectively. Following the methodology
of the attack literature, we restrict our analysis to “vocabularies”
that consist of the 500 and 5,000 most frequent words, where a
word’s frequency is the number of documents containing that word.
These numbers reflect the typical range of vocabulary sizes used in
the leakage-abuse attack literature [12].

Experimental Results. Table 1 summarizes the results of our
experiments. Unsurprisingly, we observe decreasing entropy as
greater leakage/auxiliary information is provided. Interestingly,
though, the entropy decreases at different rates for different datasets.
Moreover, we observe that one dataset can have greater entropy
than another under one set of assumptions, but less entropy under
another. E.g., Ubuntu has the highest entropy in the “Aux: L” case,
but the lowest entropy in the “Aux: Volume Vector” case, for both
small and large vocabularies. The high entropy in the first case is due
to Ubuntu’s large number of unique words, while the low entropy
in the second case is due to its high number of frequent words with
unique volumes. This finding highlights the fact that entropy is not
strictly a function of the leakage, the auxiliary information, or the
database alone. Rather, it is determined by all three.

The adversarial assumptions in our experiments come directly
from the attack literature. The case of “Aux: L” reflects the baseline
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scenario, against which no attack is proposed so far. In this scenario,
the sensitive data is not known to anybody but the user, i.e., no
publicly accessible plaintexts or statistics about the data in the
form of auxiliary information. The case of “Aux: Known Keywords”,
which decreases the entropy by roughly 50% in our experiments,
reflects the assumption that all attack implementations make: that
the attacker knows which plaintext keywords are in the database,
but does not know the mapping from encrypted queries to plaintext
keywords [6, 12, 19, 33, 51, 53]. The case of “Aux: Volume Vector”,
which is also a common assumption in many attacks [6, 12, 51],
further reduces the entropy by roughly 99% in small-vocabularies
and around 80-99% in large-vocabularies.

Discussion. Recent work by Kamara et al. [36] rightly points to
the need for a better comparative understanding of attacks. We
believe that this change requires a shift away from an empiri-
cal approach for leakage comparison, and towards a theoretically-
grounded metric for measuring privacy. Quantifying privacy typi-
cally assists defense mechanisms- indeed, this is the case with the
next two sections of this work. In this section, however, we demon-
strated that cryptanalytic efforts can also benefit from quantifying
privacy. Typically attacks treat the algorithmic technique and the
cryptanalytic assumption as an inseparable pair. Here, we showed
that we can isolate the contribution of the auxiliary information
towards a successful attack.

5 COMPARING ENCRYPTED RANGE
SCHEMES VIA LEAKAGE INVERSION

In this section, we use leakage inversion to quantify the privacy
provided by known response-revealing encrypted range schemes.
Starting with entropy-based comparison, our first finding shows
that in dense databases the entropy of RS(DB) for the quadratic
scheme QD is constant and identical to the entropy of the aug-
mented binary tree ABT. This is a rather surprising finding since
QD reveals the query leakage of O(N?) distinct queries while ABT
reveals the query leakage of O(N) distinct queries. On the other
hand, the binary tree scheme BT allows O(N) distinct range queries
and results in a significantly larger reconstruction space. In terms
of leakage inversion with respect to maximum/expected distance,
we focus on the binary tree scheme BT and we derive lower and
upper bounds on the above privacy measures. Specifically, for the
case of expected distance, we derive bounds as closed-form expres-
sions (see Theorem 7) while for maximum bounded distance we
propose lower and upper bounds as solutions to a combinatorial
optimization problem (see Theorem 6).

5.1 Entropy Comparison

For the case of encrypted range schemes, one can view each distinct
allowable range query as a constraint on the potential databases that
explain the observed leakage. To illustrate this point, suppose that
we have an SE scheme for ranges that returns the entire database, no
matter what the query is. Thus, any reconstruction is plausible as
long as it respects trlen leakage. If we were to increase the number
of distinct responses (as opposed to returning the entire DB) then
we would decrease the number of plausible databases that explain
the observed leakage. Using this rationale, one might assume that
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fewer constraints imply larger reconstruction space which, in turn,
implies more privacy.

The above simple observation can be applied to the state of the art
range schemes. Scheme ABT, which allows 3N —log N — 2 distinct
range queries, imposes significantly fewer constraints than QD
which allows (I;] ) + N queries. Thus, a first attempt to compare the
two (without using leakage inversion) would result in hypothesizing
that ABT provides significantly more privacy than QD since it
imposes fewer constraints. However, the following results show
that for dense databases ABT and QD provide the same level of
privacy under leakage inversion via entropy. In particular, there
are only two databases that explain the observed leakage of ABT:
one is the true plaintext DB and the other one is its reflection DBX.
We refer the reader to the full version for the proofs of this section.

THEOREM 4. Let DB be a dense range-based database and AagT
be the leakage of the ABT scheme. Then, the leakage inversion with
respect to entropy is Leakinvy (DB, AapT, L) = 1.

Scheme QD “constrains” the reconstruction space even further
than ABT, since it allows O(N?) distinct ranges, which gives an up-

per bound on QD: Leaklnvy (DB, AT, L) > Leakinvy (DB, Aqp, L).

Since DB and DBR are always part of the reconstruction space, we
get a lower bound on QD: Leakinvy (DB, Agp, 1) > 1.

COROLLARY 1. Let DB be a dense range-based database and Aqp
be the leakage of the QD scheme. Then, the leakage inversion with
respect to entropy is Leaklnvy (DB, Agp, 1) = 1.

On the other hand, scheme BT which allows 2N — 1 distinct
range queries, i.e., only N —log N less than ABT, has entropy that
is linear to the number of values associated with a record.

THEOREM 5. Let DB be a range-based database and Agt be the
leakage of the BT scheme. Let v be the number of values with at least
one associated record in DB. Then, the leakage inversion with respect
to entropy is: v — 1 < Leaklnvy(DB, Agr, L) < min{vlog N,N —1}.
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Figure 2: Illustrating why less leakage does not always lead
to more privacy. We removed four ranges from each scheme
to reduce leakage and used the same underlying DB. The
scheme on the left has reconstruction space with entropy 7,
i.e., reflections of each subtree. The scheme on the right has
reconstruction space with entropy 1, i.e., DB and DBR.

Discussion. Given the above analysis, a natural question is: why
less leakage results in the same privacy in the case of ABT vs. QD but
less leakage results in more privacy in the case of ABT vs. BT? Our
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findings show that we should not focus on the “quantity” of leakage
that is removed but rather on the “quality” of leakage that remains,
i.e., how damaging is the remaining leakage. An illustration of this
point is presented in Figure 2, where we remove exactly four range
queries (denoted in gray) from two hypothetical range schemes.
Even though the same number of ranges are removed, the left-hand
side has entropy 7 after the removal. This is because the ordering
of the leaves of a sub-tree (normal ordering or a reflection of its
leaves) introduces one bit of entropy to the reconstruction space.
On the other hand, the right-hand side scheme has entropy 1 (i.e.,
2 reconstructions). This is because the only permutation that gives
the same set of responses is the reflection of the entire tree.

5.2 Leakage Inversion on Binary Tree Scheme

In the following we present results on the leakage inversion with
respect to bounded maximum distance and expected distance for
scheme BT. The next theorem provides a lower and an upper bound
on Leaklnvpx (DB, AgT, L). Each bound in Theorem 6 is a solution
to a variation of the so-called assignment problem where a set of
tasks are assigned to agents so that the toal cost is minimized. In our
case, each task represents a set of records where members share the
same (unknown) value and each agent represents a plaintext value
v. Assigning a set to a value v is interpreted as: all the records with
an identifier from the set have the same plaintext value v. In terms
of time complexity, both of the following optimization problems
can be over-approximated with linear programming (see the full
version for a precise formulation).

THEOREM 6. Let DB be a range-based database and Agt be the
leakage of scheme BT. The leakage inversion with respect to maximum
distance, i.e., Leakinvpx(DB, AgT, L), is lower bounded by:
d(DB, x*), wherex™ = argmax ),

xesupp(T) (id,v')€ex
(id,v)eDB

min{jo’ — o], |0’ — oR|}

and upper bounded by:
% max lo” — o] + |0 — oK.
xesupp(T) (id,v')ex
(id,0)€DB

The next theorem provides a lower and an upper bound on
LeakInvyp. We resort to bounding (as opposed to exact calculation)
the quantity of interest due to the difficulty of deriving an analytical
expression for the expectation of a multivariate distribution of ran-
dom variable |}}; X;|, where X; are random variables. To calculate
the bounds for any given DB one has to plug in the terms v; and
vol(v;) from DB and calculate the closed-form expressions.

THEOREM 7. Let DB be a range-based database and Agr be the
leakage of the BT scheme. Let vy, ..., v, be the set of unique values
from DB in ascending order. Suppose that N is even, then the leakage
inversion with respect to expected distance LeakInvxp(DB, AgT, L) is
lower bounded by:

1N Y vol(o7) _ _
L 2j§1gj-vol(a,-)-i§1T : (Zpi (N =21 +1))

and upper bounded by % 2iq Gi - vol(v;), where pi77 = min{v;, vf},

R (R
i (v;i—1 o) (v7-1)
/1-; = max{oi,af}, (i = (—’(21’\] A )] TN )
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5.3 Evaluation

In this evaluation, we use real-world datasets MIMIC-T4 [49], UK-
Salaries [57], and HCUP-AGE [1] and ask:

e What is the error between a randomly chosen reconstruction
from RS(DB) and the true plaintext DB?

What is the maximum possible error between the true plaintext
DB and a member from RS(DB)?

What is the gap between the maximum error and the error from
a randomly chosen reconstruction?

How does an empirical computation of Leaklnvpy (resp. Leak-

Invxp) compare to the lower and upper bound?

Table 2 presents the lower/upper bounds from Theorems 5, 6, and 7
on real data from previous leakage-abuse attacks. The gray rows
show the empirical computation of the maximum error between
the true plaintext DB and a member from RS(DB) as well as the
expected error between a randomly chosen member of RS(DB) and
DB. To calculate the empirical values we sampled 10° members of
RS(DB) and computed the maximum error (for the first case) and
the mean and standard deviation of the error (for the second case).

The results on the (white) rows in Table 2 provide the theoretical
guarantees for the reconstruction error which answers the first two
questions posed at the beginning of the evaluation. The experiments
show that the lower and upper bounds of Leaklnvyyx are close. In
both cases, any minor discrepancy between the empirical value
and the theoretical bound comes from sub-sampling. It is worth
differentiating here between a random reconstruction (which is
a random assignment of records to values) and a randomly sam-
pled reconstruction from RS(DB) (which is a reconstruction where
records with the same unknown value are assigned as a group to a
value while also conforming to the responses revealed by AgrT).

To compare Leaklnvyp and LeakInvpy, start by noticing that the
number of databases in RS(DB) with respect to At is larger than
2"~1 (see Theorem 5). For example, in MIMIC-T4 (which is almost
dense) there are 274 databases in RS(DB). Given such a large size
of RS(DB), the fact that the expected error Leaklnvxp is so close to
the maximum error Leaklnvpx means that the number of databases
with close-to-maximum error vastly outnumber the databases with
small error. Note that this does not mean that the absolute number
of low-error databases is small.

In general, these findings shed light on the structure of the recon-
struction space. For the tested data, the expected error is as large as
the maximum error for the case of BT. This is the first formal analy-
sis of the privacy offered by an SE scheme that does not rely on an
attack performance, e.g., [46], but rather is based on a theoretical
understanding of the reconstruction space.

6 COMPARING PADDING MITIGATIONS
VIA LEAKAGE INVERSION

In this section, we apply leakage inversion to three padding mitiga-
tions on response-hiding SE for keyword search. We emphasize that
we do not propose new mitigations but rather study the privacy
of already proposed padding approaches. Our contribution is the
application of a theoretically grounded approach, i.e., leakage inver-
sion, for quantifying the privacy of each approach. Using leakage
inversion we can study questions such as:
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Range-Based Databases

MIMIC-T4 | UK-Salaries | HCUP-AGE

Upper Bound 34 198 35

Leaklnvpy | Lower Bound 27 163 34

Empirical 31.5 190 32

Upper Bound 27.5 148 29

Leaklnvxp | Lower Bound 19.7 122 21

Empirical || o 2343 117 || 25 281

Upper Bound 73 78 92

Leakinvy Lower Bound 58 8 90

Size of Universe of Values N 74 398 93
Number of Records n 8,058 536 6,772,133

Table 2: Application of leakage inversion via bounded max-
imum distance (denoted as Leaklnvyx), leakage inversion
via expected distance (denoted as Leaklnvxp), and leakage
inversion via entropy (denoted as Leaklnvy) on range-based
datasets. The bounds are calculated from Theorems 5, 6, and 7.
The gray rows show the empirical measurement (and its stan-
dard deviation ¢) based on 10° samples from RS(DB).

“How much more privacy do we get if we accept a larger
communication overhead from padding?”

Leakage inversion allows us to not only compare different padding
methods but also choose the parameterization that strikes a good
balance between efficiency and privacy for given padding, which, in
turn, results in efficient SE deployments with quantifiable privacy.
En route to cryptographic definitions for padding, we introduce
a new modular leakage profile called “fos” that captures generaliza-
tions of previous proposals, which may be of independent interest.
Padding the Signature of Response-Hiding Schemes. On a
high level, most padding schemes associate additional fake records
with each value. This way, when an encrypted query is received,
the scheme returns a superset of the desired response. Given that
response-hiding schemes hide the identity of the retrieved records,
the leakage boils down to a mapping from tokens to padded volumes.
More formally, we define the signature of a (padded or non-padded)
database o(DB) as the sequence of pairs (v;, vol(v;)) for i € [N].
Padding mitigations augment the original database DB to get DB’
for which the adversary observes the padded signature o(DB’).
Reconstruction Space Over Signatures. From an adversar-
ial perspective, an attacker that observes the leakage of a padded
response-hiding SE may need to first recover the signature of the
non-padded database before attempting to reconstruct the original
plaintext. In some cases, the non-padded signature is the connect-
ing link between the padded leakage observations and the auxiliary
information (common in all leakage attacks [12, 33, 51] on keyword-
databases). For example, the most recent attack by Oya and Ker-
schbaum [51] considers the case where the auxiliary information
is the mapping from plaintext keywords to non-padded volumes (as
opposed to the mapping from tokens to padded volumes which is
revealed by leakage A). This auxiliary information is called “vol-
ume vector of keywords” and is used in part by other attacks [12].
One way to illustrate the connection between signature recovery
and privacy is to consider an attacker that guesses correctly the
non-padded volume of a keyword, e.g., token t appears in 22032



Leakage Inversion: Towards Quantifying Privacy in Searchable Encryption

real documents. In this case, the attacker can use the auxiliary in-
formation to unambiguously identify the plaintext of ¢ which must
be the only entry in the volume vector with volume 22032.

From a theoretical perspective, as the community expands its
SE-hardening efforts by applying multiple mitigations, it is essential
to understand the individual effect of each mitigation to the overall
privacy. Towards this goal, we want to study the effect of padding
alone on privacy which translates to quantifying the uncertainty
between the padded signature and the non-padded signature.

In this section, we will re-define the reconstruction space so as
to capture the privacy increase offered by padding in the response-
hiding setting. Specifically, the reconstruction space will comprise
all the non-padded signatures (as opposed to plaintext databases)
that could have resulted in the observed padded signature.

6.1 Padding Approaches

On a high level, we consider padding approaches that group to-
gether a number of values v € DB to form set P;. Instead of revealing
different information for each individual value from P;, the con-
sidered padding approaches reveal the same information for all
members of P;. For example, a padding approach may reveal the
sum of all the volumes implemented by returning all records associ-
ated with values from P; as a single logical unit. We note that the
approach of grouping values appeared in prior works (e.g., see Sec-
tion 4.2 in [12], Section 6 in [31], Section 6 in [38]). This approach
can be generalized, e.g., instead of revealing the sum of volumes in
P; , one may choose to reveal another function of the volumes in
P;. In this work, we develop a common definitional framework to
express proposed padding variations and their generalizations.

Notation. The analyzed padding approaches partition values
v s.t. (id,v) € DB into sets of the same size m. After the partition
of values, all the pairs (id,v”) € DB are also considered part of the
partition set P; where value v’ belongs, i.e., v’ € P;. As a result, even
though each partition set contains the same number of values m, the
total volume of each partition may significantly differ depending
on the number of pairs (id,v”) associated with v”. For simplicity,
we assume that the number v of values that appear in DB is a
multiple of m. We write # = (P1,Po,..., Pv/m) for a partition of
the v values into v/m non-overlapping sets. That is, the union of the
sets, Uje[y/m] Pi> is equal to the set of values in DB. We denote with
P (v) the partition set of P that contains v. To simplify notation, we
write max(P;, j) for the volume of the value with the j-th largest
volume in a set P;. We also use max(DB, j) for the volume of the
value with the j-th largest volume in the entire set of values in
DB. For the largest volume we omit the second input and simply
write max(P;) = max(P;, 1) and max(DB) = max(DB, 1). We write
sum(P;) = Zvj ep,; vol(v;) for the total volume of all values in P;.

RounbpiNnG Padding. In this approach the volume of each value
v is “rounded” to the closest power of a constant c. For ¢ = 2,
the padded volume becomes 218 vol(9)1_ The rationale behind this
previously proposed padding [22] is that the adversary observes
only a set of predetermined padded volumes, i.e., the powers of the
chosen ¢, and as a result, can only observe a coarse-grain volume
leakage. ROUNDING is inline with the partitioning framework since
each ROUNDING partition contains a single value.

ALIGNMENT Padding. In this approach, the volume of each
value is increased to the largest volume of its partition set. ALIGNMENT
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is a tunable generalization of a proposed padding approach [52]
that pads all values to the maximum volume of the database which
corresponds to the case of m = N in ALIGNMENT.

BuckeTING Padding. This previously proposed padding ap-
proach [38] groups values together and treats them as a single
logical unit, which we will call a “bucket” (or bin). When one of
the values is requested then the padded SE scheme returns all the
records associated with the values of the bucket.

On Partitioning Strategies. A common characteristic of the
above paddings is that they all partition the values of the database.
If the partitioning strategy is decided based on the volume of each
value then the SE scheme leaks additional information due to the
partitioning strategy. To illustrate this point, consider a database
where 01, ...,04 have volumes 50,47, 49, 48. Next, we fix m = 2
and choose ALIGNMENT padding which only reveals the maximum
volume of each partition set. Suppose that we partition by grouping
values with large volumes first, then we get P; which contains
volumes {50, 49} and P, with volumes {48, 47}. If the partitioning
strategy is known to the attacker, then (s)he infers that the smallest
volume of P; is at least 48. This is because the largest volume of P,
is 48, thus P;’s volumes must be at least as large. On the contrary,
if a random partitioning resulted in the same P; and P, then the
inference becomes: One of the volumes of P; is 50 and the other
volume can be anything from 1 to 50. Thus, in this work, we only
consider the random partitioning strategy which leaks less.

More formally, we define the following parameterizable leakage
profile that applies to all padding algorithms.

DEFINITION 9. (Function-Over-Subset Pattern) Let P be a par-
tition of values of a DB into disjoint sets with m values each. Let f
be a (possibly randomized) function with multivariate input and a
single-number output. We define as function-over-subset pattern, or
fos pattern, the function family that takes as input a DB, the partition
P, the function f, a value v, and outputs:

fos (DB, P, f,v) = f ({vol(v") : 0" € P(v)}).

For the case of ALIGNMENT the function f of fos is max(-). For
the case of BUCKETING the function f of fos is sum(-). For the case
of ROUNDING, for which each partition set contains a single value,
the function f of fos for the chosen rounding constant ¢ is ¢/1°8¢ ()1,

In this section we re-define reconstruction space so that it con-
tains all possible non-padded signatures that explain the revealed
padded signature under a given padding algorithm. More formally,
let Alg be a padding algorithm, let m be the number of values
per partition, and let DB’ be the padded database from running
padding Alg(m, DB). We define RS g (DB) to be the reconstruction
space with respect to a given signature ¢* «— Alg(m, DB):

RSalg (DB) = {o(DB™) :(DBP*, P)  Alg(m, DB™™),

o(DBP2d) = 5% pBrPad ¢ DIBS,,}.

6.2 Entropy Comparison

Following in the footsteps of Section 3.2, we define the leakage
inversion for the reconstruction space RSxjg(DB). With the term
Aplg we denote the leakage profile when the database is padded
with algorithm Alg and a randomly chosen partition . With the
term Aflg we denote the leakage under a fixed partition #.
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DEFINITION 10. Let DB be a database, let SE be a response-hiding
searchable encryption scheme with leakage profile A that uses padding
algorithm Alg. Let T be a random variable with probability distribu-
tion over RS s(DB). We define as leakage inversion via entropy
with respect to padding the function

Leakinvy(DB, Apig) = H(T).

Notice that in this definition we do not consider the auxiliary
information, therefore, all members of RSa|; (DB) are equiprobable.

Entropy of Padding via RouNDING. The fos pattern reveals
the closest power of ¢ for each volume.

THEOREM 8. Let o(DB) be the signature of the database DB. Let
ROUNDING be the padding approach applied to DB. Let ¢ be the con-
stant used by ROUNDING to pad volume vol(v) to c/o8 (vl Tpe
leakage inversion with respect to entropy is:

Leakinvy (DB, Agoynp) = Z;;l([logc(vol(v))] -1)logec.

Entropy of Padding via ALIGNMENT. The fos pattern reveals
the maximum volume within each partition P;, denoted as max(P;).
From fos, the attacker infers that among the m volumes of the parti-
tion, there are at least 1 and at most m volumes with value max(P;).
The remaining volumes can take any non-zero value that is less than
max(P;). As for deriving a general entropy bound that works for any
partition, in the next theorem we prove that the partition £’ that
maximizes the Leaklnvy (DB, Aarigy) is the one where the top v/m
volumes are assigned to distinct partitions. Additionally, we prove
that the partition £’ that minimizes the Leaklnvj (DB, Aapgy) is
the one where the largest volumes are grouped together.

THEOREM 9. Let o(DB) be the signature of the database DB. Let
ALIGNMENT be the padding approach applied to DB using a given
partition P. The leakage inversion with respect to entropy is:

2 () amasceo - ).
7 J

=)

v/im

LeakInvy (DB, AZ;LIGN) = Z log
i=1

For any partition, the leakage inversion Leakinvy (DB, Aapin) is
lower bounded by

v/m-1 mo
log ( ) (max(DB,im + 1) — 1)™J
vims<m (m N \ym—j
and upper bounded by log (Hizl i (]) (max(DB,i) — 1) ),

and these bounds are tight.

Entropy of Padding via BUCKETING. The fos pattern reveals
the sum of the volumes within each partition P;, denoted as sum(P;).
Given this observation, the attacker infers that the m volumes of
the partition must add up to sum(P;).

THEOREM 10. Let o(DB) be the signature of the database DB. Let
BUCKETING be the padding approach applied to DB using a given
partition P. The leakage inversion with respect to entropy is:

vim
Pi)-1
LeakInvy (DB, A§UCKET) = Z log (Sun:rf _l)l )
i=1
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To derive a lower bound, the next theorem proves that the mini-
mum entropy for padding via bucketing is given by the partition
that groups the largest volumes together, e.g., the largest m have
total volume Z;”zl max(DB, j), the next batch of m largest volumes
have total volume Z;.":l max (DB, m + j) etc.

THEOREM 11. Let o(DB) be the signature of the database DB.
Let BUCKETING be the padding approach applied to DB. The leakage
inversion with respect to entropy under any partition is lower bounded
by the following expression (and the lower bound is tight):

m
>, max(DB,im+ j) — 1
=

Z log

i=0

v/m-1
( < LeakInvy(DB, Agycker)-

m-—1
For the case where each partition has more than two values, i.e.,

m > 2, we show that if there exists a partition where each set has
equal total volume, then this partition maximizes the entropy.

THEOREM 12. Let o(DB) be the signature of the database DB and
m > 2. If there exists a partition P* such that sum(P;) = sum(P;),
for all sets P, P}”f in P*, then the leakage inversion under BUCKETING
is at most
sum(DB)/(v/m) — 1

LeakInvy (DB, Apycker) < (v/m) - log .

Unfortunately, as we show next, deciding whether such a parti-
tion exists is an NP-hard problem. We leave it as an open problem
whether one can efficiently find partitions that are approximately
balanced (under some definition of “approximately”).

THEOREM 13. It is NP-hard to decide if there exists a partition P*
%Y\ s
for the values of o(DB), such that sum(P}) = sum(Pj),for all sets
P, P; in P*, i.e. a partition with maximum possible reconstruction
space size for BUCKETING.

The next theorem provides a necessary condition for which the
entropy of ALIGNMENT is larger than the entropy of BUCKETING.

THEOREM 14. For every partition P that satisfies sum(P;) <
m=1 max(P;) for all P;, the following relation holds between the leak-

e
age inversion by ALIGNMENT and the leakage inversion by BUCKETING:

Leakinvy (DB, A%, ) > Leakinvy(DB, A%

ALIGN BUCKET) .

6.3 Evaluation

In this evaluation, we quantify the privacy provided by different
padding parameterizations. We test our analysis on the Enron and
Apache datasets. For padding via ROUNDING, we evaluate different
¢ values which, as discussed, are used to pad vol(v) to ¢ Mog, (vol(2)1,
For padding via BUCKETING and ALIGNMENT, we evaluate how the
entropy changes for a different number of values per partition, i.e.,
m ranges from 5 to 1000. The communication overhead is measured
as the average (across all values of DB) ratio of padded volume over
non-padded volume.

Figure 3 presents our experiments. For the plots on BUCKETING
and ALIGNMENT, each solid line connects boxplots of entropy (resp.
communication overhead) over 20 random partitions using the
chosen m value. The derived measurements were concentrated and
as a result, the quartiles are not visible. The shaded blue regions
denote the upper and lower bounds from the theoretical range of
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Figure 3: Analysis of the efficiency vs. privacy trade-off across padding approaches and their parameterizations. Each shaded
region corresponds to the theoretical lower & upper bounds of the entropy from Theorems 9, 11, and 12. The solid lines
correspond to the empirical entropy (resp. communication overhead) across several runs.

entropy from our analysis in Theorems 9, 11, and 12. For the plots
on ROUNDING, since every partition contains exactly one value,
there is no need for multiple runs. The entropy is calculated using
Theorem 8. On the contrary, the communication overhead varies
a lot which is why we present a more detailed view. Specifically,
for each ¢, we show the distribution (across all values) of the ratio
between padded over non-padded volumes.

A first finding is that the entropy is closer to the upper bound
than the lower bound. This is explained by the fact that the partition
that gives the lower bound has a structure that is not easy to find in
practice, i.e., it groups the largest volumes together. Another finding
is that in Apache, ALIGNMENT has 1.3X to 1.9 larger entropy than
BUCKETING while BUCKETING has 1.4X-3.5X larger entropy than
RounbinG. This illustrates the power of leakage inversion which
can be used to compare the privacy offered by different defenses.

The most practical finding is that there exists a threshold num-
ber of “values per partition” after which (1) there is little privacy
gain, and (2) there is a significant increase in the communica-
tion overhead. The diminishing returns on privacy holds for both
ALIGNMENT and BUCKETING. For example, in the Apache dataset,
if we increase the values per partition of BUCKETING from m = 100
to m = 1,000, we observe an 11% increase in entropy and a 900%
increase in communication overhead.

7 FUTURE DIRECTIONS

In the following, we provide a (non-exhaustive) list of open prob-
lems inspired by the newly introduced concept of leakage inversion.
Leakage Inversion on Richer Auxiliary Information. In Sec-
tion 4, we treat only cases where exact auxiliary information is
provided, but we hope that future efforts in the area will extend
our analysis to include approximate information, such as partial
volume knowledge and approximate keyword co-occurrence data.

Another interesting direction is to calculate the entropy for the
case where the auxiliary information is defined as the plaintext co-
occurrence matrix. This is a very common cryptanalytic assumption
and it benefits the community to understand exactly how damaging
this information can be in the hands of an adversary.

Another practical direction is to develop a similar analysis to
the one in this work, but with the additional assumption that the
attacker has knowledge of some auxiliary information about the
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data distribution. The auxiliary information can be as simple as
a parameter about the underlying data distribution. This piece of
knowledge would allow the adversary to assign a probability to each
member of the reconstruction space and re-calculate the entropy.

Leakage Inversion on Padding Variations. In this work, we
developed a formal understanding of padding with respect to the
functions “max” and “sum” over the set of returned volumes. One
can extend our analysis to other functions and show how they
compare to padding via alignment and padding via bucketing.

The padding approaches that we analyze in this paper do not add
any probabilistic noise to the final overall volume of the padding.
Recent proposals consider differentially private leakage with the
addition of Laplacian noise [52]. An interesting open problem is to
derive a formal analysis of this noisy padding approach, and show
sufficient conditions for which it outperforms the competition. It is
unclear whether the addition of noise, as described in [52] provides
significant gains in terms of entropy increase.

Conclusion. In this work, we took the first step toward quanti-
fying privacy metrics for searchable encryption using the concept
of leakage inversion. We presented a diverse set of scenarios where
leakage inversion can provide new insights. Leakage inversion has
the power to become a valuable and rigorous tool for future con-
structions and attacks in searchable encryption. New designs can
use leakage inversion to compare their entropy to the entropy of
well-established schemes. New cryptanalytic efforts can establish
the power of their algorithmic approach by providing an entropic
analysis of their underlying assumptions.
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