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Abstract

We highlight the differing roles of vorticity and strain in the transport of coarse-grained scalars
at length-scales larger than £ by smaller scale (subscale) turbulence. We use the first term in a
multiscale gradient expansion due to Eyink [1]|, which exhibits excellent correlation with the exact
subscale physics when the partitioning length £ is any scale smaller than that of the spectral peak.
We show that unlike subscale strain, which acts as an anisotropic diffusion/anti-diffusion tensor,
subscale vorticity’s contribution is solely a conservative advection of coarse-grained quantities by
an eddy-induced non-divergent velocity, v,, that is proportional to the curl of vorticity. Therefore,
material (Lagrangian) advection of coarse-grained quantities is accomplished not by the coarse-
grained flow velocity, ug, but by the effective velocity, uy + v, the physics of which may improve

commonly used LES models.

* hussein@rochester.edu



I. INTRODUCTION

Basic considerations from fluid dynamics (e.g. [2]) indicate that the distance between
particles in a laminar flow is determined by the strain. Vorticity merely imparts a rotation
on their separation vector r without affecting its magnitude. This behavior can be seen by
considering the velocity, u, difference between particles P and ) at positions x and x +r,

respectively,
uQ—uPzéu:u(err)—u(x):r-Vu‘er... : (1)

where a Taylor-series expansion is justified for short distances |r| over which the flow is

sufficiently smooth. In the Lagrangian frame of P at x, the separation from ) evolves as

D
izéu:r-SJr r-Q2 . (2)
lwXr

where the velocity gradient tensor, Vu = S 4 €2, has been decomposed into the symmetric
strain rate tensor S = [Vu + (Vu)?]/2 and the antisymmetric vorticity tensor Q = [Vu —
(Vu)']/2 = —2ejjpwy. Here, w = Vxu is vorticity and ¢, is the Levi-Civita symbol.
Taking an inner product of eq. (2) with r,

1 Dr)*
S r-Ser, (3)

shows that the distance is determined by the strain. Vorticity in eq. (2) only acts to rotate
r without changing its magnitude.

These considerations hinge on the critical assumption that the flow is sufficiently smooth
over separations r, which is patently invalid in a turbulent flow for r at inertial scales [3].
However, a version of this story survives thanks to the property of scale-locality, which
justifies an expansion in scale as we shall discuss below. The main result of this paper
is eq. (43), which is an expression for the eddy-induced advection velocity v, at length-
scales larger than ¢, which may be the size of grid cells in a simulation. The non-divergent
velocity, v,, arises from vortical motions associated with subscale nonlinear interactions.
Fig. 1 captures the essential insight behind eq. (43).

In section II, we discuss subscale transport, Eyink’s expansion in length-scale, and the
leading order term. In section III, we present empirical support from (i) 3D direct numer-

ical simulation (DNS) of a compressible turbulent flow and (ii) two-layer stacked shallow

2



v¥ ~ V Xcvi

Effective advective velocity

" due to sub-scale vorticity

[ coarse-graining
/ region centered on x

FIG. 1. Schematic of how eddy-induced advection by a non-divergent velocity, v¥ ~ VxuV (blue
arrow) from eq. (43) can arise due to subscale vorticity (red). In this example, two symmetric but
counter-rotating eddies (red) are of a size smaller than that of the coarse-graining box (dashed).
At length-scales larger than that of the box, 1, which may represent a grid cell in a simulation or
the resolution limit of an observation, these eddies exert an eddy-induced advection with velocity

v* proportional to the curl of vorticity, depicted by the blue arrow at location x.

water simulation of geophysical fluid turbulence. Section IV contains the main result, which
expresses transport by subscale vorticity as a conservative advection by an effective drift
velocity v* proportional to the curl of vorticity. Throughout this paper we attempt to make

the presentation accessible to readers from various backgrounds.

II. MULTI-SCALE DYNAMICS

To analyze the dynamics of different scales in a flow, we use the coarse-graining approach,
which has proven to be a natural and versatile framework to understand and model scale
interactions (e.g. [4, 5]). The approach is standard in partial differential equations and dis-
tribution theory (e.g. [6, 7]). It became common in Large Eddy Simulation (LES) modeling

of turbulence thanks to the foundational works of Leonard [§] and Germano [9].

For any field a(x), a coarse-grained or (low-pass) filtered version of this field, which



contains spatial variations at scales > ¢, is defined in n-dimensions as

a(x) = /d”r Ge(x —r)a(r). (4)

Here, G, is a convolution kernel derived from a “mother” kernel G(s) (borrowing the term
from wavelet analysis [10]). G(s) is normalized, [d"sG(s) = 1. It is an even function such
that, [sG(s)d"s = 0, which ensures that local averaging is symmetric. G(s) also has its
main support (or variance) over a region of order unity in diameter, [ d"s|s|? G(s) = O(1).

The dilated version of the kernel,
Go(r) = £7G(x/4), (5)

inherits all those properties, except that its main support is over a region of diameter ¢£. An

example is the Top-Hat kernel in non-dimensional coordinates s,

L, if|s;| < 1/2fori=1,... n,
G(s) = (6)

0, otherwise,

and its dilated version in dimensional coordinates r,
e iyl < b/2fori=1,...,n,
G(r) = (7)

0, otherwise.

The scale decomposition in eq. (4) is essentially a partitioning of scales for a field into

large scales (2 ¢), captured by a,, and small scales (< ), captured by the residual
a, =a—a,. (8)

In the remainder of this paper, we shall omit subscript ¢ from variables if there is no risk

for confusion.

A. Coarse-grained Transport

Consider the transport equation of the concentration (per unit volume) C'(x,1):
HC + V-(Cu)=V:[pr V. (9)

Here, p is mass density, u is the advecting flow velocity, which is possibly compressible.

The scalar field C' = p ¢, where ¢ is concentration per unit mass, can be either passive or
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active, with diffusivity , which can be due to the microphysics or an effective (turbulent)
diffusivity used in a simulation. Analysis of the incompressible momentum transport follows
similar reasoning as below, with C' replaced by u when p = (const.), so we shall focus on C
for simplicity.

We shall call eq. (9) the “bare” dynamics [11, 12| as it governs flow in an experiment or
natural system. In a coarse-resolution simulation, such as in implicit or explicit LES [4, 13],
or when taking spatially under-resolved measurements in an experiment, u and C are not
resolved down to the microphysical scales. The equation that governs the coarse-grained

scalar Cy is obtained by filtering eq. (9) to get (e.g. [14])

8,55 + V’(ﬁg U@) = -V + V(p HVgZﬁ)E , (10&)
where 7, = 74(u,C) = (uC), - u,C, (10Db)

is the subscale flux of C, [9]. Eq.(10) is exact, without any approximation, and describes
the scalar transport at length-scales larger than ¢. The last term, V-Wﬁ, was shown
mathematically in [15] to have an upper bound proportional to aums £72 ¢ps at every location
in the flow and every time, where o = p k. Therefore, it is guaranteed to be negligible for
sufficiently large ¢ or sufficiently small «, which was demonstrated numerically in [16]. This
allows us to drop V+(prsV¢), from eq. (10) (but not from the bare eq. (9)).

An evident role of the subscale flux 7,(C, u) in eq. (10) is accounting for the influence of
unresolved scales €' and u) on the transport of C,. Another important role of 7,(C, u) in
eq. (10) that may not be as well-appreciated is balancing u, C, which can interact with scales
< ¢ that are approximately within the band [¢/2,¢]. This is analogous to the term pxV ¢
balancing uC' at microphysical scales ~ ¢, below which molecular diffusion dominates
advection. To illustrate, assume that at a time ¢ the scalar and velocity fields are fully
resolved, C;, = C' and U, = u. Moreover, assume that scale ¢ is sufficiently large, ¢ > /.,
such that microphysical diffusivity is negligible and does not damp nonlinear interactions.
That small scales are absent, €, = 0 and u, = 0, does not necessarily imply that the subscale
flux 7¢(C,u) = (uC), — uC is zero unless there is sufficient scale separation between ¢ and
the smallest scales of C' and u. Therefore, the general transport of a coarse-grained scalar
(' is not described by the typical (or bare) transport equation (9) even when C' and u are

resolved (C} = 0 and u), = 0), because coarse-graining also alters the representation of their

nonlinear interactions, which may be at scales smaller than ¢.
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From definition (10b), it is possible to decompose 7,(C,u) into contributions that are
solely due to resolved fields Cy and T, (e.g. the Leonard term [8, 17]) and other contributions
that involve unresolved fields C} and uj. In the discussion below, we use the term ‘subscale’
to refer to any contribution from 7,(C, u) because it arises from coarse-graining the dynamics
at scale . We shall see that the resolved fields make a dominant contribution to the subscale

flux 7¢(C, u) thanks to the property of ultraviolet scale-locality.

B. Multiscale Expansion

The subscale term 7,(u, C') does not lend itself to a straightforward intuitive interpreta-
tion. To that end, we utilize the multiscale gradient expansion of Eyink [1]. This expansion

is accomplished by decomposing a field
a(x) =y all(x) (11)
p=0
into a sum of band-passed fields [1]
all==a, —a, ,, p=12,..., (12a)
al’l =7, (12D)

for a sequence of scales ¢, = A7P¢, with the non-dimensional number A > 1, e.g. A = 2.
can be a characteristic large scale such as the domain size. A similar decomposition can be

done for the subscale flux,

7o(u,C) = P, ), (13a)

p=0 ¢=0

with 7% (u, C) = (aPICH), — (uPl),(CH), . (13b)

The term Tép ’q](u, (') represents the subscale contribution from scalar and velocity scales
within bands [g| and [p], respectively. Eyink |1, 5| proved that the series (13) converges abso-
lutely and at a geometric rate under the condition that the scaling exponents of increments

of du(r) ~ r°" and 6C(r) ~ r° satisfy ¢* > 0 and ¢© > 0 L,

! More precisely, the condition is that o > 0 and of > 0 if increments scale as (|6u(r) [Pyl
Upms Ap(r /€)% and (|5C(r)|P)1/P ~ C’rmSBp(r/éo)‘71(3j for some dimensionless constants A, and B, where
(...} is a space average. The condition has to hold for at least p = 2, with higher values of p representing

more stringent conditions. Note that a power-law scaling of increments is not required; the condition is

still satisfied if increments decay faster than any power-law with r — 0, for example exponentially.
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Exponents ¢* and o reflect the smoothness of their respective fields (see Fig. 1 in
[11] and the associated discussion), with larger values of ¢ implying smoother (or, heuris-
tically, less turbulent) fields. For example, the Kolmogorov-Obukhov theory [18-20] pre-

¢ = 1/3 for velocity and passive scalar increments over scales within the

dicts ¢ = o
inertial-convective range of a high Reynolds number turbulent flow that is statistically ho-
mogeneous. In contrast, for low Reynolds number flows, even if they are chaotic, we can
expect ¢ > 1. Ignoring intermittency corrections, the scaling exponent o of increments is
related to the power-law scaling of a spectrum, E(k), of either u or C, via E(k) ~ k=271,
Therefore, the condition ¢ > 0 corresponds to a wavenumber scaling of spectra that decays
faster than k=! in wavenumber, which is a fairly weak condition and is expected to hold
in most flows. The conditions are the same as those required for 7,(u, C') to be ultraviolet
scale-local [5, 21, 22|, which means that length-scales § < ¢ make a negligible contribution
to 7o(u, C),

F(Chyuf)| < [F(C, ). (14)

Under these conditions of convergence, the leading order term in eq. (13) is the dominant

contribution to the series, which justifies the approximation
74(11,0) R~ TE[O’O](U,C) ZFg(ﬁg,Ug). (15)

This approximation corresponds to the well-known similarity (or Bardina) model [4, 23]. To

readers who are perhaps less familiar with LES or coarse-graining, the term

7o, Cp) = (W,Cy), — (W) (Co), (16)

may seem insignificant, especially considering that if one were to replace operation mﬁ
with a Reynolds (or ensemble) average, expression (16) would be identically zero. How-
ever, operation mﬁ is a decomposition in length-scale, which is inherently different from
Reynolds averaging. To aid in the conceptual understanding of expression (16), assume

that (...), is a sharp-spectral projection in wavenumber space, (...), = (...)<¥. Apply-
ing (...)<¥ removes all wavenumbers larger than K = ¢=! (i.e. small length-scales) while

keeping wavenumbers smaller than K intact. Then

To(We, Cr) = (0K OT) T () <0< (172)

— (u<KC<K)<K _ u<KCv<K7 (17b)



using the sharp projection property, ((...)<¥)<K = (... )<¥ to arrive at the last expression.

The term u<KC<¥

in eq.(17b), being a quadratic product, contains wavenumbers < 2K.
Of these, the contribution (u<¥C<K)<K from wavenumbers < K is subtracted in eq.(17b),
such that 7,(1,, C;) represents wavenumbers within the band [K,2K] or, equivalently, be-
tween length-scales ¢ and ¢/2. As discussed in previous work on scale-locality [5, 24], this
band of scales is expected to make the dominant contribution to the subscale flux 7,(u, C')
if the spectrum decays faster than £~! in wavenumber over the range of scales < ¢. This
is essentially the condition under which eq. (15) was derived. Physically, a spectral decay
faster than &~' implies that dyadic wavenumber band [k, 2k] has more energy than band
|2k, 4k| (e.g. [25, 26]), which justifies retaining the smallest wavenumbers via the leading
order term in expansion (13) [22]. A spectral decay faster than &=! is a fairly weak condi-
tion and is expected in most flows (turbulent or laminar), but may fail, for example, if ¢
approaches scales of the spectral peak or larger. We emphasize that filtering with a sharp-
spectral kernel in eq. (17) is merely for conceptual understanding. Unlike the Top-Hat or
Gaussian, a sharp-spectral kernel is not positive semi-definite in physical space, which vio-
lates physical realizability conditions [27], rendering subscale energy or coarse-grained mass

density negative in physical space [5, 15].

C. Relation to Increments and Gradients

Using the usual definition of an increment,
0f(x;r) = f(x+r) - f(x), (18)
the subscale flux (10b) can be rewritten exactly in terms of §C and du [5, 24, 28|:
7(C,u) = (0C du), — (0C), (6u),. (19)

Equation (19) is exact and follows directly from eq. (10b) without requiring any assumption

about scale-locality or the scaling exponents, where

(6, (x) = /dnr Ge(—r)o f(x; 1) (20)

is a local average around x over all separations r weighted by the kernel G,. A spatially

localized (or compact) kernel effectively limits the average in eq. (20) to separations |r| < ¢/2.
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Note that Gy(—r) = G(r) for even kernels, such as a Gaussian or a Top-Hat. Relation (19) is
a key step and reveals the connection between the subscale physics and increments (spatial
variations) over distances smaller than ¢. This connection is underscored by noting that

expression (20) equals (minus) the high-pass field containing scales < ¢,

/d”r Ge(—1) 0 (x;1) = =[f(x) = [o(x)] = = filx) . (21)

We may also connect these considerations with the argument presented in the introduction,
where increments reflect gradients [1], including strain and vorticity of the subscale flow.
Approximating the subscale flux by the leading order term in eq.(15) allows us to use

identity (19) for the filtered quantities,
T(Cp ) = (0C, 60y, — (0C,), (5, - (22)
Since a filtered field f,(x) is smooth, we can Taylor expand its increments around x,
STo06T) = Ty 4 1) = o) ~ -V Fu() o (23)

where we neglect higher order terms. Substituting the first term in the Taylor expansion of

each of 6C and 0u into eq. (22) gives in n-dimensions

7€) = [6Ce] [Om) ] [rarande = (7)) (24a)
— [8:C4] [ } % S 2 / d"s G(s) |s|2} (24b)
_ %MQE 0.(0), 0T . (24c)

In deriving the second line, we used the symmetry of the kernel such that (ry), = 0. In the
final expression, the mother kernel’s second moment, M, — [ d”s G(s)|s|*, depends solely
on the shape of kernel G and, in particular, is independent of scale ¢. For the Top-Hat in

eq. (6), My = n/12 in n-dimensions.

D. Summary and Interpretation

From the derivation above, we see that the final expression in eq. (24c) represents the
leading order contribution to 7,(C,u). . Therefore, to the extent expression (24c) faithfully

approximates 7,(C,u), it also represents the subscale physics. How can expression (24c),
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which involves only coarse-grained (or resolved) quantities represent subscale interactions?
It is analogous to inferring the value of a function f(xy + h) a distance h away from x
based solely on its local properties at xy via a Taylor series expansion, the accuracy of which
depends on smoothness properties of f. Here, the expansion is done in length-scale [1] rather
than in space to arrive at eq. (24¢). The analogue to smoothness is ultraviolet scale-locality,
which is guaranteed under weak spectral scaling conditions [5, 21, 22, 24].

Expression (24c¢) corresponds to the nonlinear (or Clark) model [29], which is a closure
of the subscale flux using a product of gradients in LES modeling and has been shown to
be an excellent (a priori) approximation of the subscales in several previous studies (e.g.
[14, 30, 31]). Some studies have also offered viable ideas for utilizing it in a posteriori
LES [23, 32, 33]. Below, we provide additional a priori support from simulations of 3D
compressible turbulence and two-layer stacked shallow water simulations of geophysical fluid
turbulence.

In the discussion above, we followed Eyink’s multiscale gradient expansion [1] to derive
expression (24c), which is more general than the standard derivations of the nonlinear model
found in the LES literature (e.g. [3, 23, 29, 30, 33-35|). Since Eyink’s multiscale gradient
expansion is convergent, it provides a rigorous foundation to justify neglecting higher order
terms. Another advantage of using Eyink’s expansion is in bringing to the fore the underlying
physics, including the assumptions under which the series (13) converges and, therefore, the
conditions under which the approximation may fail. Moreover, being a systematic expansion,
it allows for future improvements by retaining higher order terms or by using a closed form
of those terms following the recent work of Johnson [36, 37].

Approximation (24¢) provides us with physical insight into the mechanisms by which
the subscales transport C,.. Below, we show that subscale vorticity’s contribution is an
eddy-induced drift velocity. Prior to doing so, we discuss how well eq. (24¢) approximates

Te(u, C') from simulations.

III. EMPIRICAL SUPPORT

Approximating 7,(u, C') by expression (24¢) has significant support in the LES literature
from a priori tests of the nonlinear model. It has been shown to exhibit excellent agreement

when (' is taken as the momentum (e.g. [30, 35]), as the temperature field in the atmospheric
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PUx Puy puz

FIG. 2. Left to right: visualization of x, y and z components, respectively, of momentum, p u, in
physical space from the 10243 DNS. These images are shown at an instant of time after the flow
has reached steady state. Shocks can be seen as discontinuities. The spectrum of this flow is shown

in Fig. 15 in the Appendix.

boundary layer [14, 31], and as a passive scalar [38, 39].

In this section, we present additional supporting evidence for active scalars, when C
represents (i) density in a 3D compressible turbulent flow and (ii) layer thickness in a two-
layer stacked shallow water simulation of geophysical fluid turbulence. The correlation is
generally better than 0.9 at inertial scales smaller than the scale at which the spectrum

peaks.

A. Compressible Turbulence

We carry out a direct numerical simulation (DNS) of forced compressible turbulence in
a periodic box of non-dimensional size 2ir with grid resolution 10243, From the simulation
data, we test how well the expression in eq. (24c) approximates W(u, C) with C replaced by
the density field, p, which is an active scalar.

The DNS follows the configuration of [40] and solves the fully compressible Navier-Stokes

equations using our DiNuSUR code [16, 40]:

+(prq) =0, (25)
dt{pUiJrdj(pUi'Uj) = —diP + djOij + pF) , (26)
dt{pE)pdj(p E Uj) = —dj(Puj) + dj[2 piii (Sp- — —Skk’ij)] ~ + Pu\ Fi ~ P-P . (27)

Here, £ = |u|2/2 + e is total energy per unit mass, where e is specific internal energy, P is

11



thermodynamic pressure, y is dynamic viscosity, q = —xVT is the heat flux with a thermal
conductivity £ and temperature 7. Both dynamic viscosity and thermal conductivity are
spatially variable, where u(x) = po(T(x)/T5)*™. Thermal conductivity is set to satisfy
a Prandtl number Pr = ¢, u/k = 0.7, where ¢, = R~/(y — 1) is the specific heat with
specific gas constant R and v = 5/3 for a monoatomic gas. We use the ideal gas equation of
state, P = p R'T. We stir the flow using an external acceleration field F;, and RL = pu; F;
represents radiation losses from internal energy (see [40, 41]). S;; = (9;u; + dyu;)/2 is the

symmetric rate of strain tensor and o;; is the deviatoric (traceless) viscous stress,
1
0ij = 240 (Sij = 55 0is)- (28)

We solve the above equations using the pseudo-spectral method with 2/3rd dealiasing. We
advance in time using the 4™-order Runge-Kutta scheme with a variable time step.

The acceleration, F, is similar to that in [42]. In Fourier space, the acceleration is defined
as

Fi(k) = f;(k) P (k). (29)

where f is constructed from independent Ornstein-Uhlenbeck stochastic processes [43]. The

projection operator
ks k;
Ik

allows for controlling the ratio of solenoidal (V-F = 0) to dilatational (V XF = 0) compo-

Pi(k) = ¢y + (1 —2() (30)

nents of the forcing using the parameter (. When ( = 0, the forcing is purely dilatational
and when ¢ = 1, the forcing is purely solenoidal. For the simulation we use here, shown in
Fig. 2, we set ( = 0.01 to simulate turbulence with high compressibility, such that dilatation,
V-u # 0, is significant.

Our simulated flow has significant compressibility, which can be seen from Fig. 2 and in-
ferred from the following three time-averaged quantities. (1) The ratio (V+u),ms/(V X0)ms =
5.61 in our flow, which measures compressibility at small scales. (2) We also Helmholtz
decompose the velocity field into the dilatational, Vxu¢ = 0, and solenoidal, V-u® = 0,
components, u = u? + u®. The ratio of dilatational kinetic energy, K¢ = (pufu?/2), to
solenoidal kinetic energy, K* = (pufui/2), yields a measure of compressibility at large
scales, which in our flow is K¢/K* = 4.80. (3) We also calculate the turbulence Mach
number, M; = ([u|?)'/?/c = 0.23, where ¢ = 2.18 is the mean non-dimensional sound speed.

Spectra of density and velocity are plotted in Fig. 15 in the Appendix.
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We use the Top-Hat kernel in eq. (7) for the coarse-graining. Fig. 3 shows a 2D slice
from the 3D flow at the instant of time shown in Fig. 2, comparing the exact 7,(u., p) at
¢ = 0.19635 (domain size is 27) with its approximation (24c). The other two components are
shown in the Appendix Fig. 16. All indicate an excellent agreement. Fig. 4 (left column)
shows a more quantitative evaluation of all three components of the subscale transport
approximation, where we can see that the approximation is remarkably accurate almost
everywhere but underestimates 7¢(u., p) at locations of strong shocks. This underestimation
indicates that higher order terms in the expansion (13) are needed for better agreement at
those locations since these rare but strong discontinuities have a significant contribution
from scales < ¢ and are an extreme test case for the approximation. Indeed, at a location
xo of a shock, the increment scales as du(xo;r) = w(xg + 1) — w(xg) ~ r?, with o = 0
for distances r larger than the viscous shock width (see Fig. 1 in [11] and the associated
discussion). This value is at the margin of validity of the & > 0 condition 2 for Eyink’s
expansion (13) to converge.

Fig. 4 (right column) shows the joint probability density function (PDF) between 7, (u, p)
and its approximation, with correlations exceeding 0.9. In Figs. 11-13 in the Appendix, we
show similar comparisons at other length-scales. The correlation coefficient between two

datasets, A and B, is defined as

[((A2%) = (A)2)((B?) — (B)*)]2

where (...) is a space-time average over the entire domain and time after which the flow

has become statistically stationary. The joint PDF in Fig. 4 uses the so-called ‘z-scores’ of
Tm and 7;, denoted by 7%, and 7* (all other figures show the actual 7, and 7, values). The

z-score of A is defined as
A —(A)
(A= (A))2H2

which helps focus on the spatio-temporal variation patterns after subtracting the mean and

A =

(32)

normalizing by the standard deviation. For completeness, we plot the joint PDFs of the
actual 7,, and 7, in Fig. 14 in the Appendix. Using z-scores in the joint PDF only affects

the slope of the linear fit between 7,,, and 7,. The correlation coefficient is the same whether

2 Formally, the condition ¢ > 0 for Eyink’s expansion to converge is not based on the scaling of an increment
du(z;r) at a single point z. Rather, it is based on the scaling of structure functions, which are spatial

averages of increments.
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FIG. 3. A 2D slice at x = 0 from a snapshot of the 3D compressible turbulence DNS, comparing

the (left) exact Tg(ux,p) at £ = 0.19635 with (right) its approximation from eq. (24c), rm =
\M2e2dkpdiu’.

using the actual values or their z-scores,
r(A\FT)=r(A.,B). (33)

Therefore, z-scores show how well the approximation 7m is able to capture the exact subscale
physics Tf up to a proportionality constant.

Fig. 5 plots the correlation coefficient as a function of 1, which has values exceeding 0.90
for scales £ smaller than that of the peak and decreasing to « 0.85 for scales £ = ir (half the
domain size). These strong correlations justify our usage of expression (24c) as a proxy for

Tg(u, p) to gain insight into its underlying mechanics.

B. Geophysical fluid turbulence

We also ran simulations of the two-layer stacked shallow water equations (34),(35) using
the ocean general circulation model MOMG6 [44, 45]. We simulated an ocean current [46] that

is baroclinically unstable [47, 48], resulting in mesoscale eddy generation and geostrophic

turbulence, which we visualize in Fig. 7.
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slope = 0.97
r =094

xI0"}

FIG. 4. Comparison of Te(p, u) with its approximation rm = M2 12 dkpc™u at i = 0.19635. (A)
x-component. of r and rm along a diagonal transect through the domain from a single snapshot. (B)
Joint PDF between r* and 7'V where superscript V indicates z-scores, which emphasizes trends
(see eq. (32) and associated discussion in the text). Color bar indicates the number of grid-points
on a logarithmic scale, proportional to the probability. Black line is the best linear fit, and the
correlation-squared, r2, quantifies the fraction of variability in r that is captured by rm. (C), (D)

Same as (A), (B) but for the y-component. (E), (F) Same as (A), (B) but for the z-component.
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o 0.85

FIG. 5. Correlation coefficient, » between 17(7, u) and its approximation rm = "M £2d"p d"u as a

function of scale £ (A) x-component. (B) y-component. (C) z-component.

Details of the simulation setup can be found in r461. The equations solved in mome are

cu

—h (/+a)zx um=—VMn~+ \um\2/2) — V*T — 8m2 CD \V,2 112 , G

"XX-—h V-(hmUm) = i — 2m) [7 (p3/2T — T3/2ce» ™ V1 (ALIV2T32)] . 35>

The subscript m =1,2 labels the top and bottom layers, respectively, and repeated indices
are not summed in the thickness equation (35). 71/2 is the vertical position of the top
layer interface (surface height), 73/2 is the height of the interface between the two layers,
um is the horizontal velocity, u is vertical component of relative vorticity, / = /o + (3y
is the Coriolis parameter for Earth’s rotation (i.e. the planetary vorticity), where /0 is
the value of / at southernmost boundary (7 = 0) and s is the linear rate of change of /
along meridional direction. 7 is the horizontal stress tensor parameterized by Smagorinsky
biharmonic viscosity [49], CD is the dimensionless bottom drag coefficient and M\ = 7 71/2
and M> = Mi + (777) 73/2 are the pressure of the layers 1 and 2 normalized by p0, the
density of the top layer. Ap is the density difference between the two layers, Am is the layer
thickness, K/ is the interface height diffusivity coefficient, and 7 is a rate that is proportional
to the mass flux between the layers [46]. K& allows for the dissipation of available potential
energy [50] and 7 forces the interface height between the two layers to reference zonal mean
state 73/2re- Here, (*) represents a zonal average (i.e., in the east-west direction). The flow
is able to attain a statistically steady state in the absence of direct wind forcing in eq. (34)
by nudging the layer interface 73/2 to the reference profile 73.2ref hi eq. (35), which drives

the flow by providing a source of potential energy [46], mimicking the sloping of isopycnals
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FIG. 6. Initial condition for two-layer stacked shallow water simulation following [46]. The top
layer has zonal (east-west) velocity with a Gaussian profile peaking at ~ 0.35 m/s (positive to the
east) while the bottom layer is initially quiescent. Bottom topography is flat. The surface has
initial height rj/i2 = 0 m. The interface height jy3/2 between the two layers is initialized to the
reference 73/2,re/ shown to satisfy geostrophic balance. jy3/2 is allowed to evolve freely while being

relaxed back to 73/2,re/ at, the rate 7.

by Ekman pumping in the real ocean [48].

The flat bottom domain is 1200 km x 1600 km in horizontal extent and is discretized
on a Cartesian grid with a grid-cell size of 5 km. The total depth is 2 km and the bottom
surface is flat. It is zonally periodic and subject to free-slip walls at the northern and
southern boundaries. The initial conditions have a zonal jet 200 km wide with a Gaussian
profile peaking at ~ 0.35 m/s for top layer and bottom layer is quiescent, similar to initial
conditions of [46]. The interface between the two layers is such that it satisfies geostrophic
balance and is as shown in figure 6. The Coriolis parameter at the southernmost boundary is
/o = 6.49 x 10-5s-1 and /5 = dyf™= 2x 10-117n-1s-1. The value of 7 = 1.1574 x 10-6 s-1 and
Kh = 8000 'B2s-1. The simulation is run for 180 days, sufficiently long for the geostrophic
turbulence to develop as a result of baroclinic instabilities. For our results, we analyze 100
snapshots taken every 2.5 hours starting from day 169. Spectra of Lq and 4\ are shown in

Appendix Fig. 21. For our purpose, we only analyze the fields from the top layer since the
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FIG. 7. Visualization of the relative vorticity normalized by the Coriolis paramater / at the do-
main’s mid-latitude from our simulation of an eastward flowing ocean current that is baroclinically
unstable, resulting in eddy generation and turbulence. The simulation solves the two-layer shallow
water equations, with the top and bottom panels showing the respective top and bottom layers.
Time increases from left to right: panels Al and A2 are from day 60, Bl and B2 from day 93,
Cl and C3 from day 180. Our analysis uses model data after day 169, when the flow has become

statistically steady.

flow in the bottom layer is much weaker. Hereafter, we drop the layer subcript since all
results pertain to the top layer.
We compare Tg{h, u) with its approximation \#z2 M2 d™h %U in eq. (24c). We use a graded

Top-Hat kernel following our previous work analyzing oceanic flow [51, 52],

Q,(r) = 0.5 — 0.5tanh((r — ~/2)/10), (36)

where # denotes the kernel width. This kernel is essentially the same as the Top-Hat in

eq.(7), but with smoothed edges to avoid discretization noise from the nonuniform grids [51]

18



1200
800

400

1200
800

400

1200
x [km]

-106 -104 -102 -10° -IQ-2 I9-2 10° 102 104 106
m/s

FIG. 8. Comparing the (left) exact TI(U, /) at £ = 100 km with (right) its approximation from
eq. (24c), rm = "Ahil dkhdku, from a single snapshot. Top panels are for the zonal (eastward)
component. Bottom panels are for the meridional (northward) component. Grey bands at northern
and southern boundaries are excluded from our analysis to avoid details of the coarse-graining next

to boundaries.

commonly used in general circulation models. Since the model domain is flat, r is a simple

Euclidean distance as in eq. (7), without complications due to Earth’s surface curvature [53].

Fig. 8 compares the Ty(u, #) at £ = 100 km with its approximation (24c). It indicates
an excellent agreement. Fig. 9 (left column) shows a more quantitative evaluation of both
components of the subscale transport approximation, where we can see that the approxima-
tion is remarkably accurate almost everywhere. Fig. 9 (right column) shows the joint PDFs

between ry(u,p) and its approximation for both components (eastward and northward di-
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rections). They show correlations exceeding 0.95. In Figs. 18-20 in the Appendix, we show
similar comparisons at other length-scales of 50 km, 200 km, and 400 km. The joint PDF
in Fig. 9 uses the z-scores of 7y and 7, denoted by 7* and 7.}, and (all other figures show
the actual 7, and 7, values). As mentioned in eq. (33), the correlation coefficient between
7* and 7, is the same as that between 7, and 7,,. We use z-scores to focus on how well the
approximation 7, is able to capture the exact subscale physics 7, up to a proportionality
constant. For completeness, we plot the joint PDF's of the actual 7, and 7, in Fig. 25 in the
Appendix.

Noting that the spectral peak (Fig. 21) is at ~ 300 km, Fig. 10 plots the correlation
coefficients between the exact 7¢(u, h) and its approximation (24¢) as a function of ¢, which
has values exceeding 0.90 for scales ¢ smaller than the that of the spectral peak and de-
creasing to ~ 0.75 for scales ¢ = 400 km. These high correlation values justify our usage of
expression (24¢) as a proxy for 7,(u, h) to gain insight into its underlying mechanics at least

for scales ¢ smaller than that of the spectral peak.

IV. TRANSPORT BY SUBSCALE VORTICITY AND STRAIN

Insight from eq. (24¢) into how the subscale physics contributes to large-scale transport
can be gleaned by using a fundamental result from [54], [55], and [56], who showed in
different physical systems the importance of scalar transport by an anti-symmetric skew
diffusion tensor, or equivalently an eddy-induced advective flux. We elaborate on this idea
in this section, which contains the main result of the paper in eq. (43).

Replacing 7o(u, C') in eq. (10) by expression (24c), we have
8,55 + V’(ﬁg U@) = V. <—A 02 ajﬁg 8]'64) , (37)
with the constant A = M, /n. Therefore, transport of C; by the subscale flux,

R(C) = V-[(=A 20;1,) 8,C), (38)
T

resembles that of generalized transport tensor
Kij = — A ;. (39)
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FIG. 9. Comparison of Te(h, u) with its approximation rm = 12 cRhck-u at £ = 100 km.
(A) Zonal (eastward) component of r and rm along the transect y = 802.5 km from a snapshot
on day 171 of the simulation. (B) Joint PDF for all space-time points between r* and 7*2, where
superscript V indicates z-scores, which emphasizes trends (see eq. (32) and associated discussion
in the text). Color bar indicates the number of grid-points on a logarithmic scale, proportional
to the probability. Red line is the best linear fit, and the correlation-squared, 12, quantifies the

fraction of variability in r that is captured by rm.

Note that /<y is a function of the length scale £ through both the 12 factor as well as the
coarse-grained velocity TR. For notational brevity we drop the £ when writing individual
components of TR.

Physical properties of the subscale transport tensor /<y can be illuminated by separating
it into a symmetric part FfRm representing subscale strain , and anti-symmetric part (also

called skew-symmetric) KAew representing subscale vorticity . The tensor is rewritten as

Rij = —AndjiUi = —A £ 1— (djUi + diUj) + — (=oriq — diiij)\ = a~ym + I\few 0
A -y ' c -y '
Sij Clij

with vorticity and strain underlying kinematically distinct flow processes [e.g., 56]. Note that
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1.00

FIG. 10. Correlation coefficient, » between T/(/?.,U) and its approximation rm = dfchdfcu as

a function of scale £ (A) Zonal (eastward) direction. (B) Meridional (northward) direction.

the symmetric part satisfies ATm = KJ™ while the anti-symmetric part satisfies /<Aew =

_ Z71"skew

Transport due to the subscale strain,
A-(C) = "[ATQ], (41)

can be thought of in the local eigenframe reference of AT™ as anisotropic diffusion/anti-
diffusion of Cc in directions that are not necessarily parallel to VCb- Such transport3 was
analyzed in detail in [14]. Positive eigenvalues are associated with a stretching flow direction
(diffusion) while negative eigenvalues are associated with a contracting flow direction (anti-
diffusion). If the underlying flow is non-solenoidal, V*u yf 0, such as in our simulations
presented here, then AT™ can also account for isotropic diffusion or coalescence due to the
subscale physics.

To understand the role of subscale vorticity, represented by the anti-symmetric (or skew-

symmetric) tensor ATew, we follow the analysis of [54-56] and rewrite
ANC) = <%[A);-<%] = [<%Ag-]<% = <%[<%Aj;-C,] (42)

-(v™)j
where the second equality follows from the chain rule and noting that the product of ATew

(antisymmetric tensor) with didjCt (symmetric tensor) vanishes. Similarly, the third equal-

ity follows from didjKAew = 0. The interpretation of v* is an eddy-induced velocity arising

3 The tensor Kaym would have to be positive semi-definite to qualify as a diffusion tensor in the strict sense.
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from the stirring induced by subscale vortical motions. It is straightforward to show that
1
v, = —V.K*v = 3 APV x(Vx1y), (43)

which is the main result of this paper. An example of how it can arise in swirling flow is

sketched in Fig. 1. Note that this eddy-induced velocity is solenoidal,
Vv, =0, (44)

due to the antisymmetry of K.

A. Summary and Interpretation

The above result is a manifestation of the equivalence between transport by (i) flux due
to an anti-symmetric diffusion tensor and (ii) an advective flux [54-56]. It suggests that

coarse-grained simulations such as LES may need to solve
OCy+ V- (W +v.)C| = =V-(J(CO)) (45)

to represent the unresolved (subgrid) vorticity physics self-consistently.

J(C) in eq. (45) can represent traditional subgrid models such as turbulent (Smagorin-
sky) diffusion [57], J(C) = —0us VCy. The evaluation of v, ~ V x(V X1,) presents no
additional cost since the resolved velocity 1, is known. Figs. 17-26 in the Appendix show
the joint PDFs of v, and u, at different length-scales ¢, which demonstrate that v, and the
coarse velocity U, are often of a comparable magnitude.

Our interpretation of v, as an eddy-induced velocity representing subscale vortical mo-

tions can be justified by appealing to a relation by Johnson* [36, 37|,

Fg(ui, C) =2 /OE do o (ak@(; 8k55 (46)

)m '
Eq. (46) highlights that subscale flux 7¢(u,C) is due to the cumulative contribution of
subscale velocity and scalar gradients at all scales < £. Since subscale velocity gradients
can be decomposed into strain and vorticity, and since expression (24c) is the dominant
contribution, we are justified in interpreting v, as an eddy-induced velocity representing

subscale vortical motions.

4 Johnson’s relation (46) is exact only when filtering with a Gaussian kernel.
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V. CONCLUSION

We have shown that unlike subscale strain, which acts as an anisotropic diffusion/anti-
diffusion tensor, subscale vorticity’s contribution at leading order is solely a conservative
advection of coarse-grained scalars by an eddy-induced velocity v, proportional to the curl
of vorticity. Our analysis relied on the leading order term in Eyink’s multiscale gradient
expansion, which coincides with the nonlinear model and is known to be an excellent «
priort representation of the subscale physics. Here, we provided additional evidence for this
excellent agreement from a three-dimensional compressible turbulence simulation and from
a two-layer shallow water model of geophysical turbulence. Since the convergence of Eyink’s
expansion and, therefore, the dominance of the leading order term relies on ultraviolet scale-
locality, our results and conclusions may not hold at length-scales larger than those of the

spectral peak.

While the focus of this paper was on the transport of scalars, a similar analysis may
also apply to the transport of momentum. Indeed, this is straightforward for incompressible
flows where approximation (24c) has been shown to work very well for momentum trans-
port [29, 30, 35]. Johnson’s recent work on the energy cascade [37] seems to indicate that
approximation (24c¢) may be deficient in its magnitude (by a factor ~ 1) compared to the
true momentum flux. Yet, since the two exhibit excellent spatio-temporal correlation as
was shown in [30, 35|, a simple rescaling of expression (24¢) by a space-time independent
coefficient (possibly & 2) would suffice to match the true momentum flux. Once approxima-
tion (24c¢) (possibly x2) is accepted as representative of the subscale flux, the same argument
we presented here follows through for momentum after replacing €' with u in eq. (24¢). In
flows with significant density variations such as compressible turbulence, the subscale flux of
momentum has a somewhat different functional form than in eq. (10b) due to the density-
weighted filtering required to satisfy the inviscid criterion[15, 58|. Yet, we conjecture that

a result similar to what we derived here is still possible for subscale momentum flux in

variable-density flows, which was shown to be scale-local in [24].
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APPENDIX

FIG. 11. Same as in Fig. 4 for 7 = 0.3927.
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FIG. 12. Same as Fig. 4 for 7 = (0.7854.
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FIG. 13. Same as Fig. 4 for 7 = 1.5708.
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FIG. 14. Similar to the joint PDFs of the z-scores in Fig. 4, here we show the joint PDFs of the
actual ri(p, u) and its approximation rm = "~M212<9fcP9fcU- Top row (A, B, C) shows the joint
PDFs between r and rm at at / = 0.19635. Second row (D, E, F) is for / = 0.3927. Third row (D,
H, 1) is for / = 0.7854. Bottom row (J, K, L) is for / = 1.5708. Left, middle, and right columns

show, the x, y and z components, respectively.
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FIG. 15. Spectra of (left) velocity, Eu(k), and (right) density, Ep(k). Both decay with wavenumber
k sufficiently faster than the A~[ required for the multiscale gradient expansion to converge. Here
#"'(&) = E|k| _t|<o.511"(k)™ and #"(&) = Z|k|_t|<o.5I/Xk)I™ where u(k) and p(k) Fourier

coefficients.
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FIG. 16. Same as in Fig. 3, comparing the (left column) exact r(p, u) with (right column) its

approximation for the (top row) y-components and (bottom row) z-components.
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Ux Uy uz

FIG. 17. Joint PDFs of v* and u. Color bar indicates the number of grid-points on a logarithmic
scale, proportional to the probability. Slope of best linear fit and correlation-squared, 12, are shown
in the top left of each panel. The best linear fits are omitted in the the plots due to small slopes.
The rms values are shown in the bottom right of each panel. Top row (A, B, C) shows the joint
PDFs between v* and u at at £ = 0.19635. Second row (D, E, F) is for £ = 0.3927. Third row (D,
H, I) is for £ = 0.7854. Bottom row (J, K, L) is for £ = 1.5708. Left, middle, and right columns
show, the x, y and z components, respectively. This figure highlights that the magnitudes of v*

and the coarse velocity uf are often comparable.
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Same as in Figure 9 for 1 = 50 km.
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FIG. 19.

Same as in Figure 9 for 7 = 200 km.
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FIG. 20. Same as in Figure 9 for 7 = 400 km.
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FIG. 21. Spectra of (left) u and (right) # computed from the two-layer stacked shallow water sim-

ulation. These are filtering spectra, calculated by filtering at successive length-scales as described

in [59, 60].
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FIG. 22. Same as in Fig. 8 for £ = 50 km.
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Same as in Figure 8 for £ = 200 km.
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FIG. 24. Same as in Figure 8 for / = 400 km.
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FIG. 25. Similar to the joint PDFs of the z-scores in Fig. 9, here we show the joint PDFs of
the actual 7i(h, v) and its approximation rm = "“M2£2dkh without normalization. Top and
bottom panels show zonal (eastward) and meridional (northward) components, respectively. Al

and A2 are for 1 = 50 km, Bl and B2 for 100 km, CI and C2 for 200 km, D1 and D2 for 400 km.
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FIG. 26. Joint Probability Density of v¥ and u. The colorbars are in log scale. The top panels
show zonal (eastward) componet and the bottom panels show meridional (northward) component.
Al and A2 are for £ = 50 km, Bl and B2 are for £ = 100 km, Cl and C2 are for £ = 200 km, D1
and D2 are for £ = 400 km. The red lines are linear regression fits of which the slope and goodness
of fit(r2) are in the text in each panel. The rms values are shown in the bottom right of each panel.

This figure highlights that v* is often comparable in magnitude relative to the coarse velocity Uf.
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