

1 **Boron and Oxygen Isotope Systematics of Two**
2 **Hydrothermal Systems in Modern Back-Arc and Arc**
3 **Crust (PACManus and Brothers Volcano, W-Pacific)**

4 *Manuscript in preparation for a special issue in Economic Geology*

5 ***Lucy E.M. Schlicht¹*, Olivier Rouxel², Jeremy Deans³, Stephen Fox⁴, Yaron Katzir⁴, Kouki***
6 ***Kitajima⁵, Simone A. Kasemann¹, Anette Meixner¹, Wolfgang Bach¹***

7 ***Affiliations***

8 ***¹Faculty of Geosciences and MARUM-Center for Marine Environmental Sciences, University***
9 ***of Bremen, Leobener Str. 8, 28359 Bremen, Germany***

10 ***²IFREMER, Unité de Géosciences Marines, Plouzané, France***

11 ***³School of Biological, Environmental, and Earth Sciences, the University of Southern***
12 ***Mississippi, Walker Science Building, 117601-266-5381, USA***

13 ***⁴Department of Earth and Environmental Sciences, Marcus Family Campus, Ben Gurion***
14 ***University of the Negev, Be'er Sheva 84105, Israel***

15 ***⁵Department of Geoscience, University of Wisconsin, Madison WI 53706, USA***

16 ****corresponding author, email address: lucy.schlicht@uni-bremen.de***

17 ***Abstract***

18 A better characterization of subsurface processes in hydrothermal systems is key to a deeper
19 understanding of fluid-rock interaction and ore forming mechanisms. Vent systems in oceanic
20 crust close to subduction zones, like at Brothers volcano and in the Eastern Manus Basin, are

21 known to be especially ore rich. We measured B concentrations and isotope ratios of
22 unaltered and altered lava that were recovered from drilling sites at Brothers volcano and
23 Snowcap (Eastern Manus Basin) to test their sensitivity for changing alteration conditions
24 with depth. In addition, for Brothers volcano, quartz-water oxygen isotope thermometry was
25 used to constrain variations in alteration temperature with depth. All altered rocks are
26 depleted in B compared to unaltered rocks and point to interaction with a high-temperature (>
27 150 °C) hydrothermal fluid. The $\delta^{11}\text{B}$ values of altered rocks are variable, from slightly lower
28 to significantly higher than those of unaltered rocks. For Brothers volcano, at the Upper Cone
29 we suggest a gradual evolution from a fluid- to a more rock-dominated system with increasing
30 depth. In contrast, the downhole variations of $\delta^{11}\text{B}$ at Snowcap as well as $\delta^{11}\text{B}$ and $\delta^{18}\text{O}$
31 variations at the NW Caldera (Site U1530) of Brothers volcano are suggested to indicate
32 changes in w/r-ratios, and in the latter case also temperature, with depth due to permeability
33 contrasts between different lithology and alteration type boundaries. Furthermore, $\delta^{11}\text{B}$ values
34 from the NW Caldera (Site U1527) might point to a structural impact on the fluid pathway.
35 These differences in the subseafloor fluid flow regime that range from more pervasive and
36 fluid-controlled towards stronger controlled by lithological and structural features have
37 significant influence on alteration conditions and may also impact metal precipitation within
38 the seafloor.

39 **Introduction**
40 Water-rock (w/r) interactions in seafloor hydrothermal systems cause intense exchange of
41 mass and heat between oceanic crust and seawater and can form seafloor massive sulfide
42 deposits of economically important base and noble metals. Hydrothermal activity in back-arc
43 and arc settings is of particular interest because of the commonly observed formation of high-
44 grade and Au-rich ore bodies (e.g., Yang and Scott, 1996) and the similarity to porphyry-type
45 and epithermal ore deposits on land (e.g., Whitney, 1975; Audébat, 2019). The formation of

46 high-grade ore deposits requires a large source of metals from which metals are leached and
47 an ore trap in which the mobilized metals are concentrated efficiently. This mobilization and
48 precipitation of metals in hydrothermal systems strongly depends on the fluid flow regime
49 that is influenced by the presence of faults and fractures as well as by interbedding of more
50 and less permeable strata that can act as barriers for uprising metal-rich fluids (e.g.,
51 Zierenberg et al., 1998). Isotopic tracers are useful recorders of temperature of water-rock
52 interactions and the intensity of fluid flow in different domains of the basement (e.g., Kesler,
53 2005).

54 Boron is a highly fluid-mobile element and can also show a moderately volatile character,
55 depending on the salinity of solutions (Foustoukos and Seyfried, 2007). In unaltered volcanic
56 rocks B is hosted in clinopyroxene and to a minor extent in plagioclase (Raffone et al., 2008),
57 and also is abundant in the glassy matrix or rather in volcanic glasses (e.g., Marschall et al.,
58 2017). The B concentrations of unaltered whole rocks from back-arc and arc crust are usually
59 elevated (up to 37 µg/g B) compared to MOR (mid-ocean ridge) basalts (< 1 µg/g B) due to
60 addition of B derived from the dehydration of subducted altered oceanic crust and sediments
61 (e.g., Hoog and Savov, 2018). In volcanic rocks that were affected by seafloor hydrothermal
62 alteration, clay minerals like smectites, illite and also chlorite are the major B hosting mineral
63 phases and dominate the B concentration of the altered whole rocks. At low alteration
64 temperatures (< 150 °C) B concentrations of altered whole rocks > 100 µg/g commonly occur
65 due to uptake of B by secondary minerals (mainly clay minerals), while high temperature (>
66 150 °C) altered volcanic rocks usually show B concentrations lower than the unaltered rock
67 due to leaching (e.g., Thompson and Melson, 1970; Spivack and Edmond, 1987; Smith et al.,
68 1995; James et al., 2003; Yamaoka et al., 2015a).

69 Boron has two stable isotopes, ^{10}B and ^{11}B , whose ratio (expressed as $\delta^{11}\text{B}$) in different
70 reservoirs in back-arc and arc hydrothermal environments strongly deviate. While seawater

71 shows high isotopic values ($\delta^{11}\text{B} \approx +40 \text{ ‰}$), unaltered oceanic crust in back-arc and arc
72 settings shows highly variable but generally lower isotopic values than seawater ($\delta^{11}\text{B} \approx -9 \text{ to}$
73 $+16 \text{ ‰}$; Hoog and Savov, 2018; Marschall, 2018 and references therein). The $\delta^{11}\text{B}$ values of
74 unaltered volcanic rocks in supra-subduction zones are commonly higher than the MOR
75 basalt average ($-7.1 \pm 0.9 \text{ ‰}$; Marschall et al., 2017) due to release of B from the subducting
76 slab. Because of the variable isotope ratios of sources, B concentrations and isotope ratios are
77 potentially useful tracers for hydrothermal w/r interaction processes.

78 This study reports B concentrations and isotope ratios of unaltered rocks from the seafloor
79 and of variably altered rocks from subseafloor sections of active seafloor hydrothermal
80 systems in two supra-subduction zone locations in the Western Pacific. One location is
81 situated in the Manus back-arc basin of Papua New Guinea (Ocean Drilling Program (ODP)
82 Leg 193) and the other location is Brothers volcano in the Southern Kermadec arc, New
83 Zealand (International Ocean Discovery Program (IODP) Expedition 376 “Brothers Arc
84 Flux”). Both cruises were executed aboard the *D/V JOIDES Resolution*. At Brothers volcano,
85 we also measured O isotope ratios of hydrothermal quartz crystals to constrain the
86 temperature range of precipitating fluids and measured Sr isotope ratios for one unaltered rock
87 and several altered rock samples. At both locations, previous work on the composition of
88 discharging fluids (Reeves et al., 2011; de Ronde et al., 2011) and secondary mineralogy (de
89 Ronde et al., 2005; Seewald et al., 2019) indicate reactions between basement rocks and
90 seawater-derived fluids, as well as influx of magmatic vapor rich in H_2O and SO_2 into the
91 hydrothermal systems. Our goal was to obtain a deeper understanding of B isotopic
92 fractionation and the overall variations in B isotopic composition in seafloor hydrothermal
93 systems and to investigate what downhole variations in $\delta^{11}\text{B}$ values in combination with $\delta^{18}\text{O}$
94 based temperature estimates can tell us about changes in the fluid flow regime in the sub-
95 seafloor that is an important controlling factor of ore mineral precipitation in hydrothermal
96 systems.

Geological Setting

98 *Snowcap, Manus Basin*

99 The Manus back-arc basin opened along the Manus spreading center and is delimited to the
100 north by the now inactive Manus trench and to the south by the actively subducting New
101 Britain trench (Martinez and Taylor, 1996). ODP Leg 193 drilled several holes in the Pual
102 Ridge, a neovolcanic zone and part of the Southeast Ridges (SER) between the Djaul and
103 Weitin Transforms in the eastern Manus Basin (Fig. 1). Pual Ridge hosts several
104 hydrothermal vent areas, including Snowcap, which is part of the large PACManus
105 hydrothermal area (Binns and Scott, 1993). Snowcap (ODP Leg 193, Site 1188) is in a water
106 depth of 1640 mbsl (meters below sea-level) and features mainly diffusive, low-temperature
107 fluid discharge (6 °C) through a dome-shaped area, interpreted as volcanic dome or
108 cryptodome (Thal et al., 2014). A small cluster of chimneys in the northwestern section of
109 Snowcap dome about 60 m WNW of ODP Site 1188 vents hydrothermal fluids with
110 temperatures between 150 and 180°C (Reeves et al., 2011). Beneath the seafloor, Snowcap
111 consists of dacitic lava flows (Paulick et al., 2004; Thal et al., 2014) that range from unaltered
112 to extensively altered. The discharging fluids at Site 1188 are at 6 °C, and a maximum
113 temperature of 313 °C was measured at 360 mbsf (meters below sea-floor) within borehole
114 1188F eight days after drilling, which indicates a steep geothermal gradient (Shipboard
115 Scientific Party, 2002). Fluid inclusions in anhydrite indicate high temperatures at depth
116 (270–385°C) but both low and high temperatures in the shallower section, suggesting variable
117 mixing with entrained seawater (Vanko et al., 2004). The presence of abundant native sulfur
118 (Thal et al., 2014) is interpreted as relict of prior venting of acid-sulfate fluids involved in
119 advanced argillic alteration.

120 *Brothers Volcano, Kermadec Arc*

121 Brothers volcano is located in the southern part of the Kermadec arc and represents an active,
122 submarine caldera volcano of 3 to 3.5 km in diameter, approximately 2200 mbsl at the base,
123 1850 mbsl at the caldera floor and from 1320 to 1540 mbsl at the caldera rim (de Ronde et al.,
124 2019a; Fig. 2). Two neovolcanic cones occur in the southeastern part of the caldera. The
125 larger, Upper Cone reaches 1220 mbsl and is partly connected with the smaller, Lower Cone
126 to the Northeast (Fig. 2B).

127 Brothers volcano is the most hydrothermally active volcano along the Kermadec arc and hosts
128 two adjacent hydrothermal system types with contrasting fluid chemistry and rock alteration
129 characteristics (de Ronde et al., 2005; de Ronde et al., 2011; de Ronde et al., 2019d). One
130 type is characterized by discharge of high-temperature (≤ 320 °C) fluids that are moderately
131 acidic and are suggested to originate from heating of infiltrating seawater (e.g., de Ronde et
132 al., 2011). This type occurs at the W, NW, and Upper Caldera sites (Sites U1527 and U1530;
133 Fig. 2). The other type is defined by the venting of lower temperature (≤ 120 °C) fluids that
134 are highly acidic, enriched in CO₂ (and other gases) as well as sulfate (de Ronde et al., 2011),
135 and often associated with native sulfur-bearing chimneys. The low pH and abundance of
136 sulfur and sulfate are commonly associated with an influx of magmatic vapors rich in SO₂,
137 which disproportionate upon cooling to form native sulfur and sulfuric acid (e.g., Gamo et
138 al., 1997; de Ronde et al., 2011; Seewald et al., 2015). Active venting of these acid-sulfate
139 fluids occurs at the crests of the neovolcanic Upper Cone (Site U1528). However, the
140 alteration minerals in deeper sections at the NW Caldera (Hole U1530A) also indicate the
141 presence of acid-sulfate fluids at an earlier stage of hydrothermal and magmatic activity (de
142 Ronde et al., 2019c; de Ronde et al., 2019d).

Sample Materials

144 *Snowcap, Manus Basin*

145 We investigated one unaltered plagioclase-phyric dacitic rock that was collected at Snowcap
146 by the ROV *MARUM-QUEST* during the *RV SONNE* Expedition SO-216 (Table 1) and nine
147 rock samples that were drilled during ODP Expedition 193 (Site 1188) and show variable
148 extents of alteration and types of secondary mineral assemblages. Two main alteration types
149 can be distinguished based on the secondary mineralogy: one type typically contains chlorite,
150 illite, and magnetite while the other type (argillic alteration) produces rocks of bleached
151 appearance with pyrophyllite as the main secondary phase, which is commonly accompanied
152 by natroalunite. This pyrophyllite-natroalunite assemblage suggests alteration by acidic fluids
153 at moderate temperatures. The low pH is likely related to the condensation of magmatic SO₂
154 in the shallow basement above felsic intrusions and is common in suprasubduction magma-
155 hydrothermal systems (e.g, Gamo et al., 1997; Seewald et al., 2019; Hedenquist and Arribas,
156 2021). The two main alteration types can be further subdivided to five alteration subtypes,
157 using a classification scheme based on previous work (Shipboard Scientific Party, 2002;
158 Lackschewitz et al., 2004; Paulick et al., 2005; Lackschewitz et al. 2006; Paulick and Bach,
159 2006). In the following, the alteration types are described in order of their occurrence with
160 depth (in brackets are the respective colors in Figure 3):

161 (1) unaltered dacite (dark gray): seafloor down to ~33.80 mbsf, the dacitic to rhyodacitic
162 rocks are unaltered to weakly altered lava flows that are aphyric to plagioclase-
163 clinopyroxene phryic and moderately vesicular. The groundmass is glassy to microlitic
164 and locally shows a perlitic texture.

165 (2) Pyrophyllite (prl)-rich alteration (light pink): is manifested by pervasive bleaching and
166 replacement of primary phases by pyrophyllite, accompanied by varying proportions
167 of illite, chlorite, cristobalite, smectite, anhydrite, gypsum, barite, mixed-layer clays

168 and pyrite down to 116.86 mbsf, with some gaps where pyrophyllite is absent. A
169 second bleached and pyrophyllite-rich zone appears at deeper levels (236.40 to 255.80
170 mbsf); it has quartz instead of cristobalite.

171 (3) Illite (ill)-rich alteration (blue): illite is present in most of the altered rocks and is
172 typical for hydrothermal alteration by seawater-derived fluids (K-rich) at elevated
173 temperatures. Besides illite, only quartz or cristobalite, anhydrite and pyrite were
174 detected.

175 (4) Chlorite (chl)-rich alteration (green): several zones show significant amounts of
176 chlorite, along with illite, quartz or cristobalite, mixed-layer clays, magnetite,
177 anhydrite and pyrite. Especially below 275 mbsf, chlorite becomes a prominent
178 secondary phase.

179 (5) Magnetite (mgt)-rich alteration (brown): two depth intervals stand out by the
180 abundance of magnetite (154.98 to 183.87 mbsf and 318.23 mbsf to down to the
181 bottom of the Hole 1188F at 386.7 mbsf), which occurs with illite and/or chlorite,
182 quartz, anhydrite and pyrite as other common secondary phases. Magnetite appears in
183 vesicles, as halos around anhydrite-pyrite veins, and disseminated in the groundmass.
184 In the lower part of the first magnetite-rich section also the clay mineral corrensite was
185 detected.

186 *Brothers Volcano, Kermadec Arc*

187 Brothers volcano consists of dacitic to rhyolitic lavas that are commonly plagioclase-
188 clinopyroxene phryic and show a glassy to microlitic groundmass; as well as volcaniclastic
189 rocks comprising mono- or polymict lapillistones and pyroclastic material (Haase et al., 2006;
190 de Ronde et al., 2019a). At Hole U1530A, a sedimentary unit is also present from 30.70 to
191 59.62 mbsf, comprised of mud-, silt-, and sandstone (de Ronde et al., 2019c). In this study, we
192 investigated four rocks from Brothers volcano that were classified as unaltered, plagioclase-
193 clinopyroxene phryic, dacitic lavas. Two samples were collected by ROV *MARUM-QUEST*

194 during *RV Sonne* Expedition SO-253 (one at the NW Caldera and one at the Upper Cone site)
195 and two were recovered during IODP drilling Expedition 376, one from Hole U1527A at the
196 NW Caldera and one from Hole U1528D at the Upper Cone (Table 2). We also investigated
197 76 altered rock samples from Brothers volcano that were recovered during IODP Expedition
198 376: 24 samples from Site U1527, 28 samples from Site U1528, and 24 samples from Site
199 U1530 (Table 2).

200 The alteration type classification of Brothers volcano used in this study is based on secondary
201 mineralogy from observations of the IODP Expedition 376 shipboard scientists and XRD data
202 of five drill cores (de Ronde et al., 2019d; de Ronde et al., 2019e). Two of the cores studied
203 here are located at the NW Caldera, approximately 400 m horizontal distance from each other;
204 Site U1527 is located on the rim of the NW Caldera in a water depth of 1464 mbsl and
205 reaches a drilled depth of 238 mbsf, whereas Hole U1530A was drilled to 453.1 mbsf on a
206 narrow terrace along the caldera wall at 1595 mbsl (Fig. 2). Five alteration types for the NW
207 Caldera were distinguished in this study (in brackets the dedicated colors in Figure 4 are
208 given):

- 209 (1) stockwork zone (red): At the very top of Hole U1530A, rocks of a stockwork zone
210 consisting of bluish altered lava fragments replaced by opal-CT, smectite, chlorite and
211 pyrite were cored. The clasts are surrounded by a network of up to cm-thick veins of
212 anhydrite, barite, pyrite, sphalerite and minor chalcopyrite.
- 213 (2) chlorite (chl)-rich alteration (green): this alteration type underlies the stockwork zone
214 in Hole U1530A and is the only alteration type at Site U1527 underneath the unaltered
215 dacitic cap. The protoliths are lava flows, volcaniclastic, pyroclastic and sedimentary
216 rocks. The main alteration color is green but at Site U1527 some parts are brownish in
217 color. The secondary mineral assemblage comprises chlorite, quartz, illite and pyrite.
218 In Hole U1527C chalcopyrite and the Na-Ca-K-rich zeolite mordenite were detected.

219 In core from Hole U1530A, plagioclase is pseudomorphed by chlorite, anhydrite,
220 quartz and smectite and vugs are commonly lined by quartz and anhydrite. At deeper
221 levels of Hole U1530A, several intersections of chlorite-rich alteration of massive lava
222 flows (Fig. 4D) alternate with pyrophyllite-rich (4) and pyrophyllite-diaspore-rich (5)
223 alteration types.

224 (3) Illite (ill)-rich alteration (blue): In Hole U1530A between 65.65 and 185.16 mbsf, an
225 illite-rich assemblage occurs, accompanied by quartz, pyrite and chlorite and mainly
226 hosted in lapillistones and other volcaniclastics.

227 (4) Pyrophyllite (prl)-rich alteration (light orange): spatially below the illite-rich alteration
228 and starting at 189.16 mbsf, a pyrophyllite alteration together with quartz, illite, pyrite
229 and rutile occurs. The alteration stands out by its bleached appearance that in places
230 affects the whole rock or occurs as halo around veins and fractures.

231 (5) Pyrophyllite (prl)-diaspore(dsp)-rich alteration (dark orange): starting at 227.50 mbsf
232 and going down-core, the pyrophyllite-rich mineral assemblage already present in the
233 overlying alteration type is accompanied by diaspore, as well as quartz, illite, pyrite,
234 rutile and in the upper part of this alteration type the Al-rich sorosilicate zunyite is
235 present.

236 Deep in Hole U1527C (220.98 to 226.49 mbsf), there is a zone of plastic deformation in
237 which the rocks have elevated chlorite and illite contents (Fig. 4B).

238 In addition to the unaltered and altered rock samples, we also investigated hydrothermal
239 quartz separates from the NW Caldera (Hole U1530A) that formed in vugs, veins or matrix.

240 The third studied drill core is 359-m deep and originates from Hole U1528D at the Upper
241 Cone, situated in a water depth of 1228 mbsl. The uppermost basement of the Upper Cone site
242 comprises unconsolidated dacitic lava fragments (purple cap, Fig. 4A) that contain aggregates
243 of native sulfur. Below around 40 mbsf two alteration types were identified with diffuse

244 boundaries against each other that are strongly interlinked and mixed with each other (in
245 brackets the dedicated colors in Figure 4 are given):

246 (1) Pyrophyllite (prl)-natroalunite (natro)-rich altered effusive and volcaniclastic rocks
247 show white to light gray color due to strong bleaching. Pyrophyllite, natroalunite,
248 anhydrite and pyrite are the main secondary phases. Veins and vugs are commonly
249 filled with native sulfur, quartz, anhydrite and pyrite.

250 (2) Illite-rich alteration of lavas and volcaniclastics, show dark to grayish-blue alteration
251 colors and a secondary mineral assemblage of illite, opal-CT, quartz, anhydrite and
252 pyrite.

253 The rocks at the Upper Cone site (U1528) commonly have a strongly bleached appearance. In
254 deeper sections of Hole U1528D, however, some of the rocks still have relatively unaltered to
255 weakly altered patches that are closely associated with highly bleached, pyrophyllite-
256 natroalunite-rich zones (de Ronde et al., 2019b).

257 **Methods**

258 *Preparation of Rock Powders*

259 Geochemical analyses in this study were performed on rock powders. For the unaltered rock
260 samples collected by ROV at Snowcap (SO-216) and at Brothers volcano (SO-253), as well as
261 for the altered rocks from the drill-cores of Brothers volcano (IODP Exp. 376) rock powders
262 were prepared at the University of Bremen, Germany. The outer surface of rock pieces was
263 removed by a diamond saw and the interior was powdered by an agate-ball-bearing mill.

264 The rock powders of the two unaltered samples from Brothers volcano drill-cores (IODP Exp.
265 376) were prepared at the GEOMAR – Helmholtz Centre for Ocean Research Kiel, Germany
266 by an agate mortar and mill.

267 For the altered material from the drill cores of Snowcap (ODP Leg 193), the shipboard-
268 prepared rock powders from the core depository were used.

269 *Boron and Strontium Concentrations*

270 The B concentrations of unaltered and altered rock samples from Snowcap (Manus Basin), as
271 well as B concentrations of the unaltered rocks recovered from Brothers volcano were
272 determined during the course of B isotope ratio measurements using a Thermo Scientific
273 Neptune Plus Multicollector-inductively coupled plasma-mass spectrometer (MC-ICP-MS) at
274 the University of Bremen, following methods described in Hansen et al. (2017). Based on
275 long-term analyses of reference material IAEA-B5 (basalt), boron concentrations are usually
276 determined with an uncertainty of 10% (2RSD). In this study, the average B concentration of
277 four independent sample solutions of IAEA-B-5 was $9.2 \pm 1.2 \text{ } \mu\text{g/g}$ (2sd), in good agreement
278 with the range of published concentration values (8.9 to 11.3 $\mu\text{g/g}$ B, GeoRem database;
279 query January 2020; <http://georem.mpchmainz.gwdg.de>).

280 The B concentrations of altered rocks from Brothers volcano were measured by ICP-MS at
281 the at the PSO (Pôle Spectrométrie Océan), Brest, France. Before measurements, rock
282 powders (120 mg) were dissolved in a mixture of concentrated HF + HNO₃, evaporated to
283 dryness, subsequently dissolved in concentrated HNO₃ + HCl and evaporated again at 80 °C.
284 Sample concentrations were calibrated against rock reference materials AN-G (anorthosite),
285 IF-G (iron formation) and WS-E (dolerite) from GIT-IWG; BHVO-2 (basalt), W2 (diabase),
286 and DN-C (dolerite) from USGS; and BR (basalt), GH (granite), UB-N (serpentinite) from
287 CNRS-CRPG (Govindaraju, 1994). The reference material BHVO-2 yielded a B
288 concentration of 3.0 $\mu\text{g/g}$, in agreement with the range of published concentration values (1–
289 3.12 $\mu\text{g/g}$ B) and the compiled value (2.95 $\mu\text{g/g}$ B) of the GeoRem database; query December
290 2021; <http://georem.mpchmainz.gwdg.de>. The detection limit of this method was 0.64 $\mu\text{g/g}$
291 B and the blank concentration 0.31 $\mu\text{g/g}$ B. The repeatability of values for the same standard

292 solution (BHVO-2) was always better than 4% (2RSD). The intermediate precision was \leq
293 20% (2RSD).

294 The Sr concentrations of altered rock samples from Brothers volcano were measured by ICP-
295 MS at the at the PSO (Pôle Spectrométrie Océan), Brest, France. The detection limit was 0.05
296 $\mu\text{g/g}$ Sr and the blank concentration was 0.01 $\mu\text{g/g}$ Sr. The repeatability of values for the same
297 standard solution (BHVO-2) was always better than 1% (2RSD).

298 The Sr concentrations of the unaltered rock samples from Brothers volcano were determined
299 by a SPECTRO Xepos Plus X-Ray fluorescence (XRF) analyzer at the GeoZentrum
300 Nordbayern, FAU Erlangen-Nürnberg. Analyses were performed from fused discs created
301 from the sample powders. The typical repeatability precision expressed as RSD was $<2\%$ for
302 high concentrations (basaltic references materials BE-N of 1370 $\mu\text{g/g}$ and BR of 1320 $\mu\text{g/g}$),
303 $<4\%$ for intermediate concentrations (granitic reference material GA of 310 $\mu\text{g/g}$), and $<11\%$
304 for low concentrations (granitic reference material AC-E of 3 $\mu\text{g/g}$). The Sr reference values
305 were taken from the GEOREM database.

306 *Boron Isotope Ratios*

307 Preparation of sample material and determination of B isotope ratios of three unaltered and 36
308 altered rock samples from Snowcap and Brothers volcano were performed in the Isotope
309 Geochemistry Laboratory at MARUM – Centre for Marine Environmental Sciences,
310 University of Bremen. Procedures for isolation and purification of B were adapted from
311 Romer et al. (2014) and are described in further detail in Hansen et al. (2017). The procedure
312 was based on alkaline fusion of rock powders (44.5 to 454.9 mg) with K_2CO_3 as fluxing agent
313 (1:4), followed by a two-step column separation; first with Amberlit IRA 743 and then with
314 AG 50W-X8 (mesh 200-400). An appropriate amount of mannitol was used to keep B stable
315 in solution. Isotope measurements were performed on the MC-ICP-MS using the SIS (stable
316 introduction system consisting of a low flow PFA nebulizer (50 μl) combined with a double-

317 pass quartz spray chamber) and a high- efficiency x-cone (same as for B concentrations).
318 Purified sample and reference solutions were dissolved in 2% HNO₃, closely matched to
319 50ppb B, and repeatedly analyzed in the standard – sample - standard bracketing mode using
320 unprocessed NIST SRM 951 as standard, supplemented by baseline determination. Boron
321 isotopic compositions are given in the $\delta^{11}\text{B}$ (‰) notation: $[\delta^{11}\text{B} = \{[(^{11}\text{B}/^{10}\text{B})_{\text{sample}}/$
322 $(^{11}\text{B}/^{10}\text{B})_{\text{NIST SRM 951}}] - 1\} \times 1000]$. The digestion and chemical separation technique was
323 checked for B loss and contamination. The total B loss was always < 0.2 % of the total
324 amount of B in sample solution and thus without influence on the B isotope composition. The
325 procedural blank was less than 23 ng B with a $\delta^{11}\text{B}$ value of on average -1.7 ± 6.6 ‰
326 (2sd_{mean}). Accuracy and repeatability for the separation procedure and measurement was
327 checked through multiple analyses of reference materials. The certified reference material
328 NIST SRM 951 gave a $\delta^{11}\text{B}$ value of -0.1 ± 0.1 ‰ (2sd, n=4). The basaltic reference material
329 IAEA-B-5 gave a $\delta^{11}\text{B}$ value of -4.3 ± 0.1 ‰ (2sd, n=3), in good agreement with the compiled
330 value of -4.1 ± 2.7 ‰ from Gonfiantini et al. (2003), and also agreed with measured values of
331 -4.3 ± 0.2 ‰ (2sd, n=3, Hansen et al., 2017) and -4.2 ± 0.2 ‰ (2sd, n=4, Wilckens et al.,
332 2018). The granitic reference material ZGI-GM yielded a $\delta^{11}\text{B}$ value of -0.1 ± 0.2 ‰ (2sd,
333 n=3). The uncertainty of the B isotopic composition of rock samples is given as 2sd based on
334 multiple mass-spectrometer analyses.

335 *Strontium Isotope Ratios*

336 The Sr isotope measurements of one unaltered and 18 altered rock samples from Brothers
337 volcano were performed at the Isotope Geochemistry Laboratory at the MARUM. The rock
338 powders were dissolved in several successive steps. It was ensured that the samples were
339 completely in solution; if necessary, the last two steps had to be repeated. First, the powder
340 was dissolved in a 5:1 mixture of concentrated HF and HNO₃ at 140 °C for three days and
341 dried at 80 °C. Then the sample was re-dissolved in a 2:1 mixture of concentrated HCl and
342 HNO₃ for two days at 140 °C, dried at 80 °C, dissolved in 300 µl HNO₃ and 150 µl H₂O₂,

343 dried at 65 °C and finally dissolved in 3 ml 2.5 M HNO₃ overnight at 140 °C and dried. The
344 baryte-rich sample from the stockwork zone (376-U1530A-4R-1W, 67-69 cm) left an
345 insoluble residue that had to be removed by centrifugation before purification. Separation and
346 purification of Sr were conducted by column separation prepared with 70 µl Sr.specTM resin,
347 following the procedure described by Deniel and Pin (2001). Firstly, the sample material
348 dissolved in 1 ml 2 M HNO₃ were loaded on the columns (in 100 µl steps). Secondly, 1.2 ml
349 of 2 M HNO₃, 1 ml 7 M HNO₃ and 0.3 ml 2 M HNO₃ were added (in 100 µl, 500 µl and 100
350 µl steps) to remove unwanted elements. Subsequently, Sr was collected by adding 1 ml of
351 0.05 HNO₃ (in 100 µl steps), charged with 30 µl 0.1 M H₃PO₄ and the solution was dried at
352 90 °C on a hotplate. Removal of organic material was ensured by adding 40 µl of
353 concentrated HNO₃, drying at 90 °C, adding of 40 µl of H₂O₂ and drying again.

354 The determination of Sr isotopes was performed by a Thermo Scientific TRITON Plus
355 thermal ionization mass spectrometer (TIMS) in the Isotope Geochemistry Laboratory at the
356 MARUM. The instrumental fractionation was corrected to the natural ⁸⁷Sr/⁸⁶Sr ratio of
357 0.1194. The procedural blank (< 50 pg Sr) is insignificant compared with the Sr concentration
358 in the sample solutions (\geq 200 ng Sr). The reference material NIST SRM 987 gave a
359 composition of 0.710247 ± 0.000004 (2sd_{mean}, n = 1). The analytical accuracy and long-term
360 precision for ⁸⁷Sr/⁸⁶Sr of reference material NIST SRM 987 was 0.710246 ± 0.000011
361 (2sd_{mean}, n = 24; period: May 2015 to May 2017). This is within the range of published values
362 analyzed by TIMS of 0.710250 ± 0.000034 (2SD, n = 1245, disregarding data < 0.7102 and >
363 0.7103) calculated from GeoRem database (query September 2017; <http://georem.mpch-mainz.gwdg.de>).

365 In addition, Sr isotopic compositions of 16 altered rock samples from Brothers volcano drill-
366 cores were measured by a Thermo Scientific Neptune MC-ICP-MS at the PSO, Brest, France.
367 Prior to measurements, Sr was purified by a one stage chromatography procedure using

368 Sr.specTM resin. The standard reference material NIST SRM 987 measured over three
369 analytical sessions yielded $^{87}\text{Sr}/^{86}\text{Sr} = 0.710251 \pm 0.000028$ (n=10), 0.710257 ± 0.000018
370 (n=25), 0.710255 ± 0.000020 (n=50). The in-house seawater standard (IAPSO Standard
371 Seawater) gave $^{87}\text{Sr}/^{86}\text{Sr} = 0.709133 \pm 0.000034$ (n=5) identical, within uncertainty, to the
372 average of worldwide oligotrophic oceanic water (e.g., El Meknassi et al., 2020). The
373 comparability of Sr isotope data from the two different methods and facilities was checked
374 using rock sample 376-U1530A-39R-2W,78-80. The $^{87}\text{Sr}/^{86}\text{Sr}$ compositions from the
375 University of Bremen (0.705990 ± 0.000006) and the PSO (0.706007 ± 0.000014) agree
376 within analytical uncertainties.

377 *Oxygen Isotope Analysis of Quartz*

378 From drill-core of Hole U1530A at the NW Caldera of Brothers volcano, 13 quartz separates
379 were handpicked under the binocular microscope, including vein (7) and vug fillings (4) and
380 coarse quartz crystals replacing rock matrices (2). Selected quartz grains from each separate
381 were mounted in epoxy, polished, coated with a thin carbon layer and imaged by
382 cathodoluminescence (CL) to study their inner textures and crystal zoning. The CL imaging
383 was performed using a Gatan CL detector installed on a JEOL Superprobe JXA-8230 at the
384 Hebrew University of Jerusalem.

385 Oxygen isotope ratios were measured along traverses in single quartz crystals (previously
386 imaged by CL, Appendix Table A1) using the CAMECA IMS-1280 secondary ion mass
387 spectrometer (SIMS) at Wisc-SIMS (Wisconsin Secondary Ion Mass Spectrometer),
388 Department of Geoscience, University of Wisconsin-Madison. Detailed descriptions of the O
389 isotope analytical methods are given elsewhere (Kelly et al., 2007; Kita et al., 2009; Valley &
390 Kita, 2009; Heck et al., 2011; Wang et al., 2014) and the most important points are
391 summarized here. Oxygen isotope analyses were performed by using a primary beam of 2 nA
392 $^{133}\text{Cs}^+$ ions focused to a spot diameter of approximately 10 μm (1 to 2 μm pit depth). One spot

393 analysis lasted four minutes, including pre-sputtering through the carbon layer, stabilizing of
394 the secondary beam, and centering as well as integrating of the secondary ions. The ions of
395 $^{16}\text{O}^-$ and $^{18}\text{O}^-$ were simultaneously collected in two movable Faraday cup detectors,
396 accompanied by collection of $^{16}\text{OH}^-$ ions in the axial Faraday cup to identify potential water
397 traces in the quartz. The average $^{16}\text{O}^-$ intensity was 3×10^9 counts per second (cps). A
398 nuclear magnetic resonance (NMR) probe stabilized the magnetic field strength, which was
399 readjusted every 12 hours. Analyses were performed in the standard-sample-standard
400 bracketing mode (four analyses of UWQ-1 quartz followed by up to 20 sample analyses and
401 another four analyses of UWQ-1) to evaluate the reproducibility of measurements and to
402 ensure that measurements were not affected by instrumental drift. Raw $^{18}\text{O}/^{16}\text{O}$ sample ratios
403 were corrected for the VSMOW oxygen scale based on UWQ-1 standard measurements ($\delta^{18}\text{O}$
404 $_{\text{UWQ-1}} = 12.33 \pm 0.14 \text{ ‰}$, Kelly et al., 2007). Oxygen isotope ratios are given in the
405 conventional notation: $[\delta^{18}\text{O}_{\text{VSMOW}} (\text{‰}) = \{[(^{18}\text{O}/^{16}\text{O})_{\text{sample}} / (^{18}\text{O}/^{16}\text{O})_{\text{VSMOW}}] - 1\} \times 1000\}$. The
406 intermediate precision of the $\delta^{18}\text{O}$ bracketing standard measurements was on average $\pm 0.2 \text{ ‰}$
407 (2sd, n=27).

408 **Results**

409 *Unaltered Rocks*

410 The unaltered dacite sample from Snowcap has a B concentration of 21.7 $\mu\text{g/g}$ and a $\delta^{11}\text{B}$
411 value of $+6.8 \pm 0.1 \text{ ‰}$, close to the values measured for the two unaltered dacites from
412 Brothers volcano (18.7 and 19.6 $\mu\text{g/g}$ B and $\delta^{11}\text{B}$ values of $+4.8 \pm 0.1$ and $+5.8 \pm 0.1 \text{ ‰}$). The
413 unaltered rocks from Brothers volcano have a Sr isotope ratio of 0.703970 ± 0.000004 at the
414 Lower Cone and 0.704109 ± 0.000006 at the NW Caldera site and Sr contents of 202 $\mu\text{g/g}$
415 and 232 $\mu\text{g/g}$, respectively.

416 *Altered Rocks*

417 The B concentrations and $\delta^{11}\text{B}$ values of altered rocks from Snowcap (Fig. 3) range from 1.2
418 to 7.8 $\mu\text{g/g}$ and $+5.0 \pm 0.1$ to $+23.2 \pm 0.1 \text{ ‰}$, respectively (Table 1, Fig. 5A). The two
419 advanced argillic altered rocks that were sampled from Snowcap have slightly higher B
420 concentrations (4.8 and 7.8 $\mu\text{g/g}$) compared to the other altered rocks that were recovered
421 from Snowcap (up to 3.9 $\mu\text{g/g}$). The highest $\delta^{11}\text{B}$ value at Snowcap of $+23.2 \pm 0.1 \text{ ‰}$ is
422 reached at 174.36 mbsf for an altered rock with a magnetite-illite-(corrensite)-rich alteration
423 mineral assemblage.

424 Altered rocks from the three drill sites at Brothers volcano (Fig. 4) range from 0.8 to 5.2 $\mu\text{g/g}$
425 B (with one exceptional value of 15.6 $\mu\text{g/g}$) and from $+1.2 \pm 0.1$ to $+16.7 \pm 0.1 \text{ ‰}$ in $\delta^{11}\text{B}$
426 (Table 2, Fig. 5A, B). Three altered rocks from the upper part of Hole U1527C have $\delta^{11}\text{B}$
427 values lower than unaltered rock, whereas two rocks from a deformed zone that appears
428 between 220.98 and 226.49 mbsf have higher than unaltered rock $\delta^{11}\text{B}$ values (Fig. 4B). At
429 Site U1528, altered rock samples shallower than ca. 75 m have increased $\delta^{11}\text{B}$ values
430 compared to unaltered rock, while altered rock samples deeper than 75 m have lower than
431 unaltered rock $\delta^{11}\text{B}$ values (Fig. 4C). At Hole U1530A $\delta^{11}\text{B}$ values of altered rocks are
432 usually higher than fresh values, beside one sample at 127.11 mbsf with a lower value of $+1.2$
433 $\pm 0.1 \text{ ‰}$. The $\delta^{11}\text{B}$ values at Hole U1530A alternate between higher and lower values with
434 depth (Fig. 4D).

435 Altered rocks at Brothers volcano have Sr concentrations between 15 $\mu\text{g/g}$ and 766 $\mu\text{g/g}$. The
436 $^{87}\text{Sr}/^{86}\text{Sr}$ values lie between 0.704190 ± 0.000005 and 0.706982 ± 0.000013 (Fig. 5B, D).

437 *Oxygen Isotope Ratios and $\Delta^{18}\text{O}_{\text{Qtz-H}_2\text{O}}$ Thermometry*

438 The CL images in Figure 6 show representative microtextural features of individual quartz
439 crystals that were separated from altered rocks of Hole U1530A at the NW Caldera of
440 Brothers volcano. A hydrothermal origin of the investigated quartz crystals was suggested

441 because the crystals were either hand-picked from vein or vug fillings and thus were certainly
442 precipitated from solutions, or the crystals were separated from the matrix and were texturally
443 closely associated with the secondary mineral assemblage. The vug-filling quartz crystals
444 from the top part of Hole U1530A show μ m-scale alternating CL-brighter and CL-darker
445 growth bands, representing progressive stages of hydrothermal precipitation or continuous
446 growth with varying fluid composition (Fig. 6B). The CL images of quartz crystals from
447 intermediate depth in Hole U1530A show healed fractures with CL-brighter or CL-darker
448 quartz compared to the surrounding quartz crystal (Fig.6), also indicative of a later stage
449 crystal growth under shifted hydrothermal precipitation conditions. The variations in the CL-
450 imaging spectrum of quartz can be explained by different intrinsic and extrinsic defects, like
451 lattice defects, poor crystallographic ordering, or incorporation of trace elements to a certain
452 extent (Götze et al., 2001). Several CL images of euhedral shaped quartz crystals separated
453 from vein or vug infills reveal concentric zoning, indicative of free growth towards open
454 spaces within the host rocks (Fig. 6).

455 The $\delta^{18}\text{O}$ values from traverses across 13 quartz grains from Hole U1530A are given in Table
456 3. Eight of the traverses, representative of six depth intervals in Hole U1530A, are shown
457 with corresponding CL images in Fig. 6. The total range in measured $\delta^{18}\text{O}$ values is $+5.6 \pm$
458 0.1 ‰ to $+9.9 \pm 0.2 \text{ ‰}$. One quartz crystal with concentric zoning from the deeper part of
459 Hole U1530A (Fig. 6E, rightmost) shows the highest variability in $\delta^{18}\text{O}$ values of an
460 individual crystal from $+6.7 \pm 0.2 \text{ ‰}$ (crystal rim) to $+9.5 \pm 0.2 \text{ ‰}$ (crystal core).

461 Quartz precipitation temperatures were calculated using qtz-water oxygen isotope
462 thermometry, as calibrated by Sharp and Kirschner (1994): $1000 \ln \alpha_{(\text{qtz-water})} = -2.9 + (3.65 \times$
463 $10^6/T^2)$. The calculations are based on the assumption that the measured $\delta^{18}\text{O}$ values of the
464 quartz crystals represent the equilibrium values with the interacting hydrothermal fluid during
465 precipitation of the quartz. The exact $\delta^{18}\text{O}$ of the interacting fluid is unknown but it is

466 assumed to be near seawater, and we calculated a temperature range for the minimum
467 ($\delta^{18}\text{O}_{\text{water}} = 0 \text{ ‰}$) and maximum ($\delta^{18}\text{O}_{\text{water}} = +1 \text{ ‰}$) values measured in fluids venting at the
468 NW Caldera (de Ronde et al., 2011). The calculated temperatures show ± 3 to $\pm 8 \text{ }^{\circ}\text{C}$ (2sd) that
469 derived from $\delta^{18}\text{O}$ measurements. However, also regarding the range in $\delta^{18}\text{O}$ value of the
470 fluids from 0 to $+1 \text{ ‰}$ an average absolute temperature difference of $31 \pm 10 \text{ }^{\circ}\text{C}$ (2sd) for an
471 individual temperature has to be considered.

472 The total range of quartz precipitation temperatures is 262 to $425 \text{ }^{\circ}\text{C}$ (for $\delta^{18}\text{O}_{\text{water}}$ between 0
473 and $+1 \text{ ‰}$). Two quartz grains from the stockwork zone at shallow levels (22.07 to 22.09
474 mbsf) of Hole U1530A yielded comparably low precipitation temperatures (of 278 to $315 \text{ }^{\circ}\text{C}$).
475 Two quartz grains from a lava flow altered to a chlorite-rich secondary mineral assemblage
476 (61.08 to 61.11 mbsf) gave highly variable temperatures (269 to $425 \text{ }^{\circ}\text{C}$), but mostly above
477 $350 \text{ }^{\circ}\text{C}$. Likewise, a primarily chlorite-altered lava flow in greater depth of Hole U1530A
478 (290.86 to 290.88 mbsf) gave high formation temperatures in the range of 334 to $400 \text{ }^{\circ}\text{C}$,
479 except for one measurement very close to a crack within the grain (289 to $315 \text{ }^{\circ}\text{C}$). Quartz
480 separates from host rocks dominated by pyrophyllite and diaspore-rich secondary mineral
481 assemblages from above and below the chlorite-rich altered lava flow show considerable
482 variation in $\delta^{18}\text{O}$ values, but a tendency towards lower precipitation temperatures (262 to 353
483 $\text{ }^{\circ}\text{C}$). Quartz separates from the deepest interval (309.83 to 309.85 mbsf) display zoning in the
484 CL images for two of the three quartz crystals (Fig. 6E) and high $\delta^{18}\text{O}$ values at the core
485 (formation temperatures as low as $262 \text{ }^{\circ}\text{C}$), enveloped by low $\delta^{18}\text{O}$ values at the rim
486 (formation temperatures as high as $380 \text{ }^{\circ}\text{C}$). In the third crystal low $\delta^{18}\text{O}$ values were
487 measured only at the outermost edges and these therefore may represent secondary effects.

Discussion

489 *Signatures of Unaltered Rocks*

490 *Brothers volcano.* The B contents (18.7 and 19.6 $\mu\text{g/g}$) and $\delta^{11}\text{B}$ values ($+4.8 \pm 0.1$ and $+5.8 \pm 0.1 \text{ ‰}$) of the two unaltered dacites from Brothers volcano lie between the published values of two seamounts to the south of Brothers volcano (Rumble III: B of 10.4 $\mu\text{g/g}$, $\delta^{11}\text{B}$ of $11.5 \pm 0.4 \text{ ‰}$, and Rumble IV: B of 15.7 $\mu\text{g/g}$, $\delta^{11}\text{B}$ of $11.5 \pm 0.4 \text{ ‰}$, Leeman et al., 2017) and the volcanic edifices of the Northern Kermadec arc (B $> 20 \mu\text{g/g}$ and $\delta^{11}\text{B}$ of up to $7.0 \pm 0.5 \text{ ‰}$, Leeman et al., 2017). This is in agreement with the overall increase in B concentrations and $\delta^{11}\text{B}$ values along the Tonga-Kermadec volcanic arc from New Zealand northwards that was described by Leeman et al., 2017 and was attributed by them to a steeper thermal gradient or a greater sedimentary influence in the magma source to the south.

499 *Snowcap, PACMANUS.* The Manus back-arc basin exhibits a complicated tectonic 500 constellation, with the inactive Manus trench to the north and the actively subducting New 501 Britain trench to the south (Martinez and Taylor, 1996, Fig. 1). The Southeast Rifts (SER), of 502 which Pual Ridge with the Snowcap hydrothermal area is a part, were suggested to represent 503 back-arc crust in an early rifting stage that shows geochemical indications of present influx 504 from slab subduction to the south (Park et al., 2010; Beier et al., 2015). Typical evidence for 505 slab influx is an increased abundance of fluid mobile elements, like B, in rocks from arcs and 506 back arc basins (up to 37 $\mu\text{g/g}$ B) compared to MORB ($< 1 \mu\text{g/g}$ B, Hoog and Savov, 2018), 507 and variable but tends to be higher $\delta^{11}\text{B}$ values ($\delta^{11}\text{B} \approx -9$ to $+16 \text{ ‰}$; Hoog and Savov, 2018; 508 Marschall, 2018 and references therein) compared to MOR basalt average ($-7.1 \pm 0.9 \text{ ‰}$; 509 Marschall et al., 2017). In line with these predictions, the unaltered dacitic sample from 510 Snowcap has a relatively high B content of 21.7 $\mu\text{g/g}$ and a $\delta^{11}\text{B}$ value of $+6.8 \pm 0.1 \text{ ‰}$, 511 similar to other volcanic edifices of the SER that showed B concentrations of 11.8 to 23.7

512 $\mu\text{g/g}$ and $\delta^{11}\text{B}$ values in a range of +6.5 to +8.3 ‰ (Wilckens et al., 2018). This indicates that
513 the dacitic rocks at Snowcap experienced significant contribution from the subducting slab.

514 *Signatures of Altered Oceanic Crust*

515 *Boron Concentrations and Isotope Ratios.* During hydrothermal alteration of mafic and felsic
516 rocks, B tends to partition into the fluid phase at higher temperatures (> 150 °C) and into the
517 solid phase at lower temperatures (< 150 °C, e.g., Ishikawa and Nakamura, 1992). The B
518 isotopic fractionation during fluid-rock interaction is controlled by variations in temperature,
519 mineralogy and w/r-ratios (Spivack and Edmond, 1987). The potential pH effect on B isotopic
520 fractionation is negligible in hydrothermal systems that are hosted in basaltic or more felsic
521 crust because the interacting fluids have pH values < 5 at which the $\text{B}(\text{OH})_3$ species
522 dominates (e.g., Kakihana et al., 1977, Spivack and Edmond, 1987, Palmer et al., 1987).
523 Altered rocks usually show an increase in $\delta^{11}\text{B}$ values by progressive alteration compared to
524 unaltered oceanic crust ($\leq +16$ ‰, also regarding unaltered crust in arc and back-arc basin
525 settings) due to interaction with seawater-derived fluids ($\delta^{11}\text{B}$ values of initially +40 ‰).

526 Altered rocks from Brothers volcano and Snowcap are B-depleted relative to unaltered rocks
527 and usually have $\leq 5 \mu\text{g/g}$, corresponding to a B loss of ≥ 75 % (Fig. 5A) pointing to
528 extensive alteration at elevated temperatures.

529 At Snowcap and Brothers volcano the alteration mineral assemblages (Paulick and Bach,
530 2006; de Ronde et al., 2011), fluid inclusion data (Vanko et al., 2004; de Ronde et al., 2005;
531 Diehl et al., 2020; Lee et al., 2022), as well as temperature, acidity and gas concentrations of
532 vent fluids (de Ronde et al., 2011; Kleint et al., 2019; Reeves et al., 2011) suggest the
533 existence of two distinct types of hydrothermal activity. One of these types is thought to be
534 dominated by heated seawater-rock interaction. The chlorite-, illite- and magnetite-
535 (corrensite)-rich alteration types at Snowcap and Brothers volcano as well as the mixed
536 alteration types that occur at Snowcap and the stockwork alteration at Brothers volcano are

537 thought to be part of this seawater hydrothermal type. This is because the appearance of
538 chlorite points to hydrothermal alteration by entrained seawater (Mg-rich) at elevated
539 temperatures (e.g., Bach et al., 2013). The other type of hydrothermal interaction is advanced
540 argillic alteration, in which the pyrophyllite-alunite and pyrophyllite-diaspore-rich
541 assemblages and the presence of native sulfur are attributed to the influx of a magmatic vapor
542 rich in SO_2 (e.g., de Ronde et al., 2011; Seewald et al., 2019). Wilckens et al. (2018)
543 presented B and $\delta^{11}\text{B}$ vent fluid data from Western Pacific back-arc basins that implicate a
544 lowering in $\delta^{11}\text{B}$ fluid compositions due to the influence of magmatic fluids compared to
545 solely seawater derived hydrothermal fluids. This shift in $\delta^{11}\text{B}$ values of the fluids might also
546 be reflected by differences in the $\delta^{11}\text{B}$ composition of altered rocks that are either affected by
547 seawater- or by magmatic-derived fluids. However, the B and $\delta^{11}\text{B}$ data of altered rocks from
548 Snowcap and Brothers volcano that were investigated in this study show no systematic
549 difference in B or $\delta^{11}\text{B}$ between the advanced argillic alteration and seawater-dominated
550 alteration types (Fig. 5A). The missing evidence for a magmatic fluid imprint on the B and
551 $\delta^{11}\text{B}$ values of altered rocks, can be explained by three possibilities: (1) the magmatic fluid
552 and the seawater-derived fluid have similar $\delta^{11}\text{B}$ values, (2) overprint of the magmatic fluid
553 signal of the altered rocks due to extensive dilution by high seawater fluxes, (3) overprint by
554 low-temperature (< 150 °C) alteration. A seawater-like $\delta^{11}\text{B}$ value of the magmatic fluid is
555 implausible, since lowering in $\delta^{11}\text{B}$ of fluids affected by magma degassing versus solely
556 seawater affected fluids was previously observed (Wilckens et al., 2018) and the advanced
557 argillic altered rocks show no noticeable lowering in $\delta^{11}\text{B}$ compared to the other altered rocks
558 (Fig. 5A). More likely is a combination of strong dilution of the magmatic fluid by high
559 fluxes of seawater-derived hydrothermal fluids, locally accompanied by a low-temperature
560 alteration overprint. Low-temperature overprint is evident by the occurrence of smectite
561 through-out all three investigated drill cores of Brothers volcano (de Ronde et al., 2019e) and
562 by the abundance of corrensite at intermediate depth at Snowcap (Fig. 3). Nonetheless, a

563 greater extent of low-temperature overprint is unlikely due to the low B concentrations of the
564 altered rocks. One altered rock from the top-part section of Hole U1527C at the NW Caldera
565 of Brothers volcano has comparatively high B concentrations (15.6 $\mu\text{g/g}$) but the $\delta^{11}\text{B}$ value
566 points to higher retention of the unaltered signal and do not support a larger impact by a
567 seawater-derived fluid of high $\delta^{11}\text{B}$ composition (Fig. 4B).

568 The previous paragraph emphasized that secondary mineralogy and differing fluid sources
569 seem to have a minor effect on B and $\delta^{11}\text{B}$ systematics of altered rocks at Brothers volcano
570 and Snowcap. Instead, the B content and $\delta^{11}\text{B}$ composition of altered rocks are potentially
571 more strongly affected by alteration temperatures and w/r-ratios. The low B concentrations of
572 altered compared to unaltered rocks and high $\delta^{11}\text{B}$ values of altered rocks, up to $+23.2 \pm 0.1$
573 ‰ at Snowcap and $+16.7 \pm 0.1$ ‰ at Brothers volcano, point to extensive high-temperature
574 fluid-rock interaction with a seawater-derived fluid (Fig. 5A). The Sr isotope ratio of
575 hydrothermally altered rocks is a well-established proxy for w/r-ratios (McCulloch et al.,
576 1980; Marks et al., 2015). The $\delta^{11}\text{B}$ values show a weak positive ($R^2 = 0.3$) but nonetheless
577 significant ($F_{\text{krit}} \ll F$, $p < 0.05$) correlation with Sr isotope ratios of altered rocks from
578 Brothers volcano (Fig. 5B), suggesting that B isotopes are also influenced by w/r-ratios but
579 there are also other impact factors. A significant difference is that $^{11}\text{B}/^{10}\text{B}$ fractionate in
580 dependance on temperature and potentially also the secondary minerals during fluid-rock
581 interaction (Spivack and Edmond, 1987), while $^{87}\text{Sr}/^{86}\text{Sr}$ show no isotopic fractionation.
582 Further, B is strongly depleted in the altered rocks which indicates more efficient leaching of
583 B relative to Sr (Table 2). To test the impact of various w/r-ratios on the B and $\delta^{11}\text{B}$ values of
584 altered rocks for different temperatures, we modified a model calculation suggested by
585 Yamaoka et al. (2015a) to estimate the change in altered rock composition with increasing
586 reaction progress (Fig. 7). The calculation is based on reaction of multiple batches of fluids in
587 equilibrium with a progressively altered rock portion. The changing B concentration of the
588 altered rock (C_R) can be calculated by using the following mass balance:

589
$$C_R + (W/R)C_F = C_R^i + (W/R)C_F^i \quad (2)$$

590 where C_R^i is the B concentration of the unaltered rock (20.0 $\mu\text{g/g}$, average B concentration of
 591 unaltered rocks from Brothers volcano and Snowcap), C_F^i is the B concentration of seawater
 592 (4.5 $\mu\text{g/g}$), and W/R is the water/rock-ratio. Further, the distribution coefficient between rock
 593 (C_R) and fluid B concentrations (C_F) of D_B that is defined as $D_B = C_R/C_F$ is needed for the
 594 calculation. The D_B value is temperature-dependent due to the preferred B partitioning into
 595 the fluid phase at elevated temperatures (e.g., Ishikawa and Nakamura, 1992). It is also
 596 influenced by the nature of the secondary mineral assemblage. Yamaoka et al. (2012)
 597 estimated a D_B of 0.1 (and also tested 0.3) at 350 $^{\circ}\text{C}$ for their model calculations in a basalt-
 598 hosted system. For later model calculations of a basalt-hosted (Yamaoka et al., 2015a) and a
 599 back-arc-hosted system of more felsic rock compositions (Yamaoka et al., 2015b), a D_B value
 600 of 0.1 at 300 $^{\circ}\text{C}$ was assumed. In this study, D_B values of 0.1 for 300 $^{\circ}\text{C}$, 0.3 for 250 $^{\circ}\text{C}$, 0.6
 601 for 200 $^{\circ}\text{C}$, and 1 for 150 $^{\circ}\text{C}$ were used to emphasize the enhanced partitioning of B towards
 602 the fluid with increasing temperatures. The main B hosting phases in basalt-fluid as well as
 603 dacite-fluid hydrothermal systems are newly formed clay minerals (e.g. chlorite, illite,
 604 smectite) and therefore the approach to use similar D_B values for basaltic as well as more
 605 felsic hosted hydrothermal systems might be acceptable.

606 The changing B isotope ratio of the altered rock ($^{11/10}B_R$) is based on a mass balance assuming
 607 a B isotopic fractionation factor, α , between the B isotope ratio of the rock and fluid ($^{11/10}B_F$)
 608 that is defined as $\alpha = ^{11/10}B_R / ^{11/10}B_F$:

609
$$[C_R^{11/10}B_R + \left(\frac{W}{R}\right)C_F^{11/10}B_F] / [C_R + (W/R)C_F]$$

 610
$$= \left[C_R^i \frac{11}{10}B_R^i + \left(\frac{W}{R}\right)C_F^i \frac{11}{10}B_F^i \right] / [C_F^i + \left(\frac{W}{R}\right)C_F^i] \quad (3)$$

611 where $^{11/10}B_R^i$ is the B isotope ratio of the unaltered rock (+5.8 ‰, deduced from the average
612 $\delta^{11}\text{B}$ value of unaltered rocks from Brothers volcano and Snowcap), and $^{11/10}B_F^j$ is the B
613 isotope ratio of seawater (+39.6 ‰, Foster et al., 2010). The α values for different temperature
614 conditions (0.985 for 300°C, 0.983 for 250 °C, 0.981 for 200 °C, and 0.979 for 150 °C) were
615 calculated based on the empirical calibration of mica-fluid B isotope fractionation by Wunder
616 et al. (2005). This procedure is appropriate to address the $^{11/10}B$ partitioning between minerals
617 and fluids, which is affected by the coordination of B in the interacting phases (e.g. Kakihana
618 et al., 1977). Micas and the likely B hosting mineral phases in the altered dacites (illite,
619 pyrophyllite, chlorite or smectites) have in common that B is tetrahedrally coordinated (e.g.
620 Williams et al., 2001, Hervig et al., 2002).

621 The results of the model calculations show the potential influence of changes in the w/r-ratios
622 and temperature on the B and $\delta^{11}\text{B}$ composition of the altered rocks (Fig. 7). In accordance to
623 the model (Fig. 7), a fast onset of significant B loss from the rocks with increasing reaction
624 progress can be expected that is even greater at elevated temperatures. In early stages of fluid-
625 rock interaction when a significant portion of primary B is still retained, the $\delta^{11}\text{B}$ composition
626 of the altered rocks is expected to decrease relative to the unaltered rocks due to the
627 preference of ^{11}B for the trigonal B species that is dominant in acidic fluids that leads to a
628 passive enrichment of ^{10}B in tetrahedrally coordinated silicates (Kakihana et al., 1977; Palmer
629 et al., 1987; Spivack and Edmond, 1987). In later stages when the proportion of fluid- relative
630 to rock-derived B becomes greater, a distinct increase in $\delta^{11}\text{B}$ values of the altered rocks with
631 progressing fluid-rock interaction can be expected due to the high $\delta^{11}\text{B}$ values of seawater-
632 derived fluids (Fig. 7).

633 For Snowcap, the model results and measured $\delta^{11}\text{B}$ values of the altered rocks indicate that
634 the illite-magnetite-(corrensite)-altered rocks around 170 to 190 mbsf experienced very high
635 w/r-ratios. In contrast, the $\delta^{11}\text{B}$ values of the two advanced argillic altered samples at the top-

636 part of Hole 1188A suggest moderate w/r-ratios and comparatively low alteration
637 temperatures (Fig. 3, Fig. 7). For the NW Caldera site of Brothers volcano, the $\delta^{11}\text{B}$ values of
638 altered rocks that are lower than unaltered rock $\delta^{11}\text{B}$ values of the upper part in Hole U1527C
639 point to relatively low w/r-ratios according to the model calculation results (Fig. 4B, Fig. 7).
640 The deformed zone that appears in deeper sections of Hole U1527C has higher $\delta^{11}\text{B}$ values
641 than the top section and suggests increased w/r-ratios. The more variable $\delta^{11}\text{B}$ values of
642 altered rock samples that were recovered from Hole U1530A from the NW Caldera indicate
643 higher variability of w/r-ratios based on the model (Fig. 4D). Noticeable is the decrease in
644 $\delta^{11}\text{B}$ values starting from the chlorite-rich lava flow at the top of Hole U1530A downwards to
645 the underlying illite-rich and highly altered volcaniclastics, pointing to a possible decrease in
646 w/r-ratios in this section. At the Upper Cone (Site U1528), in the part above ~75 m the $\delta^{11}\text{B}$
647 values are significantly increased relative to unaltered compositions and point to moderate to
648 high w/r-ratios, while < 75 m the lower than unaltered $\delta^{11}\text{B}$ values point to lower w/r-ratios
649 based on the model calculations.

650 The temperatures assumed in the model calculations are in accordance with estimated
651 alteration temperatures of the seawater dominated alteration (≤ 250 °C) and the advanced
652 argillic alteration potentially influenced by magma degassing (230-350 °C), constrained based
653 on secondary minerals at Brothers volcano (de Ronde et al., 2019d) and oxygen isotopes of
654 clay minerals at Snowcap (Lackschewitz et al., 2004). Indeed, the differences in resulting B
655 and $\delta^{11}\text{B}$ composition of altered rocks at differing temperatures (Fig. 7) are rather moderate
656 and insufficiently resolvable, especially due to the strong dependency on the determined D_B
657 value that still has to be defined for dacite-fluid interaction.

658 In general, limitations of w/r-ratio constraints based on the model calculations are: (1)
659 inappropriate assumptions of alteration temperature could lead to an underestimation of w/r-
660 ratios, (2) modification of the interacting fluid composition towards lower $\delta^{11}\text{B}$ than seawater

661 values are not regarded by the model but would also cause underestimation of w/r-ratios, and
662 (3) potential variations of the D_B and α values for different alteration mineral assemblages that
663 would affect $\delta^{11}\text{B}$ compositions of altered rocks were not considered. Estimated w/r-ratios
664 based on $\delta^{11}\text{B}$ compositions must be regarded as minimal values because the model tends to
665 underestimate the effective w/r-ratios as described above. Nevertheless, the w/r-ratio
666 sensitivity interlinked with a temperature dependency of B distribution and isotopic
667 fractionation makes it a useful complement to other tracers for w/r-ratio variations, like Sr
668 isotope ratios.

669 *Oxygen Isotope Ratios and Temperature Constraints.* The $\delta^{18}\text{O}$ values of quartz crystals from
670 Hole U1530A at the NW Caldera site of Brothers volcano constrain variations of precipitation
671 temperatures with depth and over time. The stockwork zone in Hole U1530A (NW Caldera
672 site, seafloor to 31.28 mbsf), displays uniformly lower alteration temperatures (278 to 315 °C,
673 Fig. 6) than the underlying basement, likely due to infiltration of cold seawater through cracks
674 and joints close to the seafloor. Fluctuations in the relative intensity of low-T seawater ingress
675 versus pulses of hydrothermal activity with high-T fluid upflow possibly led to the wider
676 range of alteration temperatures (269 to 425 °C) in the chlorite-altered lava flow underlying
677 the stockwork zone. A deeper chloritized lava flow of Hole U1530A shows relatively high
678 and less-variable alteration temperatures (334 to 400 °C) compared to those in the
679 volcaniclastic zones above and below it (262 to 353 °C). These temperature differences may
680 reflect a permeability contrast between the more coherent lava flows and the surrounding
681 volcaniclastic units (Fig. 8). Indeed, the core-to-rim $\delta^{18}\text{O}$ zoning in quartz grains from deeper
682 levels of Hole U1530A (Fig. 6) indicates a shift from lower (minimum 262 °C) to higher
683 (maximum 380 °C) temperatures with time. The increase in temperature can be explained by
684 a sealing effect of secondary minerals that led to a decrease in seawater ingress (e.g., Dobson
685 et al., 2003; Heap et al., 2017), which is also indicated by the very few open fractures

686 observed in the core of Hole U1530A (de Ronde et al., 2019c) or by an increase in higher-T
687 fluid pulses in later stages of alteration.

688 *Implications for Subsurface Processes in Hydrothermal Systems*

689 In this section, we combine B and O isotope data to set constraints on w/r-ratios and
690 temperatures with depth and assess potential reasons for variations. Shifts in the w/r-ratios
691 and temperatures are often linked to changes of the fluid flow in the sub-seafloor that in turn
692 is sensitively coupled to mobilization and precipitation processes, potentially also critical for
693 ore formation.

694 For Snowcap (Site 1188), the comparatively high B concentrations of two altered samples that
695 were taken from the topmost part of the site closely below the dacitic cap indicate relatively
696 low alteration temperatures and moderate w/r-ratios based on the model calculations (Fig. 7).

697 In contrast, for the deeper-seated illite-magnetite-(corrensite)-rich alteration type at Snowcap
698 the model calculation gives very high w/r-ratios (Fig. 7) and $\delta^{18}\text{O}$ measurements of clay
699 minerals from this section (Lackschewitz et al., 2004) point to lower alteration temperatures
700 than above and below. An increase in w/r-ratios accompanied by a decrease in alteration
701 temperature might point to a preferred ingress of cold seawater to this domain, potentially due
702 to higher permeability than in the overlying rocks. Indeed, reconstructions of volcanic facies
703 at Snowcap (Paulick and Herzig, 2003; Paulick et al., 2004; Paulick and Bach, 2006) showed
704 that the basement exhibits distinct boundaries between more coherent volcanic lavas and
705 primary as well as re-sedimented hyaloclastites, which likely have distinctly different
706 permeabilities. Thus, the high $\delta^{11}\text{B}$ values of the magnetite- and corrensite-rich layer may best
707 be explained by alteration with high w/r-ratios caused by the proximity to the permeability
708 barrier imposed by more coherent overlying lava flows.

709 Similar to Snowcap, altered rocks that were recovered from Hole U1530A at the NW Caldera
710 of Brothers volcano show a high variability in $\delta^{11}\text{B}$ values with depth (Fig. 4D) that might be

711 the result of changing w/r-ratios due to permeability contrasts between the different
712 lithological units (Fig. 7, Fig. 8). This assumption is supported by $\delta^{18}\text{O}_{\text{Qtz}}$ -derived
713 temperatures that indicate higher alteration temperatures within a lava flow around 291 mbsf
714 (Fig. 6D) compared to the over- and underlying volcaniclastic rocks (Fig. 6C, E), which may
715 point to reduced fluid-induced cooling within the lava flow. Furthermore, at a similar depth
716 around 291 mbsf a coherent lava flow was identified in Hole U1530A that is less affected by
717 alteration and shows a lower porosity than altered volcaniclastics based on microresistivity
718 image facies interpretation and downhole petrophysical measurements (Massiot et al., 2022).

719 At the Upper Cone (Site U1528) of Brothers volcano, the $\delta^{11}\text{B}$ values of altered rocks are high
720 in the upper sections and sharply decrease at around 75 mbsf and downwards (Fig. 4C). This
721 points to an evolution from more fluid-dominated to more rock-dominated alteration
722 conditions with depth. Downhole measurements and borehole wall imaging suggest that also
723 at Site U1528 lava flows become more abundant in deeper parts (~270 mbsf and lower) of the
724 basement (Massiot et al., 2022). The B contents and $\delta^{11}\text{B}$ values at the Upper Cone (Site
725 U1528) however show only negligible variations at depths >75 mbsf. This might point to a
726 more pervasive alteration at the Upper Cone site.

727 Estimates of w/r-ratios and temperatures as well as lithological and structural observations at
728 Snowcap and Brothers volcano suppose a large impact on the sub-seafloor fluid flow regime
729 by permeability contrasts between lithological units. The idea of sealing caps that act as traps
730 for incoming fluids was described for oceanic spreading centers before (e.g., Zierenberg et al.,
731 1998; Roberts et al., 2003). Nevertheless, particularly the shallow water depth (typical < 1000
732 mbsl) volcanic features in arc- and back-arc environments are hosted in promotes an
733 especially explosive volcanism that often results in the formation of more permeable
734 basement that is prone for entrainment of cold seawater (e.g., Fiske et al., 2001). Cooling
735 within the hydrothermal system is one of the major factors that enhances metal-sulfide

736 precipitation (e.g., Reed and Palandri, 2006), and following the basement structure and
737 permeability distribution of interbedded strata are highly important for ore formation
738 processes (e.g., Tivey, 2007).

739 **Summary and Conclusions**

740 Pathways of fluid flow and the distribution of temperature are primary controls of mass
741 transfers in subseafloor hydrothermal systems. In this study, we investigated the applicability
742 of B concentrations and isotope ratios of altered rocks and O isotope ratios of hydrothermal
743 quartz as tracers for water-to-rock interaction conditions, including w/r-ratios, precipitation
744 temperatures, secondary mineralogy, and different fluid sources. The results indicate that the
745 combination of B and O isotope systematics is a useful approach in assessing variations in
746 w/r-ratios and temperatures of seafloor hydrothermal systems. The approach was used to
747 determine the variability in subseafloor fluid flow intensity and temperature in two felsic
748 rock-hosted hydrothermal systems that are variably affected by influx of magma-derived
749 fluids: Brothers volcano in the Southern Kermadec Arc, and Snowcap vent field in the
750 PACMANUS hydrothermal area on Pual Ridge in the Manus Basin. In both sites, ocean
751 drilling has sampled the subseafloor of hydrothermally active areas, which provides
752 unparalleled insights into basement alteration and mineralization.

753 For Brothers volcano, at the Upper Cone (Site U1528) a distinct shift from higher to lower
754 $\delta^{11}\text{B}$ values with increasing depth occurs that is suggested to be caused by a decrease in w/r-
755 ratios with increasing depth and probably represent a change from fluid- to rock-dominated
756 hydrothermal conditions with depth potentially due to compaction processes. In contrast, at
757 the NW Caldera (Site U1527) a plastically deformed zone in greater depth (220 to 225 mbsf)
758 seems to be influenced by increased w/r-ratios compared to shallower levels of the site. At the
759 NW Caldera (Site U1530) the high variability in $\delta^{11}\text{B}$ values of altered rocks that are
760 suggested to be coupled to changing w/r-ratios and the results that were derived from quartz-

761 water oxygen isotope thermometry hint to a strong control of fluid flow by permeability
762 differences between more coherent lava flows and more permeable volcaniclastic rocks.
763 These results highlight that fluid flow in the seafloor can be characterized by a more fluid
764 controlled pervasive flow through the rock column that naturally decreases with depth due to
765 compaction or can be stronger controlled by lithological or structural features.

766 For Snowcap, high $\delta^{11}\text{B}$ values in -magnetite-chlorite altered rocks between 160 and 190 mbsf
767 point to rock alteration under increased w/r ratios. This peak in alteration intensity occurs
768 close to volcanic facies boundaries suggesting that (similar to Site U1530) permeability
769 contrasts between different volcanic units had a strong control on the intensity of fluid flow.

770 This study hence shows the importance of permeability contrasts on fluid pathways and
771 alteration temperatures in the subseafloor of arc and back-arc hydrothermal systems. Episodes
772 of deformation likewise caused pulses of increased flow of seawater-derived fluids. The
773 variable alteration types (in particular at Site U1530) are most plausibly explained by
774 transients in the intensity of magmatic degassing. Unfortunately, our combined B and O
775 isotopic approach did not turn out a useful tracer for identifying different sources of elements
776 (i.e., magma-derived versus rock-leached). This is because a systematic difference in B
777 isotopic composition of rocks altered by interactions with seawater-derived fluids that were
778 variably affected by magmatic fluids could not be recognized.

779 The data presented help constrain the conditions of water-rock interactions in two active felsic
780 rock-hosted hydrothermal vent systems both of which have considerable accumulation of
781 polymetallic massive sulfides at the seafloor. It is clear that the basement underneath these
782 sulfide deposits should also be mineralized to some extent, in particular in areas where hot,
783 metal-laden hydrothermal solutions mix with cold entrained seawater. Although we identified
784 zones in the basement where this mixing likely played a role in setting the water-rock
785 interactions, a relation between alteration and mineralization could not be established. This is

786 in part due to the generally low intensity of sulfidization throughout the basement drilled in
787 the two work areas.

788 **Acknowledgements**

789 The authors thank the shipboard participants of ODP Expedition 193, IODP Expedition 376
790 and of SO-216 and SO-253, including the crews and pilots of *MARUM QUEST*. We also
791 thank P. Brandl, M. Portnyagin, D. Garbe-Schönberg, and F. Hauff for providing the rock
792 powders and performing the Sr concentration measurements of the two unaltered drill-core
793 samples from Brothers volcano. Further, we thank J. Valley for support conducting the
794 oxygen isotope measurements and S. Humphris for her helpful remarks on the manuscript.
795 We also thank R. Trumbull and one anonymous reviewer for their constructive comments.
796 This research used samples and/or data provided by the International Ocean Discovery
797 Program (IODP). This research was funded by the German-Israeli Foundation for Scientific
798 Research and Development grant #I-1357-301.8/2016 to W. Bach and Y. Katzir.

799 **References**

800

801 Audétat, A., 2019, The Metal Content of Magmatic-Hydrothermal Fluids and Its Relationship to Mineralization Potential:
802 Economic Geology, v. 114, p. 1033–1056.

803 Bach, W., Jöns, N., and Klein, F., 2013, Metasomatism within the Ocean Crust, in Harlov, D., and Austrheim, H., ed.,
804 Metasomatism and the chemical transformation of rock: the role of fluids in terrestrial and extraterrestrial processes,
805 Lecture Notes in Earth System Sciences, Springer, p. 253–288.

806 Balance, P.F., Ablaev, A.G., Pushchin, I.K., Pletnev, S.P., Biryolina, M.G., Itaya, T., Follas, H.A., and Gibson, G.W., 1999,
807 Morphology and history of the Kermadec trench–arc–backarc basin–remnant arc system at 30 to 32°S: Marine Geology,
808 v. 159, p. 35–62.

809 Beier, C., Bach, W., Turner, S., Niedermeier, D., Woodhead, J., Erzinger, J., and Krumm, S., 2015, Origin of Silicic Magmas
810 at Spreading Centres—an Example from the South East Rift, Manus Basin: Journal of Petrology, v. 56, p. 255–272.

811 Binns, R.A., and Scott, S.D., 1993, Actively forming polymetallic sulfide deposits associated with felsic volcanic rocks in the
812 Eastern Manus back-arc basin, Papua New Guinea: Economic Geology, v. 88, p. 2226–2236.

813 Caratori Tontini, F., Davy, B., de Ronde, C.E.J., Embley, R.W., Leybourne, M., and Tivey, M.A., 2012, Crustal
814 Magnetization of Brothers Volcano, New Zealand, Measured by Autonomous Underwater Vehicles: Economic Geology,
815 v. 107, p. 1571–1581.

816 de Ronde, C.E.J., Hannington, M.D., Stoffers, P., Wright, I.C., Ditchburn, R.G., Reyes, A.G., Baker, E.T., Massoth, G.J.,
817 Lupton, J.E., Walker, S.L., Greene, R.R., Soong, C.W.R., Ishibashi, J., Lebon, G.T., Bray, C.J., and Resing, J.A., 2005,
818 Evolution of a Submarine Magmatic-Hydrothermal System: Economic Geology, v. 100, p. 1097–1133.

819 de Ronde, C.E.J., Humphris, S.E., Höfig, T.W., Brandl, P.A., Cai, L., Cai, Y., Caratori Tontini, F., Deans, J.R., Farough, A.,
820 Jamieson, J.W., Kolandaivelu, K.P., Kutovaya, A., Labonté, J.M., Martin, A.J., Massiot, C., McDermott, J.M., McIntosh

821 I.M., Nozaki, T., Pellizari, V.H., Reyes, A.G., Roberts, S., Rouxel, O., Schlicht, L.E.M., Seo, J.H., Straub, S.M.,
822 Strehlow, K., Takai, K., Tanner, D., Tepley III, F.J., and Zhang, C., 2019a, Expedition 376 summary, in de Ronde, C.E.J.,
823 Humphris, S.E., Höfig, T.W. and the Expedition 376 Scientists, ed., *Proceedings of the International Ocean Discovery
824 Program*, v. 376, College Station, Texas.

825 de Ronde, C.E.J., Humphris, S.E., Höfig, T.W., Brandl, P.A., Cai, L., Cai, Y., Caratori Tontini, F., Deans, J.R., Farough, A.,
826 Jamieson, J.W., Kolandaivelu, K.P., Kurovaya, A., Labonté, J.M., Martin, A.J., Massiot, C., McDermott, J.M., McIntosh,
827 I.M., Nozaki, T., Pellizari, V.H., Reyes, A.G., Roberts, S., Rouxel, O., Schlicht, L.E.M., Seo, J.H., Straub, S.M.,
828 Strehlow, K., Takai, K., Tanner, D., Tepley III, F.J., and Zhang, C., 2019b, Site U1528, in de Ronde, C.E.J., Humphris,
829 S.E., Höfig, T.W. and the Expedition 376 Scientists, ed., *Proceedings of the International Ocean Discovery Program*, v.
830 376, College Station, Texas.

831 de Ronde, C.E.J., Humphris, S.E., Höfig, T.W., Brandl, P.A., Cai, L., Cai, Y., Caratori Tontini, F., Deans, J.R., Farough, A.,
832 Jamieson, J.W., Kolandaivelu, K.P., Kurovaya, A., Labonté, J.M., Martin, A.J., Massiot, C., McDermott, J.M., McIntosh,
833 I.M., Nozaki, T., Pellizari, V.H., Reyes, A.G., Roberts, S., Rouxel, O., Schlicht, L.E.M., Seo, J.H., Straub, S.M.,
834 Strehlow, K., Takai, K., Tanner, D., Tepley III, F.J., and Zhang, C., 2019c, Site U1530, in de Ronde, C.E.J., Humphris,
835 S.E., Höfig, T.W. and the Expedition 376 Scientists, ed., *Proceedings of the International Ocean Discovery Program*, v.
836 376, College Station, Texas.

837 de Ronde, C.E.J., Humphris, S.E., Höfig, T.W., Reyes, A.G., and the IODP Expedition 376 Scientists, 2019d, Critical role of
838 caldera collapse in the formation of seafloor mineralization: *Geology*, v. 47, p. 762–766.

839 de Ronde, C.E.J., Humphris, S.E., Höfig, T.W., and the Expedition 376 Scientists, 2019e, *Proceedings of the International
840 Ocean Discovery Program*, v. 376, College Station, Texas.

841 de Ronde, C.E.J., Massoth, G.J., Butterfield, D.A., Christenson, B.W., Ishibashi, J., Ditchburn, R.G., Hannington, M.D.,
842 Brathwaite, R.L., Lupton, J.E., Kamenetsky, V.S., Graham, I.J., Zellmer, G.F., Dziak, R.P., Embley, R.W., Dekov, V.M.,
843 Munnik, F., Lahr, J., Evans, L.J., and Takai, K., 2011, Submarine hydrothermal activity and gold-rich mineralization at
844 Brothers Volcano, Kermadec Arc, New Zealand: *Mineralium Deposita*, v. 46, p. 541–584.

845 Deniel, C., and Pin, C., 2001, Single-stage method for the simultaneous isolation of lead and strontium from silicate samples
846 for isotopic measurements: *Analytica Chimica Acta*, v. 426, p. 95–103.

847 Diehl, A., 2019, Causes for variable hydrothermal vent fluid compositions in intraoceanic arcs : insights from fluid
848 compositions and mineral precipitates of the South Kermadec Arc: Dissertation, Bremen, Germany, The University of
849 Bremen, 170 p.

850 Diehl, A., de Ronde, C.E.J., and Bach, W., 2020, Subcritical phase separation and occurrence of deep-seated brines at the
851 NW Caldera Vent Field, Brothers Volcano: Evidence from fluid inclusions in hydrothermal precipitates: *Geofluids*, v.
852 2020, ID 8868259, pp. 22.

853 Dobson, P.F., Kneafsey, T.J., Hulen, J., and Simmons, A., 2003, Porosity, permeability, and fluid flow in the Yellowstone
854 geothermal system, Wyoming: *Journal of Volcanology and Geothermal Research*, v. 123, p. 313–324.

855 El Meknassi, S., Dera, G., De Rafélis, M., Brahmi, C., Lartaud, F., Hodel, F., Jeandel, C., Menjot, L., Mounic, S., Henry, M.,
856 Besson, P., Chavagnac, V., 2020, Seawater $^{87}\text{Sr}/^{86}\text{Sr}$ ratios along continental margins: Patterns and processes in open and
857 restricted shelf domains: *Chemical Geology*, v. 558, 119874.

858 Embley, R.W., Ronde, C.E.J. de, Merle, S.G., Davy, B., and Tontini, F.C., 2012, Detailed Morphology and Structure of an
859 Active Submarine Arc Caldera: *Economic Geology*, v. 107, p. 1557–1570.

860 Fiske, R.S., Nada, J., Iizasa, K., Yuasa, M., and Klaus, A., 2001, Submarine silicic caldera at the front of the Izu-Bonin arc,
861 Japan: Voluminous seafloor eruptions of rhyolite pumice: *Geological Society of America Bulletin*, v. 133, p. 813–824.

862 Foster, G.L., Pogge von Strandmann, P.A.E., and Rae, J.W.B., 2010, Boron and magnesium isotopic composition of
863 seawater: *Geochemistry, Geophysics, Geosystems*, v. 11.

864 Fouustoukos, D.I., and Seyfried, W.E., 2007, Fluid Phase Separation Processes in Submarine Hydrothermal Systems: *Reviews
865 in Mineralogy and Geochemistry*, v. 65, p. 213–239.

866 Gamo, T., Okamura, K., Charlou, J.-L., Urabe, T., Auzende, J.-M., Ishibashi, J., Shitashima, K., Chiba, H., and Cruise,
867 S.S.P.o.t.M., 1997, Acidic and sulfate-rich hydrothermal fluids from the Manus back-arc basin, Papua New Guinea:
868 *Geology*, v. 25, p. 139–142.

869 Gonfiantini, R., Tonarini, S., Gröning, M., Adorni-Braccesi, A., Al-Ammar, A.S., Astner, M., Bächler, S., Barnes, R.M.,
870 Bassett, R.L., Cocherie, A., Deyhle, A., Dini, A., Ferrara, G., Gaillardet, J., Grimm, J., Guerrot, C., Krähenbühl, U.,
871 Layne, G.D., Lemarchand, D., Meixner, A., Northington, D.J., Pennisi, M., Reitznerová, E., Rodushkin, I., Sugiura, N.,
872 Surberg, R., Tonn, S., Wiedenbeck, M., Wunderli, S., Xiao, Y., Zack, T., 2003, Intercomparison of boron isotope and

873 concentration measurements. Part II: Evaluation of results: *Geostandards Newsletter: The Journal of Geostandards and*
874 *Geoanalysis*, v. 27, p. 41-57.

875 Govindaraju, K., 1994, Compilation of working values and sample description for 383 geostandards: *Geostandards and*
876 *Geoanalytical Research*, v. 18, p. 1-158.

877 Götze, J., Plötze, M., and Habermann, D., 2001, Origin, spectral characteristics and practical applications of the
878 cathodoluminescence (CL) of quartz - a review: *Mineralogy and Petrology*, v. 71, p. 225-250.

879 Haase, K.M., Stroncik, N., Garbe-Schönberg, D., and Stoffers, P., 2006, Formation of island arc dacite magmas by extreme
880 crystal fractionation: *Journal of Volcanology and Geothermal Research*, v. 152, p. 316-330.

881 Hansen, C.T., Meixner, A., Kasemann, S.A., and Bach, W., 2017, New insight on Li and B isotope fractionation during
882 serpentinization derived from batch reaction investigations: *Geochimica et Cosmochimica Acta*, v. 217, p. 51-79.

883 Heap, M.J., Kennedy, B.M., Farquharson, J.I., Ashworth, J., Mayer, K., Letham-Brake, M., Reuschlé, T., Gilg, H.A., Scheu,
884 B., Lavallée, Y., Siratovich, P., Cole, J., Jolly, A.D., Baud, P., and Dingwell, D.B., 2017, A multidisciplinary approach to
885 quantify the permeability of the Whakaari/White Island volcanic hydrothermal system (Taupo Volcanic Zone, New
886 Zealand): *Journal of Volcanology and Geothermal Research*, v. 332, p. 88-108.

887 Heck, P.R., Huberty, J.M., Kita, N.T., Ushikubo, T., Kozdon, R., and Valley, J.W., 2011, SIMS analyses of silicon and
888 oxygen isotope ratios for quartz from Archean and Paleoproterozoic banded iron formations: *Geochimica et*
889 *Cosmochimica Acta*, v. 75, p. 5879-5891.

890 Hedenquist, J.W., and Arribas, A., 2021, Exploration implications of multiple formation environments of advanced argillic
891 minerals: *Economic Geology and the Bulletin of the Society of Economic Geologists*, v. 117 (3), p. 609-643.

892 Hervig, R.L., Moore, G.M., Williams, L.B., Peacock, S.M., Holloway, J.R., and Roggensack, K., 2002, Isotopic and
893 elemental partitioning of boron between hydrous fluid and silicate melt: *American Mineralogist*, v. 87, p. 769-774.

894 Hoog, J.C. de, and Savov, I.P., 2018, Boron Isotopes as a Tracer of Subduction Zone Processes, in Marschall, H., and Foster,
895 G., ed., *Boron Isotopes*, p. 217-247.

896 Ishikawa, T., and Nakamura, E., 1992, Boron isotope geochemistry of the oceanic crust from DSDP/ODP Hole 504B:
897 *Geochimica et Cosmochimica Acta*, v. 56, p. 1633-1639.

898 James, R.H., Allen, D.E., and Seyfried, W.E., 2003, An experimental study of alteration of oceanic crust and terrigenous
899 sediments at moderate temperatures (51 to 350°C): *Geochimica et Cosmochimica Acta*, v. 67, p. 681-691.

900 Kakihana, H., Kotaka, M., Satoh, S., Nomura, M., and Okamoto, M., 1977, Fundamental Studies on the Ion-Exchange
901 Separation of Boron Isotopes: *Bulletin of the chemical society of Japan*, v. 50(1), p. 158-163.

902 Kelly, J.L., Fu, B., Kita, N.T., and Valley, J.W., 2007, Optically continuous silcrete quartz cements of the St. Peter
903 Sandstone: *Geochimica et Cosmochimica Acta*, v. 71, p. 3812-3832.

904 Kesler, S.E., 2005, *Ore-Forming Fluids: Elements* v.1, p 13-18.

905 Kita, N.T., Ushikubo, T., Fu, B., and Valley, J.W., 2009, High precision SIMS oxygen isotope analysis and the effect of
906 sample topography: *Chemical Geology*, v. 264, p. 43-57.

907 Kleint, C., Bach, W., Diehl, A., Fröhberg, N., Garbe-Schönberg, D., Hartmann, J.F., de Ronde, C.E.J., Sander, S.G., Strauss,
908 H., Stucker, V.K., Thal, J., Zitoun, R., Koschinsky, A., 2019, Geochemical characterization of highly diverse
909 hydrothermal fluids from volcanic vent systems of the Kermadec intraoceanic arc: *Chemical Geology*, v. 528, p. 119289.

910 Lackschewitz, K.S., Asada, R., and Paulick, H., 2006, Data Report: Summary of revised alteration phases for PACMANUS
911 hydrothermal field - X-Ray Diffraction Analyses of altered felsic volcanic rocks from Holes 1188A, 1188F, 1189A, and
912 1189B, in Barriga, F.J.A.S., Binns, R.A., Miller, D.J., and Herzog, P.M., ed., *Proceedings of the Ocean Drilling Program*
913 *Scientific Results*, v. 193.

914 Lackschewitz, K.S., Devey, C.W., Stoffers, P., Botz, R., Eisenhauer, A., Kummetz, M., Schmidt, M., and Singer, A., 2004,
915 Mineralogical, geochemical and isotopic characteristics of hydrothermal alteration processes in the active, submarine,
916 felsic-hosted PACMANUS field, Manus Basin, Papua New Guinea: *Geochimica et Cosmochimica Acta*, v. 68, p. 4405-
917 4427.

918 Lee, H.J., Seo, J.H., de Ronde, C.E.J., and Heinrich, C.A., 2022, Fluid Inclusion Evidence for Subseafloor Magmatic-
919 Hydrothermal Processes at Brothers Volcano, Kermadec Arc, New Zealand: *Economic Geology Special Issue*.

920 Leeman, W.P., Tonarini, S., and Turner, S., 2017, Boron isotope variations in Tonga-Kermadec-New Zealand arc lavas:
921 *Geochemistry, Geophysics, Geosystems*, v. 18, p. 1126-1162.

922 Marks, N., Zierenberg, R.A., and Schiffman, P., 2015, Strontium and oxygen isotopic profiles through 3 km of
923 hydrothermally altered oceanic crust in the Reykjanes Geothermal System, Iceland: *Chemical Geology*, v. 412, p. 34–47.

924 Marschall, H., 2018, Boron Isotopes in the Ocean Floor Realm and the Mantle, in Marschall H., and Foster, G., ed., *Boron*
925 *Isotopes*, p. 189–215.

926 Marschall, H.R., Wanless, V.D., Shimizu, N., Pogge von Strandmann, P.A., Elliott, T., and Monteleone, B.D., 2017, The
927 boron and lithium isotopic composition of mid-ocean ridge basalts and the mantle: *Geochimica et Cosmochimica Acta*, v.
928 207, p. 102–138.

929 Martinez, F., and Taylor, B., 1996, Backarc spreading, rifting, and microplate rotation, between transform faults in the Manus
930 Basin: *Marine Geophysical Research*, v. 18, p. 203–224.

931 Massiot, C., McIntosh, I., Deans, J., Milicich, S.D., Caratori Tontini, F., de Ronde, C.E.J., Adam, L., Kolandaivelu, K., and
932 Guerin, G., 2022, Petrophysical Facies and Inferences on Permeability at Brothers Volcano, Kermadec Arc, Using
933 Downhole Images and Petrophysical Data: *Economic Geology* Special Issue.

934 McCulloch, M.T., Gregory, R.T., Wasserburg, G.J., and Taylor, Jr.H.P., 1980, A neodymium, strontium, and oxygen isotopic
935 study of the Cretaceous Samail ophiolite and implications for the petrogenesis and seawater-hydrothermal alteration of
936 oceanic crust: *Earth and Planetary Science Letters*, v. 46, p. 201–211.

937 Palmer, M.R., Spivack, A.J., and Edmond, J.M., 1987, Temperature and pH controls over isotopic fractionation during
938 adsorption of boron on marine clay: *Geochimica et Cosmochimica Acta*, v. 51, p. 2319–2323.

939 Park, S.-H., Lee, S.-M., Kamenov, G.D., Kwon, S.-T., and Lee, K.-Y., 2010, Tracing the origin of subduction components
940 beneath the South East rift in the Manus Basin, Papua New Guinea: *Chemical Geology*, v. 269, p. 339–349.

941 Paulick, H., and Bach, W., 2006, Phyllosilicate Alteration Mineral Assemblages in the Active Subsea-Floor Pacmanus
942 Hydrothermal System, Papua New Guinea, ODP Leg 193: *Economic Geology*, v. 101, p. 633–650.

943 Paulick, H., and Herzog, P.M., 2003, Volcanic facies controls on mass transfer at the active, dacite-hosted Pacmanus
944 hydrothermal system, Manus basin, Papua New Guinea (Ocean Drilling Program Leg 193), in Eliopoulos, G.D. et al., ed.,
945 *Mineral exploration and sustainable development*, Millpress Rotterdam, p. 167–170.

946 Paulick, H., Herzog, P.M., and Hoernes S., 2005, Data Report: A comprehensive geochemical, mineralogical, and isotopic
947 data set of variably altered dacitic volcanic rocks from the subsurface of the PACMANUS hydrothermal field (ODP Leg
948 193), in Barriga, F.J.A.S., Binns, R.A., Miller, D.J., and Herzog, P.M., ed., *Proceedings of the Ocean Drilling Program*
949 *Scientific Results*, v. 193.

950 Paulick, H., Vanko, D.A., and Yeats, C.J., 2004, Drill core-based facies reconstruction of a deep-marine felsic volcano
951 hosting an active hydrothermal system (Pual Ridge, Papua New Guinea, ODP Leg 193): *Journal of Volcanology and*
952 *Geothermal Research*, v. 130, p. 31–50.

953 Raffone, N., Ottolini, L., Tonarini, S., Gianelli, G., and Fridleifsson, G.Ó., 2008, A SIMS study of lithium, boron and
954 chlorine in basalts from Reykjanes (southwestern Iceland): *Microchimica Acta*, v. 161, p. 307–312.

955 Reed, M.H., and Palandri, J., 2006, Sulfide Mineral Precipitation from Hydrothermal Fluids: *Reviews in Mineralogy and*
956 *Geochemistry*, v. 61(1), p. 609–631.

957 Reeves, E.P., Seewald, J.S., Saccoccia, P., Bach, W., Craddock, P.R., Shanks, W.C., Sylva, S.P., Walsh, E., Pichler, T., and
958 Rosner, M., 2011, Geochemistry of hydrothermal fluids from the PACMANUS, Northeast Pual and Vienna Woods
959 hydrothermal fields, Manus Basin, Papua New Guinea: *Geochimica et Cosmochimica Acta*, v. 75, p. 1088–1123.

960 Roberts, S., Bach, W., Binns, R.A., Vanko, D.A., Yeats, C.J., Teagle, D., Blacklock, K., Blusztajn, J.S., Boyce, A.J., Cooper,
961 M.J., Holland, N., and McDonald, B., 2003, Contrasting evolution of hydrothermal fluids in the PACMANUS system,
962 Manus Basin: The Sr and S isotope evidence: *Geology*, v. 31, p. 805–808.

963 Romer, R.L., Meixner, A., and Hahne, K., 2014, Lithium and boron isotopic composition of sedimentary rocks — The role of
964 source history and depositional environment: *Gondwana Research*, v. 26, p. 1093–1110.

965 Seewald, J.S., Reeves, E.P., Bach, W., Saccoccia, P.J., Craddock, P.R., Shanks, W.C., Sylva, S.P., Pichler, T., Rosner, M., and
966 Walsh, E., 2015, Submarine venting of magmatic volatiles in the Eastern Manus Basin, Papua New Guinea: *Geochimica*
967 *et Cosmochimica Acta*, v. 163, p. 178–199.

968 Seewald, J.S., Reeves, E.P., Bach, W., Saccoccia, P.J., Craddock, P.R., Walsh, E., Shanks, W.C., Sylva, S.P., Pichler, T., and
969 Rosner, M., 2019, Geochemistry of hot-springs at the SuSu Knolls hydrothermal field, Eastern Manus Basin: *Geochimica*
970 *et Cosmochimica Acta*, v. 255, p. 25–48.

971 Sharp, Z., and Kirschner, D., 1994, Quartz-calcite oxygen isotope thermometry: *Geochimica et Cosmochimica Acta*, v. 58, p.
972 4491–4501.

973 Shipboard Scientific Party, 2001, Leg 193 Preliminary Report: Anatomy of an Active Felsic-Hosted Hydrothermal System,
974 Eastern Manus Basin. ODP Preliminary Reports, 93 (online). Available from World Wide Web: <http://www-odp.tamu.edu/publications/prelim/193_prel/193prel.pdf>, cited 2022-05-29.

976 Shipboard Scientific Party, 2002, Leg 193 Summary, in Binns, R.A., Barriga, F.J.A.S., and Miller, D.J., ed., *Proceedings of*
977 *the Ocean Drilling Program Initial Reports*, v. 193.

978 Smith, H.J., Spivack, A.J., Staudigel, H., and Hart, S.R., 1995, The boron isotopic composition of altered oceanic crust:
979 *Chemical Geology*, v. 126, p. 119-135.

980 Spivack, A., and Edmond, J., 1987, Boron isotope exchange between seawater and the oceanic crust: *Geochimica et*
981 *Cosmochimica Acta*, v. 51, p. 1033–1043.

982 Thal, J., Tivey, M., Yoerger, D., Jöns, N., and Bach, W., 2014, Geologic setting of PACManus hydrothermal area — High
983 resolution mapping and in situ observations: *Marine Geology*, v. 355, p. 98–114.

984 Thompson, G., and Melson, W.G., 1970, Boron contents of serpentinites and metabasalts in the oceanic crust: Implications
985 for the boron cycle in the oceans: *Earth and Planetary Science Letters*, v. 8, p. 61-65.

986 Tivey, M.K., 2007, Generation of seafloor hydrothermal vent fluids and associated mineral deposits: *Oceanography*, v. 20, p.
987 50-65.

988 Valley, J.W., and Kita, N.T., 2009, In situ Oxygen Isotope Geochemistry by Ion Microprobe, in Fayek, M., ed., MAC Short
989 Course: Secondary Ion Mass Spectrometry in the Earth Sciences, v. 41, p.19-63.

990 Vanko, D.A., Bach, W., Roberts, S., Yeats, C.J., and Scott, S.D., 2004, Fluid inclusion insights from anhydrite veins up to
991 350 meters below the seafloor at the deep-sea PACMANUS hydrothermal field. Manus Basin back-arc rift, Papua New
992 Guinea: *Journal of Geophysical Research*, B03201.

993 Wang, X-L., Coble, M.A., Valley, J.W., Shu, X-J., Kitajima, K., Spicuzza, M.J., Sun, T., 2014, Influence of radiation damage
994 on late Jurassic zircon from southern China: Evidence from in situ measurement of oxygen isotopes, laser Raman, U-Pb
995 ages, and trace elements: *Chemical Geology*, v. 389, p. 122-136.

996 Whitney, J.A., 1975, Vapor generation on a quartz monzonite magma; a synthetic model with application to porphyry copper
997 deposits: *Economic Geology*, v. 70, p. 346–358.

998 Wilckens, F.K., Reeves, E.P., Bach, W., Meixner, A., Seewald, J.S., Koschinsky, A., and Kasemann, S.A., 2018, The
999 influence of magmatic fluids and phase separation on B systematics in submarine hydrothermal vent fluids from back-arc
1000 basins: *Geochimica et Cosmochimica Acta*, v. 232, p. 140–162.

1001 Williams, L.B., Hervig, R.L., Holloway, J.R., and Hutcheon, I., 2001, Boron isotope geochemistry during diagenesis. Part I.
1002 Experimental determination of fractionation during illitization of smectite: *Geochimica et Cosmochimica Acta*, v. 65(11),
1003 p. 1769-1782.

1004 Wunder, B., Meixner, A., Romer, R.L., Wirth, R., and Heinrich, W., 2005, The geochemical cycle of boron: *Lithos*, v. 84, p.
1005 206–216.

1006 Yamaoka, K., Ishikawa, T., Matsubaya, O., Ishiyama, D., Nagaishi, K., Hiroyasu, Y., Chiba, H. and Kawahata, H., 2012,
1007 Boron and oxygen isotope systematics for a complete section of oceanic crustal rocks in the Oman ophiolite: *Geochimica
1008 et Cosmochimica Acta*, v. 84, p. 543–559.

1009 Yamaoka, K., Matsukura, S., Ishikawa, T., and Kawahata, H., 2015a, Boron isotope systematics of a fossil hydrothermal
1010 system from the Troodos ophiolite, Cyprus: *Chemical Geology*, v. 396, p. 61–73.

1011 Yamaoka, K., Hong, E., Ishikawa, T., Gamo, T., and Kawahata, H., 2015b, Boron isotope geochemistry of vent fluids from
1012 arc/back-arc seafloor hydrothermal systems in the western Pacific: *Chemical Geology*, v. 392, p. 9-18.

1013 Yang, K., and Scott, S.D., 1996, Possible contribution of a metal-rich magmatic fluid to a sea-floor hydrothermal system:
1014 *Nature*, v. 383, p. 420–423.

1015 Zierenberg, R.A., Fouquet, Y., Miller, D.J., Bahr, J.M., Baker, P.A., Bjerkgard, T., Brunner, C.A., Duckworth, R.C., Gable,
1016 R., Gieskes, J., Goodfellow, W.D., Gröschel-Becker, H.M., Guerin, G., Ishibashi, J., Iturrino, G., James, R.H.,
1017 Lackschewitz, K.S., Marquez, L.L., Nehling, P., Peter, J.M., Rigsby, C.A., Schultheiss, P., Shanks III, W.C., Simoneit,
1018 B.R.T., Summit, M., Teagle, D.A.H., Urbat, M., and Zuffa, G.G., 1998, The deep structure of a sea-floor hydrothermal
1019 deposit: *Nature*, v. 392, p.485-488.

1020

1021 *Fig. 1: Geological setting of the Manus Basin. (A) Location of ODP Leg 193, PACManus in*
1022 *the Manus Basin (yellow star) modified after Thal et al. (2014). An overview map is inserted*
1023 *that shows the position of the Manus Basin in the Pacific with a red dot. (B) Rock types at*
1024 *Pual Ridge, sites of hydrothermal activity (red dots) and location of PACManus, modified*
1025 *after Shipboard Scientific Party (2001) The thick orange lines represent plate boundaries.*
1026 *Open-toothed lines symbolize inactive subduction, while filled-tooth lines indicate active*
1027 *subduction. Thin orange lines in (B) show extensional faults. WIT=Willaumez Transform;*
1028 *METZ=Manus Extensional Transform Zone; DT=Djaul Transform; WT=Weitin Transform;*
1029 *MMP=Manus Microplate; MSC=Manus Spreading Centre; SER=Southeast Ridges.*

1030 *Fig. 2: Geological setting of the Southern Kermadec arc. (A) Location of Brothers volcano*
1031 *within the Southern Kermadec arc, modified after Ballance et al. (1999). (B) Bathymetric map*
1032 *of Brothers volcano modified from Embley et al. (2012). Light gray patches indicate zones of*
1033 *low magnetization intensity (Caratori Tontini et al., 2012) that are suggested to represent*
1034 *zones of high-temperature fluid upflow. Yellow stars mark drilling locations (IODP*
1035 *Expedition 376) from which samples used in this study came. The red line refers to the cross-*
1036 *section shown in Figure 4.*

1037 *Fig.3: Variations in boron concentration and isotopic composition of altered rocks and*
1038 *alteration mineral assemblages with depth at Snowcap, ODP Site 1188 (Hole 1188A from 0*
1039 *to 211.6 mbsf and Hole 1188F from 218 to 386.7 mbsf), Manus Basin. The gray vertical line*
1040 *represents the unaltered rock compositions. Errors of 2sd are smaller than symbol size. Half-*
1041 *boxes represent rocks with mixed alteration types. Mineral abbreviations: prl = pyrophyllite,*
1042 *ill = illite, chl=chlorite, qtz=quartz, crs=cristobalite, sm=smectite, anh=anhydrite,*
1043 *gp=gypsum, ba=barite, py=pyrite, mgt=magnetite, crr=corrensite.*

1044 *Fig.4: Alteration patterns, lithostratigraphy (after de Ronde et al., 2019e) and geochemical*
1045 *variations with depth at Brothers volcano. (A) Cross-section (see Fig. 2B) of Brothers*

1046 *volcano and distribution of alteration types based on shipboard observations and XRD*
1047 *analyses of IODP Expedition 376, modified after de Ronde et al. (2019d). Boreholes were*
1048 *projected to the cross-section. (B, C, D): B concentrations and isotopic compositions of*
1049 *altered rocks Sites U1527, U1528 and Site U1530, respectively. The symbols are the same as*
1050 *in Figure 5; symbol colors match alteration type. The errors (2sd) of the B isotopic*
1051 *compositions are smaller than the symbol sizes. The range of unaltered rock compositions is*
1052 *illustrated as light gray vertical line, with the average in dark gray. Mineral abbreviations:*
1053 *plg = plagioclase, px = pyroxene.*

1054 *Fig.5: Chemical and isotopic compositions of unaltered and variably altered rocks from*
1055 *Snowcap and Brothers volcano. Errors (2sd) of B and Sr isotopes are smaller than symbol*
1056 *size. (A) B concentrations versus $\delta^{11}\text{B}$ compositions. (B) Sr versus B isotopic compositions.*
1057 *Inset shows the relation of the B and Sr isotope composition of unaltered and altered rocks*
1058 *relative to seawater. Mineral abbreviations are given in Fig.3.*

1059 *Fig.6: O isotope values ($\delta^{18}\text{O}_{\text{VSMOW}}$) and calculated formation temperatures (pink shaded) of*
1060 *quartz grains from different depth intervals and alteration types in Hole U1530A, NW*
1061 *Caldera, Brothers volcano. Temperatures are based on oxygen isotope quartz-water*
1062 *thermometry calibrated by Sharp and Kirschner (1994). The pink shades give the range of*
1063 *minimum and maximum temperatures. (A) $\delta^{18}\text{O}_{\text{VSMOW}}$ and temperatures versus depth,*
1064 *alteration types also included; (B), (C), (D), and (E) show CL images of single quartz grains,*
1065 *including the locations of SIMS analyses, the measured $\delta^{18}\text{O}_{\text{Qtz}}$ values and the corresponding*
1066 *temperatures.*

1067 *Fig.7: Model calculations of B contents and isotopic ratio during progressive fluid-rock*
1068 *interaction for varies temperatures, adapted from Yamaoka et al. (2015a). The italic numbers*
1069 *mark the w/r-ratios. An initial rock composition based on average unaltered rock from*
1070 *Brothers volcano and Snowcap (20.0 $\mu\text{g/g}$ and +5.8 ‰), and an initial fluid composition*

1071 based on unaltered bottom seawater (4.5 $\mu\text{g/g}$ and +39.6 ‰) were assumed. The observed B
1072 and $\delta^{11}\text{B}$ compositions of Brothers volcano and Snowcap are shown with the same symbols as
1073 in Figure 5. Estimates (see text for details): for 300 °C ($D_B=0.1$, $\alpha=0.985$), for 250 °C
1074 ($D_B=0.3$, $\alpha=0.983$), for 200 °C ($D_B=0.6$, $\alpha=0.981$), and for 150 °C ($D_B=1.0$, $\alpha=0.979$).

1075 Fig.8: Summary sketch of the alteration evolution at Brothers volcano. Alteration types are
1076 the same as in Figure 4. The formation steps (A) Pre-caldera, (B) Caldera collapse and (C)
1077 resurgent cone were adapted from de Ronde et al. (2019d). In the pre-caldera stage (A),
1078 advanced argillic alteration due to magmatic fluid upflow took place. After collapse of the
1079 caldera (B and C), increased seawater ingress was initiated and chlorite- and/or illite-rich
1080 alteration occurred. A more detailed section of Hole U1530A at the NW Caldera (D) shows
1081 that the more coherent lava-flows act as permeability barriers and exhibit low extents of
1082 seawater ingress and increased alteration temperatures (up to 425 °C) compared to the
1083 surrounding volcaniclastics that experienced increased seawater ingress and lower alteration
1084 temperatures (262 to 353 °C). At the Upper Cone site (C), increased seawater ingress occurs
1085 at the topmost part and decreasing with depth, probably due to compaction and sealing of the
1086 crust by secondary minerals.

1087 Table 1: Alteration types, secondary mineral assemblages, B concentrations and isotopic
1088 compositions of unaltered and altered rocks from Snowcap, Manus Basin.

1089 Table 2: Alteration types, and B and Sr concentrations and isotopic compositions of altered
1090 and unaltered classified rocks from Brothers volcano, Kermadec arc.

1091 Table 3: Oxygen isotope ratios ($\delta^{18}\text{O}_{\text{VSMOW}}$) measured by SIMS of quartz single crystal
1092 domains from Hole U1530A, NW Caldera, Brothers volcano.

1093 *Appendix Table A1: Oxygen isotope measurements by SIMS on quartz from sample material*
1094 *(IODP Exp. 376, Brothers volcano) and reference material UWQ-1. The position of the*
1095 *measured points is projected to the CL images of the quartz separates.*

Fig. 1

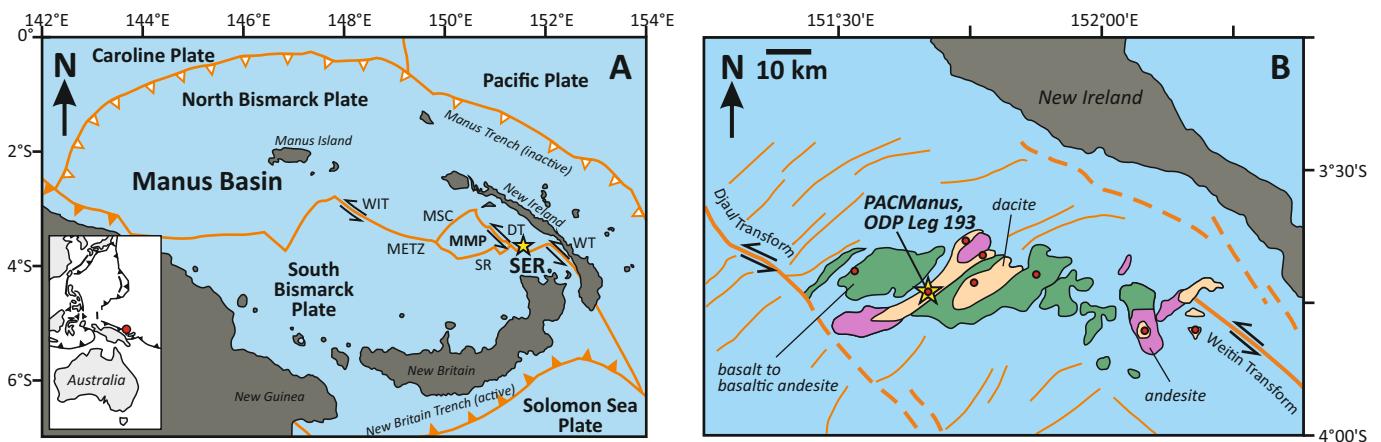


Fig. 2

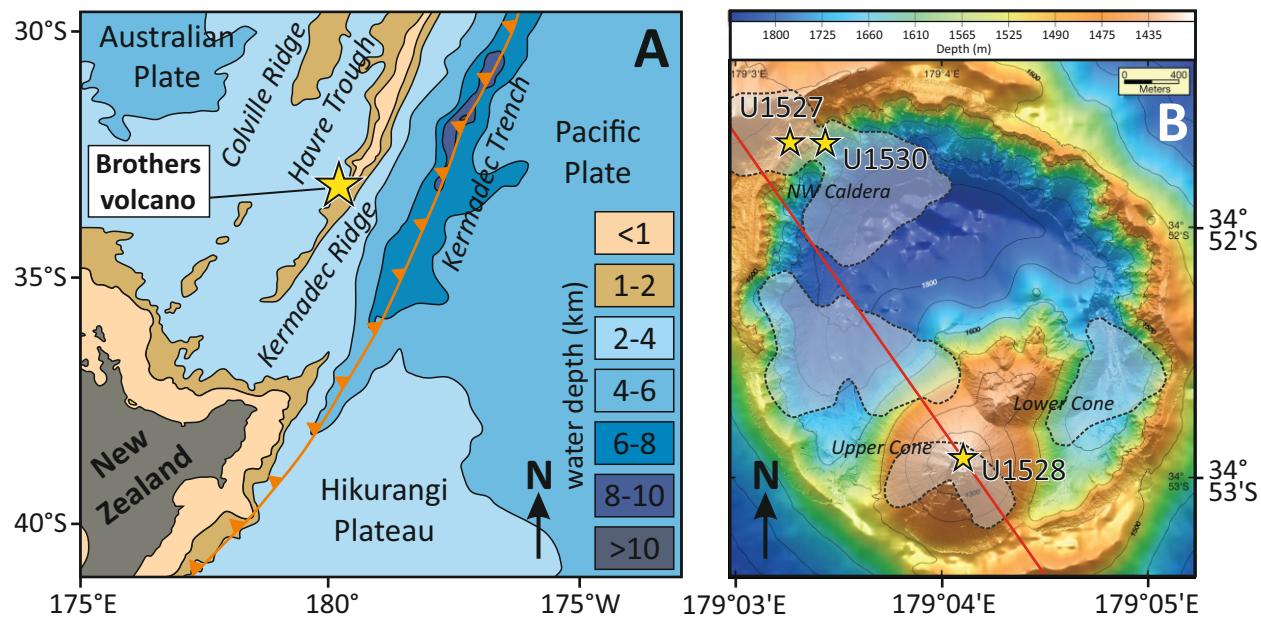
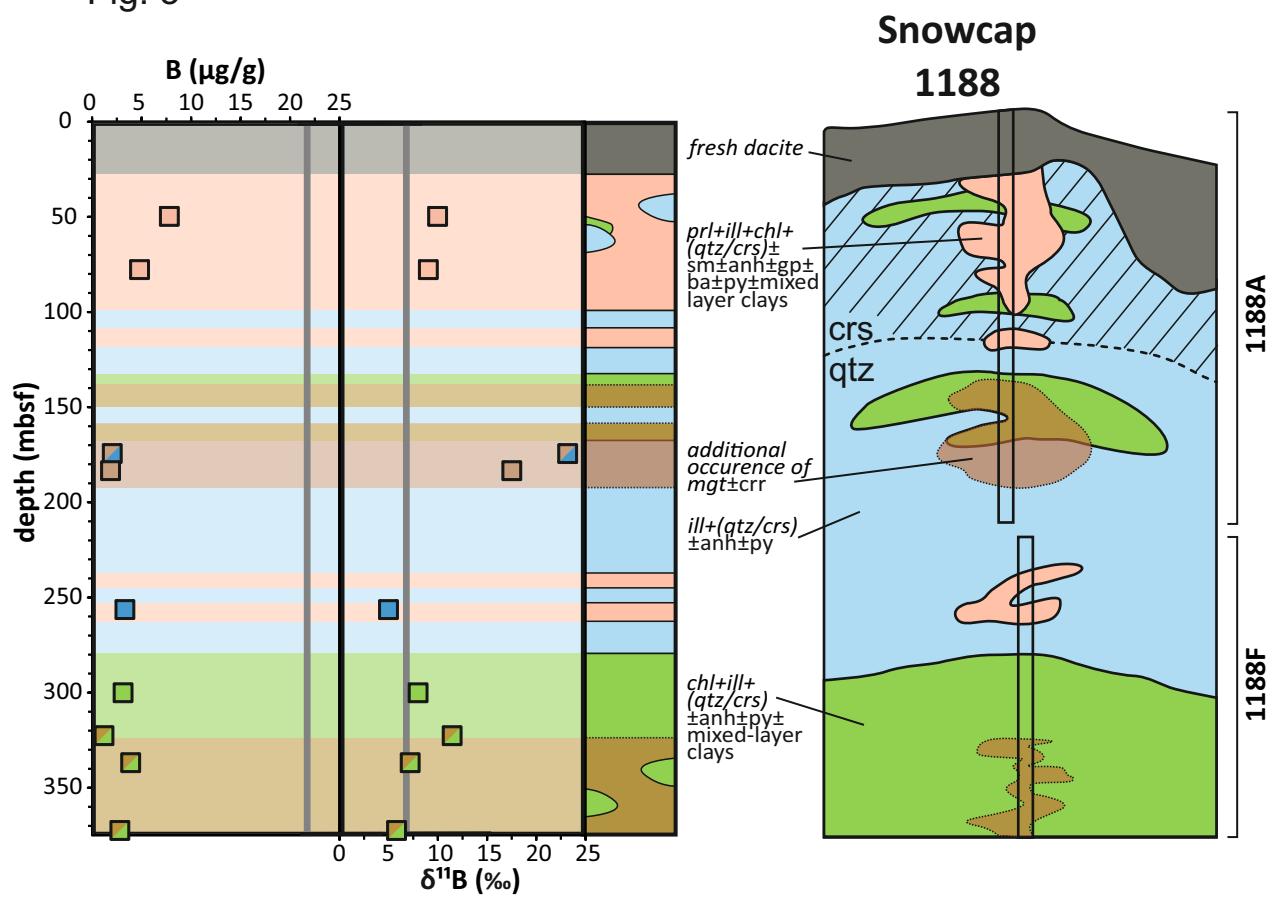
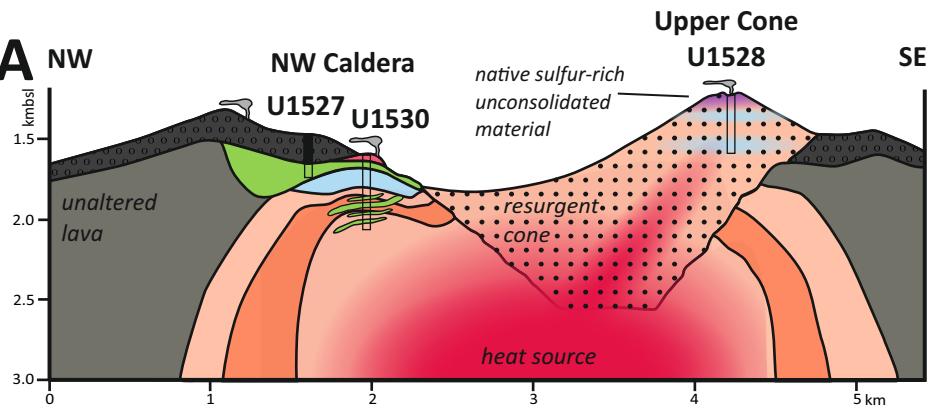
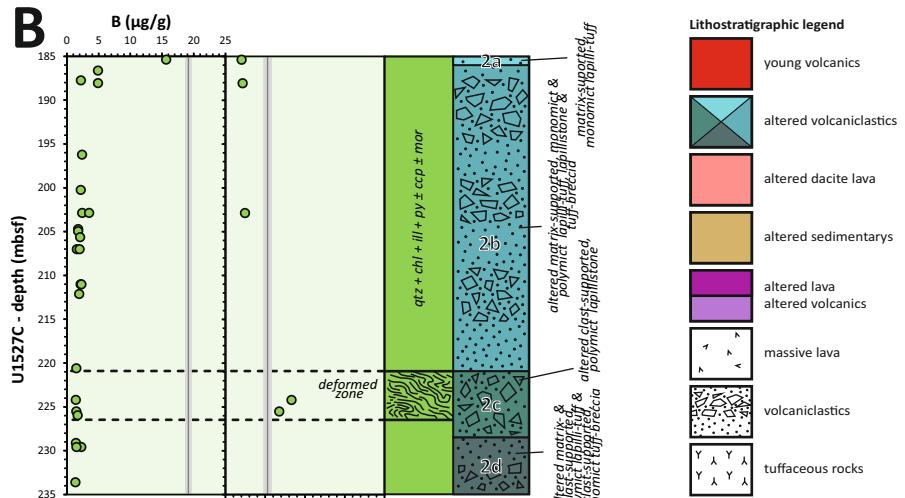
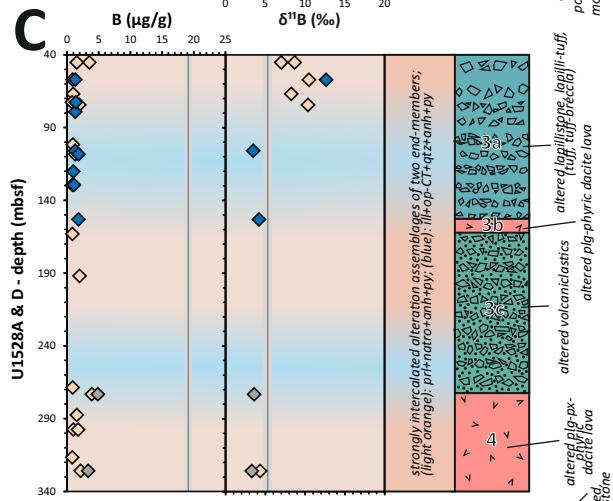


Fig. 3


Fig. 4 A NW

B

C

D

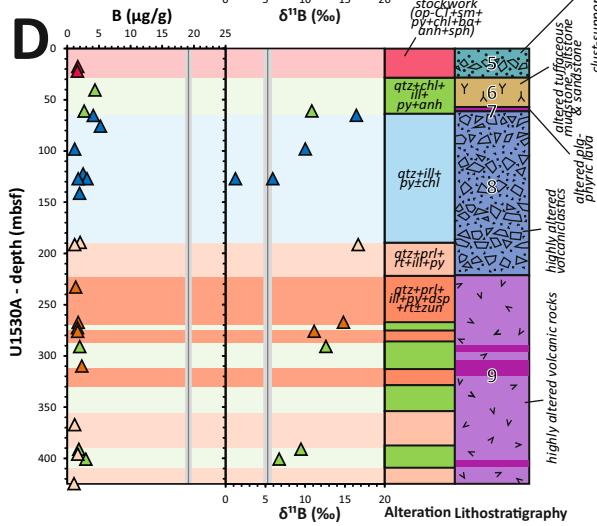


Fig. 5

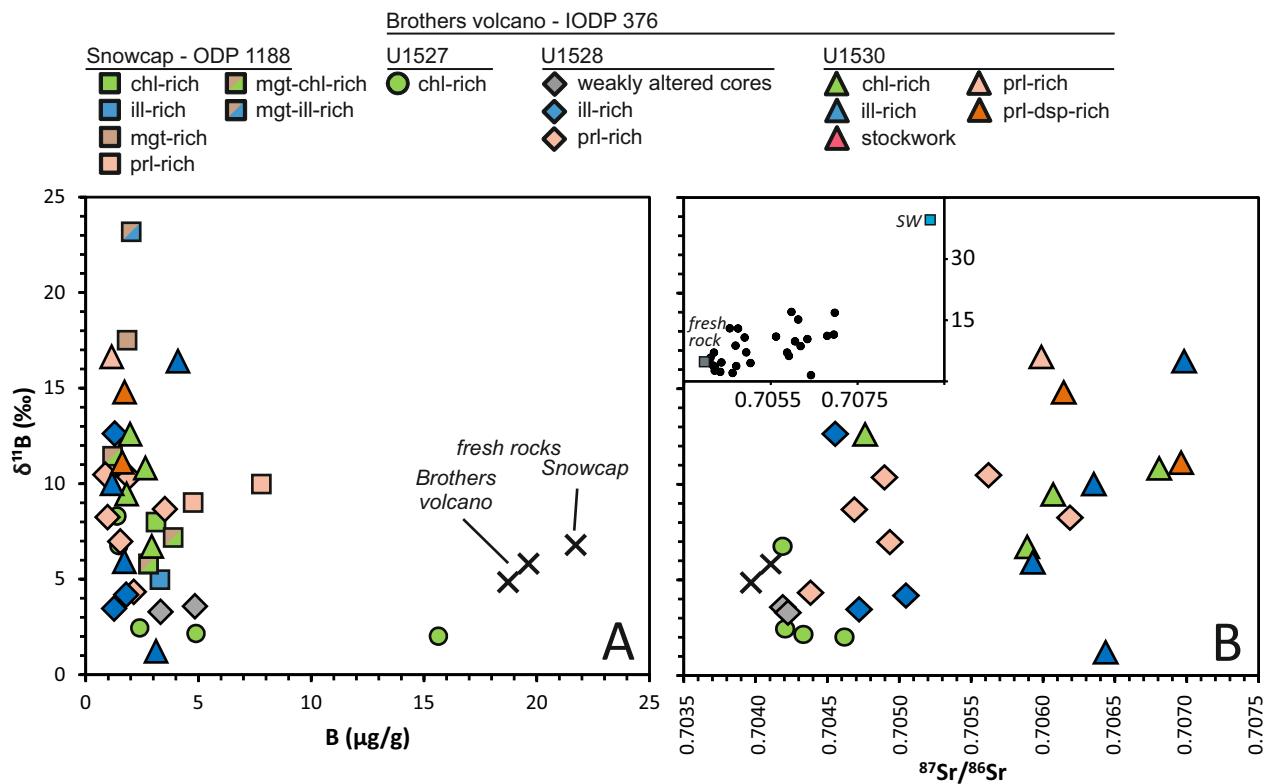


Fig. 6

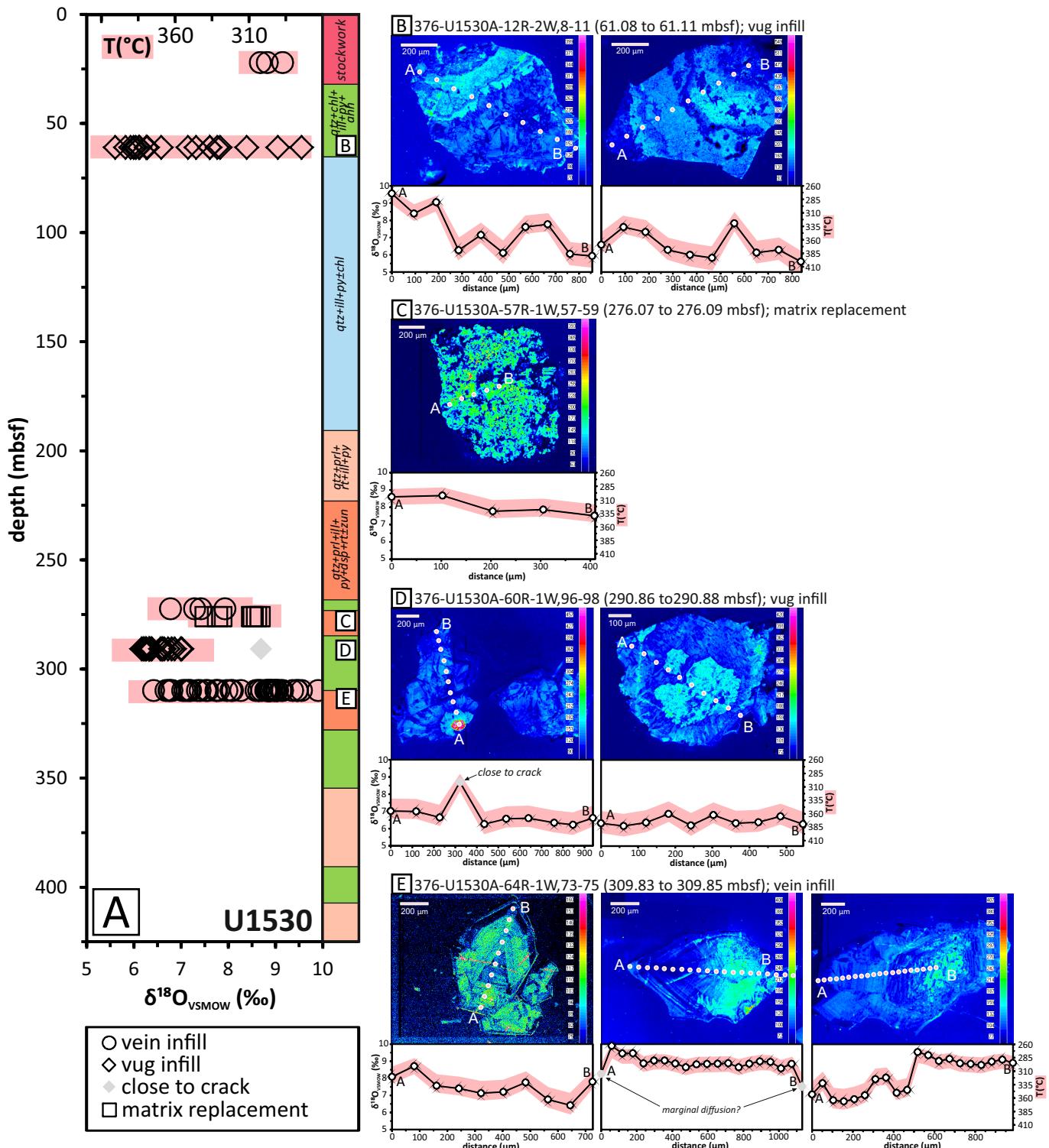


Fig. 7

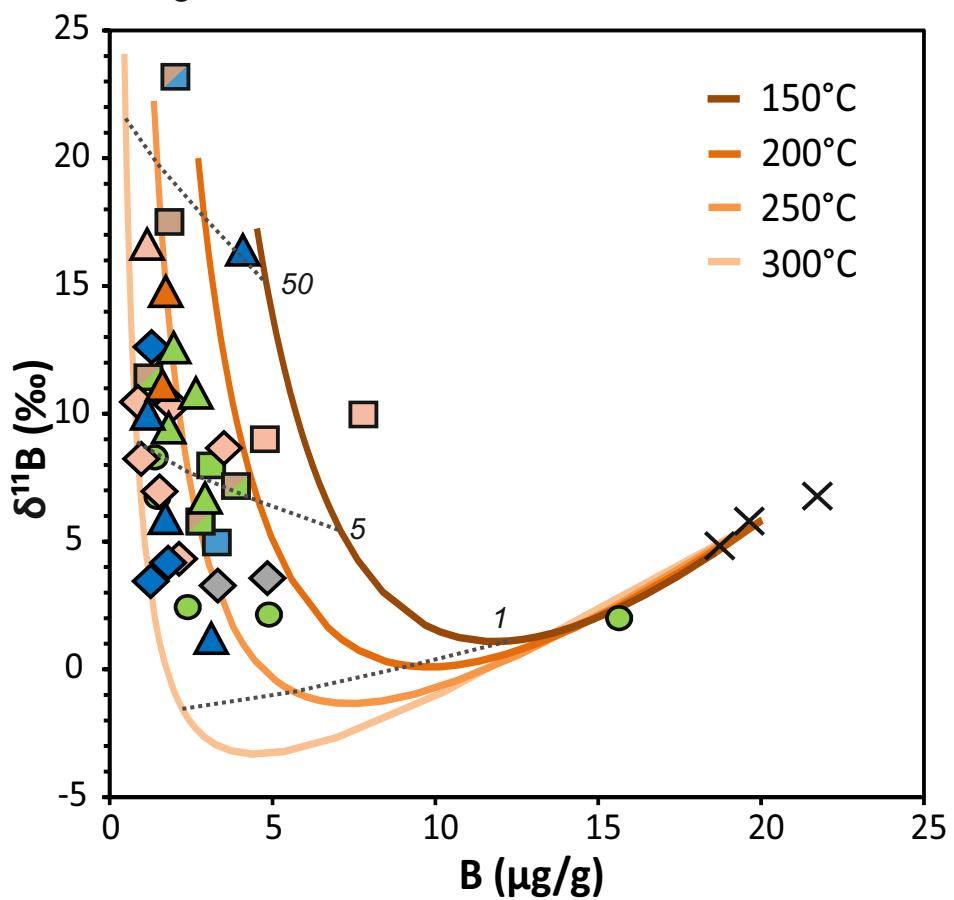


Fig. 8

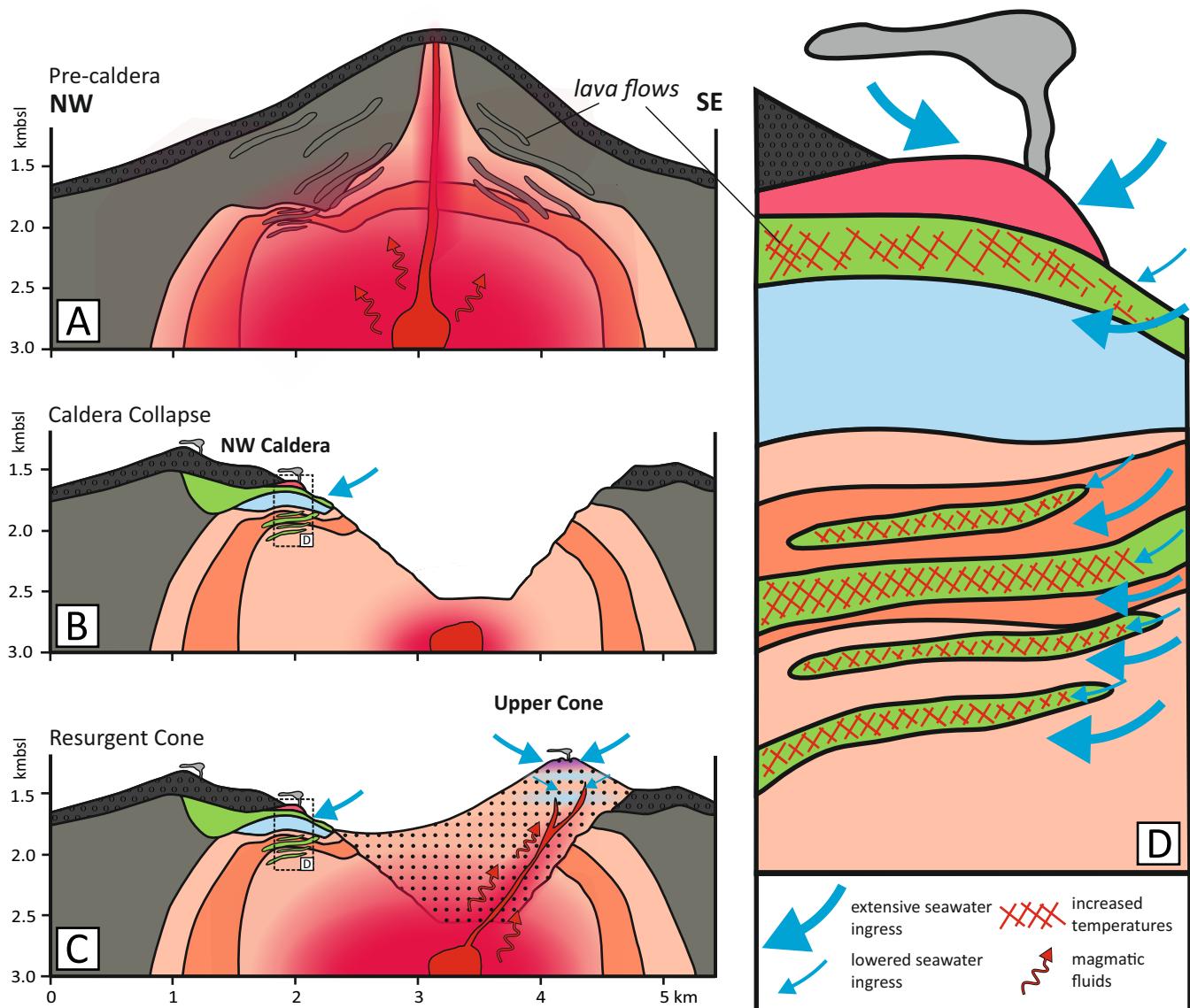


Table 1: Alteration types, secondary mineral assemblages, B concentrations and isotopic compositions of unaltered and altered rocks from Snowcap, Manus Basin.

sample name	alteration type*	depth (mbsf)			secondary mineral assemblage**	B $\mu\text{g/g}$	$\delta^{11}\text{B}$ ‰	2sd ‰
		top	bottom					
193-U1188A-7R-1W, 145-147	prl-rich	49.65	49.67		anh (crs, py, prl, qtz)	7.8	10.0	0.1
193-U1188A-10R-1W, 35-37	prl-rich	77.65	77.67		qtz, crs (prl, ba, py)	4.8	9.0	0.1
193-U1188A-20R-1W, 46-47	mgt-ill-rich	174.36	174.37		qtz (plg, anh, crr, mgt, ill, py)	2.0	23.2	0.1
193-U1188A-21R-1W, 20-21	mgt-rich	183.30	183.31		qtz (plg, mgt, crr, py)	1.9	17.5	0.1
193-U1188F-16Z-1W, 139-141	ill-rich	256.29	256.31		qtz (py, ill, brittle mica, anh)	3.3	5.0	0.1
193-U1188F-26Z-1W, 20-23	chl-rich	300.03	300.06		qtz (anh, py, ill, chl, chl-mixed-layer, smc)	3.1	8.0	0.1
193-U1188F-31Z-1W, 1-3	mgt-chl-rich	322.61	322.63		qtz, plg (chl, mgt, py, anh)	1.2	11.4	0.1
193-U1188F-34Z-1W, 40-41	mgt-chl-rich	336.80	336.81		plg, qtz (ill, chl, py, mgt, ill-mixed-layer)	3.9	7.2	0.1
193-U1188F-43Z-1W, 90-91	mgt-chl-rich	372.40	372.41		qtz, plg (chl, anh, py, mgt)	2.8	5.8	0.1
SO-216-043-ROV10					fresh dacitic cap rock	21.7	6.8	0.1

* alteration types are described in the chapter "Sample Material", subchapter "Snowcap, Manus Basin".

**secondary mineral assemblages were identified by XRD and taken from Lackschewitz et al. (2006).

anh=anhydrite; ba=barite; chl=chlorite; crr=corrensite; crs=cristobalite; ill=illite; mgt=magnetite; plg=plagioclase; prl=pyrophyllite; py=pyrite; qtz=quartz; smc=smectite

Table 1: Alteration types, secondary mineral assemblages, B concentration

sample name	alteration	depth (mbsf)	
	type*	top	bottom
193-U1188A-7R-1W, 145-147	prl-rich	49.65	49.67
193-U1188A-10R-1W, 35-37	prl-rich	77.65	77.67
193-U1188A-20R-1W, 46-47	mgt-ill-rich	174.36	174.37
193-U1188A-21R-1W, 20-21	mgt-rich	183.30	183.31
193-U1188F-16Z-1W, 139-141	ill-rich	256.29	256.31
193-U1188F-26Z-1W, 20-23	chl-rich	300.03	300.06
193-U1188F-31Z-1W, 1-3	mgt-chl-rich	322.61	322.63
193-U1188F-34Z-1W, 40-41	mgt-chl-rich	336.80	336.81
193-U1188F-43Z-1W, 90-91	mgt-chl-rich	372.40	372.41
SO-216-043-ROV10			

* alteration types are described in the chapter "Sample Material", subchapter "Alteration".

**secondary mineral assemblages were identified by XRD and taken from |

anh=anhydrite; ba=barite; chl=chlorite; crr=corrensite; crs=cristobalite; il

ns and isotopic compositions of fresh and altered rocks from Snowcap, Manus Basin.

secondary mineral assemblage**	B µg/g	$\delta^{11}\text{B}$ %o	2sd %o
anh (crs, py, prl, qtz)	7.8	10.0	0.1
qtz, crs (prl, ba, py)	4.8	9.0	0.1
qtz (plg, anh, crr, mgt, ill, py)	2.0	23.2	0.1
qtz (plg, mgt, crr, py)	1.9	17.5	0.1
qtz (py, ill, brittle mica, anh)	3.3	5.0	0.1
qtz (anh, py, ill, chl, chl-mixed-layer, smc)	3.1	8.0	0.1
qtz, plg (chl, mgt, py, anh)	1.2	11.4	0.1
plg, qtz (ill, chl, py, mgt, ill-mixed-layer)	3.9	7.2	0.1
qtz, plg (chl, anh, py, mgt)	2.8	5.8	0.1
fresh dacitic cap rock	21.7	6.8	0.1

after "Snowcap, Manus Basin"

Lackschewitz et al. (2006)

ll=illite; mgt=magnetite; plg=plagioclase; prl=pyrophyllite; py=pyrite; qtz=quartz; smc=smectite

Table 2: Alteration types, and B and Sr concentrations and isotopic compositions of altered and unaltered classified rocks from Brothers volcano, Kermadec arc.

sample name	alteration type*	depth (mbsf) top	depth (mbsf) bottom	B [†] µg/g	Sr [†] µg/g	δ ¹¹ B ‰	2sd ‰	⁸⁷ Sr/ ⁸⁶ Sr (2sd _{mean})
<i>altered rock samples</i>								
<i>376-U1527C-</i>								
11R-1W, 17-18	chl-rich	185.37	185.38	15.6	191	2.0	0.1	0.704621(9) [†]
11R-1W, 143-145	chl-rich	186.63	186.65	4.9	179			
11R-2W, 108-110	chl-rich	187.74	187.76	2.2	187			
11R-3W, 8-12	chl-rich	188.06	188.10	4.9	204	2.1	0.1	0.704336(4)
12R-1W, 142-144	chl-rich	196.22	196.24	2.4	222			0.704286(15) [†]
13R-1W, 65-68	chl-rich	200.25	200.28	2.2	205			
13R-3W, 50-52 GREEN	chl-rich	202.87	202.89	2.4	254	2.4	0.1	0.704208(4)
13R-3W, 50-52 YELLOW	chl-rich	202.87	202.89	3.5	216			0.704202(6)
14R-1W, 32-34	chl-rich	204.72	204.74	1.8	241			
14R-1W, 55-58	chl-rich	204.95	204.98	1.8	234			
14R-2W, 47-50	chl-rich	205.64	205.67	2.1	247			
14R-3W, 45-49 CLAST	chl-rich	207.01	207.05	1.6	242			
14R-3W, 45-49 MATRIX	chl-rich	207.01	207.05	2.0	223			
15R-2W, 43-50 MIX	chl-rich	211.02	211.09	2.2	222			
15R-2W, 43-50 CLAST	chl-rich	211.02	211.09	2.3	249			
15R-3W, 3-6	chl-rich	212.12	212.15	1.9	240			
17R-2W, 45-49	chl-rich	220.60	220.64	1.5	213			
18R-1W, 60-63	chl-rich	224.20	224.23	1.4		8.3	0.1	
18R-2W, 52-56	chl-rich	225.51	225.55	1.5	200	6.8	0.1	0.704190(5)
18R-2W, 97-99	chl-rich	225.96	225.98	1.7	188			
19R-1W, 71-75	chl-rich	229.11	229.15	1.4	72			0.704536(13) [†]
19R-1W, 117-120 CLAST	chl-rich	229.57	229.60	2.3	209			
19R-1W, 117-120 MATRIX	chl-rich	229.57	229.60	1.5	121			
20R-1W, 40-43	chl-rich	233.60	233.63	1.4	210			
<i>376-U1528A-</i>								
7R-1W, 21-23 CLAST	prl-rich	45.21	45.23	3.5	127	8.7	0.1	0.704688(9) [†]
7R-1W, 21-23 MATRIX	prl-rich	45.21	45.23	1.5	189	7.0	0.1	0.704935(18) [†]
9R-2W, 97-99 CORE	ill-rich	57.07	57.09	1.3	147	12.6	0.1	0.704555(9) [†]
9R-2W, 97-99 HALO	prl-rich	57.07	57.09	0.9	430	10.5	0.1	0.705622(11) [†]
13R-1W, 57-59	prl-rich	74.37	74.39	1.9	138	10.4	0.1	0.704898(5)
14R-1W, 53-56 CORE	ill-rich	79.13	79.16	1.3	169			
<i>376-U1528D-</i>								
3R-1W, 75-77	prl-rich	66.85	66.87	1.0	215	8.3	0.1	0.706188(6)
4R-2W, 28-31 CLAST	prl-rich	72.64	72.75	0.8	222			
4R-2W, 28-31 MATRIX	ill-rich	72.64	72.75	1.4	213			
10R-2W, 16-18 HALO	prl-rich	101.72	101.74	0.9	424			
11R-1W, 100-102	ill-rich	105.90	105.92	1.3	220	3.5	0.1	0.704721(5)
11R-3W, 44-46 CORE	ill-rich	108.33	108.35	1.8	340			
11R-3W, 44-46 HALO	prl-rich	108.33	108.35	1.3	206			
14R-1W, 80-82	ill-rich	120.10	120.12	1.0	226			
16R-1W, 48-50 MATRIX	ill-rich	129.38	129.40	1.1	196			
16R-1W, 48-50 CLAST	prl-rich	129.38	129.40	0.8	235			
21R-1W, 16-18	ill-rich	153.06	153.08	1.8	148	4.2	0.1	0.705048(5)
23R-1W, 61-63	prl-rich	163.11	163.13	0.8	232			
29R-1W, 65-67	prl-rich	191.95	191.97	2.0	150			
45R-1W, 52-54	prl-rich	268.62	268.64	0.9	271			
46R-1W, 32-34 CORE	weakly altered	273.22	273.24	4.8	189	3.6	0.1	0.704191(19) [†]
46R-1W, 32-34 HALO	prl-rich	273.22	273.24	3.9	190			
49R-1W, 19-21	prl-rich	287.49	287.51	1.5	174			
51R-1W, 60-62	prl-rich	297.50	297.52	1.0	213			
51R-1W, 60-62 (replicate)	prl-rich	297.50	297.52	1.8	194			
55R-1W, 51-53	prl-rich	316.61	316.63	0.8	169			
57R-1W, 15-18 CORE	weakly altered	325.85	325.88	3.3	192	3.3	0.1	0.704227(14) [†]
57R-1W, 15-18 HALO	prl-rich	325.85	325.88	2.1	203	4.3	0.1	0.704383(6)
<i>376-U1530A-</i>								
3R-1W, 60-62	stockwork	17.50	17.52	1.6	297			
4R-1W, 67-69	stockwork	22.07	22.09	1.6	766			0.706376(5)
8R-1W, 19-21	chl-rich (sandstone)	40.49	40.51	4.4	15			0.705059(7)
12R-2W, 8-11	chl-rich (lava flow)	61.08	61.11	2.7	87	10.8	0.1	0.706809(7)
13R-1W, 100-102	ill-rich	65.30	65.32	4.1	84	16.4	0.1	0.706982(13) [†]
15R-2W, 43-45	ill-rich	75.78	75.85	5.2	124			
20R-1W, 24-26	ill-rich	98.14	98.16	1.2	29	10.0	0.1	0.706354(8)

25R-1W, 43-45	ill-rich	122.33	122.35	2.5	21			
26R-1W, 41-43 CLAST	ill-rich	127.11	127.13	3.1	39	1.2	0.1	0.706436(14) [†]
26R-1W, 41-43 MATRIX	ill-rich	127.11	127.13	1.7	19	5.9	0.1	0.705929(17) [†]
29R-1W, 22-24	ill-rich	141.32	141.34	1.9	42			
39R-1W, 6-8	prl-rich	189.16	189.18	2.0	58			
39R-2W, 78-80	prl-rich	191.38	191.40	1.2	45	16.7	0.1	0.705990(6)
39R-2W, 78-80 (replicate)	prl-rich	191.38	191.40					0.706007(14) [†]
48R-1W, 45-47	prl-dsp-rich	232.75	232.77	1.3	214			0.706301(7)
55R-1W, 137-139	prl-dsp-rich	267.27	267.29	1.7	91	14.8	0.1	0.706145(3)
56R-2W, 40-42	prl-dsp-rich	272.40	272.42	1.6	240			
57R-1W, 57-59	prl-dsp-rich	276.07	276.09	1.6	284	11.1	0.1	0.706962(14)
60R-1W, 96-98	chl-rich (lava flow)	290.86	290.88	2.0	16	12.6	0.1	0.704763(7)
64R-1W, 73-75	prl-dsp-rich	309.83	309.85	2.3	79			
76R-1W, 36-38	prl-rich	367.06	367.08	1.2	170			0.706326(15) [†]
81R-1W, 41-44	chl-rich (lava flow)	391.11	391.14	1.8	77	9.5	0.1	0.706072(25) [†]
82R-1W, 38-40	prl-rich	395.88	395.90	1.7	81			
83R-1W, 49-51	chl-rich (lava flow)	400.79	400.81	2.9	68	6.7	0.1	0.705891(17) [†]
88R-1W, 42-45	prl-rich	424.72	424.75	1.1	20			
<hr/>								
<i>petrographic unaltered rock samples</i>								
				B μg/g	Sr μg/g	δ ¹¹ B ‰	2sd ‰	⁸⁷ Sr/ ⁸⁶ Sr(2sd _{mean})
376-U1527A-6R-1W, 71-78		49.21	49.28			215 [◊]		
376-U1528D-21R-1W, 75-79		153.65	153.69			202 [◊]		
	water depth [m]	Latitude	Longitude					
SO-253-045-7R (Lower Cone)	1317	34° 52.730' S	179° 04.266' E	18.7	232 ^Δ	4.8	0.1	0.703970(4)
SO-253-081-10B (NW Caldera)	1580	34° 51.659' S	179° 03.438' E	19.6	229 ^Δ	5.8	0.1	0.704109(6) ^Δ

*alteration types are described in the chapter "Sample Material", subchapter "Brothers volcano, Kermadec Arc".

[†]measurements were performed at the PSO, Brest.

[◊]measurements were performed at the GEOMAR, Kiel.

^Δdata were taken from Diehl (2019).

all measurements without special indications were performed at the MARUM, University of Bremen

mineral abbreviations: chl=chlorite; prl=pyrophyllite; ill=illite; dsp=diaspore

Table 2: Alteration types, B and Sr concentrations and B and Sr isotopic compositions of altered rock samples

sample name	alteration type*	depth (mbsf)	
		top	bottom
<i>altered rock samples</i>			
376-U1527C-			
11R-1W, 17-18	chl-rich	185.37	185.38
11R-1W, 143-145	chl-rich	186.63	186.65
11R-2W, 108-110	chl-rich	187.74	187.76
11R-3W, 8-12	chl-rich	188.06	188.10
12R-1W, 142-144	chl-rich	196.22	196.24
13R-1W, 65-68	chl-rich	200.25	200.28
13R-3W, 50-52 GREEN	chl-rich	202.87	202.89
13R-3W, 50-52 YELLOW	chl-rich	202.87	202.89
14R-1W, 32-34	chl-rich	204.72	204.74
14R-1W, 55-58	chl-rich	204.95	204.98
14R-2W, 47-50	chl-rich	205.64	205.67
14R-3W, 45-49 CLAST	chl-rich	207.01	207.05
14R-3W, 45-49 MATRIX	chl-rich	207.01	207.05
15R-2W, 43-50 MIX	chl-rich	211.02	211.09
15R-2W, 43-50 CLAST	chl-rich	211.02	211.09
15R-3W, 3-6	chl-rich	212.12	212.15
17R-2W, 45-49	chl-rich	220.60	220.64
18R-1W, 60-63	chl-rich	224.20	224.23
18R-2W, 52-56	chl-rich	225.51	225.55
18R-2W, 97-99	chl-rich	225.96	225.98
19R-1W, 71-75	chl-rich	229.11	229.15
19R-1W, 117-120 CLAST	chl-rich	229.57	229.60
19R-1W, 117-120 MATRIX	chl-rich	229.57	229.60
20R-1W, 40-43	chl-rich	233.60	233.63
376-U1528A-			
7R-1W, 21-23 CLAST	prl-rich	45.21	45.23
7R-1W, 21-23 MATRIX	prl-rich	45.21	45.23
9R-2W, 97-99 CORE	ill-rich	57.07	57.09
9R-2W, 97-99 HALO	prl-rich	57.07	57.09
13R-1W, 57-59	prl-rich	74.37	74.39
14R-1W, 53-56 CORE	ill-rich	79.13	79.16
376-U1528D-			
3R-1W, 75-77	prl-rich	66.85	66.87
4R-2W, 28-31 CLAST	prl-rich	72.64	72.75
4R-2W, 28-31 MATRIX	ill-rich	72.64	72.75
10R-2W, 16-18 HALO	prl-rich	101.72	101.74

11R-1W, 100-102	ill-rich	105.90	105.92
11R-3W, 44-46 CORE	ill-rich	108.33	108.35
11R-3W, 44-46 HALO	prl-rich	108.33	108.35
14R-1W, 80-82	ill-rich	120.10	120.12
16R-1W, 48-50 MATRIX	ill-rich	129.38	129.40
16R-1W, 48-50 CLAST	prl-rich	129.38	129.40
21R-1W, 16-18	ill-rich	153.06	153.08
23R-1W, 61-63	prl-rich	163.11	163.13
29R-1W, 65-67	prl-rich	191.95	191.97
45R-1W, 52-54	prl-rich	268.62	268.64
46R-1W, 32-34 CORE	weakly altered	273.22	273.24
46R-1W, 32-34 HALO	prl-rich	273.22	273.24
49R-1W, 19-21	prl-rich	287.49	287.51
51R-1W, 60-62	prl-rich	297.50	297.52
51R-1W, 60-62 (replicate)	prl-rich	297.50	297.52
55R-1W, 51-53	prl-rich	316.61	316.63
57R-1W, 15-18 CORE	weakly altered	325.85	325.88
57R-1W, 15-18 HALO	prl-rich	325.85	325.88

376-U1530A-

58	3R-1W, 60-62	stockwork	17.50	17.52
59	4R-1W, 67-69	stockwork	22.07	22.09
60	8R-1W, 19-21	chl-rich (sandstone)	40.49	40.51
61	12R-2W, 8-11	chl-rich (lava flow)	61.08	61.11
62	13R-1W, 100-102	ill-rich	65.30	65.32
63	15R-2W, 43-45	ill-rich	75.78	75.85
64	20R-1W, 24-26	ill-rich	98.14	98.16
65	25R-1W, 43-45	ill-rich	122.33	122.35
66	26R-1W, 41-43 CLAST	ill-rich	127.11	127.13
67	26R-1W, 41-43 MATRIX	ill-rich	127.11	127.13
68	29R-1W, 22-24	ill-rich	141.32	141.34
69	39R-1W, 6-8	prl-rich	189.16	189.18
70	39R-2W, 78-80	prl-rich	191.38	191.40
70	39R-2W, 78-80 (replicate)	prl-rich	191.38	191.40
71	48R-1W, 45-47	prl-dsp-rich	232.75	232.77
72	55R-1W, 137-139	prl-dsp-rich	267.27	267.29
73	56R-2W, 40-42	prl-dsp-rich	272.40	272.42
74	57R-1W, 57-59	prl-dsp-rich	276.07	276.09
75	60R-1W, 96-98	chl-rich (lava flow)	290.86	290.88
76	64R-1W, 73-75	prl-dsp-rich	309.83	309.85
77	76R-1W, 36-38	prl-rich	367.06	367.08
78	81R-1W, 41-44	chl-rich (lava flow)	391.11	391.14
79	82R-1W, 38-40	prl-rich	395.88	395.90
80	83R-1W, 49-51	chl-rich (lava flow)	400.79	400.81

81 88R-1W, 42-45 prl-rich 424.72 424.75

petrographic unaltered rock samples

	water depth [m]	Latitude	Longitude
376-U1527A-6R-1W,71-78	49.21	49.28	
376-U1528D-21R-1W,75-79	153.65	153.69	
SO-253-045-7R (Lower Cone)	1317	34° 52.730'S	179° 04.266'E
SO-253-081-10B (NW Caldera)	1580	34° 51.659'S	179° 03.438'E

*alteration types are described in the chapter "Sample Material", subchapter "Brothers volcano"

[†]measurements were performed at the PSO, Brest

[◊]measurements were performed at the GEOMAR, Kiel

^Δdata were taken from Diehl (2019)

all measurements without special indications were performed at the MARUM, University of

mineral abbreviations: chl=chlorite; prl=pyrophyllite; ill=illite; dsp=diaspore

erred and unaltered classified rocks based on petrographic characteristics from Brothers volcano, Kerr

B[†] μg/g	Sr[†] μg/g	δ¹¹B ‰	2sd ‰	⁸⁷Sr/⁸⁶Sr (2sd)
15.6	191	2.0	0.1	0.704621(9) [†]
4.9	179			
2.2	187			
4.9	204	2.1	0.1	0.704336(4)
2.4	222			0.704286(15) [†]
2.2	205			
2.4	254	2.4	0.1	0.704208(4)
3.5	216			0.704202(6)
1.8	241			
1.8	234			
2.1	247			
1.6	242			
2.0	223			
2.2	222			
2.3	249			
1.9	240			
1.5	213			
1.4		8.3	0.1	
1.5	200	6.8	0.1	0.704190(5)
1.7	188			
1.4	72			0.704536(13) [†]
2.3	209			
1.5	121			
1.4	210			
3.5	127	8.7	0.1	0.704688(9) [†]
1.5	189	7.0	0.1	0.704935(18) [†]
1.3	147	12.6	0.1	0.704555(9) [†]
0.9	430	10.5	0.1	0.705622(11) [†]
1.9	138	10.4	0.1	0.704898(5)
1.3	169			
1.0	215	8.3	0.1	0.706188(6)
0.8	222			
1.4	213			
0.9	424			

1.3	220	3.5	0.1	0.704721(5)
1.8	340			
1.3	206			
1.0	226			
1.1	196			
0.8	235			
1.8	148	4.2	0.1	0.705048(5)
0.8	232			
2.0	150			
0.9	271			
4.8	189	3.6	0.1	0.704191(19) [†]
3.9	190			
1.5	174			
1.0	213			
1.8	194			
0.8	169			
3.3	192	3.3	0.1	0.704227(14) [†]
2.1	203	4.3	0.1	0.704383(6)

1.6	297			
1.6	766			0.706376(5)
4.4	15			0.705059(7)
2.7	87	10.8	0.1	0.706809(7)
4.1	84	16.4	0.1	0.706982(13) [†]
5.2	124			
1.2	29	10.0	0.1	0.706354(8)
2.5	21			
3.1	39	1.2	0.1	0.706436(14) [†]
1.7	19	5.9	0.1	0.705929(17) [†]
1.9	42			
2.0	58			
1.2	45	16.7	0.1	0.705990(6)
				0.706007(14) [†]
1.3	214			0.706301(7)
1.7	91	14.8	0.1	0.706145(3)
1.6	240			
1.6	284	11.1	0.1	0.706962(14)
2.0	16	12.6	0.1	0.704763(7)
2.3	79			
1.2	170			0.706326(15) [†]
1.8	77	9.5	0.1	0.706072(25) [†]
1.7	81			
2.9	68	6.7	0.1	0.705891(17) [†]

1.1 20

B μg/g	Sr μg/g	δ ¹¹ B ‰	2sd ‰	⁸⁷ Sr/ ⁸⁶ Sr(2sd)
	215 [◊]			
	202 [◊]			
18.7	232 ^Δ	4.8	0.1	0.703970(4)
19.6	229 ^Δ	5.8	0.1	0.704109(6) ^Δ

ano, Kermadec Arc"

Bremen

nadec arc.

Table 3: Oxygen isotope ratios ($\delta^{18}\text{O}_{\text{VSMOW}}$) measured by SIMS of quartz single crystal domains from Hole U1530A, NW Caldera, Brothers volcano.

Host rock sample name	alteration type*	depth (mbsf) top	depth (mbsf) bottom	quartz separate grain No.	point No.	description	$\delta^{18}\text{O}_{\text{VSMOW}}$ (‰)	2sd (‰)	temperature (°C)†	$\delta^{18}\text{O}_{\text{water}} = 0\text{ ‰}^0$	$\delta^{18}\text{O}_{\text{water}} = +1\text{ ‰}^0$
<i>376-U1530A-</i>											
4R-1W, 67-69	stockwork	22.07	22.09	LSM1-17	1	vein infill	9.2	0.2	278	303	
4R-1W, 67-69	stockwork	22.07	22.09	LSM1-17	2	vein infill	8.8	0.2	286	311	
4R-1W, 67-69	stockwork	22.07	22.09	LSM1-18	1	vein infill	8.7	0.2	289	315	
12R-2W, 8-11	chl-rich (lava flow)	61.08	61.11	LSM1-14	1	vug infill	9.6	0.2	269	292	
12R-2W, 8-11	chl-rich (lava flow)	61.08	61.11	LSM1-14	2	vug infill	8.4	0.2	296	323	
12R-2W, 8-11	chl-rich (lava flow)	61.08	61.11	LSM1-14	3	vug infill	9.1	0.2	280	305	
12R-2W, 8-11	chl-rich (lava flow)	61.08	61.11	LSM1-14	4	vug infill	6.3	0.2	359	396	
12R-2W, 8-11	chl-rich (lava flow)	61.08	61.11	LSM1-14	5	vug infill	7.1	0.2	330	363	
12R-2W, 8-11	chl-rich (lava flow)	61.08	61.11	LSM1-14	6	vug infill	6.1	0.2	364	403	
12R-2W, 8-11	chl-rich (lava flow)	61.08	61.11	LSM1-14	7	vug infill	7.6	0.2	317	347	
12R-2W, 8-11	chl-rich (lava flow)	61.08	61.11	LSM1-14	8	vug infill	7.8	0.2	313	342	
12R-2W, 8-11	chl-rich (lava flow)	61.08	61.11	LSM1-14	9	vug infill	6.0	0.2	366	405	
12R-2W, 8-11	chl-rich (lava flow)	61.08	61.11	LSM1-14	10	vug infill	5.9	0.2	370	410	
12R-2W, 8-11	chl-rich (lava flow)	61.08	61.11	LSM1-16	1	vug infill	5.6	0.1	383	425	
12R-2W, 8-11	chl-rich (lava flow)	61.08	61.11	LSM1-16	2	vug infill	6.3	0.1	358	395	
12R-2W, 8-11	chl-rich (lava flow)	61.08	61.11	LSM1-16	3	vug infill	6.1	0.1	363	402	
12R-2W, 8-11	chl-rich (lava flow)	61.08	61.11	LSM1-16	4	vug infill	7.8	0.1	311	340	
12R-2W, 8-11	chl-rich (lava flow)	61.08	61.11	LSM1-16	5	vug infill	5.8	0.1	374	415	
12R-2W, 8-11	chl-rich (lava flow)	61.08	61.11	LSM1-16	6	vug infill	6.0	0.1	368	407	
12R-2W, 8-11	chl-rich (lava flow)	61.08	61.11	LSM1-16	7	vug infill	6.3	0.1	358	395	
12R-2W, 8-11	chl-rich (lava flow)	61.08	61.11	LSM1-16	8	vug infill	7.3	0.1	325	357	
12R-2W, 8-11	chl-rich (lava flow)	61.08	61.11	LSM1-16	9	vug infill	7.6	0.1	317	347	
12R-2W, 8-11	chl-rich (lava flow)	61.08	61.11	LSM1-16	10	vug infill	6.6	0.2	348	384	
56R-2W, 40-42	prl-dsp-rich	272.40	272.42	LSM1-3	1	vein infill	7.4	0.1	322	354	
56R-2W, 40-42	prl-dsp-rich	272.40	272.42	LSM1-3	2	vein infill	7.3	0.1	326	358	
56R-2W, 40-42	prl-dsp-rich	272.40	272.42	LSM1-10	1	vein infill	6.8	0.1	342	376	
56R-2W, 40-42	prl-dsp-rich	272.40	272.42	LSM1-10	2	vein infill	7.9	0.1	308	337	
57R-1W, 57-59	prl-dsp-rich	276.07	276.09	LSM1-1	1	matrix replacement	8.5	0.1	294	320	
57R-1W, 57-59	prl-dsp-rich	276.07	276.09	LSM1-1	2	matrix replacement	8.5	0.1	293	320	
57R-1W, 57-59	prl-dsp-rich	276.07	276.09	LSM1-2	1	matrix replacement	7.5	0.1	320	351	
57R-1W, 57-59	prl-dsp-rich	276.07	276.09	LSM1-2	2	matrix replacement	7.9	0.1	310	339	
57R-1W, 57-59	prl-dsp-rich	276.07	276.09	LSM1-2	3	matrix replacement	7.8	0.1	313	342	
57R-1W, 57-59	prl-dsp-rich	276.07	276.09	LSM1-2	4	matrix replacement	8.7	0.1	289	315	
57R-1W, 57-59	prl-dsp-rich	276.07	276.09	LSM1-2	5	matrix replacement	8.6	0.1	291	317	
60R-1W, 96-98	chl-rich (lava flow)	290.86	290.88	LSM1-4	1	vug infill	7.0	0.1	334	367	
60R-1W, 96-98	chl-rich (lava flow)	290.86	290.88	LSM1-4	2	vug infill	7.0	0.1	335	368	
60R-1W, 96-98	chl-rich (lava flow)	290.86	290.88	LSM1-4	3	vug infill	6.6	0.1	346	381	
60R-1W, 96-98	chl-rich (lava flow)	290.86	290.88	LSM1-4	4	vug infill;	8.7	0.1	289	315	
point close to crack											
60R-1W, 96-98	chl-rich (lava flow)	290.86	290.88	LSM1-4	5	vug infill	6.3	0.1	359	397	
60R-1W, 96-98	chl-rich (lava flow)	290.86	290.88	LSM1-4	6	vug infill	6.6	0.1	348	384	
60R-1W, 96-98	chl-rich (lava flow)	290.86	290.88	LSM1-4	7	vug infill	6.6	0.1	347	383	
60R-1W, 96-98	chl-rich (lava flow)	290.86	290.88	LSM1-4	8	vug infill	6.3	0.1	356	393	
60R-1W, 96-98	chl-rich (lava flow)	290.86	290.88	LSM1-4	9	vug infill	6.2	0.1	360	398	
60R-1W, 96-98	chl-rich (lava flow)	290.86	290.88	LSM1-4	10	vug infill	6.6	0.1	347	383	
60R-1W, 96-98	chl-rich (lava flow)	290.86	290.88	LSM1-5	1	vug infill	6.3	0.1	358	396	
60R-1W, 96-98	chl-rich (lava flow)	290.86	290.88	LSM1-5	2	vug infill	6.7	0.1	343	378	
60R-1W, 96-98	chl-rich (lava flow)	290.86	290.88	LSM1-5	3	vug infill	6.4	0.1	355	391	
60R-1W, 96-98	chl-rich (lava flow)	290.86	290.88	LSM1-5	4	vug infill	6.3	0.1	356	394	
60R-1W, 96-98	chl-rich (lava flow)	290.86	290.88	LSM1-5	5	vug infill	6.8	0.1	341	375	
60R-1W, 96-98	chl-rich (lava flow)	290.86	290.88	LSM1-5	6	vug infill	6.2	0.1	361	399	
60R-1W, 96-98	chl-rich (lava flow)	290.86	290.88	LSM1-5	7	vug infill	6.9	0.1	339	373	
60R-1W, 96-98	chl-rich (lava flow)	290.86	290.88	LSM1-5	8	vug infill	6.4	0.1	355	392	
60R-1W, 96-98	chl-rich (lava flow)	290.86	290.88	LSM1-5	9	vug infill	6.2	0.1	362	400	
60R-1W, 96-98	chl-rich (lava flow)	290.86	290.88	LSM1-5	10	vug infill	6.3	0.1	357	394	
64R-1W, 73-75	prl-dsp-rich	309.83	309.85	LSM1-11	1	vein infill	8.1	0.2	304	332	
64R-1W, 73-75	prl-dsp-rich	309.83	309.85	LSM1-11	2	vein infill	8.7	0.2	288	314	
64R-1W, 73-75	prl-dsp-rich	309.83	309.85	LSM1-11	3	vein infill	7.6	0.2	318	349	
64R-1W, 73-75	prl-dsp-rich	309.83	309.85	LSM1-11	4	vein infill	7.4	0.2	323	354	
64R-1W, 73-75	prl-dsp-rich	309.83	309.85	LSM1-11	5	vein infill	7.1	0.2	331	363	
64R-1W, 73-75	prl-dsp-rich	309.83	309.85	LSM1-11	6	vein infill	7.2	0.2	329	361	
64R-1W, 73-75	prl-dsp-rich	309.83	309.85	LSM1-11	7	vein infill	7.8	0.2	313	343	
64R-1W, 73-75	prl-dsp-rich	309.83	309.85	LSM1-11	8	vein infill	6.8	0.2	342	377	
64R-1W, 73-75	prl-dsp-rich	309.83	309.85	LSM1-11	9	vein infill	6.4	0.2	353	390	
64R-1W, 73-75	prl-dsp-rich	309.83	309.85	LSM1-11	10	vein infill	7.8	0.2	312	341	
64R-1W, 73-75	prl-dsp-rich	309.83	309.85	LSM1-12	1	vein infill;	7.5	0.2	319	350	
marginal diffusion?											
64R-1W, 73-75	prl-dsp-rich	309.83	309.85	LSM1-12	2	vein infill	8.8	0.2	285	311	
64R-1W, 73-75	prl-dsp-rich	309.83	309.85	LSM1-12	3	vein infill	8.6	0.2	291	318	
64R-1W, 73-75	prl-dsp-rich	309.83	309.85	LSM1-12	4	vein infill	9.0	0.2	283	308	
64R-1W, 73-75	prl-dsp-rich	309.83	309.85	LSM1-12	5	vein infill	9.0	0.2	282	307	
64R-1W, 73-75	prl-dsp-rich	309.83	309.85	LSM1-12	6	vein infill	8.9	0.2	285	311	
64R-1W, 73-75	prl-dsp-rich	309.83	309.85	LSM1-12	7	vein infill	8.6	0.2	290	316	
64R-1W, 73-75	prl-dsp-rich	309.83	309.85	LSM1-12	8	vein infill	8.9	0.2	284	310	
64R-1W, 73-75	prl-dsp-rich	309.83	309.85	LSM1-12	9	vein infill	8.9	0.2	285	310	
64R-1W, 73-75	prl-dsp-rich	309.83	309.85	LSM1-12	10	vein infill	8.8	0.2	285	311	

64R-1W, 73-75	prl-dsp-rich	309.83	309.85	LSM1-12	11	vein infill	8.8	0.2	286	312
64R-1W, 73-75	prl-dsp-rich	309.83	309.85	LSM1-12	12	vein infill	8.6	0.2	290	316
64R-1W, 73-75	prl-dsp-rich	309.83	309.85	LSM1-12	13	vein infill	8.9	0.2	285	310
64R-1W, 73-75	prl-dsp-rich	309.83	309.85	LSM1-12	14	vein infill	9.0	0.2	281	305
64R-1W, 73-75	prl-dsp-rich	309.83	309.85	LSM1-12	15	vein infill	9.0	0.2	281	306
64R-1W, 73-75	prl-dsp-rich	309.83	309.85	LSM1-12	16	vein infill	8.9	0.2	285	310
64R-1W, 73-75	prl-dsp-rich	309.83	309.85	LSM1-12	17	vein infill	9.5	0.2	271	295
64R-1W, 73-75	prl-dsp-rich	309.83	309.85	LSM1-12	18	vein infill	9.5	0.2	271	295
64R-1W, 73-75	prl-dsp-rich	309.83	309.85	LSM1-12	19	vein infill	9.9	0.2	262	284
64R-1W, 73-75	prl-dsp-rich	309.83	309.85	LSM1-12	20	vein infill;	8.3	0.2	300	327
						marginal diffusion?				
64R-1W, 73-75	prl-dsp-rich	309.83	309.85	LSM1-13	1	vein infill	8.9	0.2	284	309
64R-1W, 73-75	prl-dsp-rich	309.83	309.85	LSM1-13	2	vein infill	9.1	0.2	279	304
64R-1W, 73-75	prl-dsp-rich	309.83	309.85	LSM1-13	3	vein infill	9.0	0.2	282	307
64R-1W, 73-75	prl-dsp-rich	309.83	309.85	LSM1-13	4	vein infill	8.8	0.2	286	312
64R-1W, 73-75	prl-dsp-rich	309.83	309.85	LSM1-13	5	vein infill	8.9	0.2	285	310
64R-1W, 73-75	prl-dsp-rich	309.83	309.85	LSM1-13	6	vein infill	8.9	0.2	284	309
64R-1W, 73-75	prl-dsp-rich	309.83	309.85	LSM1-13	7	vein infill	9.2	0.2	278	303
64R-1W, 73-75	prl-dsp-rich	309.83	309.85	LSM1-13	8	vein infill	9.0	0.2	281	306
64R-1W, 73-75	prl-dsp-rich	309.83	309.85	LSM1-13	9	vein infill	9.4	0.2	273	297
64R-1W, 73-75	prl-dsp-rich	309.83	309.85	LSM1-13	10	vein infill	9.5	0.2	269	293
64R-1W, 73-75	prl-dsp-rich	309.83	309.85	LSM1-13	11	vein infill	7.3	0.2	325	356
64R-1W, 73-75	prl-dsp-rich	309.83	309.85	LSM1-13	12	vein infill	7.2	0.2	329	362
64R-1W, 73-75	prl-dsp-rich	309.83	309.85	LSM1-13	13	vein infill	8.1	0.2	305	333
64R-1W, 73-75	prl-dsp-rich	309.83	309.85	LSM1-13	14	vein infill	8.0	0.2	307	336
64R-1W, 73-75	prl-dsp-rich	309.83	309.85	LSM1-13	15	vein infill	7.0	0.2	334	367
64R-1W, 73-75	prl-dsp-rich	309.83	309.85	LSM1-13	16	vein infill	6.8	0.2	341	375
64R-1W, 73-75	prl-dsp-rich	309.83	309.85	LSM1-13	17	vein infill	6.7	0.2	345	380
64R-1W, 73-75	prl-dsp-rich	309.83	309.85	LSM1-13	18	vein infill	6.7	0.2	343	378
64R-1W, 73-75	prl-dsp-rich	309.83	309.85	LSM1-13	19	vein infill	7.7	0.2	313	343
64R-1W, 73-75	prl-dsp-rich	309.83	309.85	LSM1-13	20	vein infill	7.1	0.2	332	365

*alteration types are described in the chapter "Sample Material", subchapter "Brothers volcano, Kermdec Arc".

†temperatures were calculated based on the equation given by Sharp & Kirschner (1994).

◊minimum and maximum measured $\delta^{18}\text{O}$ hydrothermal fluid compositions at the NW Caldera of Brothers volcano after deRonde et al. (2011).

Table 3: Oxygen isotope measurements ($\delta^{18}\text{O}_{\text{VSMOW}}$) for quartz separates of Hole U1530A, NW Canada

Host rock sample name	alteration type*	depth (mbsf)		quartz separate	
		top	bottom	grain No.	point No.
376-U1530A-4R-1W, 67-69	stockwork	22.07	22.09	LSM1-17	1
376-U1530A-4R-1W, 67-69	stockwork	22.07	22.09	LSM1-17	2
376-U1530A-4R-1W, 67-69	stockwork	22.07	22.09	LSM1-18	1
376-U1530A-12R-2W, 8-11	chl-rich (lava flow)	61.08	61.11	LSM1-14	1
376-U1530A-12R-2W, 8-11	chl-rich (lava flow)	61.08	61.11	LSM1-14	2
376-U1530A-12R-2W, 8-11	chl-rich (lava flow)	61.08	61.11	LSM1-14	3
376-U1530A-12R-2W, 8-11	chl-rich (lava flow)	61.08	61.11	LSM1-14	4
376-U1530A-12R-2W, 8-11	chl-rich (lava flow)	61.08	61.11	LSM1-14	5
376-U1530A-12R-2W, 8-11	chl-rich (lava flow)	61.08	61.11	LSM1-14	6
376-U1530A-12R-2W, 8-11	chl-rich (lava flow)	61.08	61.11	LSM1-14	7
376-U1530A-12R-2W, 8-11	chl-rich (lava flow)	61.08	61.11	LSM1-14	8
376-U1530A-12R-2W, 8-11	chl-rich (lava flow)	61.08	61.11	LSM1-14	9
376-U1530A-12R-2W, 8-11	chl-rich (lava flow)	61.08	61.11	LSM1-14	10
376-U1530A-12R-2W, 8-11	chl-rich (lava flow)	61.08	61.11	LSM1-16	1
376-U1530A-12R-2W, 8-11	chl-rich (lava flow)	61.08	61.11	LSM1-16	2
376-U1530A-12R-2W, 8-11	chl-rich (lava flow)	61.08	61.11	LSM1-16	3
376-U1530A-12R-2W, 8-11	chl-rich (lava flow)	61.08	61.11	LSM1-16	4
376-U1530A-12R-2W, 8-11	chl-rich (lava flow)	61.08	61.11	LSM1-16	5
376-U1530A-12R-2W, 8-11	chl-rich (lava flow)	61.08	61.11	LSM1-16	6
376-U1530A-12R-2W, 8-11	chl-rich (lava flow)	61.08	61.11	LSM1-16	7
376-U1530A-12R-2W, 8-11	chl-rich (lava flow)	61.08	61.11	LSM1-16	8
376-U1530A-12R-2W, 8-11	chl-rich (lava flow)	61.08	61.11	LSM1-16	9
376-U1530A-12R-2W, 8-11	chl-rich (lava flow)	61.08	61.11	LSM1-16	10
376-U1530A-56R-2W, 40-42	prl-dsp-rich	272.40	272.42	LSM1-3	1
376-U1530A-56R-2W, 40-42	prl-dsp-rich	272.40	272.42	LSM1-3	2
376-U1530A-56R-2W, 40-42	prl-dsp-rich	272.40	272.42	LSM1-10	1
376-U1530A-56R-2W, 40-42	prl-dsp-rich	272.40	272.42	LSM1-10	2
376-U1530A-57R-1W, 57-59	prl-dsp-rich	276.07	276.09	LSM1-1	1
376-U1530A-57R-1W, 57-59	prl-dsp-rich	276.07	276.09	LSM1-1	2
376-U1530A-57R-1W, 57-59	prl-dsp-rich	276.07	276.09	LSM1-2	1
376-U1530A-57R-1W, 57-59	prl-dsp-rich	276.07	276.09	LSM1-2	2
376-U1530A-57R-1W, 57-59	prl-dsp-rich	276.07	276.09	LSM1-2	3
376-U1530A-57R-1W, 57-59	prl-dsp-rich	276.07	276.09	LSM1-2	4
376-U1530A-57R-1W, 57-59	prl-dsp-rich	276.07	276.09	LSM1-2	5
376-U1530A-60R-1W, 96-98	chl-rich (lava flow)	290.86	290.88	LSM1-4	1
376-U1530A-60R-1W, 96-98	chl-rich (lava flow)	290.86	290.88	LSM1-4	2
376-U1530A-60R-1W, 96-98	chl-rich (lava flow)	290.86	290.88	LSM1-4	3
376-U1530A-60R-1W, 96-98	chl-rich (lava flow)	290.86	290.88	LSM1-4	4
376-U1530A-60R-1W, 96-98	chl-rich (lava flow)	290.86	290.88	LSM1-4	5

64R-1W, 73-75	prl-dsp-rich	309.83	309.85	LSM1-13	1
64R-1W, 73-75	prl-dsp-rich	309.83	309.85	LSM1-13	2
64R-1W, 73-75	prl-dsp-rich	309.83	309.85	LSM1-13	3
64R-1W, 73-75	prl-dsp-rich	309.83	309.85	LSM1-13	4
64R-1W, 73-75	prl-dsp-rich	309.83	309.85	LSM1-13	5
64R-1W, 73-75	prl-dsp-rich	309.83	309.85	LSM1-13	6
64R-1W, 73-75	prl-dsp-rich	309.83	309.85	LSM1-13	7
64R-1W, 73-75	prl-dsp-rich	309.83	309.85	LSM1-13	8
64R-1W, 73-75	prl-dsp-rich	309.83	309.85	LSM1-13	9
64R-1W, 73-75	prl-dsp-rich	309.83	309.85	LSM1-13	10
64R-1W, 73-75	prl-dsp-rich	309.83	309.85	LSM1-13	11
64R-1W, 73-75	prl-dsp-rich	309.83	309.85	LSM1-13	12
64R-1W, 73-75	prl-dsp-rich	309.83	309.85	LSM1-13	13
64R-1W, 73-75	prl-dsp-rich	309.83	309.85	LSM1-13	14
64R-1W, 73-75	prl-dsp-rich	309.83	309.85	LSM1-13	15
64R-1W, 73-75	prl-dsp-rich	309.83	309.85	LSM1-13	16
64R-1W, 73-75	prl-dsp-rich	309.83	309.85	LSM1-13	17
64R-1W, 73-75	prl-dsp-rich	309.83	309.85	LSM1-13	18
64R-1W, 73-75	prl-dsp-rich	309.83	309.85	LSM1-13	19
64R-1W, 73-75	prl-dsp-rich	309.83	309.85	LSM1-13	20

*alteration types are described in the chapter "Sample Material", subchapter "Brothers volcano"

[†]temperatures were calculated based on the equation given by Sharp & Kirschner (1994)

[°]minimum and maximum measured $\delta^{18}\text{O}$ hydrothermal fluid compositions at the NW Caldera

aldera, Brothers volcano (point positions are given in the Appendix, Table A. 3-8).

description	$\delta^{18}\text{O}_{\text{VSMOW}}$	2sd	temperature (°C)†	
	(‰)	(‰)	$\delta^{18}\text{O}_{\text{water}} = 0\text{ ‰}^{\circ}$	$\delta^{18}\text{O}_{\text{water}} = +1\text{ ‰}^{\circ}$
vein infill	9.2	0.2	278	303
vein infill	8.8	0.2	286	311
vein infill	8.7	0.2	289	315
vug infill	9.6	0.2	269	292
vug infill	8.4	0.2	296	323
vug infill	9.1	0.2	280	305
vug infill	6.3	0.2	359	396
vug infill	7.1	0.2	330	363
vug infill	6.1	0.2	364	403
vug infill	7.6	0.2	317	347
vug infill	7.8	0.2	313	342
vug infill	6.0	0.2	366	405
vug infill	5.9	0.2	370	410
vug infill	5.6	0.1	383	425
vug infill	6.3	0.1	358	395
vug infill	6.1	0.1	363	402
vug infill	7.8	0.1	311	340
vug infill	5.8	0.1	374	415
vug infill	6.0	0.1	368	407
vug infill	6.3	0.1	358	395
vug infill	7.3	0.1	325	357
vug infill	7.6	0.1	317	347
vug infill	6.6	0.2	348	384
vein infill	7.4	0.1	322	354
vein infill	7.3	0.1	326	358
vein infill	6.8	0.1	342	376
vein infill	7.9	0.1	308	337
matrix replacement	8.5	0.1	294	320
matrix replacement	8.5	0.1	293	320
matrix replacement	7.5	0.1	320	351
matrix replacement	7.9	0.1	310	339
matrix replacement	7.8	0.1	313	342
matrix replacement	8.7	0.1	289	315
matrix replacement	8.6	0.1	291	317
vug infill	7.0	0.1	334	367
vug infill	7.0	0.1	335	368
vug infill	6.6	0.1	346	381
vug infill; point close to crack	8.7	0.1	289	315
vug infill	6.3	0.1	359	397

vug infill	6.6	0.1	348	384
vug infill	6.6	0.1	347	383
vug infill	6.3	0.1	356	393
vug infill	6.2	0.1	360	398
vug infill	6.6	0.1	347	383
vug infill	6.3	0.1	358	396
vug infill	6.7	0.1	343	378
vug infill	6.4	0.1	355	391
vug infill	6.3	0.1	356	394
vug infill	6.8	0.1	341	375
vug infill	6.2	0.1	361	399
vug infill	6.9	0.1	339	373
vug infill	6.4	0.1	355	392
vug infill	6.2	0.1	362	400
vug infill	6.3	0.1	357	394
vein infill	8.1	0.2	304	332
vein infill	8.7	0.2	288	314
vein infill	7.6	0.2	318	349
vein infill	7.4	0.2	323	354
vein infill	7.1	0.2	331	363
vein infill	7.2	0.2	329	361
vein infill	7.8	0.2	313	343
vein infill	6.8	0.2	342	377
vein infill	6.4	0.2	353	390
vein infill	7.8	0.2	312	341
vein infill; marginal diffusion?	7.5	0.2	319	350
vein infill	8.8	0.2	285	311
vein infill	8.6	0.2	291	318
vein infill	9.0	0.2	283	308
vein infill	9.0	0.2	282	307
vein infill	8.9	0.2	285	311
vein infill	8.6	0.2	290	316
vein infill	8.9	0.2	284	310
vein infill	8.9	0.2	285	310
vein infill	8.8	0.2	285	311
vein infill	8.8	0.2	286	312
vein infill	8.6	0.2	290	316
vein infill	8.9	0.2	285	310
vein infill	9.0	0.2	281	305
vein infill	9.0	0.2	281	306
vein infill	8.9	0.2	285	310
vein infill	9.5	0.2	271	295
vein infill	9.5	0.2	271	295
vein infill	9.9	0.2	262	284
vein infill; marginal diffusion?	8.3	0.2	300	327

vein infill	8.9	0.2	284	309
vein infill	9.1	0.2	279	304
vein infill	9.0	0.2	282	307
vein infill	8.8	0.2	286	312
vein infill	8.9	0.2	285	310
vein infill	8.9	0.2	284	309
vein infill	9.2	0.2	278	303
vein infill	9.0	0.2	281	306
vein infill	9.4	0.2	273	297
vein infill	9.5	0.2	269	293
vein infill	7.3	0.2	325	356
vein infill	7.2	0.2	329	362
vein infill	8.1	0.2	305	333
vein infill	8.0	0.2	307	336
vein infill	7.0	0.2	334	367
vein infill	6.8	0.2	341	375
vein infill	6.7	0.2	345	380
vein infill	6.7	0.2	343	378
vein infill	7.7	0.2	313	343
vein infill	7.1	0.2	332	365

», Kermdec Arc"

of Brothers volcano after deRonde et al. (2011)

Table A1: Oxygen isotope measurements on quartz that were conducted by SIMS on sample nr.

spot number	spot name	host rock sample name
20200302@787.asc	LSM1 UWQ-1 g1	
20200302@788.asc	LSM1 UWQ-1 g1	
20200302@789.asc	LSM1 UWQ-1 g1	
20200302@790.asc	LSM1 UWQ-1 g1	
	average and 2SD	
20200302@791.asc	LSM1_4 spot-1	376-U1530A-60R-1W, 96-98
20200302@792.asc	LSM1_4 spot-2	376-U1530A-60R-1W, 96-98
20200302@793.asc	LSM1_4 spot-3	376-U1530A-60R-1W, 96-98
20200302@794.asc	LSM1_4 spot-4	376-U1530A-60R-1W, 96-98
20200302@795.asc	LSM1_4 spot-5	376-U1530A-60R-1W, 96-98
20200302@796.asc	LSM1_4 spot-6	376-U1530A-60R-1W, 96-98
20200302@797.asc	LSM1_4 spot-7	376-U1530A-60R-1W, 96-98
20200302@798.asc	LSM1_4 spot-8	376-U1530A-60R-1W, 96-98
20200302@799.asc	LSM1_4 spot-9	376-U1530A-60R-1W, 96-98
20200302@800.asc	LSM1_4 spot-10	376-U1530A-60R-1W, 96-98
20200302@801.asc	LSM1_5 spot-1	376-U1530A-60R-1W, 96-98
20200302@802.asc	LSM1_5 spot-2	376-U1530A-60R-1W, 96-98
20200302@803.asc	LSM1_5 spot-3	376-U1530A-60R-1W, 96-98
20200302@804.asc	LSM1_5 spot-4	376-U1530A-60R-1W, 96-98
20200302@805.asc	LSM1_5 spot-5	376-U1530A-60R-1W, 96-98
20200302@806.asc	LSM1_5 spot-6	376-U1530A-60R-1W, 96-98
20200302@807.asc	LSM1_5 spot-7	376-U1530A-60R-1W, 96-98
20200302@808.asc	LSM1_5 spot-8	376-U1530A-60R-1W, 96-98
20200302@809.asc	LSM1_5 spot-9	376-U1530A-60R-1W, 96-98
20200302@810.asc	LSM1_5 spot-10	376-U1530A-60R-1W, 96-98
20200302@811.asc	LSM1 UWQ-1 g1 CsRes=143	
20200302@812.asc	LSM1 UWQ-1 g1	
20200302@813.asc	LSM1 UWQ-1 g1	
20200302@814.asc	LSM1 UWQ-1 g1	
	average and 2SD	
	bracket average and 2SD	
20200302@815.asc	LSM1_11 spot-1	376-U1530A-64R-1W, 73-75
20200302@816.asc	LSM1_11 spot-2	376-U1530A-64R-1W, 73-75
20200302@817.asc	LSM1_11 spot-3	376-U1530A-64R-1W, 73-75
20200302@818.asc	LSM1_11 spot-4	376-U1530A-64R-1W, 73-75
20200302@819.asc	LSM1_11 spot-5	376-U1530A-64R-1W, 73-75
20200302@820.asc	LSM1_11 spot-6	376-U1530A-64R-1W, 73-75
20200302@821.asc	LSM1_11 spot-7	376-U1530A-64R-1W, 73-75
20200302@822.asc	LSM1_11 spot-8	376-U1530A-64R-1W, 73-75
20200302@823.asc	LSM1_11 spot-9	376-U1530A-64R-1W, 73-75
20200302@824.asc	LSM1_11 spot-10	376-U1530A-64R-1W, 73-75

20200302@825.asc	LSM1_14 spot-1	376-U1530A-12R-2W, 8-11
20200302@826.asc	LSM1_14 spot-2	376-U1530A-12R-2W, 8-11
20200302@827.asc	LSM1_14 spot-3	376-U1530A-12R-2W, 8-11
20200302@828.asc	LSM1_14 spot-4	376-U1530A-12R-2W, 8-11
20200302@829.asc	LSM1_14 spot-5	376-U1530A-12R-2W, 8-11
20200302@830.asc	LSM1_14 spot-6	376-U1530A-12R-2W, 8-11
20200302@831.asc	LSM1_14 spot-7	376-U1530A-12R-2W, 8-11
20200302@832.asc	LSM1_14 spot-8	376-U1530A-12R-2W, 8-11
20200302@833.asc	LSM1_14 spot-9	376-U1530A-12R-2W, 8-11
20200302@834.asc	LSM1_14 spot-10	376-U1530A-12R-2W, 8-11
20200302@835.asc	LSM1 UWQ-1 g1	
20200302@836.asc	LSM1 UWQ-1 g1	
20200302@837.asc	LSM1 UWQ-1 g1	
20200302@838.asc	LSM1 UWQ-1 g1	
	average and 2SD	
	bracket average and 2SD	
20200302@839.asc	LSM1_1 spot-1	376-U1530A-57R-1W, 57-59
20200302@840.asc	LSM1_1 spot-2	376-U1530A-57R-1W, 57-59
20200302@841.asc	LSM1_2 spot-1	376-U1530A-57R-1W, 57-59
20200302@842.asc	LSM1_2 spot-2	376-U1530A-57R-1W, 57-59
20200302@843.asc	LSM1_2 spot-3	376-U1530A-57R-1W, 57-59
20200302@844.asc	LSM1_2 spot-4	376-U1530A-57R-1W, 57-59
20200302@845.asc	LSM1_2 spot-5 CsRes=144	376-U1530A-57R-1W, 57-59
20200302@846.asc	LSM1_3 spot-1	376-U1530A-56R-2W, 40-42
20200302@847.asc	LSM1_3 spot-2	376-U1530A-56R-2W, 40-42
20200302@848.asc	LSM1_10 spot-1	376-U1530A-56R-2W, 40-42
20200302@849.asc	LSM1_10 spot-2	376-U1530A-56R-2W, 40-42
20200302@850.asc	LSM1_16 spot-1	376-U1530A-12R-2W, 8-11
20200302@851.asc	LSM1_16 spot-2	376-U1530A-12R-2W, 8-11
20200302@852.asc	LSM1_16 spot-3	376-U1530A-12R-2W, 8-11
20200302@853.asc	LSM1_16 spot-4	376-U1530A-12R-2W, 8-11
20200302@854.asc	LSM1_16 spot-5	376-U1530A-12R-2W, 8-11
20200302@855.asc	LSM1_16 spot-6	376-U1530A-12R-2W, 8-11
20200302@856.asc	LSM1_16 spot-7	376-U1530A-12R-2W, 8-11
20200302@857.asc	LSM1_16 spot-8	376-U1530A-12R-2W, 8-11
20200302@858.asc	LSM1_16 spot-9	376-U1530A-12R-2W, 8-11
20200302@859.asc	LSM1 UWQ-1 g1	
20200302@860.asc	LSM1 UWQ-1 g1	
20200302@861.asc	LSM1 UWQ-1 g1	
20200302@862.asc	LSM1 UWQ-1 g1	
	average and 2SD	
	bracket average and 2SD	
20200302@863.asc	LSM1_16 spot-10	376-U1530A-12R-2W, 8-11
20200302@864.asc	LSM1_17 spot-1	376-U1530A-4R-1W, 67-69

20200302@865.asc	LSM1_17 spot-2	376-U1530A-4R-1W, 67-69
20200302@866.asc	LSM1_18 spot-1	376-U1530A-4R-1W, 67-69
20200302@867.asc	LSM1_12 spot-1	376-U1530A-64R-1W, 73-75
20200302@868.asc	LSM1_12 spot-2	376-U1530A-64R-1W, 73-75
20200302@869.asc	LSM1_12 spot-3 CsRes=145	376-U1530A-64R-1W, 73-75
20200302@870.asc	LSM1_12 spot-4	376-U1530A-64R-1W, 73-75
20200302@871.asc	LSM1_12 spot-5	376-U1530A-64R-1W, 73-75
20200302@872.asc	LSM1_12 spot-6	376-U1530A-64R-1W, 73-75
20200302@873.asc	LSM1_12 spot-7	376-U1530A-64R-1W, 73-75
20200302@874.asc	LSM1_12 spot-8	376-U1530A-64R-1W, 73-75
20200302@875.asc	LSM1_12 spot-9	376-U1530A-64R-1W, 73-75
20200302@876.asc	LSM1_12 spot-10	376-U1530A-64R-1W, 73-75
20200302@877.asc	LSM1_12 spot-11	376-U1530A-64R-1W, 73-75
20200302@878.asc	LSM1_12 spot-12	376-U1530A-64R-1W, 73-75
20200302@879.asc	LSM1_12 spot-13	376-U1530A-64R-1W, 73-75
20200302@880.asc	LSM1_12 spot-14	376-U1530A-64R-1W, 73-75
20200302@881.asc	LSM1_12 spot-15	376-U1530A-64R-1W, 73-75
20200302@882.asc	LSM1_12 spot-16	376-U1530A-64R-1W, 73-75
20200302@883.asc	LSM1 UWQ-1 g1	
20200302@884.asc	LSM1 UWQ-1 g1	
20200302@885.asc	LSM1 UWQ-1 g1	
20200302@886.asc	LSM1 UWQ-1 g1	
	average and 2SD	
	bracket average and 2SD	
20200302@887.asc	LSM1_12 spot-17	376-U1530A-64R-1W, 73-75
20200302@888.asc	LSM1_12 spot-18	376-U1530A-64R-1W, 73-75
20200302@889.asc	LSM1_12 spot-19	376-U1530A-64R-1W, 73-75
20200302@890.asc	LSM1_12 spot-20	376-U1530A-64R-1W, 73-75
20200302@891.asc	LSM1_13 spot-1	376-U1530A-64R-1W, 73-75
20200302@892.asc	LSM1_13 spot-2	376-U1530A-64R-1W, 73-75
20200302@893.asc	LSM1_13 spot-3	376-U1530A-64R-1W, 73-75
20200302@894.asc	LSM1_13 spot-4	376-U1530A-64R-1W, 73-75
20200302@895.asc	LSM1_13 spot-5	376-U1530A-64R-1W, 73-75
20200302@896.asc	LSM1_13 spot-6	376-U1530A-64R-1W, 73-75
20200302@897.asc	LSM1_13 spot-7	376-U1530A-64R-1W, 73-75
20200302@898.asc	LSM1_13 spot-8	376-U1530A-64R-1W, 73-75
20200302@899.asc	LSM1_13 spot-9	376-U1530A-64R-1W, 73-75
20200302@900.asc	LSM1_13 spot-10	376-U1530A-64R-1W, 73-75
20200302@901.asc	LSM1_13 spot-11	376-U1530A-64R-1W, 73-75
20200302@902.asc	LSM1_13 spot-12	376-U1530A-64R-1W, 73-75
20200302@903.asc	LSM1_13 spot-13 CsRes=146	376-U1530A-64R-1W, 73-75
20200302@904.asc	LSM1_13 spot-14	376-U1530A-64R-1W, 73-75
20200302@905.asc	LSM1_13 spot-15	376-U1530A-64R-1W, 73-75
20200302@906.asc	LSM1_13 spot-16	376-U1530A-64R-1W, 73-75
20200302@907.asc	LSM1 UWQ-1 g1	

20200302@908.asc	LSM1 UWQ-1 g1	
20200302@909.asc	LSM1 UWQ-1 g1	
20200302@910.asc	LSM1 UWQ-1 g1	
	average and 2SD	
	bracket average and 2SD	
20200302@911.asc	LSM1_13 spot-17	376-U1530A-64R-1W, 73-75
20200302@912.asc	LSM1_13 spot-18	376-U1530A-64R-1W, 73-75
20200302@913.asc	LSM1_13 spot-19	376-U1530A-64R-1W, 73-75
20200302@914.asc	LSM1_13 spot-20	376-U1530A-64R-1W, 73-75
20200302@915.asc	LSM1 UWQ-1 g1	
20200302@916.asc	LSM1 UWQ-1 g1	
20200302@917.asc	LSM1 UWQ-1 g1	
20200302@918.asc	LSM1 UWQ-1 g1	
	average and 2SD	
	bracket average and 2SD	

*External error is given as 2 standard deviations (2SD) of the quartz standard values for a partic
 #Uncorrected value measured on the ion probe.

†Internal error is reported as 2 standard error of an individual spot (2SE) during measurement.

**¹⁶O/¹H/¹⁶O was measured to monitor potential contamination by water.

material (IODP Exp. 376, Brothers volcano) and the reference material UWQ-1. The position of the measurement is indicated by the symbol in the first column.

quartz replacement type	$\delta^{18}\text{O}$ ‰ VSMOW	2SD (external error)*	Mass Bias (‰)	$\delta^{18}\text{O}$ ‰ raw#
				3.24
				3.27
				3.26
				3.23
				3.25
vug infill	7.02	0.12	-8.97	-2.01
vug infill	6.99	0.12	-8.97	-2.04
vug infill	6.65	0.12	-8.97	-2.38
vug infill	8.69	0.12	-8.97	-0.35
vug infill	6.26	0.12	-8.97	-2.77
vug infill	6.57	0.12	-8.97	-2.46
vug infill	6.60	0.12	-8.97	-2.43
vug infill	6.34	0.12	-8.97	-2.69
vug infill	6.22	0.12	-8.97	-2.80
vug infill	6.61	0.12	-8.97	-2.42
vug infill	6.27	0.12	-8.97	-2.76
vug infill	6.73	0.12	-8.97	-2.30
vug infill	6.38	0.12	-8.97	-2.64
vug infill	6.33	0.12	-8.97	-2.70
vug infill	6.80	0.12	-8.97	-2.23
vug infill	6.20	0.12	-8.97	-2.83
vug infill	6.86	0.12	-8.97	-2.17
vug infill	6.36	0.12	-8.97	-2.66
vug infill	6.17	0.12	-8.97	-2.86
vug infill	6.32	0.12	-8.97	-2.70
				3.38
				3.24
				3.22
				3.16
				3.25
	12.33		-8.97	3.25
vein infill	8.09	0.18	-8.91	-0.90
vein infill	8.71	0.18	-8.91	-0.28
vein infill	7.56	0.18	-8.91	-1.42
vein infill	7.41	0.18	-8.91	-1.57
vein infill	7.13	0.18	-8.91	-1.84
vein infill	7.20	0.18	-8.91	-1.77
vein infill	7.76	0.18	-8.91	-1.22
vein infill	6.76	0.18	-8.91	-2.21
vein infill	6.42	0.18	-8.91	-2.55
vein infill	7.80	0.18	-8.91	-1.18

vug infill	9.55	0.18	-8.91	0.56
vug infill	8.39	0.18	-8.91	-0.59
vug infill	9.05	0.18	-8.91	0.06
vug infill	6.26	0.18	-8.91	-2.70
vug infill	7.15	0.18	-8.91	-1.82
vug infill	6.11	0.18	-8.91	-2.85
vug infill	7.61	0.18	-8.91	-1.36
vug infill	7.77	0.18	-8.91	-1.21
vug infill	6.05	0.18	-8.91	-2.92
vug infill	5.93	0.18	-8.91	-3.03
				3.31
				3.37
				3.39
				3.41
				3.37
	12.33		-8.91	3.31
matrix replacement	8.50	0.11	-8.84	-0.42
matrix replacement	8.52	0.11	-8.84	-0.39
matrix replacement	7.51	0.11	-8.84	-1.40
matrix replacement	7.86	0.11	-8.84	-1.04
matrix replacement	7.77	0.11	-8.84	-1.14
matrix replacement	8.67	0.11	-8.84	-0.24
matrix replacement	8.60	0.11	-8.84	-0.32
vein infill	7.42	0.11	-8.84	-1.48
vein infill	7.29	0.11	-8.84	-1.62
vein infill	6.78	0.11	-8.84	-2.12
vein infill	7.93	0.11	-8.84	-0.98
vug infill	5.61	0.11	-8.84	-3.28
vug infill	6.29	0.11	-8.84	-2.60
vug infill	6.13	0.11	-8.84	-2.77
vug infill	7.83	0.11	-8.84	-1.08
vug infill	5.82	0.11	-8.84	-3.07
vug infill	6.00	0.11	-8.84	-2.89
vug infill	6.29	0.11	-8.84	-2.61
vug infill	7.32	0.11	-8.84	-1.58
vug infill	7.61	0.11	-8.84	-1.30
				3.42
				3.48
				3.36
				3.33
				3.40
	12.33		-8.84	3.38
vug infill	6.58	0.15	-8.85	-2.33
vein infill	9.15	0.15	-8.85	0.22

vein infill	8.83	0.15	-8.85	-0.11
vein infill	8.68	0.15	-8.85	-0.25
vein infill	7.52	0.15	-8.85	-1.40
vein infill	8.85	0.15	-8.85	-0.08
vein infill	8.59	0.15	-8.85	-0.34
vein infill	8.96	0.15	-8.85	0.02
vein infill	8.99	0.15	-8.85	0.06
vein infill	8.85	0.15	-8.85	-0.08
vein infill	8.64	0.15	-8.85	-0.29
vein infill	8.88	0.15	-8.85	-0.05
vein infill	8.85	0.15	-8.85	-0.08
vein infill	8.84	0.15	-8.85	-0.09
vein infill	8.81	0.15	-8.85	-0.12
vein infill	8.65	0.15	-8.85	-0.28
vein infill	8.86	0.15	-8.85	-0.07
vein infill	9.04	0.15	-8.85	0.11
vein infill	9.04	0.15	-8.85	0.10
vein infill	8.87	0.15	-8.85	-0.06
				3.33
				3.29
				3.45
				3.27
				3.34
	12.33		-8.85	3.37
vein infill	9.47	0.15	-8.87	0.52
vein infill	9.46	0.15	-8.87	0.51
vein infill	9.90	0.15	-8.87	0.95
vein infill	8.26	0.15	-8.87	-0.68
vein infill	8.92	0.15	-8.87	-0.03
vein infill	9.11	0.15	-8.87	0.16
vein infill	8.99	0.15	-8.87	0.04
vein infill	8.79	0.15	-8.87	-0.15
vein infill	8.86	0.15	-8.87	-0.09
vein infill	8.90	0.15	-8.87	-0.05
vein infill	9.15	0.15	-8.87	0.20
vein infill	9.03	0.15	-8.87	0.09
vein infill	9.36	0.15	-8.87	0.41
vein infill	9.55	0.15	-8.87	0.60
vein infill	7.35	0.15	-8.87	-1.59
vein infill	7.18	0.15	-8.87	-1.76
vein infill	8.06	0.15	-8.87	-0.88
vein infill	7.97	0.15	-8.87	-0.97
vein infill	7.03	0.15	-8.87	-1.90
vein infill	6.81	0.15	-8.87	-2.12
				3.46

				3.40
				3.34
				3.28
				3.37
12.33			-8.87	3.35
6.68	0.20		-8.86	-2.24
6.74	0.20		-8.86	-2.18
7.74	0.20		-8.86	-1.19
7.08	0.20		-8.86	-1.84
				3.38
				3.47
				0.34
				3.18
				3.35
12.33			-8.86	3.36

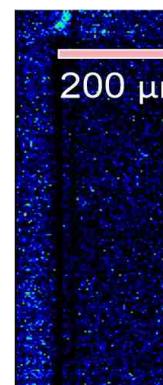
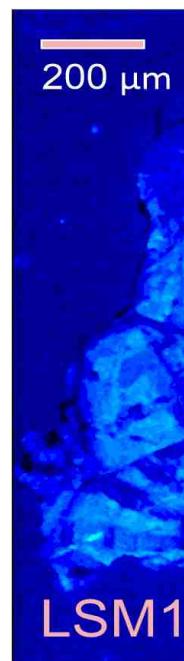
ilar bracket.

ng points is projected to the CL images (F level) of the quartz separates.

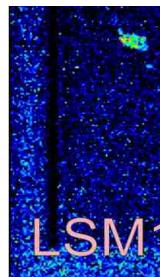
2SE (internal error)†	¹⁶ O (Gcps)	Primary beam intensity (nA)	Yield (Gcps/nA)	X
0.29	3.09	1.96	1.58	2660
0.28	3.10	1.97	1.58	2685
0.32	3.12	1.97	1.58	2710
0.32	3.12	1.97	1.58	2735
0.04				
0.28	2.98	1.97	1.51	201
0.34	3.10	1.97	1.57	182
0.33	3.10	1.96	1.58	160
0.38	3.10	1.96	1.58	147
0.27	3.10	1.95	1.59	139
0.35	3.10	1.95	1.59	129
0.33	3.11	1.94	1.60	116
0.35	3.09	1.93	1.60	101
0.32	3.08	1.93	1.60	86
0.36	3.01	1.92	1.56	71
0.24	2.97	1.92	1.55	2374
0.30	2.96	1.91	1.55	2324
0.30	2.98	1.90	1.57	2274
0.31	2.98	1.89	1.58	2224
0.31	2.99	1.89	1.59	2174
0.28	2.97	1.88	1.58	2124
0.35	2.97	1.87	1.59	2074
0.31	2.93	1.86	1.58	2024
0.34	2.90	1.85	1.57	1975
0.30	2.87	1.84	1.55	1925
0.37	3.08	1.96	1.57	2660
0.32	3.14	2.00	1.57	2685
0.34	3.16	2.01	1.57	2710
0.32	3.18	2.02	1.57	2735
0.18				
0.12			1.58	
0.30	2.78	2.01	1.38	-3068
0.22	2.99	2.02	1.48	-3036
0.28	3.02	2.02	1.50	-3004
0.35	3.09	2.02	1.53	-2972
0.32	3.10	2.01	1.54	-2941
0.26	3.15	2.01	1.57	-2909
0.35	3.16	2.00	1.58	-2877
0.32	3.20	2.00	1.60	-2845
0.30	3.22	2.00	1.61	-2813
0.36	3.19	2.00	1.60	-2781

0.35	2.93	1.99	1.47	-2714
0.32	3.05	1.99	1.54	-2636
0.37	3.02	1.98	1.52	-2558
0.23	3.02	1.97	1.53	-2479
0.34	3.04	1.96	1.55	-2401
0.32	3.00	1.96	1.53	-2323
0.29	3.03	1.95	1.55	-2244
0.42	3.01	1.95	1.55	-2166
0.24	2.98	1.93	1.54	-2088
0.25	2.96	1.92	1.54	-2010
0.29	3.00	1.92	1.56	2660
0.30	2.98	1.91	1.56	2685
0.26	3.00	1.91	1.57	2710
0.29	2.99	1.90	1.57	2735
0.08				
0.18			1.57	
0.31	2.99	1.89	1.58	-932
0.22	2.75	1.89	1.46	-1054
0.41	3.02	1.88	1.61	1653
0.33	2.99	1.87	1.60	1553
0.33	2.92	1.86	1.57	1454
0.36	2.85	1.83	1.56	1355
0.27	2.75	1.94	1.42	1258
0.33	3.17	1.97	1.60	3875
0.32	3.19	1.98	1.61	4217
0.24	3.20	1.99	1.61	4322
0.25	3.13	1.99	1.58	4736
0.32	3.18	1.98	1.60	123
0.35	3.13	1.98	1.58	37
0.34	3.12	1.98	1.58	-48
0.26	3.09	1.98	1.57	-134
0.33	3.10	1.97	1.57	-220
0.32	3.07	1.96	1.56	-305
0.30	2.99	1.95	1.53	-391
0.25	2.88	1.94	1.49	-477
0.27	2.67	1.93	1.38	-563
0.33	3.01	1.92	1.56	2660
0.37	2.98	1.91	1.56	2685
0.31	2.99	1.91	1.57	2710
0.30	2.99	1.90	1.57	2735
0.13				
0.11			1.57	
0.29	2.54	1.89	1.35	-648
0.25	2.86	1.88	1.52	1624

0.30	2.98	1.88	1.59	1898
0.29	2.92	1.87	1.56	2270
0.26	3.06	1.86	1.65	-1185
0.33	2.91	1.85	1.57	-1244
0.34	3.16	1.97	1.60	-1303
0.34	3.21	2.00	1.60	-1362
0.31	3.21	2.01	1.59	-1421
0.39	3.20	2.02	1.59	-1480
0.32	3.22	2.02	1.59	-1539
0.28	3.22	2.02	1.59	-1598
0.33	3.21	2.02	1.59	-1657
0.37	3.17	2.01	1.58	-1716
0.33	3.16	2.00	1.58	-1775
0.28	3.15	2.00	1.58	-1834
0.34	3.13	1.99	1.57	-1893
0.34	3.12	1.99	1.57	-1951
0.35	3.12	1.98	1.57	-2010
0.32	3.08	1.98	1.56	-2069
0.33	3.09	1.98	1.56	2660
0.31	3.09	1.98	1.56	2685
0.35	3.09	1.97	1.56	2710
0.31	3.10	1.97	1.57	2735
0.16				
0.15			1.57	
0.36	3.02	1.96	1.54	-2128
0.32	2.97	1.95	1.52	-2187
0.38	2.87	1.95	1.48	-2246
0.29	2.74	1.94	1.41	-2304
0.27	3.07	1.94	1.58	-203
0.34	3.04	1.94	1.57	-255
0.31	3.04	1.93	1.58	-307
0.34	3.02	1.92	1.57	-359
0.29	2.99	1.91	1.57	-410
0.30	2.97	1.89	1.57	-462
0.35	2.96	1.88	1.57	-514
0.39	2.95	1.87	1.57	-566
0.34	2.93	1.87	1.57	-618
0.31	2.92	1.86	1.57	-670
0.30	2.90	1.85	1.56	-721
0.33	2.90	1.85	1.57	-773
0.20	3.10	1.97	1.57	-825
0.35	3.15	2.01	1.57	-877
0.37	3.14	2.02	1.56	-929
0.33	3.14	2.02	1.55	-981
0.33	3.15	2.02	1.56	2660

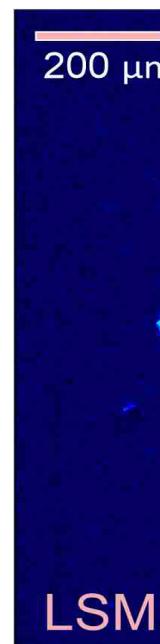


0.30	3.17	2.03	1.56	2685
0.30	3.18	2.02	1.57	2710
0.33	3.19	2.02	1.58	2735
0.16				
0.15			1.57	
0.29	3.13	2.02	1.55	-1033
0.34	3.08	2.02	1.53	-1084
0.48	3.04	2.02	1.51	-1136
0.31	2.84	2.01	1.41	-1188
0.27	3.14	2.01	1.56	2660
0.37	3.14	2.01	1.56	2685
0.43	3.00	2.01	1.49	2710
0.32	3.15	2.01	1.57	2735
0.29				
0.20			1.57	

Y	DTFA-X	DTFA-Y	$^{16}\text{O}^1\text{H}/^{16}\text{O}^{**}$	reasons for rejection
-1291	-21	-18	0.000433151	
-1291	-21	-18	0.000432442	
-1291	-21	-18	0.000428615	
-1291	-21	-17	0.000434105	


603	-16	-16	0.000631247	
720	-17	-13	0.000605429	
827	-17	-12	0.000646146	
920	-17	-11	0.000700863	
1033	-17	-9	0.000495338	
1134	-17	-8	0.000533974	
1237	-15	-6	0.000621931	
1355	-14	-5	0.000771374	
1441	-14	-5	0.00065283	
1532	-14	-6	0.000612831	
294	-18	-14	0.000432296	
329	-18	-13	0.000741974	
363	-19	-13	0.000658627	
397	-19	-13	0.000683699	
431	-20	-12	0.000636441	
465	-19	-11	0.000511395	
499	-19	-10	0.000592954	
534	-18	-9	0.000760161	
568	-18	-8	0.000702317	
602	-19	-9	0.000714963	
-1311	-20	-18	0.000427062	
-1311	-20	-18	0.00043297	
-1311	-20	-18	0.000435911	
-1311	-20	-18	0.000432281	

0.000432067

-1380	-7	-20	0.000498536	
-1306	-8	-18	0.000504841	
-1232	-8	-17	0.000539515	
-1158	-9	-16	0.000559826	
-1084	-9	-14	0.000542666	
-1010	-10	-12	0.000527462	
-936	-11	-11	0.000454647	
-862	-11	-9	0.000503291	
-788	-10	-8	0.000483451	
-714	-7	-11	0.000434279	


-3261	-6	-16	0.000791031
-3315	-7	-16	0.000765052
-3369	-8	-17	0.000774299
-3423	-9	-18	0.000728584
-3478	-10	-19	0.000739651
-3532	-11	-21	0.00061307
-3586	-11	-22	0.000648854
-3640	-11	-22	0.000554894
-3695	-11	-22	0.00060175
-3749	-7	-22	0.000417288

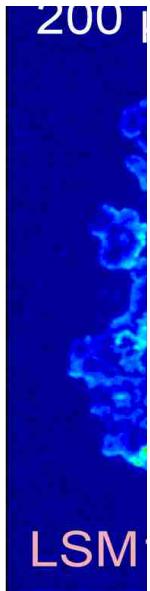
-1331	-19	-17	0.000417081
-1331	-20	-17	0.000423004
-1331	-20	-17	0.000413843
-1331	-20	-17	0.000399451

0.0004227

2989	-15	-6	0.0004155
2629	-12	-16	0.000387917
2587	-19	-5	0.00041913
2565	-17	-7	0.000526663
2543	-17	-8	0.000759426
2520	-16	-8	0.000674942
2485	-14	-9	0.000572205
1048	-22	-11	0.000408314
1428	-18	-7	0.000411743
-1215	-21	-14	0.000378405
-1266	-20	-15	0.000500078
-4384	-12	-22	0.000596559
-4420	-14	-21	0.000802076
-4456	-14	-22	0.000655582
-4492	-14	-23	0.004181011
-4528	-13	-25	0.000570781
-4565	-13	-26	0.000552443
-4601	-12	-27	0.000557125
-4637	-11	-27	0.000766271
-4673	-10	-28	0.0007599

-1351	-20	-18	0.000389316
-1351	-20	-18	0.00041456
-1351	-20	-18	0.000400483
-1351	-20	-18	0.000385166

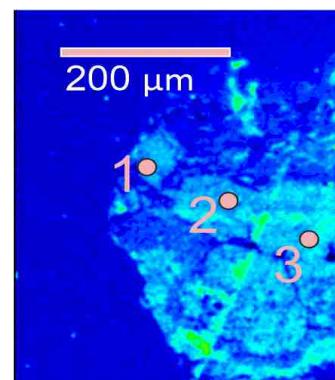
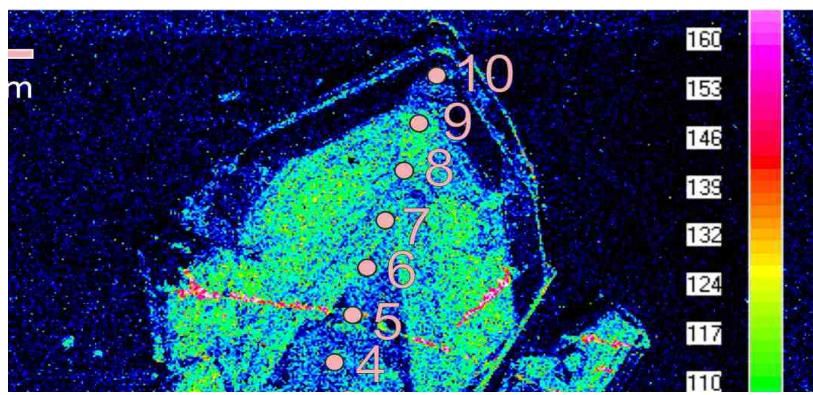
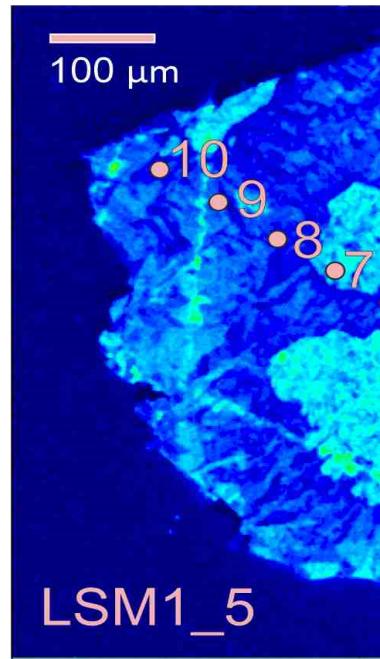
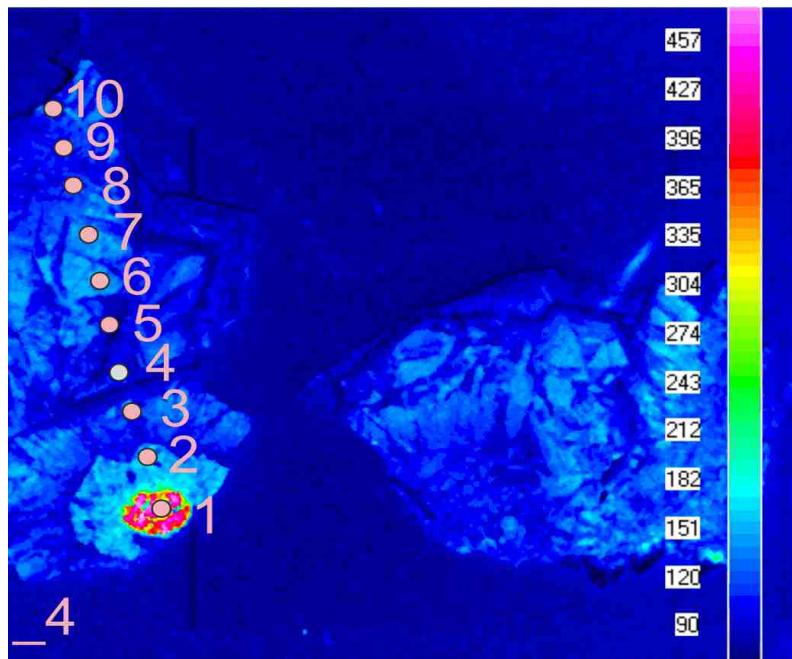
0.000405363

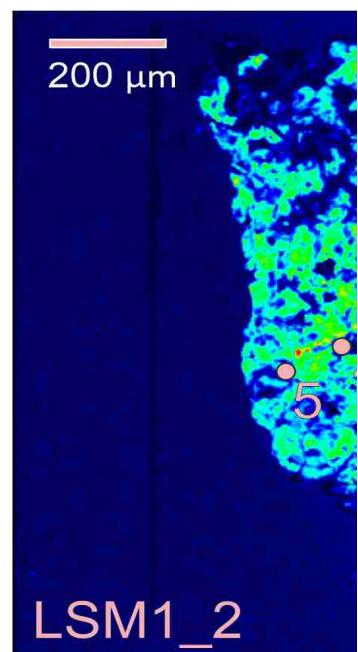
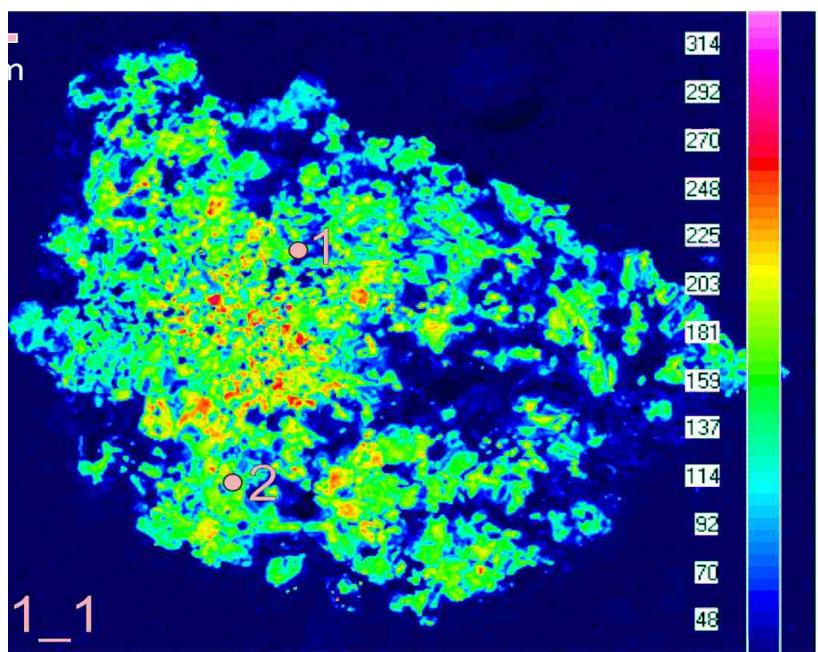
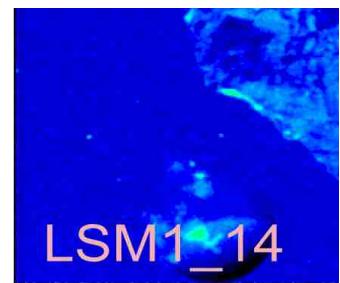
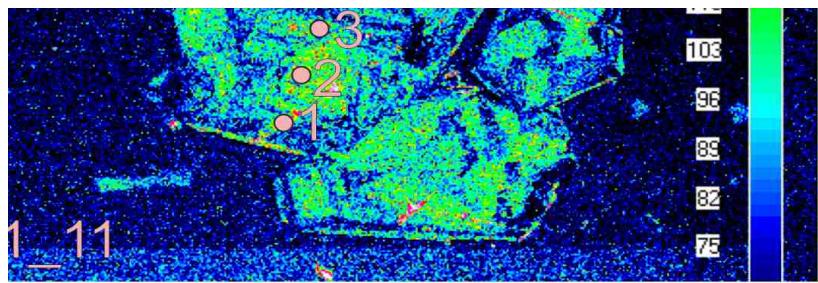

-4710	-8	-28	0.000578133
-3941	-15	-24	0.000863076

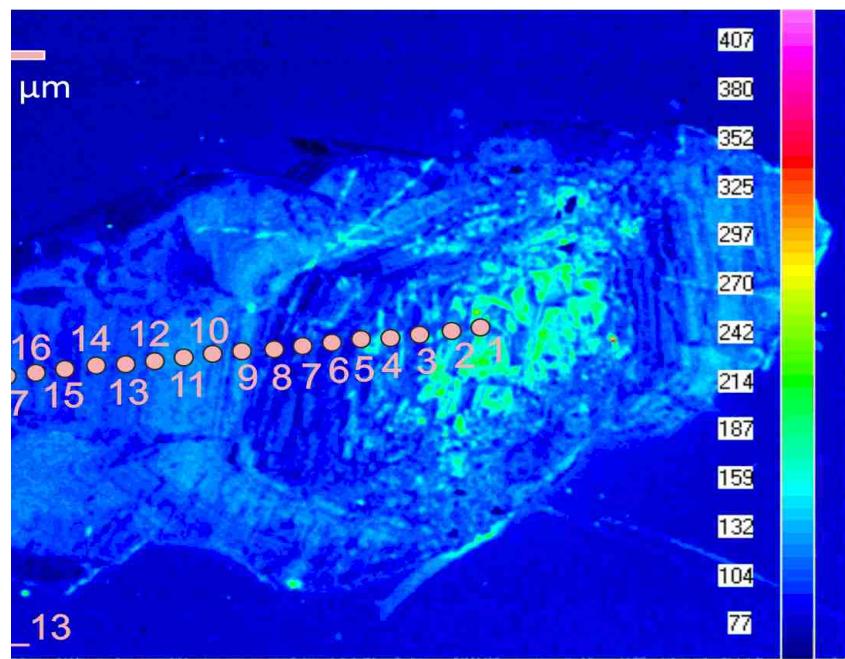
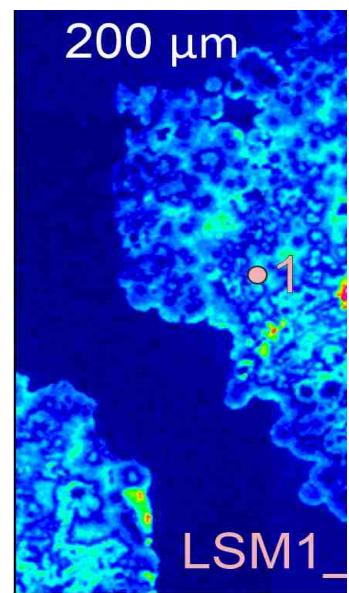
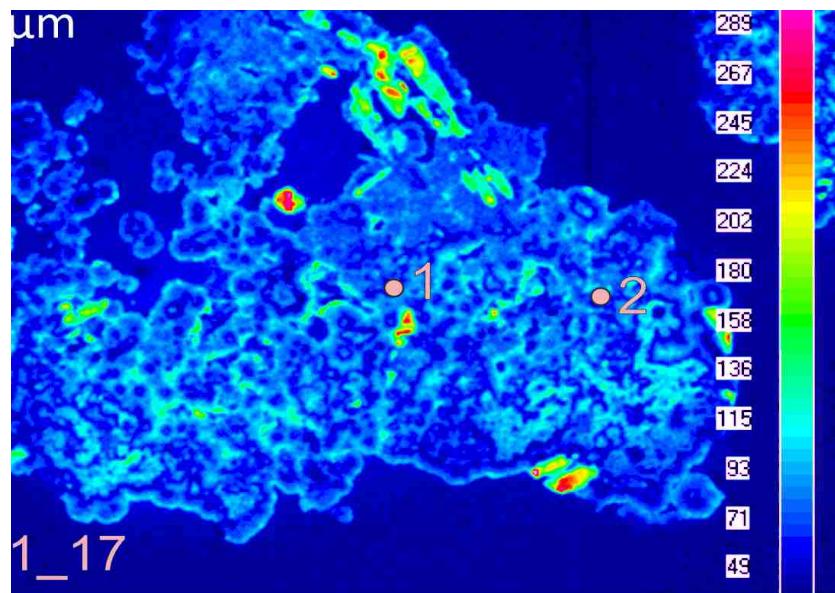
-3976	-12	-24	0.000860303
-3670	-12	-21	0.000703863
-2192	-9	-15	0.000739032
-2184	-9	-16	0.000705499
-2175	-11	-15	0.000503533
-2167	-12	-15	0.000455464
-2158	-12	-15	0.000429677
-2150	-12	-15	0.000470253
-2142	-12	-15	0.000464728
-2133	-12	-16	0.000467091
-2125	-12	-16	0.000439952
-2116	-12	-16	0.000391831
-2108	-11	-16	0.000378045
-2099	-11	-15	0.000375505
-2091	-11	-15	0.000372192
-2082	-10	-15	0.000374508
-2074	-10	-15	0.000396482
-2066	-9	-16	0.000382499
-1371	-20	-19	0.000366287
-1371	-20	-19	0.000385285
-1371	-20	-19	0.000385521
-1371	-20	-19	0.000364706

0.000386415

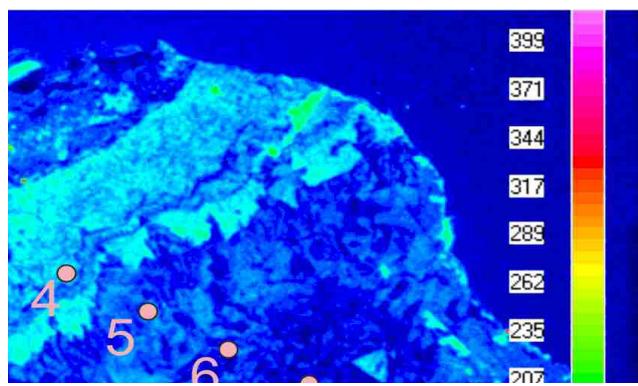
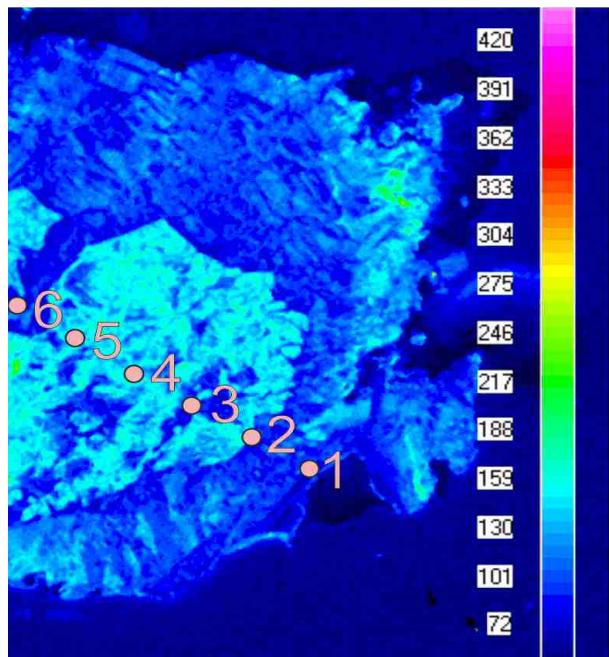
-2057	-9	-14	0.000501125
-2049	-9	-15	0.00039952
-2041	-8	-16	0.000522515
-2032	-7	-15	0.000555443
-2430	-18	-19	0.00037271
-2429	-17	-19	0.000474038
-2428	-17	-19	0.000392212
-2427	-17	-18	0.00038333
-2425	-16	-18	0.00052996
-2424	-16	-18	0.000565558
-2422	-16	-18	0.000641005
-2421	-16	-18	0.000405183
-2419	-15	-18	0.000499663
-2418	-15	-18	0.000531048
-2416	-15	-17	0.000507714
-2414	-14	-18	0.000478194
-2413	-14	-18	0.000527978
-2411	-13	-18	0.00048105
-2409	-13	-18	0.000439964
-2408	-12	-18	0.00048224
-1391	-20	-19	0.000357101





-1391	-20	-19	0.000372741
-1391	-20	-19	0.000374501
-1391	-20	-19	0.000351889





0.000369754




-2406	-12	-18	0.000455957
-2404	-12	-18	0.000515341
-2402	-13	-18	0.000445007
-2401	-12	-18	0.000380405

-1411	-20	-19	0.000353871
-1411	-20	-19	0.000392931
-1411	-20	-19	0.000397239 Low yield and higher 2SE
-1411	-20	-19	0.000354315



0.000365335

