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Abstract

The fields of drug and gene delivery have been revolutionized by the discovery and
characterization of polymer-based materials. Polymeric nanomaterials have emerged as a
strategy for targeted delivery because of features such as their impressive biocompatibility and
improved availability. Use of naturally derived polymers in these nanomaterials is advantageous
due to their biodegradability and bioresorption. Natural biopolymer-based particles composed
of silk fibroins and other silk fiber-inspired proteins have been the focus of research in drug
delivery systems due to their simple synthesis, tunable characteristics, and ability to respond to
stimuli. Several silk and silk-inspired polymers contain a high proportion of reactive side groups,
allowing for functionalization and addition of targeting moieties. In this review, we discuss the
main classes of silk and silk-inspired polymers that are being used in the creation of
nanomaterials. We also focus on the fabrication techniques used in generating a tunable design
space of silk-based polymeric nanomaterials and detail how that translates into use for drug
delivery to several distinct microenvironments.
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Introduction

The efficacy of treatment for numerous diseases and conditions including, but not limited to,
cancers, autoimmune disorders, inflammation, and infection, is limited by how therapeutic
agents and drugs are delivered. Systemically administered drugs suffer from low water solubility,
rapid clearance, and can cause a variety of off-target side effects (1). Administering drugs via
alternative routes is an area of interest, but overcoming the body’s natural barrier systems is a
significant challenge. To address the limitations associated with systemic delivery, research
focused on advanced drug delivery systems (DDS) has been a major area of interest (2).
Nanomaterial-based DDS, such as nanoparticles, liposomes, and dendrimers, have been shown
to enhance the bioavailability of various therapeutics (3, 4). A major class of nanomaterial DDS
are polymeric nanomaterials engineered to include features such as targeting moieties (5). Using
natural biopolymers for the creation of these DDS is further advantageous due to their impressive
biocompatibility and biodegradability (6). The main classes of natural biopolymers used for the
synthesis of nanoparticle-based systems are polysaccharides and proteins.

Silk fibroins and other silk fiber-inspired proteins have been shown to be biocompatible and easily
digested by immune cells and proteolytic enzymes into products that can re-enter native
metabolic processes on a tunable timeline (7, 8). Apart from their biocompatibility and tunable
biodegradation, silk proteins are also advantageous polymers for the engineering of DDS due to
the myriad of methods to induce increases in crystalline content. This translates into numerous
methods for engineering nanomaterials of various sizes, depending on the end state application,
that don’t require the use of harsh solvents (9). Increased crystalline content also limits the
tendency for burst release behavior (9, 10). The main silk proteins that have been explored for
use in a variety of nanoparticle DDS are silk fibroins from the Bombyx mori silkkworm. Bombyx
mori silk fibroin is the most well-characterized silk protein source and has a variety of reactive
amino acids to allow for functionalization (11-15). Other silk proteins, including Bombyx mori
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Figure 1: Common methods for silk biopolymer fabrication and functionalization.



sericin, genetically engineered silk fibroin proteins, silk fibers from other Antheraea species, and
bioengineered spider fibroin silks (12), are being explored due to their enhanced ability for
functionalization, potential for a wider range of material and mechanical properties, and
increased homogeneity of the starting polymer. In this review, we discuss the primary structure
of these silk proteins and relate the structure to fabrication strategies for nanomaterials (Figure
1). We also highlight progress in the in vitro and in vivo evaluations of silk-based DDS.

Fabrication and evaluation of nanomaterial DDS based on silk proteins
and silk fiber-inspired polymers

Bombyx mori fibroin

Bombyx mori silk is composed of two main protein groups, fibroin and sericin. Two fibroin fibers
are surrounded by a sericin coating. When fibroin and sericin are present together, there is
decreased biocompatibility (16). Sericin is water soluble, allowing for fibroin to be readily
extracted (17). Historically, sericin has been discarded as waste, but we discuss the potential for
sericin nanomaterials in a later section.

Fibroin from Bombyx mori is biocompatible and the focus of biomedical research for applications
including nanomaterials and both local and systemic DDS. Fibroin consists of heavy (~325 kDa)
and light (~26 kDa) chains linked with a disulfide bond (18). The light chain is elastic, hydrophilic,
and characterized by nonrepeating sequences of amino acids. The heavy chain comprises highly
hydrophobic and crystalline motifs (GAGAGS or GAGAGX, X=V or Y) separated by amorphous
regions containing polar and charged amino acids (18). The hydrophobic motifs can form layers
of beta-sheet structures, thereby altering the crystallinity and mechanical properties of fibroin-
based materials. The level of crystallinity varies with the material fabrication methods and can
be further increased using post-processing techniques such as water annealing (7, 17, 19). Fibroin
nanoparticles have also been shown to have stimuli-responsive behavior, with increased
degradation and drug release occurring as a function of stimuli such as pH and the presence of
reactive oxygen species, making them advantageous for delivery of therapies like
chemotherapeutics (20-22).

To form nanomaterials with silk fibroin, researchers have developed an array of physical and
chemical methods to induce the hydrophobic collapse of the hydrophobic motifs and encourage
the formation of water insoluble nanoparticles (13-15, 23, 24). Recent studies have utilized
techniques such as spray drying (25), organic solvent desolvation (21, 26, 27), salting out (28),
and microfluidic devices (29-33) (Table 1). Control of particle size and material properties to
enhance cell material interaction (34) and to optimize non-systemic delivery routes has been
established (35-38).

Recently, researchers have combined functionalization techniques with the use of composite
materials to generate the next generation of silk-based nanomaterials that can function as
targeted delivery systems (26, 28, 39-44) and as systems for both therapy and diagnostics (45-



47). Pham et al. developed a fibroin nanoparticle system for delivery of therapeutics in the
treatment of colon cancer (43). They encapsulated paclitaxel in fibroin particles (300-500 nm)
formed by organic solvent desolvation and EDC crosslinking. They found their formulations were
effective in colon and breast cell cancer lines, but interestingly observed that when the
formulation was used in colon cancer lines, cytotoxic efficiency increased 10-fold relative to free
drug (43). Du et al. also explored targeting sites in the colon for ulcerative colitis (42). They
formed nanoparticles by desolvation and then surface functionalized them with cRGD. Safety and
efficacy were evaluated in vitro and in vivo and it was found that the cRGD functionalized particles
specifically interacted with integrin av inflammation sites in the colon and contributed to an
improved therapeutic outcome (42). Horo et al. developed a composite material for targeted
delivery of antitumor agents (41). They developed chitosan-stabilized gold nanoparticles (~8 nm)
loaded with doxorubicin and coated with fibroin conjugated with folic acid and fluorescein to
promote the targeting of tumor cells. The silk coating contributed to an improved drug release
profile and increased uptake and cytotoxicity in Hela cultures. They also modified this
formulation into larger particles (~1000 um) using ionic gelation to address the potential for oral
delivery (41). Song et al. also explored anti-cancer composite silk nanomaterials for targeted
delivery for gene therapies (28). They utilized a salting out technique to fabricate magnetic silk +
polyethyleneimine core shell nanoparticles with tunable size (~100-500 nm). They demonstrated
enhanced delivery of therapeutic antisense oligodeoxynucleotides by use of magnetofection in
MDA-MB-231 breast cancer cells (28). Silk-based nanomaterial DDS continue to be made of
primarily Bombyx mori fibroin polymers, but recently researchers have also begun investigating
other silk fiber biopolymers as well as alternative sources for silk fibroin biopolymers that have
additional unique properties for use in biomedical applications.

Bombyx mori sericin

As mentioned previously, sericin proteins from Bombyx mori cocoons have traditionally been
discarded as a waste product. However, recent work has highlighted how, when purified, sericin
proteins are non-cytotoxic, have a high potential for reactive modification, and can facilitate cell-
material interaction. A major limitation of sericin proteins is that they are highly water soluble,
meaning the majority of nanomaterials made with sericin must be composite materials. Sericins
from Bombyx mori are not as well characterized as their fibroin counterpart, but it has been
shown that they are globular proteins in nature ranging from 20-310 kDa and mainly consist of
reactive residues like serine and aspartic acid. This means sericin materials often have increased
presence of random coil structures; however, crystallinity can still be induced in the material
synthesis process by techniques such as desolvation. Recent studies utilizing sericin-based DDS
have focused on applications including nasal delivery (48), pH responsive materials (49),
antibacterial activity (50, 51), cell therapy (52), and cancer therapies (53-55) (Table 1).

To assemble sericin-based nanoparticles, researchers often have taken a two-step approach.
First, taking advantage of the reactiveness of sericin, they chemically crosslink or modify the
polymer. This is typically followed by a self-assembly or desolvation step. Boonpavanitchakul et



al. conjugated a hydrophobic polymer, PLA, to sericin, forming an amphiphilic material (53). They
were then able to self-assemble the PLA-silk sericin polymers into nanomaterials of tunable size
(~36-370 nm) depending on the pH and inclusion of additional crosslinkers, all taking place in
aqueous conditions. They further demonstrated the potential of this system as a cancer therapy
by showing effective loading of doxorubicin, enhanced release under acidic conditions, and
effectiveness in in vitro liver cancer cell models (53). Perteghella et al. stabilized sericin by
crosslinking with crocetin and formed ~225 nm nanoparticles by desolvation in acetone (48).
Perteghella and colleagues are working toward optimizing these particles for nose-to-brain
delivery and demonstrated cytocompatibility and protection from oxidative stress in Caco-2
epithelial cells (48). Xu et al. took a novel approach and optimized a transgenic silkworm to
produce silk that is sericin-rich and has recombinant lactoferrin expressed in the sericin layer for
treatment of ulcerative colitis (49). They were then able to synthesize ~125 nm negatively
charged sericin-lactoferrin nanospheres by acetone desolvation. The effectiveness of the system
was evaluated by oral delivery in an ulcerative colitis mouse model. They demonstrated improved
uptake efficiency (attributed to charge interactions) and inhibition of the NF-kB inflammatory
pathway associated with acute colitis (49). Overall, the recent progress in sericin DDS highlight
the advantages of the increased bioactivity and reactivity of the protein. Researchers have also
begun to evaluate the potential of silk from different species for this same purpose.

Non-Bombyx mori native silk fibers

While most silk-based healthcare materials have traditionally been reverse engineered from
Bombyx mori silk fibers, most insects in the Lepidopteran order produce silk fibers for a variety
of applications (cocoon/web formation, egg coating, etc.). Recent studies have found that some
of these fibers expand the design space for silk-based materials by having more reactive residues
and different mechanical properties. Recently, silk fibroin from Antheraea assamensis (56, 57),
Antheraea pernyi (58), and sericin from Antheraea mylitta (59) have all been used in the
development of nanoparticle DDS (Table 1).

Asapur et al. characterized the secondary structure of nanoparticles synthesized from Antheraea
assamensis fibroin by desolvation and radiolysis methods (56). The fibroin from Antheraea
assamensis is known for its ability to absorb high levels of UV radiation and its impressive tensile
strength Asapur et al. characterized the secondary structure of nanoparticles synthesized from
Antheraea assamensis fibroin by desolvation and radiolysis methods (56). The fibroin from
Antheraea assamensis is known for its ability to absorb high levels of UV radiation and its
impressive tensile strength (60). Like Bombyx mori fibroin, alanine-rich repeating motifs give this
biopolymer the potential to form nanomaterials with high levels of B sheet crystallinity (61).
Asapur et al found that the radiolysis method led to the formation of smaller ~180 nm particles
compared to ~250 nm particles made with desolvation. Both particle types also had >30%
crystalline content, showing potential for controlled release (56). Baruah et al. evaluated the
release of doxorubicin from Antheraea assamensis fibroin particles made by desolvation and
found efficient drug loading, and that the DDS increased the effectiveness relative to free



doxorubicin of the cytotoxic effect on MDA-MB-231 cancer cells (57). . Asapur et al found that
the radiolysis method led to the formation of smaller ~180 nm particles compared to ~250 nm
particles made with desolvation. Both particle types also had >30% crystalline content, showing
potential for controlled release (56). Baruah et al. evaluated the release of doxorubicin from
Antheraea assamensis fibroin particles made by desolvation and found efficient drug loading,
and that the DDS increased the effectiveness relative to free doxorubicin of the cytotoxic effect
on MDA-MB-231 cancer cells (57).

Liu et al. took advantage of the abundant reactive sites present in silk fibroin from Antheraea
pernyi in the creation of their stimuli responsive DDS (58). They prepared particles from
cationized Antheraea pernyi fibroin for gene delivery to cancer cells by desolvation in DMSO.
Using the reactive capabilities of this fibroin, they grafted on an MMP-2 cleavable PEG to the
particles surface. This allowed for limiting opsonization without sacrificing transfection when
MMP-2 (highly expressed in the tumor microenvironment) cleaves the PEG in vitro. They
demonstrated decreased protein adhesion and successful transfection to HEK293 cells (58). In
addition to leveraging the biodiversity of silk fiber producing species to design novel polymeric
nanomaterials for DDS, researchers have also recently been producing recombinant proteins
inspired by silk fibers to create targeted DDS.

Silk fiber-inspired recombinant polymers

As an alternative to use of purified silk fibroin proteins, researchers have also designed
recombinant silk proteins inspired by nature to make polymeric nanomaterials for drug and
therapeutic delivery. One approach is to use bacteria, such as E. coli, to express silk-like peptides
either alone or in combination with other useful protein sequences (62-64). Another approach
utilizes whole organism genetic modification to express engineered silk fibroins or other related
therapeutic agents (e.g., sericins) (49, 65-71).

Much of the focus of genetic engineering of silk proteins is based on the silk fibroins produced by
spiders. This is because, unlike Lepidopteran species, spiders’ cannibalistic and territorial
tendencies make it so spiders cannot be farmed, meaning their fibers cannot be naturally sourced
for biomedical research. Researchers have taken inspiration from the silk of Nephila clavipes and
Araneus diadematus to design recombinant spider proteins. Silk produced from spiders (spidroin
proteins) are ~300 kDa and composed of a highly repetitive core, mainly consisting of alanine,
glycine, and proline residues, flanked by small, nonrepetitive terminal domains, which are highly
conserved across spider species (72). The development, expression, and purification of spider-
inspired fibroin proteins (spidroin proteins) has been recently reviewed (12, 73). For the purposes
of this review, we focus on the nanoparticle fabrication techniques recently used in the progress
toward targeted DDS, and recent publications are summarized in Table 1.

The Scheibel group designed nanoparticle systems based on Araneus diadematus with the goal
of directing corona formation and stimuli responsive release (74, 75). They recombinantly
produced polymers with either a net negative or net positive charge and used the salting out



technique to form nanoparticles. They then performed ex vivo analysis of corona formation in
whole blood (74). It was observed that the negatively charged nanospheres primarily attracted
complement proteins and immunoglobulins, while positively charged particles primarily had
fibrinogen-based proteins adsorbed on their surface (74). In a separate study, researchers utilized
a polyanionic form of the silk from the aforementioned study and covalently attached a cytostatic
drug to the particle surface and explored the response to pH and redox state (75). Ellman’s
solution (a model to simulate sulfhydryl group containing drugs) was bound to cystine residues
in the spider fibroin-inspired silk particle, which was then further modified by including a
hydrazone linker. This system led to enhanced drug release under acidic conditions and oxidative
stress in Hela cultures (75). Researchers have also explored recombinantly producing proteins
and peptides inspired by the spidroin proteins of other spider species (76).

The Dam-Kozlowska group has been building toward a cancer therapeutic DDS based on a
recombinant silk fiber inspired by Nephila clavipes (77-79). They were able to produce a polymer
based on the MaSpl sequence from Nephila clavipes and include a Her2 binding peptide.
Particles were produced by salting out and loaded with doxorubicin. They demonstrated
enhanced binding to Her2-overexpressing SKOV3 cells and showed the particles themselves were
noncytotoxic and could deliver doxorubicin to kill cancer cells (77). They recently tested this
system in vivo and demonstrated safety (79) and targeted delivery in breast cancer models (78).
The development of DDS based on silk nanomaterials continues to grow and researchers are
moving toward potential for clinical translation.

Future Perspectives and Conclusion

The wide range of material properties available from the reconstitution of silk fibers makes them
an interesting class of materials for future translational research. Specifically, silk fibroins from
Bombyx mori are able to generate a wide array of drug delivery systems (DDS) given the range of
fabrication techniques, modification methods, and utility in composite materials. Furthermore,
spider silk-inspired and sericin biopolymers represent additional classes of materials for DDS.
Each class of materials offers its own unique features, such as biodegradation, controllable
immunogenicity, and favorable mechanical properties.

While many systems have been proposed, grand challenges still exist in the application of these
materials to clinical settings. As with any natural material or recombinantly produced protein,
ensuring good manufacturing practices as well as methods to remove contaminating molecules
or organisms, such and endotoxins or mycotoxins, is critical. Sourcing these natural materials can
also be a challenge, as Bombyx mori cultivation and farming is subject to our changing climate
and regional differences in farming practices (80, 81), which can lead to variability in cocoons and
subsequent silk properties. Recent advancements in genetic engineering technologies for the
Bombyx mori silkworm suggest that improvements or modifications to protein structures within
these systems is possible (65, 67-69, 82), thus providing an avenue for addressing current
challenges in protein structure highlighted throughout this review. However, any change is not



without added complication or risk, as modification to silk fibroin protein sequences can pose
new challenges in protein expression, spinning, or purification. Additionally, chemical
modifications to existing natural materials can also alter chemistries for improvements in affinity
binding and drug loading (13, 83). Continued efforts to further open the design space to include
silk fibers or silk fiber-based proteins from other species as well as recombinantly produced
polymers and peptides is another strategy for overcoming current challenges. These efforts
demonstrate the enormous future potential for this class of materials and their scale-up, use in
advanced manufacturing, generation of novel polymer solutions, and development of treatments
for a myriad of diseases. While this review was limited to nanomaterial-based DDS, we expect
that the use of novel silk proteins for the formation of materials such as scaffolds, films, foams,
and hydrogels is an area of interest for local DDS, regenerative medicine, and tissue engineering.
Similarly, clinical trials using materials from or synthesized to replicate components silk fibers are
on-going, with a large focus on inert filler materials for treatment of conditions like vocal cord
paralysis (84). These advances toward clinical application are positive first steps for the continued
investigation and development of all-natural silk-inspired nanomaterials for drug delivery
systems.

Table 1: Summary of current advances in silk and silk fiber-inspired nanomaterials for drug
and gene delivery
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