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Abstract

The explicit biorthogonalization method, developed in [24] for continuous time
TASEP, is generalized to a broad class of determinantal measures which describe
the evolution of several interacting particle systems in the KPZ universality class.
The method is applied to sequential and parallel update versions of each of the four
variants of discrete time TASEP (with Bernoulli and geometric jumps, and with block
and push dynamics) which have determinantal transition probabilities; to continuous
time PushASEP; and to a version of TASEP with generalized update. In all cases,
multipoint distribution functions are expressed in terms of a Fredholm determinant
with an explicit kernel involving hitting times of certain random walks to a curve
defined by the initial data of the system. The method is further applied to systems
of interacting caterpillars, an extension of the discrete time TASEP models which
generalizes sequential and parallel updates.

Mathematics Subject Classification 60K35 Interacting random processes; statistical
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1 Introduction and main result

A large class of exactly solvable models in the KPZ universality class can be described
as marginals of determinantal measures, corresponding to either determinantal point
processes or their generalizations to complex-valued measures. For instance, some pro-
jections of Schur processes with suitably chosen specifications have the distribution of
(discrete or continuous time) totally asymmetric simple exclusion processes (TASEP)
with blocking and pushing interaction and with very special initial states (typically
with an infinite number of particles and with either half-packed or half-stationary ini-
tial states) [9]. This naturally yields formulas for the cumulative distribution functions
of the particle positions based on the Fredholm determinant of a kernel given in the
form of a double contour integral. These formulas can be used to show that, in the
usual KPZ 1:2:3 scaling limit, the asymptotic fluctuations of the particle positions are
described by the Tracy-Widom GUE distribution from random matrix theory [35] and,
more generally, their joint distributions lead to the Airy, process [17, 18, 31].

For general initial condition, a representation for continuous time TASEP as a
marginal of a signed determinantal measure was discovered in [7, 33], where a for-
mula in terms of a Fredholm determinant was derived involving a kernel characterized
implicitly by a certain biorthogonalization problem. For the simplest initial condi-
tion, half-packed, this biorthogonalization problem becomes trivial and the previously
derived kernel is recovered. In the case of 2-periodic initial state the biorthogonal-
ization problem was solved explicitly in those papers, and in the 1:2:3 scaling limit
the resulting formulas led to the Airy; process, with one-point marginals now given
by the Tracy-Widom GOE distribution [36]. Later this method was applied to several
other models, including discrete time TASEP with sequential and parallel updates [6,
8] and PushASEP [3] with periodic initial conditions. The method was also applied
to compute the distribution of the two-dimensional process of interacting particles
introduced in [4], whose projections yield a coupling of TASEPs with pushing and
blocking interactions.

For continuous time TASEP with arbitrary (one-sided) initial condition, the
biorthogonalization problem was solved in [24], leading to a kernel which can be
expressed in terms of the hitting time of a certain random walk to a curve defined by
the initial data. This was used to show that, if the initial data converges under diffusive
scaling, then in 1:2:3 scaling limit the TASEP height function converges to a Markov
process whose fixed time, multipoint distributions are explicitly given by a Fredholm
determinant of an analogous kernel, now defined in terms of Brownian hitting times.
This limiting process is known as the KPZ fixed point, and is expected to arise as
the universal scaling limit of all processes in the KPZ universality class. The same
approach was later used in studying the KPZ fixed point scaling limit of reflected
Brownian motions [25].
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TASEP and generalizations: method for exact solution 617

The purpose of this article is to extend the biorthogonalization method of [7, 33]
and the explicit biorthogonalization scheme developed in [24] to compute correlation
kernels for a general class of determinantal measures, whose marginals in particular
cases yield several exactly solvable models in the KPZ class. The class of measures
which we will study include, in particular, discrete time variants of TASEP with either
blocking or pushing interaction and with Bernoulli or geometric jumps. Formulas will
be derived for versions of these processes with either sequential or parallel update,
unifying in particular the biorthogonalization schemes presented in [6, 8].

Sequential and parallel update dynamics for TASEP-like systems will be obtained
as particular cases of a more general class of systems of interacting caterpillars which
we introduce. Along the way we will study some natural versions of these interacting
particle systems which seem to not have been considered before.

The formulas which we will obtain have the same structure as those obtained for
continuous time TASEP, and for measures corresponding to models in the KPZ class
they can be used to show convergence to the KPZ fixed point as in [24]. This is left
for future work.

1.1 Notation and conventions

We use N for the set of natural numbers 1, 2, ..., and we denote Ny = N U {0}. For
N € N we use the shorthand notation [N] = {1, ..., N}. 7 will denote a time variable
taking values in a domain T, which can be either T =R or T = Z.

For N > 2 the Weyl chamber is

Qv ={(x1,....xn) €ZN :x; >x2 > -+ > xn)}.

vr will denote a circle in the complex plane with radius r, centered at 0. A, g will
denote the closed annulus on the complex plane centered at 0 and withradii0 < » < R.
For a closed subset U of C we say that a complex function f is analytic on U if it is
analytic on some open domain which contains U.

Throughout the paper we will consider many different kernels K : Z x Z — R.
We regard such kernels as integral operators acting on suitable families of functions
f:7Z — C,i.e.,

Kf(x) =Y K »)fO,

YEZ

provided the sum is absolutely convergent. Two such kernels of this form are com-
posedas KL(x,y) = ZzEZ K (x,z)L(z, y), provided again that the sum is absolutely
convergent. We will usually not need to spell out the precise function spaces on which
these operators act; in particular, compositions of these kernels will be well defined
by the absolute convergence of all the sums involved.

By the inverse of a kernel K we mean a kernel K —1 such that K~ !(x, y) =
K~ 'K(x,y) = 1,—,.Forakernel K we denote its adjoint as K * (x1, x2) = K (x2, x1).
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618 K. Matetski, D. Remenik

1.2 Mainresult

We present next our main result in the context of a class of Markov chains with
determinantal transition probabilities. This is a particular case of the results proved
in the paper, which work for a more general class of determinantal measures. We
do this in order to simplify the presentation, and because it is enough to cover most
of the applications to examples of interest (exceptions are discrete time TASEP with
geometric jumps and sequential update, see Sect. 2.4, and the generalized TASEP
dynamics from Sects. 2.1.4 and 3.3).

For N > 1 we consider a Markov chain X; on Qp, where time ¢ € T is either
continuous or discrete. We interpret X; = (X;(1), ..., X;(N)) as the locations of
a system of particles whose evolution preserves the order. The key property which
we ask of X, (first shown to hold for TASEP [34]) is the following: the transition
probabilities of the process from y € Qp to X € Qy are given by

P(X; = X|Xo =) = det[ Fi—j (xN41—i — YN+1—j> t)]i,je[[N]]’ (1.1)
where
FoGon) = 7§ dw =V oy (1.2)
27i Vs wx—n-‘r]

for some p > 1 and some complex function ¢ which, besides giving a probability
distribution in (1.1) (this in particular implies ¢(1) = 1), satisfies the following:

Assumption 1.1 (i) ¢: U — C, where the domain U C C contains 0 and 1, and
@ has at most a finite number of singularities in U.
(ii) ¢ is analytic on an annulus A, 5 € U withradii0 < p <1 < p.
(iii) p(w) #Oforallw € A, 5.

Throughout the rest of this section we assume that Assumption 1.1 is satisfied and,
in particular, we fix the parameter p appearing in the assumption.

Note that for n < 0 we can shrink the contour in the integral in (1.2) to a circle of
radius less than 1, from which we get ZZ<X Fo(z,t) = 1,=0 — Fy+1(x, t) for such
n (where for n = 0 we have used ¢(1) = 1). Using this and the multilinearity of the
determinant in (1.1) one gets

- - N—1 > N-1 =
Yoy exyy Py = 51Xo =) = PX" P =3 nIX{ TV =50,

where X ,(Nfl) denotes the process with N — 1 particles and the vector X _ y is obtained
from X by removing the last entry. In other words, we can remove the last particle from
the N-particle system to obtain the same evolution on N — 1 particles; equivalently,
the first N — 1 particles do not “feel” the presence of the N one.

In order to state our result for the joint cumulative distribution function of the particle
locations, we need to make some definitions. To this end we introduce a parameter
k € Np, which for now can be thought of as being 0 (« > 0 will be used later in
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TASEP and generalizations: method for exact solution 619

Theorem 1.4 to state a more general result). We also introduce an auxiliary parameter
6 € (p, 1), whose role will be clear shortly (in applications to scaling limits, 0 is
adjusted according to the density of particles in the system, see Remark 3.1).

For z1, zp € Z we define

o QZI_ZZ QD(LU)K

) = d
01, 22) 2mi jé,r W wil—2 1 —w

with r € (p, 1) and with

a=(1-60)0"p®O) ™.

When « = 0 one has Q(z1,22) = (1 — 9)921_22_1111>12, i.e., Q is the transition
matrix of a random walk on Z taking Geom[1 — 6] steps (strictly) to the left. In the
case k > 1 it is not very hard to check that Zzzez 0(z1, z2) = 1 (for instance, as
in the proof of Lemma 5.6), and we will impose an additional condition on ¢ (see
Assumption 1.3 below) which will ensure positivity, so that Q is still the transition
matrix of a random walk. In any case, under Assumption 1.1, Q has an inverse, and
the n-th powers of Q and its inverse can be obtained explicitly by convolution (see
Lemma 5.6): for all n € Z we have

0"(z1,22) = — fdw o= (‘p(w) ) . (1.3)
Yr

27i wi—a2—ntH 1 —w

Next we set

—n+1 22—21 1
Seton@r, 1) = —— f; dw —— (= w) ") ™0, (14

_ a1 (1 _w)zzfzwnfl o
S anter o) =5 75 dw S (- w) (1)

with r, 6 € (p, 1) as above and with § > 0 small enough so that ¢ (1 — w)K=D=7 jg
analytic inside y;. If we introduce another family of kernels

1 61] —22 P
Ri(z1,22) = 2_711%, dw mﬁﬂ(w)
for t € Z, then the last two kernels can be written as

Sin=0"Riyx and 8,,=0"R (1.6)

with Q™ = :SO,n (see Sect. 5, and in particular the comment at the end of the section,
for a proof of these formulas).
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620 K. Matetski, D. Remenik

Now we focus on the case k = 0, so that Q is the transition matrix of a random
walk on Z with Geom[1 — 6] jumps to the left, which we denote by B. Fix y € Qn
and let

t=min{m=0,...,N—1: By > Ym+1} (1.7)

be the hitting time of the strict epigraph of the “curve” (ym+1)m=0.... n—1 by the random
walk (By;)m>0 (we set T = oo if the walk does not go above the curve by time N — 1).
Then we set

Sil)ll,(lf) (Zl’ Zz) = IEBO:ZI [S—t,n—r(Br’ 12)11<n] . (18)

The indicator 1; -, can be omitted in the expectation, because sz,m vanishes for
m < 0, as can be seen from (1.5).
Finally, for a fixed vector a € R™ and indices n; < -+ < n,,, we let

Xa(nj, x) = 1x>a_/ and  Xq(nj, x) = l)CSajv (1.9)

which we also regard as multiplication operators acting on the space £%({n1, ..., n,} x
7). We will also use this notation when the first argument is a pair (n;, t) with € T,
with x,((nj, 1), x) =1— xa((nj, 1), x) = xa(nj, x), as well as in the case that a is
a scalar, writing x,(x) = 1 — x4(x) = 1,4.

The following is the simplest version of the main result of this article, and can
be applied for example to continuous time TASEP and discrete time TASEP with
sequential update.

Theorem 1.2 Let ¢ satisfy Assumption 1.1. Then for anyt > 0, any 1 <n; < --- <
nm < N, anya € R", and any y € Qpy, we have

P(X:(n;) > aj, i € [m] | Xo =73) = det(I — xaK:Xa) (1.10)

2({ny,...,npyx7Z)°
with

Ki(ni,-;n2,-) =—=0""1,,<n, + (Sft’fnl)*gem(y)

—t,n2°
where the objects on the right hand side are as in (1.3)—(1.9) with k = 0.

An extension of the above setting involves considering particles which start at
different times. This extension, which will correspond to using k > 1 above, will
allow us to cover discrete time TASEP with parallel update and the more general
systems of interacting caterpillars, see Sect. 2. In this case it is convenient to regard
the process X; as starting at negative times. Then, for an integer k > 0 we define the
event

Ee = ﬂ { it particlestaysputuntiltime — “(i — 1)}. (1.11D)
ie[N]
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TASEP and generalizations: method for exact solution 621

If the process starts at time ¢ < —« (N — 1), then conditioning on this event means that
the ith particle will only start evolving at time —« (i — 1) (see Fig. 2 for an example
of possible trajectories of the particles). Note that particles with smaller indices start
moving later.

We will be interested in models for which the following assumption holds. In the
assumption we take k € N as given together with an initial state y € Z". We remark
that, since we are interested in particles starting at different times, the correct space
for initial conditions is not necessarily Q,y, and will have to be specified in each
application (in Sect. 2 there will be cases where particles have to start at distance
at least « from each other and others where particles can initially be only weakly
ordered).

Assumption 1.3 (a) Fix an integer ¥ > 1 and an initial state § € Z". Then for any
Xe QN,

P(Xo = X|X_e(n—1) = ¥, &)
= det[Fi—j(xN41—i — YN41—j k(j — 1))]1-,]-6[[1\,% (1.12)

(b) The function ¢ from Assumption 1.1 has the following additional properties:

(1) ¢ is analytic on {w € C: |w| > p}, with p the radius from Assumption 1.1.
(i1) ¢ is the generating function of a real positive measure on {i € Z:i < 1},
i.e.,

pw) = biw' (1.13)

i<l

with b; > O for all i < 1 and not all b;’s are zero.
(iii) Zifl b < 1.

Assumption 1.3(a), which may look a bit artificial, is essentially just stating that
the transition probabilities of the particle system with different starting times have a
determinantal form similar to (1.1) (note however how the time index in F;_; is shifted
in (1.12)). We will see in examples that this property in general does not hold for any
initial condition. Moreover, formula (1.12) does not hold for x > 0 for transition
probabilities of the form (1.1) with any ¢, so we will need to prove it for the models
we are interested in.

Assumption 1.3(b), on the other hand, encodes some extra restrictions on ¢ which
are not needed when x = 0. They imply, in particular, that

0(z1,22) = ab g, ., (1.14)

where the g;’s are non-negative and are uniquely defined through the conditions g; = 1
fori > « and (W) = ) ;. (qi+1 — gi)w', and that Q is still the transition matrix
of a random walk on Z (see Sect. 5.1 for a proof of this in a more general setting and
Sect. 5.5 for the application to the present context). We will keep denoting by B the
random walk with transition matrix Q, by t the associated hitting time (1.7), and by
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622 K. Matetski, D. Remenik

Se_ptl’(,{) the kernel defined through (1.8) in terms of this new random walk (with :S'_,,n
now given by (1.5) with this «).

The following result extends Theorem 1.2 to the case of different starting times,
where each particle is evolved for the same total amount of time ¢. The basic case of
discrete time TASEP with parallel update corresponds to « = 1, while ¥ > 1 will
yield the generalization to systems of caterpillars (and x = 0 essentially recovers
Theorem 1.2).

Theorem 1.4 Assume that ¢ satisfies Assumptions 1.1 and 1.3 and let k > 0 and y be
as in Assumption 1.3. Then forany 1 <ny < --- <n, < N,anyt > k(n, — 1), and
any a € R™, we have

P(Xi—im—1) (i) > ai, i € [m] | X_eqn—1y) = ¥, &)

= det(l - XaKtXa)ZZ({nl .... nm}x7Z)’ (115)

with the kernel

Ki(ni,-5n2, ) = = Q" "y y + (Sr—n))* SRS (1.16)
where the objects on the right hand side are as in (1.3)—(1.9) with this value of k.
Moreover, if X satisfies the additional condition (1.17) given below, then (1.15) holds
fort > 0.

The quantity on the left hand side of (1.15) can be thought of as the distribution
of the particles with a particular choice of starting and ending times (both regularly
spaced by «). In Sect. 4 we derive an expression for (1.16) as a biorthogonal kernel in
the case of general starting and ending times, see Theorem 4.3. The extension of the
explicit biorthogonalization of Sect. 5 to that case is left for future work.

The restriction t > k (n,,, — 1) in the theorem means that we are requiring all of the
first iy, particles to start moving before any of them stop. This is used in our method of
proof, but in fact it is not clear to us that the restriction can be lifted under the general
assumptions of the theorem. However, our argument can be extended to cover all > 0
under an additional assumption, which holds at least in the important case of discrete
time TASEP with right Bernoulli jumps. The additional assumption is the following:
foranyt > 0,any y € Qu,any x; € Zand any integer values zy < zy—1 < --- < 22,
satisfying z»> < yi, one has

> P(X; = X|Xo = §) det[ Fi—j (Zn+1—i — XN+1—)> —t)]i’je[[N,lﬂ

XN <--<Xx2S.L.xp<X]
=PX; (1) = x1|Xo() =y1) [] L=y (1.17)

2<i<N

This amounts essentially to saying that the evolution of the particles can be run “back-
wards in time” by using the function (1.1) with a negative time (even though the
determinant on the right hand side doesn’t have a clear physical meaning).
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TASEP and generalizations: method for exact solution 623

Outline

The first two sections contain the applications of Theorems 1.2 and 1.4 (as well as
their generalization in Sect. 5) to several interacting particle systems in discrete and
continuous time: in Sect. 2 we consider the four discrete time models which were
solved in [14], as well as their extensions to parallel update dynamics and systems of
interacting caterpillars, while Sect. 3 is devoted to the models in continuous time. In
Sect. 3 we also review briefly the convergence of TASEP to the KPZ fixed point and
derive explicit formulas for these processes started with a special choice of random
initial data.

The proof of Theorems 1.2 and 1.4 is split into two big steps: in Sect. 4 we provide
a formula of the form (1.15) with a kernel K; defined implicitly through a biorthog-
onalization problem, while in Sect. 5 we solve the biorthogonalization problem and
obtain an explicit formula for the resulting kernel. Sect. 5 works in a more general
setting; the main result is Theorem 5.15, which is then applied in Sect. 5.5 to prove
Theorems 1.2 and 1.4.

In Appendix A we prove several generalizations of the Cauchy-Binet identity, which
yield determinantal formulas for convolutions of determinants which may be of dif-
ferent sizes. Appendix 1 contains the derivation of the biorthogonal ensemble from
Sect. 4. In Appdcs. C and D we show that the variants of TASEP with right Bernoulli
and geometric jumps satisfy Assumption 1.3. In Appendix E we rewrite the formulas
from [14] for discrete time variants of TASEP in the form (1.1).

2 Discrete time variants of TASEP and their generalizations

Determinantal formulas of the form (1.1) for the transition probabilities of a particle
system were first derived by [34] for TASEP in continuous time using the coordinate
Bethe ansatz. Similar formulas were later derived in a similar way for discrete time
TASEP with sequential [10] (see also [32]) and parallel update [28] and for several
other models. The same type of formulas arise for non-colliding Markov processes
[22]. In some cases, and for a special choice of initial data, such processes can be
coupled with interacting particle systems via the Robinson-Schensted-Knuth (RSK)
correspondence (an alternative coupling through a process on triangular arrays exists
in essentially the same cases [4, 37], see Sect. 2.5 for a brief discussion).

In [14] the authors described the RSK coupling for four discrete time particle
systems with different transition and interaction rules, using the four known variants of
the RSK correspondence: the RSK and Burge algorithms, as well as their dual variants.
Using intertwining of transition kernels, this allowed them to compute Schiitz-type
formulas for these four models, corresponding to discrete time TASEPs with blocking
and pushing dynamics, and with Bernoulli and geometric jumps. In their formulas
the functions appearing inside the determinant in (1.1) are written in terms of certain
sums involving symmetric polynomials, but, as we show in Appendix E, they have
equivalent expressions in terms of contour integral formulas like (1.2) (alternatively,
one could proceed along the lines of Schiitz’s derivation and prove directly that the
resulting determinants solve the Kolmogorov forward equation for each model; in the
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624 K. Matetski, D. Remenik

particular case of Bernoulli jumps, block dynamics are addressed in [10] while push
dynamics follow by adapting the continuous time proof for PushASEP given in [3]).

In this section we introduce an extension of each of these models, which for the first
three we call systems of interacting caterpillars, and state explicit Fredholm determi-
nant formulas for their multipoint distributions. Caterpillars of length 1 yield the basic
models mentioned above. Caterpillars of length 2 correspond to the parallel TASEP
model studied in [8] in the case of Bernoulli jumps with block dynamics, but seem to
not have been studied before for the other systems (though they appear implicitly in
[4]). For caterpillar lengths larger than 2 the models appear to be new; the “heads” of
the caterpillars evolve as Markov chains with memory length larger than 1. The fourth
model, corresponding to geometric jumps with block dynamics, is different from the
other three; in that case our extension is from the basic rule, which is parallel update
for this model, to sequential update. In all cases we consider only the situation when
all particles have equal speeds. See Sect. 2.5 for some connections to earlier work and
an additional discussion.

We remark that in [1], the author considered TASEP with right Bernoulli and
geometric jumps, for which he derived formulas of the type (1.15) following the
blueprint of [24] and showed pointwise convergence of the resulting kernels to those
appearing in the KPZ fixed point formulas. He also derived a formula for a mixture of
the two dynamics and continuous time TASEP; those formulas can be derived too as
an application of our results and the general fact that certain mixtures of TASEP-like
particle systems yield again formulas (1.1) (see Sect. 3.5 and Appendix A).

Throughout the section, for p € (0, 1) we always writeg = 1 — p.

2.1 Right Bernoulli jumps

Consider the evolution of N particles X; ~B on Qy, where to go from time ¢ to time
t + 1, particles are updated sequentially from right to left as follows [10]: the k"
particle jumps to the right with probability p € (0, 1) and stays put with probability
q = 1 — p, but if a particle tries to jump on top of an occupied site, the transition is
blocked. Note that a particle trying to jump at time ¢ is blocked by the position of its
right neighbor at time ¢ 4 1. The evolution of the particle system X f_B € Qp can be
written as Xtr;]f(l) =X"B()+£@r+1,1) and
X P =min{X; B(k) + £+ Lk, X Phk—1D—1}, k=2,....N,
2.1

where £(¢, k) are independent Ber[ p] random variables. The transition probabilities
of Xtr_B are given by (see [10] and Appendix E.1)

PX; P =XIX5 % = 3) = det| F{ P (ew—i = yw—j, 1) 22)

i,je[N]’

where X,y € Qp, t € Ny, and
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_ 1 (w—1"
Fr{ B(X,t):g%dw W(g—i—pw)’, (23)
14

where the contour y includes 0 and 1. One can readily see that the model (2.2) satisfies
Assumption 1.1 with the function ¢(w) = g + pw. In particular, Theorem 1.2 can
be applied for « = 0, giving that the distribution function is given by formula (1.10)
with this choice of ¢. The result is stated explicitly below in the more general setting
of Proposition 2.3, corresponding to ¥ > 0.

2.1.1 Caterpillars

Now we describe the extension of discrete time TASEP with Bernoulli jumps to a
system of interacting caterpillars. A (forward) caterpillar of length L > 1 is an
element X of the space

Ki={&x' ..., xbHezl:x - x* e{0,1},ie[L-1]}.
Our system of N interacting caterpillars of length L will take values in the space
QYL =X =X, ..., Xx(N) e KDV X'+ 1) < XE@), i e [N — 1]}

(i.e., configurations in Q‘j"\,@ 1, are such that no two caterpillars overlap). Figure 1 depicts
possible configurations of N = 4 caterpillars of length 3.
For X € Q“ﬁ,@ ; we call X!(i) and XE(i) the head and tail of the i caterpillar

respectively, and we define xhead — (x1G) 1 i € [N]) € Qu to be the vector of
heads, which can be thought of as the location of N particles located at the sites X' (i)
fori € [N]. Note that in the case of caterpillars of length 1, va“ffl becomes just the
usual Weyl chamber 2y, i.e., X becomes just a configuration of N particles on Z
whose locations are strictly decreasing.

We define now the dynamics on caterpillars X; € Q‘ff 1» t € No, associated to
discrete time TASEP with right Bernoulli jumps. The transition from time # to time
t 4+ 1 occurs in the following way, with the positions of the caterpillars being updated
consecutively for i € [N] (i.e., from right to left):

e The head of the i caterpillar makes a unit step to the right with probability
pe@©,1Ge, X tl =X ,‘ (i) + 1), provided that the destination site is empty.
Otherwise it stays put (i.c., X!, | (i) = X ().

e The remaining sections of the i™ caterpillar move according to le @) =
X/ 7', j=2,...,L

In words, the heads jump as in TASEP with right Bernoulli jumps, but are blocked
by the whole caterpillar to its right, while each of the remaining sections of each
caterpillar follows the movement of the section to its right in the previous time step.
One sees directly that the new configuration X, is again in Q“ﬁ,@ ;. and that this
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X3
1 2 2
X4 X3 X3
+ + + + + QP ——+—
XXX X3 X XP Xi X
X;
2 2 1
Xy X3 X3
+ + + + + @ —
Xp X3 X X3 X XP Xi X

Fig.1 Two possible configurations of N = 4 caterpillars of lengths L = 3 (here we write for convenience
X! & instead of X i(k), and we draw the parts of the caterpillars, occupying the same site, above each other).

Each caterpillar X k =X x2x k) is an element of K7, so that the configuration of four caterpillars is

an element of 2%, 43 The bottom configuration is obtained from the one on the top by the described update
rule, where the heads of the 2nd and 4st caterpillars stay put, while the 1st and 3rd make one step to the
right

choice of dynamics defines a Markov chain on Q’}‘\,@ ;- An example of such an update
is provided in Fig. 1.

We will be interested in the evolution of the vector of heads X Pead. For L > 2, it
evolves as a particle system with memory of length L — 1: a particle trying to jump
at time ¢ is blocked by the position of its right neighbor at time ¢t — L + 1. As we
will explain next, in the cases L = 1 and L = 2 the heads evolve as the well known
versions of discrete time TASEP with Bernoulli jumps and either sequential or parallel

update.
We will say that the system of caterpillars X; has initial condition y € Qp if
Xo € QY ; is given by X{(k) = -+ = Xk (k) = y for each k € [N]. With a little

ambiguity, we will write in this case Xo = y € Qu. We will only be interested in the
case where  is in the set

Q) = (¥ € Qnixil —x; >« V Ifori =2, ..., N} 2.4)

with k = L — 1. We are interested in this type of initial data' because it ensures that
each caterpillar will not feel the caterpillar to its right until time L — 1, resolving any
ambiguity in the evolution of the heads for small times.

The key to our analysis is the following simple relation between caterpillars and the
model X tr_B. In the result we need to consider the process X f_B with particles starting
at different (negative) times. Asin Sect. 1.2, this corresponds to forcing particles to stay
put for some time by conditioning on an event like the one in (1.11), but for simplicity
we will omit this from the notation and simply say that particles start moving at some
different prescribed times.

1 For fixed ¥ € Qpn (L — 1) there are other choices of initial data so that X, Sead = y and which are equivalent
to the one above, in the sense that the evolution of the heads (and of the other sections after time L — 1) is the
same, as can be checked directly from the definition of the process (for example one could take X é (k) = yx

and X} (k) =y — 1 fori =2,..., L).
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t t
6 6
4 4
2 2
01 0
X4 &z X1 B
—2 —2
Xo X2
—4 —4
X3 X3
—6 —6
X4 X4

Fig. 2 Possible trajectories of N = 4 particles of X'B with starting times 7y = —2(k — 1). The initial
configurationis y = (10, 8, 5, 1) and the final time is 7 = 5. The green segments are the respective locations
of the caterpillars of lengths L = 3 at time ¢ = 2 (on the left) and at time # = 4 (on the right)

Lemma 2.1 Fork > 0, let the process Xf_B startatinitial times T = (= (k=D re[n]
and at a configuration y € Qy (k). Let L = k +1 and define a new process X; € Q“ﬁfL
as follows: for eachi € [L] and k € [N],
' -B
Xi (k) = X;—(k—l)K—i-H(k)’
Then X is distributed as the system of interacting caterpillars of length L described
above, with initial condition .

In words, for X; and X {7B as in the lemma, the head of the k-th caterpillar follows
the trajectory of Xf:g{_ e (k) while, fori =2,...,L, X ; (k) equals the location of
the same TASEP particle i — 1 instants in the past. The result can be readily obtained
from the distributions of the two processes. Figure 2 shows an example of possible
trajectories of caterpillars and their map to trajectories of TASEP particles. As can
be appreciated there, the assumption on y guarantees that particle k can collide with
particle kK — 1 only at times ¢ > Tj_1.

Considering initial conditions y € Qp(x) for Xtr_B ensures also that Assump-
tion 1.3 is satisfied; proving (1.12) is a bit involved, we do it in Lemma C.3. Moreover,
if p < 1/2 then in the definition of the function (1.2) we can take p < ¢g/p so that
the singularity of the integrand at w = —¢q/p is outside the contour, and under this
additional restriction it turns out that (1.17) also holds; we prove this in Lemma C.4.

2.1.2 Caterpillars of length L = 1 and L = 2: sequential and parallel update

In the case L = 1 the process X' € Q evolves as the usual discrete time TASEP
with Bernoulli jumps, blocking, and sequential update described at the beginning of
Sect. 2.1.

In the case L = 2, let us denote Xfr“ = XPMead The definition of the system
of caterpillars means that when X tl (j) tries to jump to the right, it is blocked by

@ Springer



628 K. Matetski, D. Remenik

XIZJrl (j — 1). Moreover, we have Xt2+1 () = th (H = Xfﬂl(j). Hence, the evolution
of xP™ is given by XP (1) = XP"' (1) + £¢ + 1, 1) and

PN k) = min(xP" (k) + €6+ 1,00, XPM k= 1) — 1), k=2,...,N,

where £(z, k) are independent Ber[p] random variables. Then the evolution of X f il
coincides is that of discrete time TASEP with right Bernoulli jumps, blocking and
parallel update [8, 28], which evolves in the same way as the model with sequential
update corresponding to L = 1 except that the transition of the particle XP!(;) from
time 7 to t 4 1 is blocked by the particle XP'(; + 1) at time #, rather than ¢ + 1.
Equivalently, all particles attempt to jump at the same time, but get blocked by the
current location of the particles to their right, which is why the update is said to occur
in parallel. The representation of parallel TASEP as sequential TASEP with different
starting times appears also in [4, 5] in the setting of a Markov chain on Gelfand-Tsetlin
patterns (see Sect. 2.5).

An explicit formula for the transition probabilities for this model can be given [8,
Lemma 10]:

Lemma 2.2 The transition probabilities of the model with right Ber[ p | jumps, blocking
and parallel update are

11 - 11 - X — . .
P =31X0" = 5) = ¢ det[ FP vy = ywvi—jo 1 = D], jepnys

(2.5)

whereX,y € Qn,t € No, M(X) = #{2 <i < N : xj_1 —x; = 1} and F* B is defined
in (2.3) with a contour y which includes 0 and 1 but not the singularity at —q/ p.

In the case L > 2 we do not expect to have determinantal formulas of this type
describing transition distributions. Note that when p > 1/2, the function inside the
determinant in the lemma cannot be written in the form (1.2) used in the definition
of the Markov chains studied in Sect. 1.2, because, since in this case ¢/p < 1, the
contour y cannot be chosen to be a circle. We will not use (2.5) in the sequel, but the
same issue will play a role in the next proposition.

2.1.3 Distribution function for caterpillar heads

Finally we use the results from the Introduction to derive a formula for the distribution
function of the heads of the caterpillars (of any length L > 1). For L = 1 the
result is a consequence of (2.2) and Theorem 1.2. In the general case it follows from
Lemma 2.1 and Theorem 1.4, together with an analytic continuation argument in the
caset <«k(n, —1)and p > 1/2.

Proposition 2.3 Consider the system of caterpillars X of length L > 1, and suppose
that X(0) = ywithy € Qn(L—1). Thenforanyt > 0,anyl <ny < --- <ny < N,
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and any a € R™, we have

P(X{ i) > ai, i € [m]) = det(I = %aK" P %a) oy 1wzye (26
where the kernel K™™B is given by (1.16) defined using ¢ (w) = g+ pw andx = L—1
and where, in the definition of the kernels (1.3)—(1.5), 6 € (0, 1) is arbitrary while
r € (0, 1) is also arbitrary unlessk > 1, p > 1/2 andt < k(n,, — 1), in which case r
has to be bounded above by q/ p. The random walk used to define (1.8) in this case has
transition matrix Q(x, y) = ﬁ@x_y_qu,ylxw withg; = 1-3%_; (';)qu"_j
(qgi =1 fori > k).
dist

Proof By Lemma2.1,XPead(n,-) = X,1 (nj) = Xtr:?nl__l),( (n;), so the probability on the
left hand side of (2.6) can be computed using Theorem 1.4. The transition probabilities
(2.2) of the system XfB correspond to (1.1)/(1.2) with p(w) = g + pw, which clearly
satisfies Assumption 1.1 with any 0 < p < 1 < p, while Assumption 1.3 is also
satisfied in the case ¥ > 1 (condition (1.12) is proved in Appendix C.1). This leads to
the desired formula (with arbitrary choices r, 6 € (0, 1)) in the case t > k(n, — 1).

Next we extend the formula to all # > 0 in the case x > 1. If p < 1/2 then, by
Lemma C.4, (1.17) holds for the model with the function F;_; defined as in the above
paragraph, and thus Theorem 1.4 implies again the desired formula with arbitrary
parameter choices. Crucially, in that case we have g/p > 1, so p > 1 can be chosen
in (1.2) so that the singularity of ¢(w) at w = —g/p is outside the contour y;, as
required by Lemma C.4. In the case p > 1/2, however, this is not possible, so the
extension to all # > 0 provided in Theorem 1.4 does not apply, and thus we need a
different argument.

Take p = p > 1/2, k > 1. The left hand side of (2.6) defines a function of the
parameter p which is real analytic for p € (0, 1) (this can be proved for instance using
(1.12) with the current choice of F},). We claim that for fixed (small) ¢ > 0, the right
hand side is also real analytic in p € (0, p + ¢) as long as the radius r used to define
S_i —p satisfies 7 < (1 — p—¢)/(p + ¢). To see this, note that the kernels (1.3)—(1.5)
are all real analytic in p € (0, p 4+ ¢) because no singularities of the integrand are
crossed as p is moved along this interval under the stated condition on r. Moreover, in

(S_t’_n,')*:se_ptl,(,ij (Zla ZQ,) — Z}’EZ(S_L_"[)*(ZL )’)Se_ptl,(,:j) (y’ Zz) the sum is actually
finite: for y > 1 the first factor vanishes because the integrand in (1.4) has no pole
at 0, while for y < 1 the second factor vanishes because the random walk B, in
(1.8) takes only negative steps and so it cannot hit epi(y¥) by time n. Then the kernel
K™ B(z1, z2) is analytic in p € (0, p + &), and a standard argument (e.g. using a
Hadamard bound to show uniform convergence of the Fredholm series) shows that the
Fredholm determinant also is so. Since the two sides are real analyticin p € (0, p+¢)
and are equal for p € (0, 1/2), we deduce they are equal also at p = p. This gives the
result for this value of p, with the restrictiononr < (1 — p —¢)/(p + ¢€), and since
& > 0 is arbitrary we recover the restriction r < g/ p. O

In the next two examples we will focus mostly, for simplicity, on the one-point
kernel

K™ (21, 22):=K"B(n, 2131, 22).
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Example 2.4 (Half-periodic initial data) For a fixed L > 1, letx = L — 1 as before,
d > « Vv 1, and let the initial state be ¥ € Qp such that y; = —di for eachi.

In the case d = 1 (which means necessarily L = 1 or L = 2 due to the restriction
d > « Vv 1), if By < —1, then the random walk never hits the epigraph of y. This
means that SE Pt () ) = = X—15;,—n, and thus the second term in (1.16) can be computed
using (5.39) and (5.40):

(S-n)* X180, (x1, x2)

gm 2 (1 —w)(l —v)y2t2 (g + pw)t—x(n,-—l)
dv — : ’
S @S, Ty wr (T —w =) (1= pu) <D

2.7)

This gives the kernels for the models in the case of step (or packed) initial condition
Xo(i) = —i,i > 1.

Let us now consider the case d > 2, with n; = n; = n. When d = 2 the ker-
nel S?,l,(,f) can be computed directly as in [24, Ex. 2.9], but in the general case it
turns out to be easier to do it using an equivalent description, provided in Sect. 5,
by computing the functions (5.20) explicitly and then using (5.21). In the nota-
tion of Sect. 5 we have a(w) = (¢ + pw)* and ¥(w) = (¢ + pw)'. Using
(5.9) we can compute the logarithm of the moment generating function of B as

¢*(1) = 10g(a9e M) for A < —log#. Then ( B;, ’""5*(}‘)) >0 is a martin-

gale, which yields EBi,:z[ ABr*_t*‘p*(A)] = 29 (M) where T* is the hitting time
of the strict epigraph of (y,—m)m=0.... n—1. This identity can be used to compute the
distribution of t* in the same way as in [24, Ex. 2.10], and leads to the following
formula for the function defined in (5.32) in the case z < yj:

k+1gd(n—k)—z+1
PO, 2) = S &, du
)K(k+1)—1(1 _ u)z+d(n—k)+k—1

1—
a-r s (1 4+ (px — p—dyu+ p(d — /c)uz).

This expression is analytic in z and we can extend it to all z € Z. Then using
Theorem 5.11 and formulas (5.8), (5.9), and (5.10), we can compute ®}(x) =

R =HAH T B0, x) as

kg—d(n—k)—x (1— )X+dn—l (1—pu)¥ k B
. 271 95‘)/, du u(lbipu)rﬂ u(1—u)d-1 (l + (pk — p —d)u+ pd — K)u )

L (x) =

The function (5.15) on the other hand equals W} (x) = 02’—:; ¢, dw %

d=1(1_yw) \ K « .
(W) , for ¥’ > 0. Define now g(w) = %. Since clearly ®}(x) =0

for k < n we may compute the sum in (5.21) over all k < n; we get

() (g+pw)’ (1—wy2+=1 (14+(pk—p—dyu+pd—r)u*)g(1—u)"
K1 z2) = <2m>256 duf,  dw e i 2wy L(g(I—w)—g(w) '

(2.8)
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where the contours are such that |g(w)| < |g(1 — u)| (for this we need to choose r
sufficiently small and ' > r sufficiently large). In the case d = 1 we recover the
kernel from the beginning of this example (with n; =n; =n).

Remark 2.5 The restriction d > « Vv 1 in the above example, coming from Proposi-
tion 2.3, leaves out the important case of step initial data for caterpillars of length
L =« +1 > 3. We believe (and have checked in a computer algebra system in simple
cases), however, that the formula holds for all . More precisely, we conjecture that
the distribution of the heads of caterpillars of any length L with step initial data is
determined by (1.15) with the kernel K; in (1.16) computed using (2.7) withk — L — 1.

Example 2.6 (Periodic initial data) Now we derive a kernel for caterpillars with infi-
nite periodic initial state X (i) = —di for each i € Z with for d > 2 (in the setting of
Ex. 2.4). To this end we consider the initial state y € Qo given by y; = d(N — i) for
each i and focus on distribution of particles with indices N + 1, N +2,..., N+ M
for a fixed M < N/2. Then the respective kernel K, (n) is obtained from (2.8) by

K;E?d (z1,22) = KW+ (70 —dN, 7o — dN). Proceedmg asin [24, Ex.2.10] one sees
that for N > % the kernel becomes independent of N and is given by

() _ 61~ d— 1 (q+pwi @) =D (1 —w; )" (1—w)Z2td+n—2
Kprd(zl’ZZ) - 2711 f,d Z w; ()21 1+ u (1= pu)y!—<n+1

1+(pk—p—d)u+p(d—k)u®

X

3wf(uvw)|w:wi(u) ’
where f(u,w) = (1 — ww?'Ad — pu)* — u(l — w)? (g + pw)* and
wi(u), ..., wg—1(u) denote the d — 1 distinct solutions other than w = 1 — u of

f(u, w) = 0 inside y,» (with r’ from the previous example). This gives the kernel for
the d-periodic initial condition introduced in this example. For L = 1, the formula
recovers the kernel derived in [6, Theorem 2.1]. In the case L = d = 2, the equation
f(u, w) = 0 has two solutions w = 1 — y and w = IZ'I‘M

kernel we consider only the latter and get

2p+2n
() 71-2) t2n71(1 —u)<2
Kprd(Zl ) = (27”)2 f, u~1+2n+l(1 puyd 2=z

This is the kernel for parallel TASEP which was obtained in [8, Theorem 1].

2.1.4 TASEP with generalized update

Finally we consider a version of discrete time TASEP with a more general dynamics,
introduced in [12]. In this new model X&®"(¢), which takes values in Qy, particles
try to make right Bernoulli jumps independently with probability p with the usual
exclusion rule that jumps onto occupied sites are blocked. As above the update of
particles is from right to left. If at time ¢ it is the turn of the i™ particle to jump and
the configuration is such that X~ gen 1) > X; £1(1) + 1 then as usual the particle jumps

with probability p, but if XF (t) = gen(t) + Land X¥ (t + 1) = X3 (t) + 1 then
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X igen () jumps to the right with probability B € [0, 1) and stays put with probability
1-8.

In the case § = p this model evolves as TASEP with sequential update, while in
the case § = 0 it is TASEP with parallel update. Another interesting caseis 8 — 1, in
which when a particle moves it pulls its left neighbor. In [12, Eqn. 3.2] it was proved
that the transition probabilities for this model are

PO = RIXG" = ) = (LM det[ FE (envr—i = yv-. D], jequs

2.9)

where X, y € Qy, t € Ny, the function V(%) is defined in Lemma 2.2, and

gen _L%‘ dw w— 1 —n .
e = 5 ywx_"+1<1—w(,3—p)/q) (q+pw).  (2.10)

with any contour y enclosing only the poles at 0 and 1. While Theorem 1.2 cannot
be applied to this model, because the function F; - is not quite of the form (1.2), the
more general biorthogonalization result which we prove below, Theorem 5.15, does
apply.

In order to use Theorem 5.15, one first applies the scheme of Sect. 4 to show that

Pyen (X7 (n) > aj, i € [m]) = det(l — Xa K" Xa) 2, (2.11)

{(ny,...nm}x7Z)
with K€" a kernel of the form (5.18) with Q, W}/ and &} defined using a(w) =
1 —w(B — p)/q and ¥ (w) = (¢ + pw)' and with the choice y = X5 (note that,
in the setting of Sect. 5, we have in this case x = 1). In order for this to work, the
contour y in (2.10) needs to be a circle of radius greater than 1 (just as in (1.2)).
Since it cannot include any poles of the integrand other than 0 and 1, we need the
parameters of the model to satisfy |8 — p| < ¢. This condition holds if and only if
B el(2p—1)vO0,1),so at this point we add this assumption (it could be lifted by an
analytic continuation argument as in Proposition 2.3). Then Theorem 5.15 shows that
K& has the form (5.41) with the same choices where 6 € (0, 1) is arbitrary while the
radius r in (1.3)—(1.5) can be taken arbitrarily in (0, 1) when 8 € [p, 1), while when
B el(2p—1) V0, p)ithas to be bounded above by ¢/(p — B).

2.2 Left Bernoulli jumps

In this model, to go from time ¢ to time ¢ 4 1 particles are updated sequentially from
right to left as follows: each particle jumps to the left with probability p € (0, 1) and
stays put with probability ¢ = 1 — p independently, except that particle k is forced
to jump if particle k — 1 arrives on top of it, so that the configuration of particles
stays in Q. In other words, when a particle jumps on top of another one, it pushes
it and its whole cluster of nearest neighbors one step to the left. The model is often
referred to as discrete time PushTASEP. Note that, analogously to the dynamics for
right Bernoulli jumps, a given particle at time ¢ is pushed by the location of its right
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neighbor at time 7 4- 1. The evolution of the particle system X ;_B € Qp can be written

as X, $(1) =X, B(1) =&+ 1,1) and

X2 = min{X)B(k) — £+ 1.k, X\ F(k— D =1},  k=2,....N,

where &(¢, k) are independent Ber[ p] random variables. The transition probabilities
of the model are (see Appendix E.2)

PX; P = 31Xy " = 5) = det[ 2P Gve—i = yv1-1. 0], ey 212)
where X, ¥ € Qu, t € Ny and (here the contour y encloses 0 and 1)
_ 1 (w—-1D™" P\
1-B _ z
FIBx,n) = 2m?€dw — (a+2) (2.13)

This corresponds to the setting of Theorem 1.2 with p(w) = g + %, and one can check
that Assumption 1.1 is satisfied as needed. We will write the distribution function for
this model in a more general setting in Proposition 2.7. To that end we will in fact rely
directly on the formulas for X {_B, as we explain next (alternatively, one can proceed
as in Sect. 2.1 and then apply Theorems 1.2 and 1.4 directly to this model).

There is a simple coupling which relates X}_B with the model of discrete time
TASEP with blocking introduced in the preceding subsection. Starting from the con-
figuration of particles X }7B at time ¢, decrease each value X }7B (k) by 1 and after that
perform one step of Ber[¢g] TASEP with jumps to the right, where the update of parti-
cles is from right to left. This will give us a configuration X };113, which is distributed
as the one obtained after one step of Ber[ p] TASEP with pushing. In other words, we
have

x-B=xrB g (2.14)

where X"B is TASEP with right Ber[¢] jumps, blocking and sequential update. This
identity is easy to prove directly, and provides an alternative proof of (2.12) (or alter-
natively, it follows from (2.12)).

2.2.1 Caterpillars

Caterpillars of length L = 1 are given by the model described above. We now construct
caterpillars of lengths L > 2 by coupling them to the system of caterpillars from
Sect. 2.1, using (2.14) and Lemma 2.1. For L > 2 let X, € Qj‘fiL be a copy of the
system of caterpillars defined in Sect. 2.1, with jumps to the right occurring with
probability ¢ (instead of p). Then, using Lemma 2.1 and the relation (2.14), we define
caterpillars with left Bernoulli jumps as

Xik) = X!(k) —t + (k — Dic +i — 1, (2.15)
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where k = L — 1. From the definition, X; (k) now'lives in the space of backward
caterpillars K5 = {(X', ..., Xt) e Z": X! — X' € {0,1}, i € [L — 1]}, whose
heads are to the left of their tails, and the system of caterpillars takes values in the
space

Qv ={X=&®O,....,X(N) e KDV: X'k +1) < XE(k), k e [N —1]}.

Note that in this new space, a site can be occupied by more than one caterpillar (in
fact the head and intermediate sections of the k™ caterpillar, but not its tail, can be
on top or to the left of the head of the (k + )™M one). Moreover, the definition (2.15)
implies that if the initial state Xo is in Qu(k), then the initial state X is given by
X(]) (k) = yr + (k— 1)k and Xé(k) = X(l)(k) +1i — 1 for all i and k. This means that at
time O the caterpillars are stretched horizontally while the vector of heads X, gead lives
in

Qv ={(x1, ..., xn) €ZN i x; > x0 > -+ > xy). (2.16)

With a little ambiguity, we will write in this case Xo € Q.
By definition of X; and (2.1) the heads of the caterpillars evolve according to the
equations X} (1) = X/ (1) —&(t + 1, 1) and
X' (k) = min{X} (k) &G+ 1k, XF (k= 1) =1}, k=2,....N,

where the &(z, k)’s are independent Ber[ p] random variables. After the head jumps,
the other parts are updated according to Xf_H(k) = Xi_l(k) fori =2,..., L. More
precisely, the transition from time ¢ to time ¢ 4- 1 is given as follows, with the positions
of the caterpillars being updated consecutively for k € [N] (i.e., from right to left):

o If X tl k) <X zL+1 (k — 1) — 1, then the head of the kth caterpillar makes a unit step
to the left with probability p.

o If X ,1 k)y=X tL—H (k — 1), then the head of the k' caterpillar makes a deterministic
unit step to the left.

After that we set X;+l (k) = Xf_l (k) fori =2, ..., L.In words, the heads jump as in
TASEP with left Bernoulli jumps but are pushed to the left by the tail of the caterpillar
to their right, while each of the remaining sections of each caterpillar follows the
movement of the section to its right in the previous time step. We can reformulate
Proposition 2.3 using the transformation (2.15) to get a formula for the distribution
function of the heads of the caterpillars in this model:

Proposition 2.7 Consider the system of caterpillars X of length L > 1, and with the
initial state X (0) = y, suchthaty € Qn if L =1 andy € Qu if L > 2. Then for any
t>0,anyl <ny <---<n, <N, and any a € R™, we have
head . _ 1-B -
P(Xtea (nl) >a;, 1€ [[m]]) = det(l - XLlK Xﬁl)[2({nl ..... nm}xZ)’

where the kernel K'=B is given by (1.16) defined using p(w) = q + % andk = L —1
and where, in the definition of the kernels (1.3)—(1.5), 60 € (0, 1) is arbitrary while
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r € (0, 1) is also arbitrary unless k > 1, p < 1/2 andt < k(N — 1), in which
case r has to be bounded above by p/q. The random walk used to define (1.8) in
this case has transition matrix Q(x,y) = ﬁ@x_y_qu,ylxww with q; =

1= Yo (P7a ™7 (qi = 1fori > 0).
2.2.2 Caterpillars of length L = 2

Let us write X,Z_l_B = X?ead. Then we have X,z(k) = X?:%_B (k) and the discus-
sion in Sect. 2.2.1 implies that X ,2_1_B € Qu. Moreover, the evolution is given by

X7 P =Xx7"PW) —g@+ 1, D) and

XZ7B %) = min{X? B () — £+ L0, X B - )~ 1), k=N.....2,
where £(t + 1, k) are independent Ber[ p] random variables. In other words, X ,Z_I_B

evolves as follows. Particles are updated from left to right, and the update of X tz_l_B (k)
is as follows:

o If X?_I_B k) < X,Z_I_B(k — 1), then th_l_B (k) makes a Ber[ p] jump to the left,
o If X>7B(k) = X?>71"B(k — 1), then X?7'"B(k) makes a deterministic jump to
the left.

This is the left Bernoulli analog of TASEP with right Bernoulli jumps and parallel
update: when going from time ¢ to time ¢ + 1, particle & is pushed by the location of
particle k — 1 at time ¢ (instead of time ¢ + 1 as in the sequential case). We can write
an explicit formula for the transition probabilities for this model (a formula for the
multi-point distributions was given already in Proposition 2.7):

X2717B

Lemma 2.8 The transition probabilities of the process introduced above are

PR =X =)
= PO det[ P i —ywei—j 0+ i= D] ey @17

wheret € No, 3, X € Qn, N(X) = #{2 <i < N : x;_| = x;}, and the function (2.13)
with a contour y which includes 0 and 1 but not the singularity at —p/q.

Proof I{sing the definition (2.15), we get the identity X;(k) = X, (k) —1+k—1,
where X, is the parallel TASEP with right Ber[q] jumps. Then Lemma 2.2 allows to
write the probability (2.17) as

P(X; (k) =x; +t —k+ 1,k € [N]|Xok) = yx —k + 1,k € [N])

= pNuhkelND det[ F{~ P (enepii = yn1—j 1 +i— i +i = D) ey

where Nis defined in Lemma 2.2, and where the function Fnr’B is given by (2.3) with
p and g swapped. The last identity is exactly (2.17). O
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2.3 Left geometric jumps

Inthis model, discrete time TASEP with left geometric jumps and pushing (or geometric
PushTASEP), to go from time ¢ to time ¢ 4 1 particles are updated sequentially from
right to left as follows: each particle makes a jump to the left with distribution Geom[ p]
pushing to the left all particles on its way, so that the configuration of particles stays
in Q. As in the previous two cases, the update rule is sequential: when going from
time 7 to time ¢ + 1, a particle is pushed by the location of its right neighbor at time
t 4+ 1. However, and in contrast to the push dynamics in the left Bernoulli model from
Sect. 2.2, if a particle is pushed by its right neighbor, it still gets to make its own
geometric jump after that (see also Sect. 2.5). The evolution of particles X}_G € Qn
satisfies X, 7 (1) = X; (1) —&(t +1,1) and
X § (k) = min{X; S(k), X} §k— 1) =1} =& +1,k), k=2,....N,
(2.18)

where & (¢, k) are independent Geom[ p] random variables. The transition probabilities
of the model are (see Appendix E.3)

P(X;7% = ¥X5 @ =) = det[F/_ (g1 — yw41-j, )] (2.19)

i,je[N]’

where X,y € Qu, t € Ny and

1 -1 !
RO = o aw U ()
27i J,, wx—ntl \ 1 —g/w

where the contour encloses 0, ¢ and 1. This is the setting of Theorem 1.2 with
(p.(w? = .%, fgr Which Assumption. 1.1 clearly holds. We write the corresponding
distribution function in greater generality below.

This model can be used to obtain explicit formulas for TASEP, which scale to
formulas for the KPZ fixed point, with some special choices of random initial data,

see Sect. 3.5.

2.3.1 Caterpillars

By analogy with Lemma 2.1 we define caterpillars in this case through Xi(k) =
X ;:g’(_ Di—it1 k), With_K = L — 1. Each caterpillar non lives in‘the space of stretched
backward caterpillars ICZ = {(Xl, X ezt Xt X eNy, i e [L— lﬂ}
(two segments of a given caterpillars can be at any distance from each other), and the
whole system takes values in the space

Oy =1X=&®O,....x(N) e KOV: X"k + 1) < XEk), k e [N - 1]}

(as for the left Bernoulli case, caterpillars may overlap in this system but the tail of
every caterpillar always has to be to the right of the head of its left neighbor). The
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evolution of this system follows from the definition of X ; (k) (and the dynamics (2.18)
of X }_G); the transition from time ¢ to time 7 4 1 is given as follows, with the positions
of the caterpillars being updated consecutively for k € [N] (i.e., from right to left):

o If X (k) > Xt+1 (k — 1), then the head of the kth caterpillar moves to XILJrl (k —
1)—1.
e Next the head of the k" caterpillar makes a jump to the left with distribution
Geom|[ p]. '
o Finally weset X! (k) = X} (k) fori =2,..., L

We can now compute the distribution functions using Theorem 1.4:

Proposition 2.9 Consider the system of caterpillars X of length L > 1, with an initial
state X(0) =y € Qn. Thenforanyl <nj < --- <ny < N, anyt > k(n, — 1),
and any a € R™, we have

P(X[(n;) > ai,i € [m]) = det(I — %K'~ Xa) o, (o (2.20)
where the kernel K'=C is given by (1.16) with p(w) = —, k = L —1, and

any r,0 € (q, 1). The random walk used to define (1.8) in t?us case has transition
matrix Q(x y) = (1 —=0)(+= q/e) “o*=y=lg: with g; = 1 fori > 0 and q; =

1 — p* Z] 1o (]JFK )q/ otherwise.

Proof The function ¢ as chosen in this case clearly satisfies Assumption 1.1 and
Assumption 1.3(b) with any ¢ < p < 1 < p. On the other hand, Assumption 1.3(b)
is satisfied for this model for any « > 1 if the initial states y take values in Qn
(defined in (2.16)); the proof of this fact is similar to the one for the right Bernoulli
case (see Appendix C), so we omit the details. In view of this, the result follows from
Theorem 1.4. O

For this model, condition (1.17) seems not to hold, and in fact it appears to be the
case that (2.20) does not hold in general for r < « (n,, — 1).

2.3.2 Caterpillars of length L = 2

Inthecase L = 2weset X270 = X head The dynamics of X 271G an be described
using the general caterpillars’ dynamics. We can also derive equations similar to (2.18).
We have X?(k) = X>~1"%(k) and (2.18) gives the evolution

X770 = min{X7 700, X%k - ) - 1) - £¢ + LK)

for k = ,2,and X719 = X779 — £(r + 1, 1), where £(t + 1, k) are
independent Geom[ p] random variables. The process is again Markovian, and gives
a parallel update version of geometric PushTASEP. In words, particles are updated
from left to right; when X ,Z_I_G (k) is updated, first, if it is located on or to the right of
XIZ*]*G(k — 1), then it is pushed to X,zflfG(k — 1) — 1; after that thflfG(k) makes a
Geom|[ p] jump to the left. Note that at a fixed time ¢ the particles may not be ordered.

@ Springer



638 K. Matetski, D. Remenik

2.4 Right geometric jumps
2.4.1 Parallel update

In this model, to go from time ¢ to time ¢ + 1 particles are updated sequentially from left
toright (i.e., starting with the particle with label N) as follows: the kth particle X {7G(k)
tries to make a Geom[ p] jump to the right but if the destination site is bigger than or
equal to X f_G(k — 1), then it arrives at X§_G (k — 1) — 1. Note that, in contrast with
the previous three cases, updates in this model, TASEP with right geometric jumps
and blocking occur in parallel, just as in the model from Sect. 2.1.2 (even though,
as we will see, this model corresponds to ¥ = 0, which in the above setting would
correspond to caterpillars of length L = 1), see also Sect. 2.5. The evolution of the
particles X] S € Q is described by the equations X[ (1) = X; S (1) + £t +1, 1)
and

X700 =min{X;S() + £+ Lk, XS Sk—1—1}), k=N,....2,
(2.21)

with &(t, k) i.i.d. Geom[ p] random variables on {0, 1, . .. }. The transition probabilities
of X'~ are (see Appendix E.4)

P(X'~6 = %|X; % =)
= det[F{Z Cevsi—i = N1 D], jeqap- (2.22)

where X,y € Qu, t € Ny, and

_ 1 w-D"( p \
G —
b (’“”—%ﬁdw o (1_qw ’

where the contour includes 0 and 1, but does not include 1/g. Assumption 1.1 is
satisfied with p(w) = l_p —, which allows one to apply Theorem 1.2. Assumption 1.3,
however, is not satisfied for this model. The problem is that particles can jump to a
location arbitrarily far to the right, so a particle starting at a given time needs to be
aware of the particles to its right even if they have not started to move. This is related
to the fact that in this model updates occur from left to right, and means that the

caterpillar construction of the above sections does not work in this case.

2.4.2 Sequential update

Instead, in order to have a determinantal formula of the type (1.12) for the transition
probability of particles with different starting times, we consider now a situation with
particle i starting at time i — N, 1 <i < N.Lemma D.2 below proves the analog of
(1.12) in this situation, and by analogy with Lemma 2.1 we define

X770k = Xy (R).
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Note that the analogy cannot be pushed any further: for L = « + 1 > 3 the definition
Xi(k) = X;;g{fl)“iﬂ(k), i € [L], does not have a physical meaning, because
a “caterpillar” interacts with its left neighbor in the future. From (2.21) we get the
evolution X?;lr_G(l) =Xx>"51) +£¢+1,1) and

X770 () = min{ X0k + £ + 1.k, X7 Ok — 1) — 1}
fork =N,...,2, with &E(t 4 1, k) i.i.d. Geom[ p] random variables. In other words,
X t2—r ~G evolves as follows: particles are updated from right to left; X ?_r_G (k) makes
a Geom[ p] jump to the right, and if the destination site is larger than or equal to
XIZJ:]r ~G(k — 1), then the k™ particle arrives at XZZJ:{ Gk — 1) — 1. Note that, with
these dynamics, X IZ_I_G € Qy forall ¢ > 0. This is just the sequential update version
of TASEP with right geometric jumps and blocking: the transformation X i_G (k) —>
X trjr,(;’_l (k) turns the parallel update of the right geometric model into sequential update,
justas X} Bk — X : :,](3 1 (k) turns sequential into parallel update for right Bernoulli
jumps.

2.4.3 Distribution functions

The following result is proved in Appendix D. For parallel update it follows from a
direct application of Theorem 1.2.

Proposition 2.10 Let X; be any of the particle systems X{_G (parallel update) or
thfrfG (sequential update). Suppose X (0) =y € Q. Thenforanyl <ny < --- <
nm < Nandanya € R", foranyt > Ointhe case X; = X' S and foranyt > ny, —1
in the case X; = X>7"C we have

P(X,(n;) > a;,i € [m]) = det(I — %aK" S %4) (2.23)

2{ny,...nm}x7)’
where the kernel K*™=C is given by (1.16), defined using ¢(w) = ﬁ, the values
k = 0 for parallel update and k = —1 for sequential update, and with any 6 € (0, 1)
and r € (0,1). The random walk used to define (1.8) in this case has transition
matrix Q(x,y) = (1 — 6)0x’y711x>y in the case k = 0 and Q(x,y) = (1 —
G)QX_}’_lﬁ(lxzy_H + pli>yy2) in the case k = —1.

The restriction ¢t > n,, — 1 for sequential update is analogous to the restriction
appearing in Proposition 2.9 in the case of geometric jumps, and it is not clear to us
whether it can be lifted.

2.5 Relation to previous work

As we mentioned at the beginning of this section, the transition probabilities of the four
basic types of interacting particle systems (with blocking and pushing interactions,
and with Bernoulli and geometric jumps) have been previously computed using the
coordinate Bethe ansatz (which provides a method to solve the Kolmogorov forward
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equation for each model) [10, 28] and via the RSK algorithm [14]. While our gener-
alization of these dynamics to systems of interacting caterpillars appears to be new, at
least in the case of right Bernoulli jumps, the idea of computing transition probabilities
of particles starting from different times (which plays a key role in our analysis, since
it relates the evolutions of particles and caterpillars as explained in Lemma 2.1) can
be found in the literature in a different setting.

More precisely, in [10] a Schiitz-type formula was derived for the transition proba-
bilities of Bernoulli TASEP with sequential update with particles starting and finishing
at different times (referred to as a generalized Green function in that paper) under a
certain, not entirely explicit, condition on the initial and final configurations. The
method was developed further in [30] and [29] in a setting where particles with larger
indices start moving at later times, in contrast to our choice (which is exactly the
opposite). In that setting, there is no ambiguity in how the process gets started (since
the dynamics of each particle is independent of those to its left), but interpreting what
these Green functions compute is not entirely straightforward; those works show that
they are essentially the exit probability of particles from certain special space-time
regions. [29] also contains a derivation of the biorthogonal correlation kernel for arbi-
trary starting and ending times (which we derive in a general setting see Sect. 4 for
our choice of ordering of starting times).

The four basic dynamics considered in this section can also be described as edge
projections of the 2 + 1 dynamics on Gelfand-Tsetlin patterns (or triangular arrays
of integers whose consecutive levels are interlaced) introduced in [4], which is based
on another intertwining construction (different from the one related to RSK; see also
[37] for the Brownian case). More precisely, the four choices of the function F; in
[4, Sect. 2.6] correspond to (up to a change of the variable and the parameters), and
motivated, our four choices of the function ¢ in Props. 2.3, 2.7, 2.9 and 2.10.

The construction in [4] also helps to explain some of the specific features of the
four basic particle systems which we have studied. For example, the choice of right
Bernoulli jumps yields Bernoulli TASEP as the left edge projection of the associated
Gelfand-Tsetlin dynamics and Bernoulli PushTASEP as its right edge projection (the
top edge projection is related to non-intersecting Bernoulli walks for special choices
of initial data). In particular, the construction provides a coupling of the two processes.
Left Bernoulli jumps is essentially a sort of dual choice, which exchanges the dynam-
ics of the two edges. The case of right geometric jumps (left geometric jumps are again
essentially equivalent) is more subtle: the right edge projection yields geometric Push-
TASEP, but the left edge projection is not even Markovian. Very roughly, the reason is
that the dynamics on Gelfand-Tsetlin patterns involves a certain conditioning on the
particle jumps to respect the interlacing between levels, and while for Bernoulli jumps
this can be done at each of the two edge projections by looking only at particles at the
same edge, the long-range nature of geometric jumps makes this conditioning on the
left edge depend also on other particles inside the triangular array. This conditioning
also explains why in Bernoulli PushTASEP particles which are pushed in a given time
step do not get to attempt another jump, while in geometric PushTASEP particles can
jump after being pushed: a Bernoulli random variable conditioned on being larger
than or equal to 1 can only take the value 1, while (by the memoryless property) a
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geometric random variable conditioned on being larger than or equal to some value ¢
is just £ plus the same geometric random variable.

TASEP with right Bernoulli jumps and parallel update was also described in [4,
Sect. 2.6] as a projection of a parallel update version of their 24-1 dynamics. In the case
of geometric jumps, [38] studied a suitable version of the same 2 + 1 dynamics, which
can be thought as enforcing one direction in the interlacing inequalities sequentially
and the other one in parallel, for which both edge projections are Markovian, one
being the parallel update version of geometric TASEP with block dynamics which we
studied in Sect. 2.4, the other one being the standard geometric PushTASEP.

Regarding the explicit Fredholm determinant formulas for the multipoint distri-
bution of these systems, they were only available (though seemingly not explicitly
written in the literature in all cases) in the case of packed or half-periodic initial data
(see Ex. 2.4) for the four basic models and for right Bernoulli TASEP with parallel
update (versions of these formulas could be derived too in the case of half-stationary
initial data, see Sect. 3.5).

3 Continuous time variants of TASEP

This section is devoted to the application of the general biorthogonalization framework
presented in Sect. 5 to continuous time versions of the TASEP models described in
Sect. 2. We begin with continuous time TASEP, for which the biorthogonalization
problem was originally solved in [24].

3.1 Continuous time TASEP

In the fotally asymmetric simple exclusion process (simply TASEP throughout the rest
of this section), the process X;, ¢ € [0, 00), takes values in 2y and evolves as follows:
each particle independently attempts jumps to its neighboring site to the right at rate
1, the jump being allowed only if that site is unoccupied. TASEP was first solved by
[34] using the coordinate Bethe ansatz, leading to

P(X; =X|Xo =) = det[ Fi—j (XN41-i — YN+1-j t)]i,je[[Nﬂ

with

1 (w—-D™" o,
Fn(x,t)zﬁf/dwwe ,

where the contour contains 0 and 1. Applying Theorem 1.2, we obtain

P(X;(n;) > a;, i € [m]) = det(I — 1K ™5 1,) 3.1)

2({ny,...,npyx7Z)’

KTASEP

where is given by (1.16) with ¢(w) = ¥~ and ¥ = 0, with any choice of

r,0 e (0,1).
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In the case 0 = 1/2, (3.1) is the formula obtained in [24], where it was used to
show that in the usual KPZ 1:2:3 scaling, the TASEP particle positions converge to
the KPZ fixed point (see Sect. 3.4).

3.2 Continuous time PushASEP

Now we have N particles at locations X;(1) > X;(2) > - - - evolving according to the
following continuous time Markovian dynamics. Particles jump independently to the
right with some rate R > 0 and to the left with some rate L > 0. When the i particle
jumps to the left, if the destination site is occupied, the occupying particle is pushed to
the left (in other words, the whole cluster of nearest neighbor occupied site to the left
of i moves); this is the same push mechanism as in Sect. 2.2. Jumps to the right by the
th particle, on the other hand, are blocked if the destination site is occupied (TASEP
dynamics). If L = 0 the model becomes TASEP, while if R = 0 it is a special case of
Toom’s model [13].
From [3, Proposition 2.1], the distribution function of N > 1 particles is given by

P(X; =X|Xo=7) = det[FiIfjh(xNH_i — YN+1—j> t)]i,je[[N]]’

where (here the contour again contains 0 and 1)

FPSh gy _j£ ot (Rw+L/w—R—L)
- wr— n+l :
Theorem 1.2 yields
B(X, () > ar. i € [m]) = det(l = LK™ %) o (B2)

where KPUh is given by (1.16) with p(w) = eRw+L/w=R-L

choice of r, 0 € (0, 1).

In the case & = 1/2, (3.2) coincides with the formula obtained in [26]. In that paper
the validity of the formulas (3.1) and (3.2) for TASEP and PushASEP was proved
directly by showing that the right hand side satisfies in each case the corresponding
Kolmogorov backward equations.

and k = 0, with any

3.3 Continuous time TASEP with generalized update

Now we introduce a continuous time version of the model described in Sect. 2.1.4.
The state space is 2y, and as for TASEP each particle jumps to the right at rate 1
provided that the target site is empty. However, if a particle jumps to the right and its
neighboring site to the left was occupied before the jump, then its neighbor makes a
unit jump to the right with probability 8 € [0, 1) (in other words, a particle which
jumps to the right brings along its left neighbor, if it has one, with probability 8). The
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transition probabilities for this model are given by

P(X, = %|Xo = ) = (1 = /MO det[FE envi—i = yv1—jo 0] equpe

where X, y € Qy, t € Ny, the function V(%) is defined in Lemma 2.2, and

1 d —1\—n
F;:gen(x’ 1) = 5 %,,4.1( w ) el(wfl)’
wiJ, w 1—Bw

with y enclosing only the poles at 0 and 1. This formula can be obtained from (2.9),
by replacing the time variable ¢ by 7/p and taking p — 0. In the same way we
get a formula like (2.11) for the distribution function with K" now defined using
a(w) =1 — pw and ¢ (w) = '™~ and with any r, 0 € (0, 1).

3.4 Convergence to the KPZ fixed point

In [24] the formula (3.1) was used to show that the TASEP particle positions (or the
associated TASEP height function) converge, under the usual KPZ 1:2:3 scaling, to a
scaling invariant Markov process. This process, known as the KPZ fixed point, is the
conjectured universal scaling limit of all models in the KPZ universality class. The
main motivation for the present work is to obtain analogous formulas for other particle
systems which can be used to prove convergence to the KPZ fixed point in a similar
way. We will not perform the asymptotics for these models in this paper, but we very
briefly sketch the result in the case of TASEP.

Let UC be the space of upper semicontinuous functions hh : R — [—00, 00)
satisfying h(x) < A|x|+ B for some A, B > 0 and hh = —oo, endowed with the local
Hausdorff topology (see [24, Sect. 3] for more details). Consider TASEP initial data
(X5())i=1 such that for some b, € UC satisfying by (x) = —oo for x > 0,

e' 2 (X5 (e %) +2e 7 x — 1) — —ho(—x) (3.3)
in UC. Now consider (3.1) with & = 1/2 and the scaling

t = 2873/2t, n; = %873/2t — eflx,‘ — %871/231_ +1, a = 2e*1x,- - 2.
(3.4)

We also change variables in the kernel K TASEP (ni, zi; nj, zj) in the Fredholm deter-
minant through z; = 2eIx; +&71/2 (u; +a;) — 2. Note that this turns the projections
Xa; Into ¥ _a, and multiplies the kernel by ¢~ /2 Introducing the kernels

(u—v)x

2wl
Stx(u,v) =t e ™ T AN P (0 —u) + 7%

for t # 0, where Ai is the Airy function, it is proved in [24, Lemmfl 3.5] that for y =
e~1/2v one has e7V2S_; (v, 2i) — S_tx (v, u;) and 7128, (v, 7)) —
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S_t—x; (v, u;). Note also that since Q" is the n-step transition probability of a
Geom[1/2] random walk jumping strictly to the left, under our scaling we have by

.. . )92
the central limit theorem ¢~ 1/2Q"i " (z;, zj) — eXi =X (yy; uj)ase — 0 for

2 ..
X3” x > 0, denotes the heat kernel. Simi-

epi(Xg) .
—t,nj n

X; > X; (which implies n; > n;), where e
larly, under this scaling the random walk B inside the expectation defining

(1.8) becomes 81/2(B€_|x +2¢~1x — 1), which converges to a Brownian motion B(x)
with diffusivity 2, while the hitting time 7 of the walk B to the epigraph of X{ in (1.8)
becomes the hitting time of B to the epigraph of the curve —b (x):= — hy(—x) since,
by (3.3), the initial data XS rescales to —h . Putting these facts together leads in [24,
Sect. 3.3] (after some calculations) to

lirr})P(XZE_z/zt(%s_wzt —e Iy — %5_1/23,- +1) > 27 'x; — 2, i € [m])
e—

hypo(h)
=d t(I— K )
© XaBrext  X2) o) xn xR

.....

::]P’(h(t, X;)<a;,ic ﬂm]]) 3.5)

h

h R
ypo(ho) (xi, Xj, )= _e(X/ Xl)azlxi<xj + (St

ypo(hy) .
t.ext 0" St x;, with

where K x

S (0, u) = Epoymu[Stx—r B(T), )1z o0 (3.6)

and where 7 is the hitting time by B of the hypograph of §. Justifying that the conver-
gence of the kernels which we indicated above holds in trace class so that it implies
convergence of the Fredholm determinants requires considerable effort, we refer to
[24] for the details.

The second line of (3.5) defines the finite dimensional distributions of the KPZ
fixed point h(t, x), which in [24] is shown to be a UC-valued Markov process. In fact,
the formula only defines the KPZ fixed point for one-sided initial data b, (meaning
ho(x) = —oo for x > 0); the generalization to all f; € UC can be done through a
limiting procedure by shifting, see [24, Sect. 3.4].

Remark 3.1 Note that (3.3) means in particular that we are taking TASEP initial data
which has average particle density 1/2. This is why in the derivation sketched above
one takes & = 1/2. One could instead assume that /2/(T — p)pe!/?(X§(e7'x) +
pleIx — 1) —> —ho(—x), corresponding to average particle density p € (0, 1).
By suitably modifying the above choice of scaling one would get again convergence
to the KPZ fixed point. To this end one needs to use 8 = 1 — p to ensure as above the
convergence of the random walk B to a Brownian motion B. We omit the details.

3.5 Formulas for TASEP and the KPZ fixed point with random initial data

The TASEP and KPZ fixed point formulas (3.1)/(3.5) have been derived for deter-
ministic initial data. Random initial data can be handled by averaging, but since the
determinant is nonlinear this leads to non-explicit formulas. However, for some spe-
cial choices of random initial data one can write explicit formulas by composing the
dynamics of two different particle systems. A prominent example is TASEP with
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half-stationary initial data (and its KPZ fixed point limit), which can be obtained by
composing TASEP with geometric PushTASEP: in fact, applying one step of geomet-
ric PushTASEP with parameter p = 1/2 to the step initial condition XEfG(i ) = —i,
i > 1, leads to a configuration with particles on the negative integer line with inde-
pendent Geom[1/2] gaps, i.e., a product measure with density 1/2. This is known in
the field and relatively simple, but we have not found it explicitly stated in this form
in the literature (an exception is [23], which is partly based on a draft of this article),
so we include it here, although we work in greater generality. For simplicity we focus
only on the composition of TASEP with geometric PushTASEP, although it will be
clear that the same argument can be used for other combinations.

Let X, denote continuous time TASEP and recall the geometric PushTASEP par-
ticle system X;_G introduced in Sect. 2.3. We want to start with some given initial
condition (X}fG (1))i>1, apply £ discrete time PushTASEP steps, and use the result-
ing configuration X };G as the initial condition X for the TASEP dynamics. Since it
does not introduce any difficulties, we also allow the parameter p = py in the k™
PushTASEP step to depend on k. It is shown in [23] that the resulting initial condition
X };G is essentially the top path of a system of reflected geometric random walks with
a wall at XE)_G: the first walk X ll_G is reflected off X})_G, the second walk Xlz_G is
reflected off X lfG, and so on. More precisely, these reflections take place through a
discrete version of the Skorokhod reflection mapping (with a slight time shift), see
[23, Sect. 5.2] for more details.

Using Cor. A.2 we get for TASEP with initial data prescribed as above that

P(X, =%|Xo = Xi_G, X%)_G =3) =det[Fi—j(xnti—1 — )’N-&-j—l)]l-’je[[Nﬂ

n—" - 1
with F,(x) = 2n1»¢‘ w(:ﬁX D et =D TTs_, — qk
the g ’s, with gx = 1 — px). Theorem 1.2 now gives, for this choice of initial data,

p (here y encloses 0, 1 and all

P(X:(n;) > ai, i € [m]) = det(I — XaK®Xa) 2((n, ... 152 (3.7

with K° given by (1.16) with p(w) = e/®@~D 1_[1{:1 # and k = 0, with any
6 € (maxg g, 1).

Consider now the scaling (3.4) introduced in Sect. 3.4 and assume that the initial
PushTASEP configuration X ¢ satisfies e 2(Xi(e7'x) + 267 x — 1) — f(x),
x > 0, in UC, for some f € UC defined on [0, co) (c.f. (3.3)). Choose also pr =
%(1 —¢!/2by). In view of the above description of our choice of initial data X L—G’ it is
natural to expect that it will converge to an appropriate system of reflecting Brownian
motions (RBMs). It is shown indeed in [23, Proposition 3] that, under this scaling,
X z_G converges in distribution, uniformly on compact sets, to a system of RBMs with

drift (Y7 (k)) kele] with a wall at f, defined as follows: Y,f(l) is a Brownian motion with
drift 2b reflected off f and, recursively, Ylf (k) is a Brownian motion with drift 2by

reflected off Y,f (k — 1) (all Brownian motions have diffusivity 2; note also that we have
changed the sign of the b;’s compared with [23]). This pins down the limiting initial
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data for the TASEP dynamics, and then from [24, Proposition 3.6] we get, under the
scaling (3.4), that

lin})IP’(X,(n,-) > aj, i € [m]) = P (h(t,x;) < a;, i € [m]),
E— 4

where the KPZ fixed point initial data is built out of the RBMs through (here we take
0-00=0)

S0 = Y] (=X Ly — 00 - Ix0. (3.8)

In order to compute the limit of the right hand side of (3.7) we need to repeat the
arguments sketched in Sect. 3.4 for the kernel K ° instead of K TASEP The only differ-
ence in the kernels is that the current choice of ¢ (w) has an extra factor [ [}, #.

Let us assume all the by ’s are negative so that, given our choice p; = %(1 —el/2py),
we can take & = 1/2 in the definition of K; if some by is non-negative the argument
can be repeated by adjusting 6 with &. To compute the limit [24] uses the change of
variables w +—— %(1 — &l/2%). After this change of variables, the pointwise limit of
the integrands in (5.39) and (5.40) are the same as in [24] except for the additional
factors coming from the rational perturbation in ¢ (w). Moreover, it can be checked
that the steepest descent arguments used in Appendix B of that paper to upgrade this
to trace class convergence of the whole operator are not affected by these additional
factors; the argument is lengthy but the adaptation is straightforward, so we omit it
(the crucial points being, first, that the additional poles at w = —by stay away from
the contours of integration and, second, that the required estimates depend on terms of
order £ ~3/2 in the exponent after writing the integrands as e (), whereas the rational
perturbations are of order 1). The upshot is that we just need to compute the limit of
the rational perturbations in v (w) and 1/ (1 — w) after scaling. For this we multiply
(S_i—n)* by (=2)¢e*? and S_, , by (=2)"*e~%/? and note that, as &¢ — 0,

_0gl/2__pi 1 _ e 1lmqd-w) ! —
2¢ T~ bt and > o — by —w.

In view of this and [24, Lemma 3.5] we define the operators

Sb :I:(u v) f dweSw 3 pxw? +w—v)w I—[k 1(bk ¥ w)il

27[1

for t > 0, where the contour crosses the real axis to the left of all —b;’s and goes off

in rays at angles £ /3. Define also Shypo(f) bt as in (3.6) with S x replaced by St’X .

The argument we just sketched leads to:

Theorem 3.2 For the KPZ fixed point started with initial data H (0, ) = .‘73<b) i.e., built
out of RBMs with a wall at | as in (3.8), we have, for any t > 0,

P(h(t,x;) <ri, i € [m]) = det(I — yaKMPoDb

3.9
t,ext a)LZ({Xl ,,,,, X} xR) G
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with KPP (17, ) = —e® 0P 1y 4 (ST SEreb
Taking £ = 1, by = 0 and f to be 0 at the origin and —oo everywhere else, the
initial data 55;0) becomes simply a one-sided Brownian motion on the left and —oo on

the right of the origin, while Shypo(’t) OF becomes simply XOS . This is corresponds
then to the KPZ fixed point Wlth half-stationary initial data and for t = 1, it recovers
the formula for the Airy,_ g)j process [11, 16].

When the b;’s are negative and f = 0, Y, [0 (£) has a stationary measure and one can

define a double-sided stationary version ﬁgzl) of the initial data j’Jéb). Fort = 1, the

KPZ fixed point with initial data bég) defines an £-parameter deformation of the Airy
process which corresponds to initial data identically O (and, at the level of one-point
marginals, of the Tracy-Widom GOE distribution), for which formulas can be obtained
as a limit of (3.9) with § = 0; see [23, Sect. 5] for more details.

4 Biorthogonalization of a general determinantal measure

In this section we study a general class of (possibly signed) determinantal measures
and prove a Fredholm determinant formula for certain marginals of them, in terms of
kernels given implicitly in a biorthogonal form. An explicit formula for these kernels
will be derived in Sect. 5. In the setting of Sect. 1.2, the measures which we will study
correspond to (1.1) and (1.12) and the marginals to the left hand sides of (1.10) and
(1.15), but our framework is a bit more general.

In particular, we will study measures on particle configurations which depend on
some auxiliary parameters vy, ..., vy > 0 which, in the setting of (1.1), can be
thought of as different speeds for each of the N particles (for example, for right
Bernoulli TASEP these speeds would encode different jump probabilities). Introduc-
ing different speeds is helpful to overcome some technical difficulties; it is in fact
a standard approach in the framework of Schur processes and TASEP-like particle
systems to prove formulas in terms of a Fredholm determinant (see e.g. [27] and [3]).
This generalization is also meaningful from a physical point of view, but we will not
pursue it any further in this work: in fact, after obtaining our Fredholm determinant
formula in Theorem 4.3, we will go back to equal speeds by taking v; —> 1 for all i.

Throughout the section, ¢ denotes a time variable taking values in T (which, we
recall, can be either R or Z). We also fix N € N and a vector v = (v;); [N] such that
v; > 0 for each i. Define the kernel

wr2—X1 1

1 — )" -
<%mwg=5;fdw9211—=w'“myz @.1)
Y

fori € [N] and x1, x» € Z, where p > max; v;. The inverse of % is

wxz X142

U (x1, x2) = ——f Ly —vilyeoi, (42)

@ Springer



648 K. Matetski, D. Remenik

where p > 0. For k € [N] we set
TH =%, V=T “3)

with the convention %'[%1 = I. The kernels of these operators can be written explicitly
as

1 k — )t
T, x2) = —7{ dw iz @ = w7
o

27 wX2—X1—k+1
1 ]_[]-(_ (w —v;)
[—k] _ i=1 i
oy ()C], xz) = %f/ dw W (44)
0
We also introduce the kernels (for i € [N])
Di(x1, x2) = v; My, Ooi(xy,x2) = 021y =y, 4.5)

and a further kernel (depending on a given complex function ¢)

27 wx27x1+1 :

t
Ri(x1, x2) = i.% dw 2 4.6)
Yo

We make the following assumption throughout the whole section:

Assumption 4.1 The function ¢ satisfies Assumption 1.1 with the annulus A, ;
defined for some radii p € (0, min; v;) and p > max; v;.

Note that the conditions on p and p in Assumption 1.1 correspond to the ones in
this assumption in the case v; = 1 for all i. Note also that the choice of p and p in
the assumption is compatible with the choices in (4.1)—(4.4), and that it is such that
the singularities of ¢ whose modulus is smaller than min; v; are contained inside both
¥, and y;. This choice of radii will remain fixed throughout the rest of the section.
One could consider slightly more general assumptions (in particular the annulus A, 5
could be replaced by a more general domain under additional conditions), but this
choice is more than enough for all the applications we have in mind.

For k, ¢ € [N] and ¢t € T we define the function

Fio(x1, x5 1) = (VIR T T9_0) (x1, x2). (4.7)

From (4.4) and the properties of ¢ it follows that the compositions of the kernels in
this formula are absolutely convergent. To see this, note first that the kernel ¥/ [~¢] has
finite range. On the other hand from (4.4) we get |7 M (x}, x2)| < 1,5, [T, (5 —
1),-)_1/,5)‘2 —¥1=k while in (4.6) we may move the contour to y; for some fixed o >p
so that, since |¢(w)’| is bounded on yz, |R; (x1, x2)| < C(p')*1~*2 for some constant
C > 0. These bounds yield

Yyez (Ve IR (v, x2)| < CTTIZ (5 — v) ™ Xy, ()Y 72/ ™1 7F < o0
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This allows us also to compute the function Fy ¢ explicitly as (see also Lemma 5.6)

Fortnaaif) = ?g L @/v0 Tz w — v) g(w)’
kX1, A2, - 27 v (w/U[)xz Hﬁ-{zl(w _ Ui) w[—k+1 .

(4.8)

Finally, for y, ¥ € Qu and s, t € T with s < ¢, we define

N

G, (5,X) = (H <P(vi)s_t> det[ Fi.e (yk, xe t — s)]k’ge[[NIr 4.9)

i=1

One can readily check that as v; —> 1 for all i, the function G (Y, X) converges to
the right hand side of (1.1) if ¢(1) = 1. Although this function integrates to 1 over
X € Qp (see Lemma 4.2), in general we do not require it to be positive, so it does
not define in general a probability measure. However, G ; satisfies the semigroup

property.

Lemma4.2 Forany X,y € Qy and s, t € T one has Goo(y, X) = 15-3 and

Y G035 =GoGan.Zn) Y Gou(3.DGosG F) = Goups (5, 5,

XNEZL ZeQn
XN <XN-—-1

(4.10)

where the vector y_y € Qy_1 is obtained from y by removing the N™ entry. In
particular, we have that ZieQN Go.(y,X) = 1forall y € Q.

Proof After the change of variable z — 1/w in (4.8), the function Gg o(y, X) coin-
cides with the one in [3, Eqn. 2.2], and then the proof of G (¥, X) = 15_z is
contained in the proof of [3, Proposition 2.1].

The second identity in (4.10) follows from Proposition A.1. To prove the first one we
start by noting that for k < N the integrand in Fy y in (4.8) does not have singularities
inside the annulus A, 5, so we may shrink the contour to y,, and compute

) 1 (w/v)k [T (w—vi)p(w)’ _
ZxN<fo1 Fen (ks XN3 ) = 55 fyp dw T ZXN<XN71 (w/vy) 3N

_ L /o) Ty (w—vi)p(w)’
T 2ni Yy, (w/ony)'N=1  wN=ky—w)

Expanding the contour to y; we only cross a pole at w = vy, and computing the
residue we get

% [T ey (w—v)o(w)’
ok, dw el et Qeuiol) 4 g, yvgn)'. @.11)

. ey . . S5 o N _
From this and multilinearity of determinant, >, _ .~ Go (¥, X)equals[[;Z; ¢(v;)~’
times the determinant of an N x N matrix, whose first N — 1 columns are the same
as before while the N one has entries Li—ne(vy)! for 1 < k < N; the first term in
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(4.11) can be removed because it gets canceled by addition of (vy/vy—1)*N-! times
the (N — 1) column. A cofactor expansion of this determinant along the N™ column
gives the first identity in (4.10).

To see that G, integrates to 1 we apply the first identity in (4.10) N — 1 times
toget Y zeq,Gor(¥,X) =3\ 7 Go. (1, x1) = ()T X 7 Fra(y, x151). To
compute the sum over xl < y1, we shrink the radius of the contour to p < min; v; as

before to get ¢(vy) ™! f dw ‘p(w) . For the sum over x| > y; we keep the original

2:11
w(w)

contour and get ¢(vy) ™' 5 = 95 dw . Summing the two we are left with the last
integral on a small contour around V1, and computing the residue we get 1 as desired.
|

The function (4.9) defines a measure on particle configurations in a space-time
domain. We are interested in its projections to special sets known as space-like paths.?
which we introduce now. For (ny, 11), (n2, 12) € [N] x T we write (n1, t;) < (n2, 1)
ifn; <ny, t1 >t and (ny, 1) # (n2, r2). We write n = (n, t) to denote elements of
[N] x T. Then we define the set of space-like paths as

Sy = U {(ni)ie[[m]] np € [N] x T,n; < i)

m>1

For a space-like path S = {(n1, #1), ..., (M. tm)} € Sy andfor y € Qy and X € Q,,,,
we set’

m—1
GEG. D= Y GouyGny X)) [ [ Gyt Gy i), X(2)).
X(t1)eQy,: i=1
Xn; (1) =x; ie[m]
(4.12)
Furthermore, for Ty < --- < T} and for ¥ € Qy and y € ZV, we set
N
_ > - Ti .
Gz(.0) = ([Te@d™ ) et Fr.e O xes =T0) |y (4.13)

i=1

In the setting of the Markov chain X; considered in Sect. 1.2, if we take v; —> 1 and
t; > 0 for all i, then G;f(i, X) becomes P(X;, (n;) = x;,i € [m]|Xo = y), while for
k& > 1if we take T; = —« (i — 1) as in Assumption 1.3, then the function G;(ﬁ, X)
becomes (1.12).

2 The “space-like paths” terminology is related to the intepretation of particle systems related to TASEP
as growth models, see the explanation in the introduction and Sect. 2.2 of [3], where it was introduced.
3 Here and later we use ¥ (#;) to parametrize vectors by time points. In particular, we postulate that X (7;)
and X (1) are different vectors even if #; = ;1. This slight abuse of notation, which makes clear the
correspondence between vectors and the associated time points, will simplify the presentation later on.
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Convolving (4.12) and (4.13) in the case 71 < t,,, we define

Gis(3.5) = Y. GZ(G.9GEE. %), (4.14)

EEQN

Our goal is to obtain a formula for the following integrated version of G : for
yezZN, aez™,

MiG.a)= Y  Gjg(. 5. (4.15)
XeQn:
xi>a;,ie[m]

Ifv; — 1,T; = —«x(i —1)and ; =1 — k(n; — 1) > O for each i, then Mz (¥, a)
becomes the probability (1.15), which follows from the Markov property.

4.1 Biorthogonalization

The main result of this section provides a Fredholm determinant formula for
M 7. S@’ a) in terms of a kernel constructed out of the solution of a certain biorthogo-
nalization problem. This type of result was first obtained for continuous time TASEP
in [7, 33], and was later extended to other processes in several papers. Our result is
essentially an extension of those (in particular [3, 8], where distributions along space-
like paths were first studied) to the case of different starting times. We indicate the
differences with these results more precisely below Theorem 4.3.

Before stating the result we need to introduce a space of functions V,, (v). For fixed
n € [N] and given a vector v as above, let u; < us < --- < u, denote the distinct
values among the first 7 entries vy, ..., v, of v and let B be the multiplicity of uy
among these entries. Then we let

V,(9) = span{x € Z+—> x‘ui : 1 <k <v, 0 <€ < B} (4.16)

Furthermore, we extend the multiplication operators (1.9) to £2(Sx Z), for a space-like
path S, as

Xa((nj7tj)vx):Xa(njﬂx) and Xﬂ((njﬂtj)7x):)za(njvx)'
Theorem 4.3 Let the function ¢ and the values v; satisfy Assumption 4.1, and fix

Ty < --- < Ty and a space-like path S, the time points of which are all greater than
T1. Then the function (4.15) can be written as

Mz (3, d) = det(I — )ZaK)Za)lz(sz), 4.17)

where det is the Fredholm determinant, 1 is the identity operator, X, is definedin (1.9),
and:

@ Springer



652 K. Matetski, D. Remenik

(1) The kernel K : (S x 7Z)> —> R depends on T and ¥y, and is given by

nj
K, xisng, x) = =" (i, x) Lo <ny + ) Wl ()@, (x)),
k=1
(4.18)

forn; = (n;, ;) andnj = (nj, t;)in S.
(2) Forn; and nj as before, such that w; < nj, the function ¢™™) is defined as

0
o 1 gD(w)t,-—tj J 3
minj) .. ) — — > — 1
U (X, xj) = 2711% dw i | | vk —w) . (4.19)
Yo k=n;+1

(3) Forn= (n,t) € Sand k € [n], the function V}}_, is given by

n

n 1 p(w) Tk
k() = — f;ﬂ dw ———— ]_[ (v — w). (4.20)

wX—Yetn—k+1
i=k+1

(4) The functions ®%_,, for k € [n] and w = (n, t), are uniquely characterized by:

(a) The biorthogonality relation ) ., W} (x)®F(x) = lx=q, for each k, £ =
0,....n—1.

(b) span{x € Z — ®}(x) : 0 <k < n} =V,(0).

XEZL

Remark 4.4 Assumption 4.1 guarantees that )", \I/;(x)xkvf is absolutely conver-
gent for any k > 0, which makes the statement of the biorthogonality relation
valid. More precisely, the contour of integration in (4.20) yields |[w| = p < v;
and ) |\Ilz‘(x)xkvl’.‘| <Ci).<0 Ix|¥(vi/p)* < o0o. On the other hand, we can
extend the integration contour in (4.20) to y5, which yields |[w| = p > v; and
Yo WX v < C2 Yo XK (0i/9)F < o0

The proof of Theorem 4.3 is provided in Appendix 1. Although it follows closely
the proof of [3, Proposition 3.1], there are two important differences in our case which
require us to provide a complete proof (beyond the fact that we work with a general
choice of ¢): 1. Only the measure corresponding to (4.12) was biorthogonalized in
[3]; the extension to different starting times (4.14) which we consider introduces an
additional factor (p(w)_Tk in our formula (4.20), and makes the argument a bit more
complicated. 2. Our choice of ¢™"/) in (4.19) is slightly different from the one in
[3]. More precisely, taking v| = --- = vy = 1, (D +LD) simplifies to 1y, -y,
while the respective function in [3, Proposition 3.1] is given by 1,,<y,. Our choice
of these functions will be more convenient for the explicit biorthogonalization which
we will provide in Sect. 5.

Remark 4.5 Without changing the value of the function in (4.9), we can conjugate the
matrix by ¢* for any ¢ # 0, and consider the function ¢” = F¢ ¢(y, x; t). Then the
statement of Theorem 4.3 holds in the same form, with all functions conjugated by c*.
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If we take the limit v; —> 1 for all i, this theorem can be applied to compute the
probability (1.15).

Corollary 4.6 In the setting of Theorems 1.2 and 1.4, suppose that Assumption 1.1
holds, let p and p be as in that assumption, and suppose that either k = 0 or, for some
choice of k > 1 and some given initial state y, Assumption 1.3 also holds. Then for
anyt > k(ny, — 1), 0 € (p, p) and a € Z™ we have

“.21)
with
nj
K(n;i, x;; nj, xj) =—0" " (x;, xj)ln,-<nj + Z\Ijn;_k(xi)q):;—k(xj)’
k=1
1 %% (we(w)\"
M(xi,xi) = — d , 4.22
Q" (xi. x)) 27i ), W ki ( l—w “22)
exfyk t 1 _ I’l—k
W0 = e dw S ( v ) , (4.23)
271 J,, wx Ykt we(w)X

where ¢ is from Assumption 1.1, and the functions @', _,, for k € [n], are uniquely
characterized by:

(1) The biorthogonality relation y_
0,....,n—1;
(2) span{x6Z|—>@Z(x):Ofk<n}=span{err—>xk9" :0 <k <nl

W) (x)Py(x) = k=g, for each k,£ =

XEL

In particular, in the setting of Theorem 1.2, the right hand side of (4.17) with K
defined by (4.22) with k = 0 gives a formula for P(Xt(ni) > a;, i € [m] ’ Xo = i)
Moreover, if the additional condition (1.17) holds, then (4.21) holds for t > 0.

In the corollary we have introduced an additional conjugation by 6% in the ker-
nel coming from (4.18) (see Remark 4.5). This will be convenient in Sect. 5. As in
Remark 4.4 we see that for r < 6 < r the sum in (1) is convergent absolutely.

Proof Fixt > k(n,;, — 1). Applying Theorem 4.3 with starting times 7; = —« (i — 1)
and speeds v; = --- = vy = 1 to the space-like path S = {(n;,t —x(@ —1)) : 1 <
i < m}witht > k(n, — 1), yields (4.21) with the kernel K replaced by the kernel
= g nj  ~n; =nj .
K (i xisnj, xj) = =0 (i, xj) gy + 3Ly Wl (i) ®,7_ (x)) with

~ i 1 ( )K(njfni) i—n;

¢ (i %)) = g fy, dw ST (L —w) T, (424)

~ 1 (p(w)1+f<(k—1)
LIlnfk(x) = 27 fyp dw WXV K+

(1 — w)"*, (4.25)

and where the functions 52_,(, k € [n], are characterized by )", ., ‘Iff (x)EIVDZ x) =
1y—¢ fork, £ =0, ...,n — 1, together with span{x € Z — CDZ(x) :0<k<n}=
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V,.(¥); note that V,,, defined in (4.16), here equals span{x € Z — x*:0 <k <n).
Multiplying (4.24) by 6%~/ yields Q"/™" (x;, x;). Multiplying by 6* 7% in (4.25)
we get (4.23). Therefore, multiplying the kernel K by 6%~/ we obtain the kernel
K in (4.22), where the functions @Z; _x(x;) are equal to 7%/ times the functions

%Z; _(x;) defined above, which implies the listed properties.

Next we explain how (4.21) can be extended to the case t < k(n, — 1) (with
k > 1) under the additional assumption (1.17). It is more convenient to do this for
the distribution of all particles, i.e., in the case m = N and n; = i fori € [N]; the
unnecessary particles can then be eliminated by taking respective values of a; to be
—o00. For & defined as before with m = N, instead of (4.12) we define the function

N-1

GiG.H = > GonG.E) [ Gr Goi (). Rty 1)),
X()€EQN_iy1: i=l1
x1(t)=x;,i€[N]

where y, X € Qy are fixed. Using this function we define G g by (4.14), where in
this case we assume 77 < 1. Applying (1.17) recursively one sees that G 7. S(i, X) =
P(Xi—ci—1)(i) = xi, i € [N]| X—cv=1) = ¥. &) by first evolving all particles up
to time #; and then moving the particles one-by-one “back in time”. The biorthogo-
nalization of this function can be proved by analogy with (4.17). O

4.2 Orthogonal polynomials perspective

Theorem 4.3 allows us to compute the marginals ./\/lf‘ S(i, a) of Gj g in terms of

the biorthogonal ensemble* associated to K. In applications to the classical particle
systems considered in Secs. 2 and 3, the functions making up the kernel are related
to classical families of orthogonal polynomials, and it is instructive to spell out in
some detail what the biorthogonalization problem means in those cases. We do this
next, focusing on models with block dynamics (for push dynamics one sees the same
polynomials but supported on the negative integers).

4.2.1 Charlier polynomials

As explained in Sect. 3.1, continuous time TASEP corresponds to the model in Cor. 4.6
with k = 0 and @(w) = ¢”~!. In this case the functions (4.23) can be written in
terms of Charlier polynomials (see [7, Eqn. 7.4] or [21, Eqn. 9.14.9]), which are the
family of discrete orthogonal polynomials Cy (x, t) with respect to the Poisson weight
w;(x) =e™! %lsz (with the usual normalization Cy (x, 1) = (—1/¢)*xK+-..). From
[21, Eqn. 9.14.1] we readily conclude Cy (x, t) = Ci (k, t). Then the contour integral

formula for Charlier polynomials Cy(x, 1) = 5 ;i!z«f fyr dw (iu _xlfl)k e', which follows

4 This is the (signed) determinantal point process on a certain space of Gelfand-Tsetlin patterns having K
as its correlation kernel; see Appendix 1 for more details.
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from [21, Eqn. 9.14.11], leads to

WY (x) =077 fi(x — yu—k)  with fr(x) = Ce(x + k&, Hw; (x + k).
(4.26)

For TASEP we can thus rephrase the biorthogonalization problem of Cor. 4.6 as
follows:

Given a family of shifted Charlier functions W}/ (x) = fi(x — yn—k), k =
0,...,n — 1, with f; as in (4.26), find a family of functions {CD”}k 0...n—1
on Z such that 6% ®7 (x) is a polynomial of degree k, and {®} }x—o,... n—1 are
biorthogonal to {W}! }k,o n—1 (in the sense of (1) in Cor. 4.6).

.....

The solution to this biorthogonalization problem depends, of course, on the initial
positions of the TASEP particles (yi, . .., yy). The simplest choice in this setting is the
packed (also referred to as step) initial condition y; = —i. In this case we get W}/ (x) =
k==X Cy (x+n, t)w, (x+n), and hence by definition the biorthogonalization problem
is solved by the Charlier polynomials themselves: ®} (x) = Xkt Cr(x + 1, 1).

The packed initial condition had actually been solved earlier using different argu-
ments (see e.g., [17]). The goal of the authors in [7, 33] was to solve the periodic initial
condition y; = —2i, and the biorthogonalization method introduced in those papers
allowed the authors to achieve this by solving for the biorthogonal functions explicitly
(see [7, Appx. 2]). The solution for general (one-sided) initial data was discovered
in [24], based on some additional properties of TASEP (its time reversal invariance
together with the existence of the so-called path-integral version of the Fredholm
determinant formula, see [24, Appx. D] and [2]) to produce an ansatz for the (DZ’S.
The goal of Sect. 5 is to derive this solution in a much more general framework; for
details about where the ansatz comes from we refer to [24, Sect. 2.1].

4.2.2 Krawtchouk polynomials

In the case of discrete time TASEP with sequential update and Bernoulli jumps consid-
ered in Proposition 2.3 we have k = 0 and ¢ (w) = g + pw. Then the rephrasing of the
biorthogonalization problem stated in the previous section holds for this model with
Charlier polynomials replaced by Krawtchouk polynomials [21, Eqn. 9.11.1], which
are now orthogonal with respect to the binomial weight w;(x) = (;) p*q"~*. From
[21, Eqgn. 9.11.1] we have K, (x, p, T) = K. (n, p, T). From this identity and [21,

Eqn. 9.11.11] we get the formula ( )K x,p, T) = H: ! zm fr dw 4= (g +

wr+!

pw)T ", which yields
W) =q 0 ol — yog) with fi(x) = Ke(x +k, pot + Dwr(x + k).

In the case of the periodic initial condition y; = —d(i — 1) for d > 2 the functions
@} were computed in [6].
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4.2.3 Meixner polynomials

TASEP with right geometric jumps, considered in Proposition 2.10, is related to
Meixner polynomials. In this case we have k = 0 and ¢(w) = p/(1 — qw),
while the weight is given by w;(x) = (’Jrf;])q". [21, Egns. 9.10.1, 9.10.11] yield

wr(x)My,(x,t,q) = ﬁ 9er dw (lu;.’fl)” (1 — qw)™"~!, where the integration contour

y, does not include the pole at w = 1/q. Then we have

Vi) = p'o7 T filx — yu—i)  with fi(x) = Mi(x +k, t =k, @wi—k (x +4).
4.2.4 Hermite polynomials

Systems of one-sided reflected Brownian motions also fall into the described frame-
work, although, the state space of particles in this model is R rather than Z (see [25]
for more details). As explained in [25, Remark 5.2], the functions \IJ;‘ are equal in
this model to shifted Hermite polynomials.

5 An explicit biorthogonalization scheme

In this section we turn to the main goal of this paper, which is to develop a general
scheme to, first, solve explicitly a version of the biorthogonalization problem defining
the kernels in Sect. 4.1 and, second, rewrite the resulting kernel in a form which is
in principle suitable for asymptotics, as was done in the particular case of continuous
time TASEP in [24].

We will do this in a setting which is slightly different from the general one in Sect. 4.
In fact, throughout the section we will focus only on kernels with a certain structure,
and not on the general measures from which they arise in that section (in particular, the
results here will be independent of those in Sect. 4). The kernels which we choose to
work with will allow us to handle the setting of Cor. 4.6 when Q is of a specific form
(satisfied by all the particle systems which we consider), and will allow us to to prove
Theorems 1.2 and 1.4 (the application to that section is presented in Sect. 5.5). But
they will be presented and studied in a more general form, which will in particular also
allow us to cover some situations—such as TASEP with right geometric jumps with
sequential update (Sect. 2.4) or with generalized update (Secs. 2.1.4 and 3.3)—which
are not covered by the setting of Sect. 1.2. The extension to kernels corresponding to
particles with different speeds and more general starting and ending times is left for
future work.

5.1 Setting

The general family of kernels which we will be interested in is made out of two main
ingredients. The first one is a (strictly) positive measure on Z, which we denote by
(gi)iez, and which satisfies:

Assumption 5.1 Thereisak € Ngand a8 € (0, 1) such that:
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1) gi=1 fopalli > K,
() Y ez 9i0" < oo.

The geometric sequence 6 will be used to normalize the measure defined by the
gi’s. In applications to scaling limits, 6 is related to the density of particles in the
initial conditions under consideration, see Remark 3.1. Using the ¢;’s we introduce
the following Laurent series:

aw)= Y (gir1 —g)w'. (5.1)

i=—00

The second ingredient is a complex function yr. We will make the following assump-
tion on a and ¥:

Assumption 5.2 There are radii » and 7 satisfying and 0 < r < 6 < 1 < r (with
6 given in Assumption 5.1) such that a(w) is analytic on {w € C: |w| > r} while
1/a(w), ¥ (w) and 1/y(w) are analytic and non-zero on the annulus A, ;.

Recall that, by the convention introduced in Sect. 1.1, the assumption implies that
a(w) is actually analytic on an open domain {w € C: |w| > r — ¢} for some ¢ > 0,
and similarly that each of the last three functions are analytic on an open annulus
fweC:r—¢e<|w| <r+ ¢} forsomee > 0.

Throughout the rest of this section we will assume that the two preceding assump-
tions are satisfied.

Remark 5.3 Inthe setting of Sect. 1.2, the g; ’s from Assumption 5.1 are those appearing
in (1.14), while 6 plays the same role as in that section. The complex function v (w),
on the other hand, plays the role of ¢ (w)’ in (1.2). Hence in that context, both the g;’s
and ¢ are determined by the function ¢. The setting of this section extends that of
Sect. 1.2 by decoupling that dependence.

Remark 5.4 The arguments of this section can be extended, with no essential differ-
ence, to the case where only a is asked to be analytic in an annulus including 6 (i.e.,
allowing v to be analytic and non-zero in an annulus A, 7 for some p < 1 which is not
necessarily smaller than 6). This extension may be useful in the application to some
models with ¥ > 1 if one wants the kernels of the form (1.16) to be defined with as
broad a range of parameters r and 6 as possible. But it yields no improvement in any
of the cases we are interested in, and in any case similar extensions can be achieved by
deriving the kernels under our assumptions and then extending the validity of the final
answer directly to a broader range of parameters (see e.g. the proof of Theorem 5.15
and Remark 5.16). Therefore, and since they lead to a cleaner presentation, we have
opted to work with these slightly more restricted assumptions.

Out of the two ingredients we just introduced we will construct the kernels which
will show up in the general result of this section. We begin with the kernel associated
to the measure (g;);cz. Note that a(9) = 071 (1 — 6) Y iez0'qi > 0, s0 in particular
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we may define

1-6 1
a0 Yz0'qi

Note also that a(1) = 1. We introduce a Markov transition matrix Q on Z built out of
6 and the g;’s as follows:

O(x,y) =ab" Vg, _y. (5.2)
Our assumption on the ¢;’s means that
Qx,y) =ab*Y for x —y>", (5.3)

that is, jumps to the left of size larger than « are geometrically distributed, with
parameter 1 — 6.

An important special case is g; = 1;>1, for which the above definition means that
aw) = 1,0 = (1-6)0"", and Q = Qo with Qp(x,y) = (1 —0)0* V" 1,-,
which is the transition matrix of a random walk which takes Geom[1 — 6] steps to the
left. O can be thought of as a version of the transition matrix Qo where the transition
probabilities for steps of size greater than or equal to —« are modified arbitrarily (with
the only restriction, from Assumption 5.1, that ), . Q(0, £) be finite).

A useful way to think of Q is as follows: B

0 =AQ0= QoA (5.4)

with
A(x, y) = a0 (qr—y+1 — Gx—y) (5.5)

and
Qo(x,y) =07 1sy (5.6)

(this follows directly from a telescopic sum, using that g —> 0 as £ — —oo by
Assumption 5.1). Qg is an unnormalized version of the transition kernel of the pure
geometric random walk Qy introduced in the last paragraph. On the other hand, if the
gi’s are non-decreasing then, modulo normalization, A is also the transition kernel
of a random walk, in which case Q can be thought of as the transition kernel of the
random walk obtained by convolving the other two kernels.

Q and A can also be expressed through the following contour integral formulas:

( _% 0xX—y a(w) A )_if d XYy
Qx.y) = — AW =32 dwora)

5.7
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(we prove these identities in Proposition 5.5 below). Note that the first kernel coincides
with Q from Cor. 4.6 if a(w) = ¢(w)"*.
Similarly, using now the function i we define the kernel

R(x,y) = —— yﬁ RN 5.8)

Recall that we also regard these kernels as operators acting on a suitable space of
functions defined on Z, which in this case can be taken to be £!(Z):

Proposition 5.5 Q, A and R are continuous as operators mapping £\ (Z) to itself, and
are invertible there. Moreover the three operators and their inverses all commute, and
they have kernels given by

k x— k
x o« 6*=Y a(w)
0. y) = 2myg dw ———y (1_w> , (5.9)

Af(x, y) = _?{ = V+la(w)" (5.10)

forany k € Z, as well as

R x, y) = —yg o 1 (5.11)

YUy ()

The analogous statements hold for Q*, A* and R*.

The above formulas for inverses and powers of Q, A and R follow from the fol-
lowing simple result, which we will use repeatedly:

Lemma 5.6 Consider two kernels S and S given by
1 6x—Y
Si(x,y) = Z_Jﬂf,dw W‘Pi(w)’ (5.12)

where ¢1, ¢2 are complex functions which are both analytic on an annulus A, ,, for
some r1 < ry and y is any simple closed contour contained in Ay, ,. Then the sum
defining the product S1S> is absolutely convergent and

S152(x,y) = — f — y+1¢1(w>¢z<w>

Proof We need to compute

x—y

1 0
ZEXZ: (i) f, aw fé/ du e P (W) ().
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For the sum over z < y we deform the u contour to y,, and the w contour to y,
so that |w/u| > 1. The summand can be bounded in absolute value by a constant
times |w|**~1/|u|*=¥*! so this part of the sum is absolutely convergent and after
computing the geometric sum we get

(27.”)2 f dw yg T P W)eaw). (5.13)

For the sum over z > y we proceed similarly, now deforming the u contour to y,,
and the w contour to y,,; the sum is again absolutely convergent and computing the

geometric sum we get now — (27”)2 fy dw 95%2 du %ﬁqﬁl (w)¢y (). Now we
deform u contour to y,, and the w contour to yr,, and as we do this we pick up a pole
at w = u, and computing the residue yields 2%1 fyrl du %wl(u)g/fz(u), which
is exactly what we want. There remains the double integral after having flipped the
contours, but it cancels the double integral which we got in (5.13). O

Proof of Proposition 5.5 We begin by proving (5.7). The right hand side of the sec-
ond identity may be written as 57~ fw dw% D i<c(Giv1 — gi)w', where we have
expanded the contour to y; (which we may do since a(w) is analytic for |w| > r).
Then we can interchange the sum and the integral, and we get (5.5) from a straight-
forward application of Cauchy’s integral formula. For the first one we first note that

Qo(x,y) = 2m " dw%, which is again Cauchy’s integral formula. Then
(5.4) and Lemma 5.6 yield the formula (5.7).

That Q acts continuously on 2Y(Z) is strai ghtforward, being a Markov kernel acting
by convolution (i.e., Q is Toeplitz), and essentially the same argument works for A. In
any case, the general argument works for Q, A, R and its inverses (where the inverse
kernels are those defined in (5.9), (5.10) and (5.11)). Observe that they all can be

expressed as a kernel of the form (5.12)

1 0=
Sx,y) = Tmidw poy —¢(w) (5.14)
for some complex function ¢ which is analytic in an annulus A,, ,, for some r| <
0 < rp, with y a simple closed contour contained in this annulus. By choosing y to
be a circle of radius either larger or smaller than 6, depending on whether x > y or
x <y, we get that there are constants ¢, C > 0 such that [S(x, y)| < Ce<=yl and
from this we get easily that for f € £1(Z), |Sf]1 < C| f 11 for some other constant
C > 0, as desired.

The contour integral formula (5.9) for k > 0follows directly from (5.7), Lemma 5.6,
and Assumption 5.2. The same argument shows that, with the definition in that formula,

07'0(x,y) = 007 (x, y) = 5 f,, dw b =1, —y-as desired. (5.9) fork <0
now follows in the same way, and the same argument gives (5.10) and (5.11). That
the operators commute follows from the facts that they act by convolution and that the
sums involved in their compositions can be interchanged by the estimate used in the

last paragraph. O
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In Proposition 5.5 we have defined 0!, A~! and R™! as integral operators with
explicit kernels and identified them as the inverses in £!(Z) of Q, A and R. In the next
section we will see that crucially, and except for Q, these integral operators also act
on functions of the form 8* p(x) for p a polynomial.

Remark 5.7 In the case of continuous time TASEP considered in [24] (see Sect. 3.1),
the above kernels have ¢ (w) = W=D and a(w) = 1, which in particular means
kx = 0. This entails several simplifications in the arguments of this whole section. One
example is that in that case i and a are analytic and non-zero in all of C, simplifying
many computations.

The key difference is that the kernel Q in that case is just the geometric random
walk kernel Qg in (5.6) (after normalization). The lack of memory of the geometric
distribution is used crucially on [24]. The form of Q¢ implies also that, whereas Q !
is simply a discrete difference operator (see (5.17)), our Q! in general has infinite
range. In particular, while the boundary value problem which will appear in (5.19)
below can be solved, in the case of Q¢, by writing down a solution “below the curve”
in terms of random walk hitting times and then simply extending it analytically to all
of Z, in our case we will need to construct the solution explicitly. Moreover, Qo (x, y)
itself is, as a function of x — y, the truncation of an analytic function, and can thus
be extended analytically to all x, y € Z, but this does not hold for Q. Throughout the
argument we will have to account for the difference between our Q and Qg, which is
where (5.4) will be useful.

5.2 The biorthogonalization problem

Let n € N, which will remain fixed throughout the rest of this section. In applications
to settings such as those of Sect. 1.2, n can be taken to be the number of particles in
the system (i.e., n = N) or, more precisely, the label of the leftmost particle which
one is interested in. We also fix a vector y € Z", which plays the role of the initial
data X in Sect. 1.2.5

In terms of these ingredients we define, forn € [n]andn —in <k <n—1,

—k X—=Yn—k —_ k
_ k o 0 1—w
W) = RO - = 5§ dw (a o ) ¥ (w)

(5.15)

(the contour integral formula follows from Lemma 5.6, using (5.8) and (5.9)) and then
consider a family of functions {@Z}kzo,,,,,n,l characterized by:

(x) The biorthogonality relation )
0,....,n—1.
(%%) 6% ®}(x) is a polynomial of degree k in x.

Wy (x) Py (x) = 1= for each k,£ =

XEZ

5 We could also take i = oo and consider instead a sequence (y;);>1 as initial data, but this does not make
any difference, since in applications we are always interested in the evolution of a finite number of particles
(see in particular the comment after Assumption 1.1).
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Our first task is to show that {®} };—o,... ,—1 is uniquely defined. For a givenn € N
we introduce the vector spaces

anspan{err—>9xxk:0§k<n},
W,;’:span{err—>9*xxk:O§k<n}

(W, coincides with V,((@, ..., 0)) from (4.16)). We will say that a function g €
W, (respectively g € W) has degree k if it equals 6* (respectively 67") times a
polynomial of degree k. We begin with the following result:

Proposition5.8 (i) The operators Q_l, A AL R and R map W, to itself.
Moreover, they commute as operators acting on this space and the formulas in
Proposition 5.5 for the kernels of their powers hold.

(ii) Let g € W, have degree k. Then Rg, R~ g and A~'g have degree k, while for
any ¢ € [k], Qg has degree k — L.

(iii) Let g € W,. Then for £ € {0,...,n — 1}, Q" tg = 0 if and only if £ is larger
than the degree of g.

The analogous statements also hold for Q*, A*, R* and their inverses, with W,

replaced by W,

Proof The five operators in (i) have kernels of the form S(x, y) as in (5.14), with ¢
analytic on A, 7 thanks to Assumption 5.2 (note that this fails for Q due to the factor
1 — w in the denominator). For such a kernel and g € W,,, we have

1 ox—"
se0 =Y 5§ duw” K g = Yo 55 PED g wy
nez r
(5.16)

where p(x) = 6 *g(x), which is thus a polynomial of degree strictly less than .
The sum over n < 0 is absolutely convergent, because r < 1, while for the sum over
n > 0 we may enlarge the contour to y7 and get again that it is absolutely convergent.
From this it follows also that Sg(x) = 6* p(x) for some other polynomial p of degree
strictly less than n. The rest of (i) follows in a similar way.

To prove (ii) let first S be any of the operators R, R™' or A~!. From (5.16), if
the x* coefficient of g(x) is br # 0O then the xk coefficient of S g(x) equals by times
Znez ﬁ 55% dw #(ﬁ(w) We separate the sum again betweenn < Oandn > 0.The

f dw ‘ﬁ)(wl) , while the second part (after enlarging the contour

first part yields

2711
to ;) yields 51 o f dw ¢(w) which, after shrinking the contour back to y, cancels the
first part and leaves us w1th the residue at w = 1, 1.e., ¢ (1). This is non-zero in each of
the cases under consideration, because a(1) = 1 while ¥ (1) # 0 by Assumption 5.2
(since 1 /¢ (w) is analytic at w = 1). This gives the first part of (ii). For the other part
we note that

Q() (-x y)_9 x =y—1 — lx:y, (517)
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so by (5.4) we have 0 lgx) = leA’lg(x) = leg(x) where g € W), has degree
k. Writing g (x) = 6* p(x) we then have Q' g(x) = 0% (p(x + 1) — p(x)), which has
degree k — 1. The statement for Q ‘g, ¢ € [k], follows by repeating the argument
inductively. This yields (ii).

For (iii), let k be the degree of g and note first that, from (ii), we know that 0 ‘g = 0
if £ < k. The same argument shows that the same statement holds for £ = k. To handle
the case k < £ it is enough to show that 0~ tg = 0for g(x) = #*x*. But from (ii) we
know that A~‘g(x) has degree k, and proceeding as above we get inductively that for,
¢ <k, Q5" A~tg(x) has degree k — ¢'. In particular Q5* A~¢g(x) = c6* for some
constant ¢, and then (5.17) again shows that Q ‘g = Qa(e_k)(QakA_()g =0. O

Corollary 5.9 The biorthogonalization problem (x)—(*x) has a unique solution.

Proof We may solve the system by finding ® separately foreach k € {0, ...,n —1}.
Fixing such a k, we need to show that there is a unique polynomial p(x) = by +b1x +
-+« 4 brx* such that if we let @y (x) = 07" p(x), then @] (x) satisfies (x). Setting
g(x) = 6* p(—x) we have by (5.15) that

erZ "Ijg (x)(I)Z (x) = ’RQ_Zg(—yn,().

In particular, Proposition 5.8(iii) implies that RQ ‘g = 0 for £ > k as needed.
Furthermore, for £ < k the same fact implies that RQ~¢g(—y,_¢) only depends on
the coefficients by, - - - , by, and the arguments in the proof of Proposition 5.8 show that
in fact RQ~‘g(—y,_¢) is a linear combination of these coefficients. In other words,
there is an upper triangular matrix A of size (k + 1) x (k + 1) such that ®} (x) satisfies
(%) for 0 < £ < kifand only if Ab = e® with eék) = 1y—;. Existence and uniqueness
then follows from the invertibility of A, which holds because it is upper triangular and
A¢e # Oforeach0 < £ < k;infact, Ay = RQ_Kgg(—y,,_g) for g¢(x) = 0% (—x)¥,
and by Proposition 5.8 again this application yields a non-zero constant. O

Finally we define the (extended) kernel
nj

K(ni,xisnj,x) = = Q" ™" (i x )y <ny + ) Wl ()@, () (5.18)
k=1

forn;,n; € [n] and x;, x; € Z, which is our main object of interest.
5.3 The boundary value problem
Our goal now is to find an explicit solution of the biorthogonalization problem defined

by (x) and (xx) above. The main idea is to consider the following initial-boundary
value problem for the backwards discrete heat equation: for fixed 0 <k <n <n,

O ', ) =hit+1,2) €<k zeZ; (5.19a)
h(k,z) = 6¥n+* z € Z; (5.19b)
R, Yn—g) =0 ¢ <k (5.19¢)
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(here h}/ (£, z) is defined for 0 < £ < k and z € Z).

We remark that, for the solution of the above system, the identity Q*h} (£ +1,z) =
h (£, z) does not hold in general. In fact, using the terminal condition (5.19¢c) one
can see directly that in general Q*hj (k, z) diverges. In particular, this means that the
solution of (5.19) cannot be obtained by simply applying Q* repeatedly to A} (k, -).
Well-posedness in our setting will be a consequence of Proposition 5.8, as it will be
enough to restrict a priori to solutions in W.

Proposition 5.10 The system (5.19) has a unique solution {hz “#,2), £=0,...,k, z€
Z} in Wy, (i.e., such that for each £, hj (L, -) is in W;,). Moreover this solution is such
that hi (€, -) has degree k — { for each {.

Proof The solution at time £ = k is prescribed by (5.19¢), so itis in W, and has degree
0 as needed. Now we proceed by induction, backwards in €. Suppose that we have
constructed the solution uniquely in W, attimes £ 41, ..., k for some £ < k, and that
this solution has the desired degrees. We need to show that there is a unique g € W,
such that (Q*)~"lg = hi (¢ +1,-) and g(y,—¢) = O (so that if we set hj/ (£, ) = g
then this choice satisfies (5.19a) and (5.19¢)), and that this g has degree k — £ . We do
this next.

Let g € W,. Since we want (Q*)_lg(z) to equal i}/ (£ + 1, z), which has degree
k — £ — 1 by the inductive hypothesis, Proposition 5.8 implies that g has degree k — ¢,
so we may writeitas g(z) = 0 *(bo+b1z+- - +bk_gzk_€). Now, by Proposition 5.8
again, we have (Q*)~!g(z) = 672 p(z) for a polynomial p of degree k — £ — 1 which
does not depend on bg. Moreover, the arguments which we used to prove Cor. 5.9
show that by, ..., by—¢ can be chosen in such a way that 6 *p(z) = h} (¢ + 1, 2).
Having made this choice we have (Q*) !g(z) = hi (€ +1, z) as desired, and now we
may adjust the free parameter bg so that g(y,—¢) = 0 as well. To see that this choice
of g € W} is unique, suppose g € W, also satisfies the necessary conditions. We
have (Q*)~!(g — §) = 0, so Proposition 5.8(iii) implies that g — g has degree 0. But
g(Vn—e) = €(yn—r), soin fact g — g = 0 as desired. O

Theorem 5.11 The solution of the biorthogonalization problem (x)—(xx) with respect
.1 Stated in Sect. 5.1 is given by (@Z)kzo oy With

"(x) = (R 'h!(0, x), (5.20)

where hZ(Z, 2), 0 < € <k, z € Z, is the unique solution of (5.19) prescribed in
Proposition 5.10.

Proof The argument is essentially the same as the proof of biorthogonality in [24,
Theorem 2.2]. The polynomial condition (x*) holds by construction and Proposi-
tion 5.8. To prove (x) we write

Yz YEOPL(x) =Y RO (x, yu—e)(R*) TR0, x)

X€Z

=R* Q") RO, yu—e) = (") RO, yu—s),
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where we have used Proposition 5.8 again. For £ < k we use (5.19a) to write
the right hand side as A}/ (¢, y,—¢). If £ < k the boundary condition (5.19¢c) now
shows that this is 0 as needed, while, for £ = k we get, using (5.19c), that the
right hand side equals hz (k, yn—x) = 1. Finally for £ > k we use (5.19a) to write
(09~ nH0, yu—e) = (0~ *=D(Q@*)"'hi(k, yp—¢), which vanishes thanks to
(5.19c¢) and Proposition 5.8(iii). O

5.4 Representation in terms of random walk hitting times

Theorem 5.11 provides us with a characterization of the functions (@Z) k=0,...n—1
which appear in the construction (5.18) of the kernel K. In this section we will provide
aprobabilistic representation for K . Instead of working with the whole extended kernel

K, we will work with the one-point kernel

n—1

K" (@1, 22) =K, ziin,22) = Y WL (1)} (22), (5.21)
k=0

defined for any n € [n]. There is no loss of generality in this simplification because,
using (5.15),

K(nj,snj;)=—0" "y + QY K", (5.22)
Let
n—1
Gon(z1,22) = Y 0" F (@1, ya )} (0, 22) (5.23)
k=0

so that, from (5.15) and Theorem 5.11,
K™ =RQO"Go, R (5.24)

We will use now the decomposition (5.4) to define a certain extension of Q¢ for £ € N.
It is based on an extension of Qg employed in [24], which is defined as follows:

B U ) M Bk 7 el V01
Y “ -1

)

- 1
Q(()e)(m, 2) = —f d
2mi Vs

(5.25)
with § € (0, 1) (so that the contour does not include —1), where (x); = x(x —

D---(x—£€£4+1) for > 0and (x)g = 1 is the Pochhammer symbol. The point is

that for every fixed z1, ng) (21, z2) is in W}_, as a function of z5, and that (as can be
seen from (5.9) with a(w) = 1, see also [24, Eqn. 2.23])

0¥ (@1, 22) = Qf(z1,22) forzizm€Z, z1—2 2 1; (5.26)
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we regard thus Qég) as a polynomial extension of Qg fromzy <zy—1toallzx € Z.

Using Q(()e), and in view of (5.4), we define the extension of Qe as follows:

09 (z1,20) = A Q((f)(m, 22)

¢ - —z1 5.27)
a 93122 (] 4 p)s1—22 B (
=5 dv - a((1+v)~He,

1 Vs v

where the contour integral formula in the second line, which holds for § > 0 small
enough so that (1 + v)~! lives in a small circle around 1 where a is analytic by
Assumption 5.2, follows from (5.7) and (5.25) and the same argument as in the proof
of Lemma 5.6. Note that the condition on § implies in particular that for each fixed
z1, the function zo —> QY (zy, z2) is in W;_,. Moreover, from (5.26) and since

Al(x, y) = 0ifx > y+£k (which follows directly from (5.5) and Assumption 5.1(i)),
we have

0O(z1,22) = 0%z1,22)  for z1—z0> 1+ (5.28)

Now let B, be a random walk with transition matrix Q and define the stopping
time

t=min{m =0,...,n—1: By > Yyn+1}, (5.29)

i.e., T is the hitting time of the strict epigraph of the “curve” (y,;,41)m=0....n—1 by the

,,,,,

random walk (B, )m>0 (We set T = oo if the walk does not go above the curve by time
n — 1). Define

GO,n(le ZZ) = IEB()=Z] I:Q(n_r)(Br, 22)1r<n:| . (530)

The following result provides the crucial connection between the kernel K and the
random walk B,,:

Proposition 5.12 Assume y; — y;j4+1 > k for each j. Then for each n € [n] we have
Gon = AGo,A~".

To prove this proposition we need a preliminary result, which will allow us to
express the solution of (5.19) in terms of the random walk B, (or, more precisely, a
version of B, running backwards in time). Define

pik,2) =3, o OQ%(z,m)
and, forO0 < ¢ <k <n,
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P2 =2 <y, Q7 @me) - an—lfy:sz+l 0" (=2, Mie=1) 2y, @7 Olk=1 1)
(5.31)

Note that if B* denotes the random walk with transition matrix Q* and we define the
stopping times

IZ’”=min{m=E,...,n—1:B:1 > Ynem}

then
i, z) = PBELI:Z(TK’" = k). (5.32)

Note also that pZ (¢, z) satisfies (5.19a) for z < y,_,. Our goal in the two results
that follow will be construct a certain extension of this py (¢, z) to a function pj (¢, z)
defined for all z € Z which satisfies (5.19a) everywhere, and to show that the solution
hj of (5.19) can be expressed explicitly in terms of p} (£, z). Since this last function
comes from an extension of (5.32), this will allow us to establish the connection
between the kernel K and the random walk B,, stated in Proposition 5.12.

More precisely, in the next result we show that, if y € €,,(«), then pZ (¢, z) equals
6~% times a polynomial for z < y,_y — k, so it can be extended to a function ﬁ’lz “, 2)
which equals 6% times a polynomial for all z, which for brevity we call the analytic
extension of pj (£, z) (note that this extension is such that p (¢, z) = p} (£, z) for all
Z < yn—¢ — k and not necessarily for all z < y,_, as one could have hoped in view of
the discussion in the last paragraph). Furthermore, we will derive an explicit formula
for p,’(’ (¢, z), which will allow us to show in Cor. 5.14 that, as needed, its extension
satisfies (5.19a) everywhere.

Lemma5.13 Fixk € {0,...,n—1}, assumey;j—y;11 >k forj € {n—k,...,n—1}
and write Yy = yn—y. Then foreach £ =0, ...,k and z < y; — k we have
k=2 k—t+1p5p—z+1
o 0 Yk
P, z) = —,?g dv?g dwp41 -+ - dwg—g
mXZ:g (1 - 8)(27T1)k " vs Yr—(k—m—1)e X" XVr—¢ "

a((1 +v)~Hm=Hla(we_y)(1 + v)In =2

V= (1= w21+ V)wag = Dy

m+1
k—1 k—2
1 l—[ a(w;)
Vj=¥j-1-1 1 —w;
j=m+2 (w] - wj—l)wj j=m+1 J
ak—tH1gi—z+l a((1+ U)—l)k—K(I + U))_’k—l—z 533
(1-0)2ri J, pk—t+l ’ (5-33)

where ¢ > 0 is small enough so that y,_y is contained inside the domain of analyticity
ofaand$ € (0, r~' —1) (here sums and products over empty index ranges are taken to
be equal to 0 and I respectively) and, when k = 0, y_1 = y,41 is a dummy parameter
(and one has pj(0,2) = a(l — 0)~Leyn=t1) Moreover, for such z we have that
0% py (L, z) is a polynomial of degree at most k — £.
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Proof Using (5.31) and in view of (5.3) we have, for z < ¥ — «, py(k,2) =
Z’?>)’k af"™% = (1 — 6)~ 9%+ This gives the result for £ = k, since in this
case only the last term in the right hand side of (5.33) survives, and the residue of that
integral at v = 0 is clearly 1.

Assume now that £ < k. Throughout the proof we will write dwl.jly_”’l.j =

dwi1 .. .dwi/, yrjl’m’rj = VY XX ]/r/, 7]” (7711, ceey Tlij) and I}]’Ia-‘-»yj =
] . €Z/:mi <yi,....mi; <yj}.By assumptlon we have ny — nk—1 > « in

the last sum in (5.31), so the sum yields o (1 — 0)~1g¥—m-1+1 and then from (5.7)
and (5.31) we get that pj (¢, z) equals

k=t gF—z+1

Z_, (1 —6)mi)-¢

1 a(we) - - -a(wg—1)

dwk=t
ket k=l ez mect=ne L M-t =Tk=2 (1 — yp) -+ (1 — wi—1)
I 14 41 k—1

_ Z O{k €+19)_'k—z+l f dw?_Zk 1
A —0)Qak=C Jype e

k—€—1 k—€—1 r—E,r ...,
Mot k=t €150 1 T

1 a(we) - - a(wg—1)
Ye—z, ner1—ye—l ner2—net1 Me=1=M=2 (wpa1 — we)(l — wp) (1 — wi_1)’
wy w w5 cew (wet1 — we)( e) e ( k—1)

where in computing the geometric sum over 17, < y, we have shrunk the w, contour
to a circle of radius r — ¢. Shrinking now the w, contour further to y,_», and the w4
contour to y»_, we may compute the sum over 7,41 < y4+] to get

k7£+19\”k*z+1
Z 7% duk
- e)emikt Lo

k—t-2 k—t-2 =y
Moo, k1505, 5 "5y Yr-tar—er.
1
Ye—z Ver1=Ye—1  ne2—Yer1—1  ne3—ne+2 Nk—1—Nk—2
Wy Wiy Weio Wyt W1

a(wg) - - - a(wg—1)
(Weg2 — wet) (W1 — we) (L —we) - (1 —wi—y)’

and then proceeding inductively and computing the sums up to the variable n;_; we
arrive at

AL s S k—¢ a(wi-1) k—1 k— 2 a(w)
d y, l_[' H .
Yo R — g —2 = f 1 .-
(1-6)(2ri) vt (k Ocrr—e Lokl wyt (w2 e (wj—w;_Hw; Vi Vj-1-

Next we want to make the first integration variable lie on a contour larger than all the
other ones, so we write the above as ok~ ¢T1(1 — 9)~19% 2+ times

_ dwk—t a(wg)a(w—1)
Qri)k—C J it €, k—1 y( T - 2
Yrr—(k—t—1)e,...r—e (1 =we)(l —wr—1)
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k—1 k=2

: [ 2
yji=yj-1—1 —
=t = wjmpw T oy T
1
- k—€—1
T Qmri)k—t-1 ﬁkel dwg iy ko1

r—(k—€—1)e,....,r—e
2
a(wet1) a(wg—1)
Yer1—z—1
Wy (1 —wer ) (1 — wi—1)?

£+1
k—1 k=2
<11 : I
Vj=¥j-1—1 —w;
j=t+2 (W) — wj—l)wj j=t+2 1 —w;

after collecting the residue at wy = wy41. Enlarging now the w¢1 contour on the sec-
ond integral and then repeating the argument inductively, the last expression becomes

k=2

Z ! ?€ dwk=" a(wn)"a(wi_1)
\k—m _ m,..k—1 5, —7—m+¢ —
m=~_ (27[1) yrlirT(k—m—l)E ..... r—e wl}nm (l - wm)m €+1(1 - wk—1)2
k—1
1
x ETEE
J Y-
jmmt1 (W) —wj—w;
k—2 _
a(wj) 1 a(w)k—¢
I1 24— ¢ dw
o : Vk—1—2—k+E+1 _ k—+1"
jempr LWy 2wy wi 1—-w)

Introducing the change of variables w,, —— 1/(1 + v) in each summand of the first
term and w +——> 1/(1 + v) in the last integral shows now that p} (¢, z) equals the
right hand side of (5.33) except that the v contour in each summand is a circle y of
radius 1/r centered at —1. To see that y can be shrunk to ys (which is inside y by
our assumption on §) we need to analyze the possible singularities of the integrand
(other than v = 0) inside the contour. Note that the singularity at v = —1 + 1 /w41
in the first term is actually outside the contour thanks to our choices (this is precisely
why we went through the trouble of enlarging the first contour in each integral above).
Next note that for v inside y, (1 + v)~! lies outside vy, where a((1 + v)" D is analytic
by Assumption 5.2. So we only need to worry about the singularity at v = —1, but
assuming now that z < y, — k and since y; < y,, — (m — £)k, using (5.1) we see that
the factor (1 4 v)¥ =7 is analytic at v = —1. This proves (5.33), while the fact that
0% p; (£, z) is a polynomial of degree at most k — £ for such z follows directly from
that and Cauchy’s formula, since the only pole of each of the v integrals is at v = 0.
O

Corollary 5.14 Let pj (£, z) be the analytic extension of py (L, z) from 7 < y,—¢ — K

to all z. Then ﬁZ(Z, ) € W,, it has degree k — £, and for £ =0, ...,k — 1 and all
z€Z,

(OH 7' pr,2) = prL+1,2). (5.34)
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Moreover, for £ = 0, ..., k and for h} as in Proposition 5.10 we have for all z € Z
that

R, z)=(1—0)0" AN e, 2) (5.35)

and, in particular, ®(z) = (1 —0)0~ (R*)"1(A") 71 pr(0, 2), ie.,

n _ k—2 a"@yk—z k—m—1 a(w/
Q) = T fartim oy Wit At e T 5
a((1+v)~H"a(w_ ) 1+v)m 2 1

Ym41—Ym—1 l_[ —m+2

Vg (140) =) A= 12 (0w 1~ Dy (wj—wjpwy I

kg2 f dv a((14+v)~H 1 (14v)Tk-172
27i Vs ity ((140) 1) ’

where € and § are as in Lemma 5.13.

Proof The right hand side of (5.33) is in fact 6% times a polynomial in z of degree
k — £ for all z € Z, so py (£, z) equals that expression for all z, it is in W7, and it has
degree k — £. Using that formula and the notation from the proof of Lemma 5.13 and
computing as in the proof of Lemma 5.6 we get

1= k—2 k Egvk —z+1 k—m—1
(O Py, 2) =2 .5 (1 Eehe 9%/5 Ufrk R gdwm+l Lk—1
a((4v)~H"Lawi_y) (14v)Im 2 k-1 —1—[ aw;)
A ;
V= (g DAy~ D1 T TR T RS it T wj

k=T —z+1 —1yk—t—1 Vk—1-2
a* ek a((14+v)7) (14v)
+ e 56)/5 dv VRl

for £ < k — 1. The integrand in the first integral is analytic at v = 0 for m = ¢, so
that term disappears from the sum and we recover the formula for pj (€ + 1, z), which
gives (5.34).

We turn now to (5.35). By Proposition 5.10, in order to prove it, it is enough
to show that the right hand side, i.e., g (¢, z):=(1 — Q)Q_I(A*)_lﬁZ(Z, 7), satis-
fies (5.19). (5.19a) follows from (5.34). For (5.19¢) we use pj(k,z) = a(l —
0)~19»—+=*+1 and compute again as in the proof of Lemma 5.6 to get gk, 2) =
(1 —0)0~1(A*) 71 pl(k, z) = 6¥-+7 as desired.

What remainsis to prove (5.19¢), which translates into showing that (A*) ™! P (€, ye)

=0forl=0,...,k— 1, where y; = y,_¢. Proceeding as above we get
1= k=2
(A7 PR 2) = Y0 In (@) + Jk1(2) (5.36)

with

_ _aktei—atl k—m—1

Im(Z) - (1_9)(2ﬂi)k—m be dv yrl‘ ('l:l nll De,..., e d erl ,,,,, k—
a((1+v)~H"fa(we_ ) (14v)Im =2 l—[ l—[ “(wj)
vm—?+l(1 wi— 1)2((1+U)wm+1 l)winm;]rl ym—1 —WL+2 (wl_wj l)w)j )/ 1—-1 _m+l /7
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— gk toi—et ()" T (o) o1 7
Jk-1(2) = —0)2ri 95;,3 dv ok—CF1 :

We focus on the first term on the right hand side of (5.36), I;(z). Computing the residue
at the (simple) pole v = 0 yields (recalling a(1) = 1)

1@ akégykzﬂ dk(Zl
el2) = — Sk—0—1 Wyyg,. k-1
— k—e—1 L
(1 9)(27[1) Vi —(k—€—1)e,....,r—¢
a(wg—1) ]—[
1 _/z 2 ] 11_[ Z 1
Y + <w,7w,, yw T L=

Now we proceed similarly to the proof of Lemma 5.13. Expanding the w,4 contour
to ¥, and picking up the residue at wy41 = w42 the right hand side becomes

k—CgFp—z+1
o 0k d k—0—1
— o oK T w
(1—0)2r)F 1 fy e e Lk
a(wg—1)a(we1) a(w;)
X T 1_[ —z+2 i—yi_1-1 H e+2 -
(=2 (1 —wep) 2wy 5 (wj—w;- 1>w" o s
) an s dw k—0—2
-2 P, P2kt
a(wg— |)a(wz+z)2 a(w,)
=2 H Z 3 1 1_[ E 31
(Umwg 2 (I—wp w5270 D=3 hw y’ Yomh A=

After changing variables wyy; +—— 1/(1 + v), the first of the two terms
yields exactly —6¢%,, | (¥¢). Proceeding inductively to compute the second term
by expanding the first contour, changing variables and so on, yields the terms
—0% 2 5 (Fp), ..., =Y 2 _o(F¢) and finally —07 2 J;_1(J,). We have shown
that Iy (z) = —0%¢ 2 le;—:zzﬂ In(3¢) — 0¥ "2, _1(F¢), and thus in view of (5.36) we
have

(AT PR 2) = Y2 Un(2) = 05 2Ly (50)) + Jk—1(2) — 07 1 (o).

This gives (A*) ! 2 (£, ¢) = 0 as desired.
The explicit formula for ®}(z) follows directly from applying (R*)™! to (5.36)
and computing in the same way. O

Proof of Proposition 5.12 Using (5.35) in (5.23) yields

n—1

GonA.z2) = (1 =081y 0" F 1. yu—i) 5} 0. 22) (5.37)
k=0

and then from (5.32) and the definition of 13,’: (0, z2) we get for 7o < y, — « that
n—1
GonAz1,22) =1 =007 > 0" 1, yu)Ppt =, (0" = k). (5.38)

k=0
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We turn now to computing Gg,n(zl, z2) for 7o < y, — k. By definition we have
Gon(z1,20) = ZZ;I Egy=z, [ Q" (Bk, z2)1:=¢ ], and thanks to the assumption on
72, inside the expectation we have By —z2 > k41 + 1 —yn+k > (n —k)k + 1, so
by (5.28) we may replace Q"% by Q" ¥ to get

0,n

Gon(z1,22) = Ppy=g (v < n, By = 22) =Ppx . (¢"" < n, By_j = 1z1).

Observe that for n > y > n’ + k, if we ask B* to jump from 7’ to a location strictly
above y then the jump is of size at least « 4 1, so only the geometric part of the
definition of Q in (5.2) is seen and then we have IE”13]>:4:,//(B,;k > y) =01t —
9)_1]13’37(571:,7/(3: = n). Therefore for any n > y,_, and since y,_; — Yp—k+1 > K,
we have fork € {0,...,n — 1}

PBiI:Z(tO,n =k B =1) = Z PBL:Z(’O’” >k—1, Bi_y =n)0"(n'.n)
0 <Yn—k+1
D Bur (T > k=1 By =) (= 008" Py (B > )
10 <Yn—k+1

(1= 000 e (207 = )

We deduce then that, for zo < y, — «,

n—1

Gon@rz2) =) D Bpe (2™ =k Bl =0)(Q)" !0 21)
k=0 n>Yn—k

n—1

=Y ) Py, =k —0)0" (0N R (g, 7))

k=0 n>yn—k
=Y 007" GonAlz1 — £, 22),

£>0

where in the third equality we used (5.38). Using now (5.6) and (5.4) we conclude
that

Gon(z1,22) = Q00 'GonAz1,22) = A" GonAz1, 22).

We have proved this identity for zo < y, —k, butboth sides are in W} as functions of z»
(for the left hand side this holds by (5.30), while for the right hand side we use (5.37),
which gives A~'Go,A(z1,22) = (1 = 0)0~" Y720 A Q" ¥ (21, ya—r) P} (0, 22),
together with the fact that pj (0, -) is in W, by definition), so the identity extends to
all zp as needed. O

5.5 Main result and application to particle systems

Proposition 5.12 expresses the main part of the kernel in terms of the hitting times of
arandom walk. Using this in (5.24) leads to our main result:
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Theorem 5.15 Suppose that the functions a and  satisfy Assumptions 5.1 and 5.2.
For n € [n] define

S_n(z1,22) = (RQT"A)* (21, 22)
—n+1 -1 n
=& %dw o a- )1 v (w), (5.39)
Yr

27 wa2—ztntl g(y)n

Sn(z1,22) = QRAT Nz, 22)

a1 (1 — w)z2—artn=1 4] — yyn-1
- d
27 71 YT g vl —w)

, (5.40)

where 8 > 0 is so that a(1 — w) and ¥ (1 — w) ™" are analytic inside ys. Suppose also
that y; — yj41 > k foreach j = 1,...,n — 1. Then the kernel K defined in (5.18)
can be expressed as

K@i, xiinj.xp) == 0" " (i x )y + S S0 i xj) - (5.41)
forany ni,n; € [n], where

‘_szpl(y) (z1,22) = IEBo=11 [‘_S‘"_f(Br’ Z2)11<n]

with B the random walk with transition matrix Q defined in (5.2) and with t the hitting
time defined in (5.29). Moreover, in (5.39) the contour y, can be replaced by y, for
any radius r' € [r, 1) (with r as coming from Assumption 5.2).

Proof From (5.22), (5.24) and Proposition 5.12 we get

K (nj,xiinj, xj) = = Q" ™" (i, X)Ly <, + QRO T AGo 0, AR (xi 1),

and then (5.41) follows directly from the definitions of Go,nj, S_n, Sy, and :Sipl(y ).
It remains to prove the contour integral formulas given in (5.39) and (5.40). The
first one follows directly from Lemma 5.6 and the definitions of R, Q™" and A. The
integrand is analytic on A, ; by Assumption 5.2, so at this stage the radius of the
contour can be changed to any r’ € (r, 1) without changing the value of the kernel,
which gives the last statement of the result. For the second formula, Lemma 5.6 gives

R1'A N (x,y) = 2m 9§ du % and then computing again as in the proof

Xyl a(u
of that lemma and using (5 27u) we get, for small § > 0,

-1 9r— V(l+v)x y+1 a(l/(l—t—v))" 1
AQM(x,y) = ¢ 2711 f dv v/ ()

Changing variables w = v/(1 + v) leads to the integrand in (5.40), and the resulting
contour can be adjusted to lie on any circle of radius § small enough so that a(1 — w)
and ¢ (1 — w)~ ! are analytic. O
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Remark 5.16 (a) The main advantage of the (very simple) extension of the choice
of contour y, in (5.39) given in the last sentence of the theorem is to lift the
restriction r < 6 which comes from Assumption 5.2. The restriction can actually
be relaxed a bit more: the contour can be chosen to be y, with any r’ € (0, 1) so
that ¥ (w) /a(w)" " is analytic on A, 1, again since the contour can be deformed
without crossing any singularities. In principle, this could be useful in situations
where zeros of Y (w) cancel singularities of 1 /a(w)"~" (but the situation does not
arise in any of our examples).

(b) From its definition in (5.18), it is easy to see that the parameter 6 enters K
simply as a conjugation 6%~/ (so, in particular, the Fredholm determinants
det(I — xaK x4) do not depend on 6), and it is natural to wonder about how
this plays out on the right hand side of (5.41). So consider another choice of
the parameter 0, call it 0, and let K be the kernel in (5.41) defined using
6. We also put hats on top of other quantities defined using 6 in order to
distinguish them from those defined using 6. Using (5.2), the Radon-Nikodym
derivative of the law of the random walk B up to time n with respect to the

law of the random walk B up to time n equals (%)”(g)BO_B”, and hence

2.epi(y) R A —epi(5 a
S, @z = @16/ 28 @, z2). Similarly 8-y(z1,22) =
(&)= (8)20 S, (21, 22) and 0™ (z1,22) = ()" (§)F1 720" (21, 22). Hence
Ie(n,-, Xjsnj,Xxj) = (g)”i’”f(g)x"’xiK(ni, Xi;nj, x;). From this one sees that
the effect of changing 0 on the right hand side of (5.41) is to introduce a conju-
gation and change the parameter used to define the random walk By,.

Proof of Theorem 1.2 By Cor. 4.6, the left hand side of (1.10) is given by the Fredholm
determinant on right hand side of (4.21) with ¥k = 0. We will apply Theorem 5.15 to
the kernel inside that determinant. To this end we let a(w) = 1 and ¥ (w) = @(w)’.
The properties of the function ¢ listed in Assumption 1.1 together with the choice
6 € (p, 1) in Sect. 1.2 imply that ¢ satisfies Assumption 5.2 with » = p and 7 = p.
The assumption also holds (trivially) for a, while Assumption 5.1 holds (trivially)
since a(w) = 1 corresponds to g; = 1;>1. Hence if we define the functions Q and R
by (5.9) and (5.8) for the above choice of functions a(w) and ¥ (w) and use them to
construct the kernel appearing in (4.22), the theorem applies and (1.10) follows. O

Proof of Theorem 1.4 The case k = 0 is already covered by Theorem 1.2, so let k > 1.
Then Cor. 4.6 implies that, if t > «(n,, — 1) or if + > 0 and condition (1.17) holds,
the left hand side of (1.15) is given by the right hand side of (4.21) with the given
choice of k. In order to apply Theorem 5.15 in this case we let a(w) = ¢(w)* and
Y(w) = @(w)’. As in the previous proof, the properties of the function ¢ (now
listed in Assumption 1.3(b.i) as well as Assumption 1.1) together with the choice
0 € (p, 1) in Sect. 1.2 imply that  and a satisfy Assumption 5.2 withr = p, 7 = p.
Assumption 1.3(b.ii), on the other hand, implies that a(w) =}, _, b w' where b«
stands for the x-fold convolution of the b;’s from (1.13), so defining

gi=1- 25:1' b}k'K
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we have a(w) = Y ;_, (gi+1 — g)w' as in (5.1). We claim that these g;’s satisfy
Assumption 5.1. Condition (i) is straightforward in view of the definition. For (ii), in
the case k = 1 one sums by parts to write . 60'q; = 0(1 — )~ Y (gi+1 — i)',
which is finite because the sum equals a(9) = ¢(0) and ¢ is analytic on an annulus
containing 6; the case k > 1 follows similarly. Then Theorem 5.15 applies in this
situation, and we get (1.15) as in the previous proof. O

The formulas given in (1.6) follow directly from (5.39) and (5.40), using the setting
of the last proof (so that ¥ (w)a(w) = ¢(w)' ™) and a change of variables as above.
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Appendix A: Convolution of determinantal functions

We are going to prove results, which allow one to compute convolutions of determi-
nantal functions of the type (4.9).
Fix N e Nand v = (vi)je[n] such that v; > O for each i. For each i, j € [N]

we consider a function L; ; : 7Z? — R such that there are constants C > 0 and
r > max; v; so that |L; j(x,y)| < Cr*77. Then, using the kernels defined in (4.3)
and (4.5), for X, y € Qu we define a determinantal function

F (5, %) = det[ (T IL; ;7 9_ ) (i, x))] (A.1)

i,je[N]
The sums involved in the compositions of kernels inside the determinant are all abso-
lutely convergent by the same argument as the one provided below (4.7). The following
result, which is a generalization of [20, Lemma 3.2] shows that, in a particular case,
convolutions of such functions preserve their structure.

Proposition A.1 Consider two families of kernels R; and S; on 72, fori, j € [N],
and write (R - 1); j = R;, (1-8); j = Sjand (R - S); ; = R;S;. If all these kernels
satisfy the properties listed above, then for X,y € Qp

Y Fri(, DF1sE, ) = Frs(, ).

EEQN

As a particular case (c.f. (4.7)/(4.8)) we get the following:

Corollary A.2 Consider two Markov chains on Qn with transition probabilities
G5, %) of the form (1.1), ie, for £ = 1,2, G{”(3, %) = det[F{".(Xn 41 —
YN+1—j, D]i je[n] where F© has the form (1.2) with ¢ = @g for some complex func-
tions @1, ¢2. Assume that these last two functions satisfy Assumption 1.1 for a common
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choice of p, p. Then for each t1,t; > 0 and each X,y € Qy,

D= oy ~2) = = = - o
Y GG DG G ) =Gy (5, 5)

ZGQN
with G, 1, (¥, X) again of the form (1.1) with the right hand side of (1.2) now defined
using t = 1 and p(w) = @1 (w)" @y (w)™.

Before proving Proposition A.1 we need a version of the generalized Cauchy-
Binet/Andréief identity.

Lemma A.3 For a measure space (A, B, L), let i, ¥; : A — R be measurable
functions such that g; j is integrable foranyi, j € [N]. Assume also that A is atotally
ordered set, and define the Weyl chamber Q8 =(x e AN :x1 >x > > xy)
Then

det [/ §0i(x)Wj(X)d)»(x)i|
A i.je[N]
= /QA detle; (x);, jeqn] detli (x)]; jepnpdA™ (). (A.2)
N
The identity is usually stated (see e.g. [19, Proposition 2.10]) with the integral on

the right hand side over A" and an additional factor of 1/N!; (A.2) follows from this
by antisymmetry of determinant.

Proof of Proposition A.1 Applying the Cauchy-Binet identity (A.2) we get
Fis@. %) = Yicq, det[ 0T i up)]; opyy det[S; V10— i xp], oy
The key will be to prove that

ZZEQN Fr.1(3,2) det[ﬁicy[i](zi, Mj)]i,je[[N]] = det[ﬁiW“]Ri (yi» uj)]i,je[[N]]'
(A3)

In fact, using these two identities we may write

ZEGQN FR'I()_;s Z)Fl-s(zs ;)
= > e[V IR i 2], gy ST -G ];eu

ZGQN

which, after another application of (A.2), equals det[o; VIR S; ¥ =/1y_;
(is xi)]i,je[[N]] as desired.

So we need to prove (A.3). To have a shorter notation we write A;(x,y) =
9; VIR, (x, y). Then using the definitions in (4.5), the left hand side of (A.3) can
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be written as
Yzeay det[ AT, 2], quy 4tV up)]; s oqar- (A4)

We will use the summation by parts formula, which follows from (4.2),

b
Yh_ g =Y Fa T 9w

u=a

+vifl@)gla—1) —vi f(b+1gb).  (AS)

Using multilinearity, the first determinant in (A.4) can be written as

ez det[ ATy, z0), o AT N ), AN (v 0]V (2,
where we wrote AV 7l(y. z j) for the j th column of the matrix
(AT 4y, 20)), te[NT Recalling that zy is summed from —oo to zy_ and apply-
ing (A.5), (A.4) becomes

Yzeqy det[AT Ny, z0), ATV 2y ), ATENT(y, 2)]
x det[T Mz, u), ., VWV Ny u), VWV Uy, ). (A.6)

To see this we need to check that the last two terms in (A.5) do not contribute:
for the first of the two terms this holds because for every zy sufficiently small
det[ Tz, uj)], jepv = O (this follows readily from the definition (4.4) and the
residue theorem), while for the second one it holds because in the case ZN = ZN—1,the
matrix in the first determinant in (A.6) has two equal columns and hence the determi-
nant vanishes. Applying the same operations for the variables zy_1, ..., z2, 21, then
for zy, ..., z3, z2 and so on, (A.6) turns to

Y zeqy det[Ai (i, Zj)]i,je[[N]] det[ V1 (zi, Mf)]i,je[[N]] = det[A; (yi, ”J')]i,je[[N]]’
which is exactly (A.3). O

The following two results extend Proposition A.1 to a setting where the matrices
in the determinants have different sizes; we need this in order to handle the setting
of Theorem 1.4. For 2 < k < N using (4.3) we define V> = 95 ...%; and
Yl=h=2 = °Vk_l . ~°V2_1. Then for functions R; ; as in the beginning of this section
we define, for ¥, y € Qn_1,

Fr(3. %) = det (9 V2R VN2 ) Gioxp], e

For a vector Z and a scalar y we write y U Z for the vector obtained from 7 by adding
y as the first entry.
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Proposition A.4 Consider kernels (R;);c[n—1] and (Si);e[n] with properties as in
Proposition A.1, such that R; and Uy commute. Then for x € Qy, y € Qy_1 and
y € Z one has

Y. Fri(GLDFsGUZLY =Fy(GUy, %), (A7)

7eQn_1
where Uy j = Sjand U; j = R;i_1Sj for2 <i < N and j € [N].

Proof Repeating the argument in the proof of (A.3), we can write the left hand side of
(A.7) as
Yreay., det[0im VIR (i 2], iy e[ TAS; VN0 G x D] gy
(A.8)
where 7y = yand z; = z;—y fori = 2, ..., N. The second determinant on the right
hand side can be expanded as Z,}(\]:] (=D SV K91 (5, x0) det[°l/1 SjW[’f]
v j(zi, xf.)]ie[[N—l]],je[[N]]\{k}’ and plugging this into (A.8) and then applying the
Cauchy-Binet identity (A.2) we get
Sl (DRI T (5, xi) det
[0 VIR S, VT (i x )]

ie[N-1].je[N]\{k}*

Since 77 commutes with R; and the other 7}’s commute, this is just the cofactor
expansion of the right hand side of (A.7) along its first row. O

The following results can be proved similarly.

Proposition A.5 Given kernels (R;);c[n] and (Si);c[n—1] with properties as in Propo-
sition A.1, such that S; and °V]\7] commute, for X € Qn_1, y € Qy and y € Z one
has

Y Fri(GLIuPFsE X =F (G, ¥u),

7€eQN_1
where V; j = R;Sj and V; y = R; fori € [N] and j € [N —1].

Proposition A.6 Let R and S be as in Proposition A.5. Then for X € Qn_1, ¥ € Qp
and y € 7 one has

> Fri(FUDFLsE X =Fp G, ju i),

ZEQN,1

where V; | = R; and th =R;Sj_1fori € [NJand2 < j < N.
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Appendix B: Proof of the biorthogonal characterization of the kernel

In this section we prove Theorem 4.3. Before that we provide a sketch of the proof
and comment on the relation to previous work. The key step of the proof is to express
the function (4.14) as a projection of a signed determinantal point process, which
we do in Proposition B.4. The correlation kernel of this process can be obtained
from the Eynard-Mehta theorem [15], which due to a special form of the domain (a
triangular array) can be written in our case in a biorthogonal form; this is the content
of Theorem B.5. Then the formula (4.17) follows from a standard result sometimes
referred to as the “gap probability” of a determinantal point process. A formula like
(4.17) was first derived in [7, 33] for continuous time TASEP with equal starting and
ending times. Our proof will follow the generalization of this result to space-like paths
derived in [3]. However, as we described after Theorem 4.3, there are some differences
with the latter result.

Throughout the section we fix a space-like path S = {(n1, 1), ..., (m, tn)} € Sy.
Then wehave ny <np, <---<nyuandty >t > --- > t,. It will be convenient to
change the order of elements by introducing n; = n,,—j4+1 and t; = t,,—; 41, so that
ny>n,>--->n,andt; <t, <---<t, . Wewillalso write t, = 0. Respectively,
for a vector X = (x1,...,xp,) € Z™, let X denote the reversed vector (xy,, ..., X1).
Then Gf", s> defined in (4.14), can be rewritten as

m
Gi ()= > Yo GG ]Gy, Gen, @), X @)
X0eQy  X(1)eQy,: i=1
xn; (t))=x;,i€[m]

(B.1)
The key fact is that the function (B.1) can be written as a marginal of a signed deter-

minantal measure on a larger space. To this end we define a triangular array of integer
variables D, = {xi € Z: t € [n], k € [€]}, whose generic element we denote by

X. We will also use “virtual” variables xﬁ_l which can be thought of as having fixed
values oo. We define the Gelfand-Tsetlin cone of size n € N as

GT,={xt eZ:te[n]. kel x, " <xt <xt}} cD,.
As in Sect. 4 we parametrize variables by time points, xi (t) (see also footnote 3).

Then the respective arrays of time-dependent variables are D, (¢) and GT),(¢), with a
generic element X(7).

B.1. Determinantal measure on triangular arrays

We begin by stating some results about the function Fj , defined in (4.8). It will
actually be more convenient to work with the function

Fro(x, x23 1) = Fiep(xr, x23 )V v)2. (B.2)
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Note that from (4.8) we get Fk,g(xl, X2 1) = Fk’g(xz — X1; t)::ﬁk,g(o, Xy — X1 1).
Define also

be(x1, x2) = v M <, Ge(xnx2) =00 sy, (B.3)

Then we have the following recurrence relations for Fk’ ¢, which follow directly from
(B.2) and (4.8):

Fro—1(x50) = go % Fro(x; 1), Frpin (1) = gt * Fen(xi 1), (B4

with ¢ x F(x; 1) = ZyeZ ¢ (x, y)F(y; t). The three results that follow will be useful
later on.

LemmaB.1 For X € GT,, one has

n £—1 n i ) )
l_[ 1_[ ée(xi_l, XI€+1) = H vj_x1 det[¢; (X/];l ) Xé)]k,ee[[j]]’ (B.5)
=2 k=1 =1

where the functions é¢ and ¢¢ are defined in (B.3), and where X?l are “virtual”
variables, for which we postulate ¢y (Xﬁ_l, y) = vg. Moreover, if ¥ € Q, and X € D,

is such that Xf = x¢ for £ € [n], then the right hand side of (B.5) is non-zero only if
X e GT,.

Proof The casen = 2 is easy to check, and both statements can be proved by induction
overn > 2. O

LemmaB.2 For X,y € Q, and for arbitrary time points ty, ..., t, € T we have

. n T
det[ Fee (v 30 10 ey = DM D0 (H”jxldet[‘f’j(xi lsxé)]k,ze[[j]])

XeGTy: j=1
X{=x¢,0e[n]
X dEt[Fk,n()’k,X'Z; tk)]k,ﬁeﬂn]]' (B.6)

Proof Changing the index £ — n — £ 4+ 1 and applying the first identity in (B.4)
multiple times, we get that the left hand side of (B.6) equals

(=D det[gn—e12 % Purr3 %+ Gu % Frn(ra—eg1 — i lk)]ky,ée[[nﬂ-
(B.7)

We write the convolution inside the determinant explicitly by introducing new variables
xTHl for 2 < j < £ such that x’ff”l = x,_¢+1 for each £ € [n]:

-1 7 n—{+j n—0+j+1 r .
ZX?—H,/‘eZ 2<j<t (]_[j=1 Gu—erjr1(X; X )) Fien (X} — Yi: ).
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Using the multilinearity of the determinant to take the summation outside of the
determinant in (B.7) we get

=1 7 -1 o
(—1)\-’1/% Zxﬁ:eZ, 2<j<l<n (nz:z 1_[]‘:1 ¢Z (Xj ) X§+1)) det[Fk,n (XZ — Yk tk)]k,ie[[n]]’

(B.8)
where Xf = xg for £ € [n]. Applying Lemma B.1, expression (B.8) can be then written
as (B.6). O
LemmaB.3 For X,y € Q, and for arbitrary time points t1, ..., t, € T we have

det[l}n,n (k> xe5 tZ)]k.(ZG[[n]]

L P B
= (—D/2 Z (1_[ v, det[¢; (x| l’Xi)]k,Ee[[j]]) det[Fk,n(x]f,xg; tﬁ)]k,ee[[n]]'

XeGT,: \j=I
X =yx.ke[[n]

(B.9)

Proof The proof is similar to that of Lemma B.2. We change the order of rows k —
n —k + 1 and apply the second identity in (B.4) to write the left hand side of (B.9) as

(=D det gy - 5 Gt * Fen (e = yo—is1: 10y ey (B10)

n—j+1

Denoting x_, 11 = Yn—kt1 and introducing new variables X, ;" it2

for2 < j <
n — k, the (k, &)™ entry of the matrix in (B.10) can be written as

n—j+1
ZXZ i+/+2622<1<” k (1_[/ 1¢n j+1(xn k—jr1o Xk 1+2)) Fk n(xe — Xl, te).

Then multilinearity of determinant allows to write (B.10) as

=17 -1 2 .
(—1)\_n/2j ZXeDn:xZ:yk,ke[[n]] <1_[Z:2 Hk:] ¢Z (Xk s X£+1)> dCt[Fk,n(Xllc, X¢5 te)]k,ie[[n]]'
Applying Lemma B.1, we can write this expression as (B.9). O

We turn now to the main goal of this section, which is to write G7 ¢ as a marginal
of a determinantal measure on triangular arrays. Fix a vector y € Qy; some of the
functions below will depend on y but we will not indicate itin our notation. Fors, t € T
and for k < n in N we define the functions

1—s
Tps(x1,%0) = 55, dw 220 (B.11)
kg1 (Vi—w) _
W) = ok f, dw L) o )i, (B.12)
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Furthermore, for the space-like path S fixed above, we define the domain

Ds = {x;°(ty) € Z : £ € [ny]}

U U {XZ(L-) €Z:n;,; <n < n;, L e [n] suchthat x’?“@i) <xMg) < xf‘i’ll (;i)},
ie[m]

(B.13)

where ty = 0,ny = N andn,,, | = 0. Then we define a signed measure Won X € Dg
through

EO . .
W) = det[W,0 L 06" (oD ] ey [T detld5] 00) X @oD)]y ey
Jj=n;+1

1

m
x l_[ det[7,,,_, O (1), % Qi—l))]k,eeﬂg,.]] H det; 0~ (1), x] (Ei))]k,eem’
i=1 J=nig+1

(B.14)

where in the case n; | = n; the product ]_[f’: 0oy 19 is by definition 1. The following
result gives a formula for G 5 as a marginal of W.

Proposition B.4 Forany y € Qn and X € Qy, the function (B.1) can be written as

G (3, %) =C > WX), (B.15)
XeDg: X! (t)=x;,i€[m]
where C = (Hy:l Uj_yj) e T, H?i:l @(vj)ti-17h,

Proof Using formulas (4.13) and (4.9) in (B.1), we can write

nys(y, %) = C Z Z det[Fk.lZ()’k» X{(Eo% _Tk)]kle[[go]]

X1 (L) EQN %y (1) €y, X (1) =x; i€[m]

X l_[det[Fk,e(Xllc(L‘_l), X{(l,‘)i t; — Li-l)]k’geﬂﬂiﬂs (B.16)
i=1

where C1 = [[(2, o) [T, Hf’zl @(vj)ki-174 Now using (B.2) to replace Fy ¢
with Fk, ¢ and applying (B.6) to the determinant involving ¥ we get

det[ Fy ¢ (ye. X{ (20): —Tk)]k’@e[[ﬂo]] = Co Z
XeG Ty, (ty). fixedx; (ty)

=

det[¢; (X;j:l (tg)s Xé (Eo))]k,ee[[j]]
1

x det] Ficny 0k X0 (10): =TO ],y

~.
I
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where Cy = (—1)l20/2] ]_[4’ y’ . Similarly, the i factor in the second line of
(B.16) equals

n; j—1 J
Ci XeGT,, (1)), fixedx, @) | 1721 det[@; O () xg (2] g det
[Fk,gi (le(Li_l)y X% )t — Li—l)]k,le[[gi]]’

where C; = (—1)l/ 2] ]_[*’ X i v . Substituting these expansions into (B.16),
we obtain

2o . .
G2 Z (det[ﬁk@o k- X" (20): _Tk)]k,ge[[ﬂol] [ ] det[s, 0o (1), ] (H)))]k,ze[[j]})
=1

deet Feon, OF 50X 0315 = 130 | e

i=1

[ Tdet[o; 0" @) X ) e e (B.17)
j=1

where C; = Ci ]/, C; and where the sum runs over X € (/L GT,, (¢;) such that
X' (t;) = x; fori € [m].
Our next aim is to reduce the sum in (B.17) to the domain Dg, defined in (B.13). To

thisend, foreachi = 1, ..., m we sum over the variables xlg (t;_y) fork € [[Qi —1] and
¢ € [k] applying Lemma B.3. Then the functions Fy. n (xk(tl D x% )ty —t;_y)

get replaced by F,, (x%i (i), X' (t;); t; — t;_,), the products ]_[*_1 get replaced

by the products ]_[ and we obtain

SR

20 . )
Cs Z (det[ﬁkm (ks X (19); —Tk)]k,ze[[ﬂo]] l_[ det[¢; (inl(lo)’ Xy <t0))]k,£€[[j]])
X J=ng+1

n;

x [T et By on, O o)X @it =t D]y pequy T e300 @) @Dy ey
i= J=ni 1
(B.18)

where n,, | = 0, where the sum runs over X € Ds such that x;' L ) =x,; fori € [m],

and where C3 = Ca [/, (—1)/2) ]_[7:1 vj -0 I the case n; | = n; the product
n.

]_[;’:n,JrlJrl ay is, by definition, 1. Definitions (B.11), (B.12) and (B.2) yield

Tt O () X0 (1)) = Fyyon, (K (8 X0 ()5 — 1)),
W0 (6 (1)) = (= 1™~ Fie (s X" (1); = Ti).-
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Then (B.18) can be written as (B.15) with the constant multiplier Cs ]_[%‘): 1 (= 1)k,
which is exactly as in the statement of this proposition. O

B.2. Proof of the biorthogonalization formula

Our goal is to show how Theorem 4.3 can be deduced from Proposition B.4. In order
to swap the products in the two lines of (B.14), for every n € Ny we define c(n) =
#{0 <i <m :n; = n} (note that 0 < c(n) < m + 1). Furthermore, for each n such
that c(n) # 0 we introduce the time variables 1] < --- < t;’( ) such that the space-like

path S contains the pairs (n, 1{), ..., (n, tL’,’(n)). Moreover, we let ¢! = tf(:}rl)’ tév =0

and tg = t1. Then, recalling that ny, = N, (B.14) can be written as

N . A o () S
wo =1 (det[¢j o g™ X GAN] P [1 det[lj;.j,t,J;I CACORY (lij—l))]k,ﬁe[[j]])
=1 i=1

x det[Wh_, ) (1)')] (B.19)

k,Le[N]"
In order to proceed we need to introduce several functions, which depend on the
values n and #/'. As a consequence of (B.11) we have ’Z;n( = ’Z;n( N -*Z;l’tg ,
which we denote for brevity by 7" = ’T,n( e and where we write A * B(x,y) =
c(n)’
> .z A(x,2)B(z,y). For two pairs n; = (n;, ta;) and n; = (nj,t:;_},’) such that
n; < n; we define

np,n;) __ i+1
o™ ’)—7;;’;’,6’:‘*%#1*7”’ koo ok Ty nj

c(nj) ’taj
Then using definitions (B.11) and (B.3) we can write explicitly

_t:]{ n;
]_[ (o —w)~L (B.20)

k=n,'+l

1 ti
M) (i, x)) = — f dw 2
iy, w

i Xi—Xj—nj+n;+1

Using (B.12), for n = (n, ¢) such thatn < (N, 0) and for 1 <k < N, we define
wh_ =N el (B.21)
which can be written explicitly as

pw)a [T, (v —w)

1
n _ —Tx
o = o fi Tl et

Finally, we define a matrix M = (M ¢)i ¢c[n] With entries
Mo = (g T x5y« T« WN_ ). (B.23)
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We will use the following result, which is [3, Theorem 4.2].

Theorem B.5 Suppose that the matrix M is non-singular and upper triangular and
define W = det[M~"IW. Then Y XeD s W(X) = 1. Furthermore the measure W,
interpreted as a (possibly signed) point process is determinantal, with correlation
kernel given, for any n; = (n;, r;};), n; = (nj, t:/) € Sand x;, xj € Z, by

nj
K, xii g, xj) = ="M Gy x ) <oy + ) Wl ()@, (x)),
k=1
(B.24)
where the functions @;n_’tk‘)‘l)for alln € [N] and k € [n] are given by
") (x) = Z[M Mo (e % ¢ EH@) D) (=1 1) (B.25)

=1

In particular, these functions are uniquely defined by the following two conditions:

(1) fork,t € [n] the biorthogonalization relationy_ ., \IJ,Y’ ,t{ )( )CDSZ tz )(x) =1;—

holds,
2) x €eZ+— d>(n t")(x) k € [n]} is a basis of the linear span of the functions

[x € Z—> gy x ¢l i) (k=1 1y ke [n])}. (B.26)

Moreover, for any n; < n; and for respective values of k one has the identity dMim)
n;

o ="

Proof of Theorem 4.3 We start with the case of different values vy > vy_1 > --- >
vy > 0, for which we apply Theorem B.5 to our measure W given by (B.19). Our
first task is to show that the matrix M in (B.23) is non-singular and upper-triangular.
Let us denote for brevity ny = (k, tf(k)). Then using (B.21), the entry (B.23) can be
written as My o = (¢ * \IJ )(x ). Therefore (B.22) yields

t k o
Mo =) v 2;1117§ qw 2Ty ® W) 7

ez wr R i v = w)

Since |w| < vk for w € y,, the sum over x < 0 can be computed directly, using
Y e<ok/w)* = w/(vy — w). For x > 0 we may enlarge the contour to a circle
of radius a bit larger than |vi| because for k > £ the integrand has no singularities
at any of the v;’s, while if k < £ then the singularities occur only at the points
Vk+1, - - -, Vg, Which are strictly larger than v; by assumption; in this case we use
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szo(vk/w)x = —w/(vx — w). Putting both sums together yields

k
1 ey T8 (v —
Mio=—sf aw D U@z yn mos)
1

w0 — w)

where the contour I'y, encloses only the singularity at v¢. If £ < k then My, =
0, so the matrix M is upper-triangular, with diagonal entries given by My =

k
e k) ~T; k
—ﬁ frvk dw %% = ()t Tk v;*. Then we can compute the deter-

minant det[M] = ]_[,](V=1 (p(vk)t&k)_T" v,f" # 0. One can readily check that detfM 1]
is exactly the constant C from Proposition B.4.

Hence, defining the normalized measure W= det[M 11w, expression (B.15) can
be written as

G s(V. %) = Z W(X). (B.29)

XeDg: X (1;)=xi,i€[m]

Theorem B.5 implies that the measure W is determinantal with correlation kernel
given in (B.24). Furthermore, using (B.20) for n = (n, 1) € S such that ny < n we
can compute

Ik -t
) k=1 _ y 1 p(w) <® n ‘ -1
G+ M (T x) = > ovez Yk 3 ¢, dw S [Tk (v —w) ™

Computing this sum in the same way as we did for (B.27), we obtain

fk —t
—1 c(k)
n ron
_ (P(vk)‘(">
: i=k+1

Hence, the set (B.26) is the span of {x € Z —— v : k € [n]}, which is exactly
the set V,(v) defined in (4.16), and thus the correlation kernel (B.24) coincides with
(4.18). We deduce the identity (4.17) as a standard consequence of (B.29), which
expresses Gz g as a marginal of the distribution of a determinantal process (see e.g.
[19, Proposmon 2.9] for a version of this in the one point case).

The other values of v; can be treated by analytic continuation. More precisely,
consider values 0 < vy, ..., vy < vy, for some fixed v > 0. We will first show that
the left hand side of (4.17) is analytic with respect to the v;’s in this domain and then
show that the right hand side can be analytically extended to this domain, which will
give the claim (4.17) for any choice of the parameters v;.

From (B.12) we conclude that the functions \IJ}\Y_ (x) are analytic with respect to
the v;’s and satisfy |\If]1\\,’_k(x)| < CaP!, for any @ > 0 and for any v; in the compact
set as above. Hence, (B.3) and (B.11) imply that the measure WW(X) in (B.19) can be
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bounded by a power series in the values v;. The same can be shown for the left hand
side of (4.17), because it is a sum of YW(X) over a suitable domain for X (see (4.15)
and (B.15)).

In order to show that the right hand side of (4.17) is analytic in the v;’s, we will show
that the correlation kernel is so. In view of (B.28) and (B.30), <I>,(1n_’t£)(x) in (B.25) is
analytic in v4 > vy > --- > vy > 0. Analyticity of the other functions implies that
the kernel (B.24) is analytic. Hence, we can conclude that the right hand side of (4.17)
can be extended analytically to all 0 < vy, ..., vy < v4.

Since v4 was chosen arbitrarily, identity (4.17) holds for any strictly positive values
v;. Finally, one can readily check that for general values v; the integral in (B.30) equals
v,’g Py (x), where Pi(x) is a polynomial in x of degree #{i > k : v; = v;}. Hence, the
span of the functions (B.26) equals V,, (9), defined in (4.16). O

Appendix C: Proof of Assumption 1.3 for right Bernoulli jumps
C.1 Proof of Assumption 1.3(a)

Throughout the section we use {€;}; [] to denote the vectors from the canonical basis
of RV, Let GB;B be the right hand side of (2.2). We begin by deriving some of its
algebraic properties. Although we used this function only on the Weyl chamber Qy, it
is defined on all of ZV . The following result can be obtained by direct computations,
using properties of the function F;_B (x, t) defined in (2.3).

LemmaCl (i) LetX,y € Qn andk € [N] be suchthaty = (y1, y1 — 1, ..., y1 —

k,)’k+la~~,)’N)y)?=(YI,)’I—I,H-,YI—k,xk+1,~-o7xN)andYk+l <)’1—
k — 1. Then

a7'Gi PG =Y eqn GiP( G 2 Xk xN)). (CD)

zi>x;,i€[k]
(ii) If yr = yk+1 for some k € [N — 1], then GB}B@, X) = GB;B@ — €xat1, X).

Fix T = (Y})ie[[N]] with T; = —k(i — 1) and y € Qpn (), where k > 1 and Qy («)
is defined in (2.4). Then for m € [N], X € Qy—m+1 and T, < 1 < T,,—1 (with the
convention Ty = 0o) we define

G NG, %) =P(X[Pm+i—D=x;,ie[N—m+1]|X;56) =y, i € [N]),

which is the transition probability (at time 7), for the particles X" B (m), ..., X" B(N)
when the system starts at locations yi, ..., yy at respective times 71, ..., Ty, to the
locations X. Let also, fors > Oand a, b € Qn_m11,

Goy M@, b) = det[F/ =P (by—mia-i — an—my2—j, 9)] (C2)

i,je[N—m+1]°
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which is the analog of (2.2) for the system which only has the particles X"~ B(m), . . .,
XB(w).

Lemma C.2 In above setting, and with the notation y U Z from Appendix A,

G[]intN (_' 55) Z (H[N—m—i-l GT Ti_ 1()’1 |—|Z(T) Z(T 1)))
UT)eEQN—;
m<i<N
G (g WE (L), 5), (C.3)

where 7Z(Ty) is an empty vector.

Up to multipliers, the Markov property yields the formula (C.3) with the additional
condition in the sum that all entries of Z(7;) be strictly smaller than y;. However,
this restriction precludes the application of Proposition A.4 to the convolutions of
determinants in (C.3). We will show that the properties of GB;B providedin LemmaC.1
imply that this restriction can be omitted.

Proof We will prove (C.3) by induction overm = N, N — 1, ..., 1. For the base case,
m = N, note that on the time interval Ty <t < Ty_; only the N th particle moves.
Therefore (C.2) with N = 1 and ¥ = (x;) yields G[ N](* %) =GRV, x),

which is (C.3).
Assuming now that (C.3) holds for some 2 < m < N, we will prove it for m — 1.
For T,,—1 <t < Tyy—p and X € Qn—_;u+2 the Markov property yields

—1,N],=> - B _B,- .
G[f’:r’l[ ](y’ X) = Zﬁ,aGQN—m+lial<)’m—l P(Xr —1— 1= M|XI]."1 (l) = yial S [[N]])
-B -B
X IP’(XrTW1 = Vm_1 |_|61|XrTn171_1 = u)
xP(X; Pm+i—-2)=xi,i €[N—m+2)|X;® =yn_1ua).
(C4)

The induction hypothesis yields }P’(XIT;]_;F] = 12|XrTi_B(i) = yi,i € [N]) =
[m,N]

faZ11—I -1
(C.2) gives

(¥, ), where the latter is given by the right hand side of (C.3). Moreover,

P(X; Bm+i-2)=x.ie[N-—m+2]|X; 58 =y, ua) =G0 My, ua .

Tin—1,t

Now, we will write explicitly the transition probability from # to a in (C.4). Our
assumption on the initial state ¥ € Q (k) guarantees that X rT;E_l (m) <X ;‘;i (m—

1). However, it can happen that X rT;l_al _m)y=X IT;_BI (m — 1) — 1 and on the next step

the m™ particle can try to jump on top of the (m — 1)%, which should be prevented.
We will consider these cases more precisely.
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-

If uy < ym—1 — 1, then we have P(XrT;E VYm—1 U a X;;i_l = i) =

Gg"l’N ](ii ,a), and this probability is non-zero for a; < y,—) and zero otherwise.
Then we can write

R -B _ - —B - [m—1,N] > o
Zai?yf'"_tltp(x;mfl = Ym—1 U a|X;‘m71_1 - M)GTmflat (ym—] Ua, )C)
N],— = —1.N -
— ZéGQN—erl Gg"l ](u, a)G[T':q’t ](ym_l ua,x). (C5)

Ifu; =yp_1—1,letl <k <N-m+1besothatii = (yu_1—1,..., ym_1 —
k, Uk41,s .-y UN—m+1), Where ux41 < ym—1 —k — L inthe case k < N —m. Then the
transition probability from i to y,,_1 Ud is non-zero only if @; = u; foreachl <i < k.
In this case we have JP’(XPB = yu_1 U 5|XFT;E_1 =ii) = q‘lG([ﬁ’N](ﬁ, a) (i.e.in

G[m N]

the probablhty measure (ﬁ, -) on Q2y_;+1, We change the probability for the

m™" particle to stay put frorn q to 1). Applying (C.1) we obtain

r—B - r—B - . [m,N] /-
P(X7, 2 =vm—1Ua|X7 2 =0) =3 zeqr Goy (i (@15 ee s 2k Gkl -0 AN)).
zi>a;,1<i<k

This yields, for u; = y,—1 — 1,

— - [m—1,N] > o
ZJEQN,W,H:P(Xr = Ym-1 |—|a|XT1 -1 = ”)GTm_l,z (Ym-1Ua, x)
ar<Ym-1
— . . [m,N](-
=Y ey mir: 2 zea: Gy (i (@1s s Zho Qg -y AN—mt1))
aj=u;,1<i<k zj>a;j,1<i<k

[m—1,N] P
GT,,l Lt (Ym-1Ua, x)

N]l,- = 1,N
- ZZEQN m+1- G[m ( )G[m ]

Tin—1.t
zizui, 1<i<k

(Om—12 W10 U Tht s -2 EN—mt 1) X). (C.6)

The terms in this sum vanish unless z; — u; € {0, 1} for each 1 € [k], and one can see

that there is a k* € [k] such that (z1,...,zk) = (1 + 1, .. up, + 1, ks oo, ug).
Moreover, u; + 1 = y,,—1 —i + 1 foreach 1 <i < k,. Then applying Lemma C.1(ii)
consecutively to the entries zi, z2, ..., Zk,, We get G 1N](ym LUz, X =

G[Tm 1.V] ((ym Lo ULy e ooy Wiy Tkl - - oy ZN—mt1)s X). Fulthermore, if z; < u; for

some 1 < i < k, then the function G([)ml’N] (u, 7) vanishes, which means that (C.6)
can be written as

Yean o G0N @ DG M (g LZL R, (o)

Combining identities (C.5) and (C.7), formula (C.4) can be written as

“1LN], = = N R AP LN
G NG, %) = Y seay ma G[%"Tmil_l(y7 i)Goy i, Gy M -1 v, ).
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The induction hypothesis implies that the function G T . has the required form

m—1—"

(C.3). Moreover, direct computations show that the functions G[m N1 and G[T'Z 11 tN]

are in the form (A.1), which allows one to apply Proposition A.1 to thelr convolution.
Then the last expression turns to

N
ZaeQN_m+. ZZiGQN_i:Hi=m+] T T l(y,

m<i<N

w2 2 HG ) muim a6 M morua, 5,

which is exactly (C.3) form — 1. O

LemmaC3 Fork > 1,y € Qn(k) and X € Qy,
G2, %) = det[ FZP (enimi = ywai—jo € G = D], ey

Proof This follows from applying Proposition A.4 consecutively to the determinants
in (C.3). O

C.2. Proof of Eqn. 1.17

Lemma C.4 Identity (1.17) holds for the model (2.2) with right Bernoulli jumps, where
in the definition of the function (2.3) with negative time the singularity —q/p should
be excluded from the contour.

Proof If we exclude the singularity from the contour, then the function (2.3) satisfies
Fir—_15+l (zn+1—i — x2, —t) = 0if x, > zp, where we use the variables as in (1.17).
Hence, the restriction xp < x; in the sumin (1.17) can be omitted (this is because each
term of the sum may be non-vanishing only when x; < z,, and the dynamics implies
¥1 < x1, which by the assumptions on the variables yields xo < x1). Applying then
(2.2) and Proposition A.6, the left hand side of (1.17) turns to

det[ Fi—j(x1 - Li=y 4+ 2ng1—i - Lich — yN41-j. 1 - 1i=N)]i’je[[N]]~

One can prove that this determinant equals the right hand side of (1.17) in the same
way as the initial condition is checked in [3, Proposition 2.1]. O

Appendix D: Proofs for right geometric jumps with sequential update

As we described in Sect. 2.4, TASEP with right geometric jumps is different from the
other models in that section, and in particular Assumption 1.3 and hence Theorem 1.4
do not hold for it. Because of this we need to prove the formula (2.23) directly in the
case of sequential update (k = —1).

We start with an auxiliary result. Let G([)]’ ;N] (¥, X) be the function on the right hand

side of (2.22). Then for T = (TN With T; =i — N, form € [N], X,y € Q and

@ Springer



TASEP and generalizations: method for exact solution 691

T <t < Ty (with the convention Ty = 00) we define
GEMG, %) =P(X;0) = xi, i € [m]|X}0G) = yi i € [m]),

which is the transition probability for the particles X*~C(1), ..., X""9(m) from
Y1, ..., ym at times T1, ..., T, to the locations X at time ¢.

Lemma D.1 In above setting, and with the notation 7 U y from Appendix A,

1, > 2 1 I, = I,
GG = Tampen, (T4 G, G Ui ECT1400) GG U 9,

D.1)
where 7(T}) is an empty vector:
Proof We will prove (D.1) by induction over m = 1,2, ..., N. For the base case,

m = 1, note that on the time interval 7| < t < T» only the 1% particle moves.
Therefore G[1 1]( X) = G[Tll’”(yl x1), which is (D.1). Now assuming that (D.1)
holds for some 1 <m < N, we will prove it for m + 1. For 7,11 <t < T4 and
X € Q41 the Markov property yields

GU G R = Yagea,: BGS =il X500 = yi.i € [N])

Tt Tny1—
Q> Yt 1

X P(X5 0 = a0y |X5 0 =@)P(X; 9@ = xi, i € [m+1]|X S =auyni).
(D.2)

The definition of the model implies that the terms contributing to the sum have a,, >

Ym > Ym+1. Hence, therestrictiona,;, > y,+1 inthe sum can be omitted. The induction
.. G =G - . [1,m] - -

hypothesis yields }P’(XrTmH_1 = u’XrTl (i) = yi,i € [N]) = GT,;;H—l(y’ i),

where the latter is given by the right hand side of (D.1). Moreover, IP’(X IT;Sl =au
_ > 1, o o

Y| X5 6 =ii) = Gy'{" (@, @) and

—G,. . Lm+1] = -
]P’(Xf Siy=x;,i ¢ [m + 1]]|erf1 =au ym+1) G[Tm'f:t lGu Va1, X).

Then (D.2) can be written as

1, 11,2 = 1, 1, - - 1, 1],> -
G[j—’tm+ ](y’x) = Zﬁ,aeszm G[?VT”’J (y, )G[ m] @, a)G[TmTl—t_l ](a U Yimt1, X).

lm]

By the induction hypothesis, the function G (y, 1) has the necessary form

(D.1). Moreover, the functions G0 | I'and G[] m1+tl] are in the form (A.1), and we can
apply Proposition A.1 to their convolution. Then the last expression turns into (D.1)

form + 1. O
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By analogy with (1.11) in the case ¥ = 1, we define the event

E= m {i™ particlestaysputtilltime i — N}.

The following result is the analogue of identity (1.12) which we are going to use for
this model.

LemmaD.2 Forany X,y € Qy,

PXG O =X} =50 = det[Fir:jG(xN+l—i — YN+1-j, N — j)]i,je[[N]]'
(D.3)

Proof Formula (D.3) is obtained by applying Proposition A.5 consecutively to the
determinants in (D.1). O

The proof of Lemma D.2 does not use the fact that the particles have geometric
jumps, and in fact (D.3) also holds for other models, e.g. right Bernoulli jumps. How-
ever, only for X f_G the formula proves to be useful when considering different ending
times ¢ + i — N for each particle i. Indeed, if we consider such ending times for the
model with right Bernoulli jumps and sequential update, then after the i™ particle
stops, the (i + 1) particle needs to make one step and could jump on top of its right
neighbor. In contrast, for the model with right geometric jumps, since the basic update
rule is parallel, when the i particle stops, the (i + 1) particle cannot jump over it on
the next step, because it is still blocked by the position of its neighbor at the previous
time. This suggests the following analog of Lemma 2.2:

LemmaD.3 Fort > N — land X,y € Qp, and with N(X) as defined in Lemma 2.2,
P(X}7f (@) =xi, i € [N]IXg ¢ =5) = p™O det
[F2F Gntmi = yvsi—ju t i = N, vy (D.4)

Proof Write S; =t +i — N and let GE’EN]@, X) be the probability on the left hand

side of (D.4). At any time point s we consider N > 1 particles X§_G(N )< e <
X§’G(1), such that on the time interval s > S;_; (with the convention Sy = 0)
only the particles Xg’G(i ) IR X§’G(N ) move. Denote these moving particles by
XN (X'=S(i), ..., XI=G(N)), and let G- be their transition function.

We prove (D.4) by induction over N > 1. The base case N = 1 is trivial. Assuming
that (D.4) holds for N — 1 > 1, we will prove it for N. From the Markov property we
may write G{)l’gN] (¥, ¥) as

[1,N] S y[LN] _ o [2,N] _ = y[1.N] -
ZQEQN—IIMKM ZIEEQN—W/I]:)Q P(X& =x1u u‘XO = y)P(XSz = a‘XSl =X I‘Iu)

x P(X5 Ok = xp, 2 <k < N|XPM =3). (D.5)
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We have P(X§ Y = xqua Xt = 5) = GG, ui, PN = ajx N =
xpui) = p et GEM G, @), and PXE (k) = 0. 2 < k < N|X2N] =

a) = G[2 (a X~1), where S>1 and X are obtained from S and ¥ respectively

by removmg the first entries. The multiplier p ~Li-n=1 js needed to change the jump

probability of the 2" particle in the case x; — xp = 1.

The function ng”lN ] (i, x Ua) equals the probability for N — 1 particles to go from
1i to xp L@ during a unit time interval. Hence, it can be non-zero only if u; < x,, which
yields u1 < x» < x1, so the restriction 1 < x1 in the sum can be omitted. Moreover,
for a; # x, the last probability in (D.5) vanishes, and the restriction a; = x in the
sum can be omitted. Therefore

LNl = = o = ~[2,N] ;= =\ ~[2,N
Gyi (.9 = p 12 Ty Yiegy, Goy, (0o UG @ G @ %),

Using the induction hypothesis for the function G[S2’A§’] (@, ¥~1) and applying Propo-
2,9>1

sition A.1 to the sum over d allows to write the preceding expression as
gy .-
P Yacay , Gos, G UG G %),

Using again the induction hypothesis to the function G?’%’] and applying Proposi-
2,91
tion A.6 to the sum, we obtain (D.4). O

Proof of Proposition 2.10 In the case of parallel update, formula (2.23) follows from
Theorem 1.2. From now on we consider the case of sequential update (« = —1). Then
the proof goes along the lines of the proof of Theorem 1.4, the only difference being
the orientation of space-like paths, so we only provide a sketch of the proof.

Define the set of space-like paths for this model as

Sy = U {(n,-)ie[[m]] :n; € [N] x No, n;=<niq1},

m>1
where the relation (n1, #1)<(n3, o) now means ny < no, t; < t and (n1, 1) #

(ny, ). ThenforT; =i —N,S={(n1,t1), ...,y tm)} € SN and for y € Qp and
X € Q,, we define

fojg(ﬁ, %) =P(X; %) = xi, i € [m]| X5 9G) = yi.i € [N]).

Let the set €2, y contain the vectors (X, ..., Xy) such that x, < x,41 < -+ < xpn.
Then by analogy with (B.1) we can write

GL G0 = Cseny L fetny: Gro G XONTTL, GG, Gan, (i) (1),

x1(t))=x;,i€[m]

where 79 = 0, the function Gr 7.0 equals (D.1) in the case t = 0, and where G;fG is
the transition function given by the right hand side of (2.22).
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Definen; = N —n; + 1,sothatp; > n, > --- > n,. Analogously to (B.13) we
define the domain

Ds = {x,°(t0) € Z : £ € [n,]}

v U {xZ(zi) €Z:n; ; <n<n;, L€ [n] suchthat XM (6) < x2(g) < x‘“_tll(ti)],

ie[m]

where 1o = 0,ny = N and n,, , | = 0. Next we define a signed measure WonX € Dg
through (B.14) using the time points #; in place of ¢; and where the functions (B.11)
and (B.12) are defined with ¢ (w) = p/(1 — qw). Then, as in Proposition B.4, we can
write

—G= = 5
GT‘S . x)=C ZXEDsIXiS (t))=x;,ie[m] WX),

for a constant C # 0. As in Theorem 4.3 we can compute the correlation kernel of
the determinantal measure W, which yields formula (2.23) with the kernel given by
(4.18) with the value of k equal —1. Applying then Theorem 5.15 with the functions
¥ (w) = e(w)’ and a(w) = 1/¢(w), we get (2.23). O

Appendix E: Formulas for discrete-time RSK-solvable models

In this appendix we derive the transition probabilities for the discrete-time variants of
TASEP described in Sect. 2, by rewriting in the form (1.1) the formulas which were
derived in [14] using the four basic variants of the Robinson-Schensted-Knuth (RSK)
algorithm.

Fix a vector & = (a1, ..., ay) € RN. The r'" complete homogeneous symmetric
polynomial and the r'™ elementary symmetric function are given respectively by

o ki _k k >
B (@) = D ky....ky=0 O‘1'0‘22 - 'O‘NN! er(@) = Zk] <kp <o <ky Xk1Xhy *** Xy
i+ ey =r

where by convention hg = ¢y = land h, = ¢, = 0forr < 0.For0 <k < £ < N, let
a®O =(0,...,0,41,...,0¢0,...,0) be the vector obtained from & by setting
the first k and the last N — £ entries to 0. Write hfk’e)(o?) = h,(@®9) and eﬁk’e) (a) =
e, @®9) with 10 @) = e** (@) = 1,_¢ and then, for a fixed function f on Z,
define

£U) = Y (=D @) fk+ Ois; + Y20 b @) fk + 01—,

provided the series converges absolutely, and define f;ij )(k) in the same way except
that f(k + ¢) is replaced by f(k — £) The formulas in [14] are written in terms of

fafij )(k) and f:;fij )(k). Our first task is to find an alternative expression for them.
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Taking all entries of & to be non-zero, define, for k, £ € [N] and x, y € Z,

f dw ]_[z 1(1 a;iw) (El)

(@)
H (x )’) y wr—yH ]—[k (- a,w)

2711

where the contour y encloses 0 but not any pole w = 1/¢;. The kernel H k(ojz) is related
to symmetric functions:

LemmaE1 H%(x,y) = (~1)*Ye®@) if ¢ = k and HE) (x, y) = 1" @) if
L < k.

Proof. Write Hk(az) (x) = (a) 7 (x,0). If x <0, then H, (&)(x) = 0, because the contour

in (E.1) does not enclose any poles of the functlon in the integral. This yields the
k,0) (/3 k) >
required identities, because e (a) = (@) =

Consider now x > 0. The case £ = k is trivial, because Hk(i) (x) = 1,—¢, which

coincides with (— l)xe,(ck’k) (@). In the case £ > k, the Cauchy residue theorem yields

@ () _
)0 = S ]_[ (l—alw)’
i=k+1

(—D* Yo ey, =D @).

k+1<ji<--<jy <t

In the case ¢ < k, choosing the contour so that |w| < 1/¢; for each i, we can write
(1 —ojw)~! Zk so(ai w)ki | and the Cauchy residue theorem yields

(@) Jk £k) =
H') (x) = Y Jeiten k=0 ot,ZJrl o =heV(@). O
Jer1teFjk=x

Using the lemma and the fact that e(k 2 (@) = 0if y > £ — k, the above functions
can be written as

f(l k) H(a)) f and (l k) — H(a)f (EZ)

E.1. Proof of Eqn. 2.2

For the process XffB € Qu defined in Sect. 2.1, set Y,rfB i) = X{fB (i) + i, so that
Y'B € Qu (see (2.16) and the evolution of ¥ coincides with the model from
Case B in [14, Sect. 2]. If we denote v; = p;/g; and let the function H @) be defined
by (E.1) with values o; = v;, then in view of (E.2) the formula from [14, Theorem 1]
becomes

P B =3B =) = (va gl “) det[(H")) vy (xe — ye — €+ SIpEE
(E.3)
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for two configurations X, y € Qy and with v;(x) = ({)1o<x<. Using (E.1) and the

t
contour integral formula v;(x) = ﬁ frodw(ll;.—fl) we get

f dw l_[, 1 (w—v;) (l+w)t,

v W [T 0y

(HO) v (x) =

2711

where the integration contour y’ includes 0 and all entries of v. Changing back to
X,r_B i) = Y,r_B (i) — i in (E.3) and taking all speeds to be equal, we arrive at (2.2)
after a simple change of variables.

E.2 Proof of Eqn. 2.12

For X}_B as in Sect. 2.2, we define the process Y,I_B(i) = —X}_B(i) — 1. Then
Y,I_B(l) < Y,l_B 2)=<-..-< YZI_B (N); we denote by Q the set of such configura-
tions. Proceeding as in the previous case, Case D of [14, Theorem 1] yields, for v; as
in the previous case,

Py, ® = |Y1 =3 = (l'[, 1 9]} XI) det[Hk(jJe)”l(xf — Y+ — k)]k,ee[[zv]]’
(E.4)

where X,y € Q ~ and v; = g;/p;. Using (E.1) and the integral representation of v,
from Sect. 1, we get

f dw l_[ =1 (w— Uz)( _I_l/w)t

(¥)
Hk v (x) = y! W xHCRF 1—[1_ (w—v;)

2711

where the integration contour y’ includes 0 and all entries of ¥. Changing back to
X}*B(i) = —Y}*B (i) — i in (E.4) and taking all speeds to be equal, we get (2.12).

E.3. Proof of Eqn. 2.19

For X}_G as in Sect. 2.3, we define the process Ytl_G i) = —X}_G (i) —i so that Ytl_G
lives in QN as in the previous case. We set u;(x) = (H'X_l)lxzo,,zl +1,—,—0, which

X
—w)~! ~ .
can be written as u;(x) = ﬁ , (lwﬂ)l dw, where the contour y includes 0, but not

1. Then Case A of [14, Theorem 1] yields

Py =xy/ O =3 = (I_L gt ") det[ Hy i (e = i+ £ = O] oequr
(E.5)

where ¥, y € Qy and v; = 1/g;. Then using (E.1) we can write

HE) iy (x) =

‘¢‘ dw 1_[1 l(w l/qi)(] _ l/w)ft,

2711 y Wk ]—[k “1an
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TASEP and generalizations: method for exact solution 697

where the contour y encloses 0, 1 and all values v;. Changing back to X}_G(i ) =
—Y}*G(i) — i in (E.5) and taking all speeds to be equal, we get (2.19).

E.4. Proof of Eqn. 2.22

For X§_Ci as in Sect. 2.4.1, let us define the process Y/ =S (i) = X'~9(i) + i, so that
Y,r*G € Qp. Case C of [14, Theorem 1] yields, for u; as in the previous case,

Py ¢ =Xy % =3) = (H,N=1 Pl(qfi_yi) det[(Hk(,ﬁz))*Mt(xe —y—t+ k)]k,/de[[N]]’
(E.6)

where X, y € Qy and v; = qi- Using the integral representation of w, and (E.1), we
may write

@) _ 1 dw [T (w—gi) 4
(Hk,z )*Mf (-x) - m ~¢‘V wx+gu_}k+1 l_[f;i(w—q;)(l ol U)) ,

where the contour y includes 0 and all entries of v, but does not include 1. Changing
back to X' 9(i) = ¥%(i) — i in (E.6) and taking all speeds to be equal, we get
(2.22).
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