
Dynamic correlations in lipid bilayer membranes over finite time intervals
Rafael L. Schoch,1, a) Gilad Haran,1, b) and Frank L. H. Brown2, 3, c)
1)Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
2)Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
3)Department of Physics, University of California, Santa Barbara, California 93106, USA

Recent single-molecule measurements [ Schoch et. al., Proc. Nat. Acad. Sci. (USA), 118, e2113202118, 2021 ] have
observed dynamic lipid-lipid correlations in membranes with submicron spatial resolution and submillisecond temo-
poral resolution. While short from an instrumentation standpoint, these length and time scales remain long compared
to microscopic molecular motions. Theoretical expressions are derived to infer experimentally measurable correlations
from the two-body diffusion matrix appropriate for membrane-bound bodies coupled by hydrodynamic interactions.
The temporal (and associated spatial) averaging resulting from finite acquisition times has the effect of washing out
correlations as compared to naive predictions (i.e., the bare elements of the diffusion matrix), which would be ex-
pected to hold for instantaneous measurements. The theoretical predictions are shown to be in excellent agreement
with Brownian Dynamics simulations of experimental measurements. Numerical results suggest that the experimental
measurement of membrane protein diffusion, in complement to lipid diffusion measurements, might help to resolve the
experimental ambiguities encountered for certain black lipid membranes.

I. INTRODUCTION

Singer and Nicholson1 popularized the “fluid mosaic” picture of biological membranes some fifty years ago. The basic
theoretical description quantifying these ideas into a hydrodynamic model was provided just a few years later by Saffman and
Delbruck2,3. The Saffman-Delbruck (SD) model supposes the membrane to be a flat, thin, structureless, and homogeneous
viscous sheet coupled on both sides to a bulk fluid via no-slip boundary conditions. Traditionally, the SD membrane is also
considered to be infinitely large, with the surrounding fluid extending infinitely far to either side. However, many extensions of
the traditional SD model have been proposed to allow for the hydrodynamic description of supported membranes4–7, membrane
vesicles8, simulated membranes under periodic boundary conditions9, membranes decorated with immobile inclusions10 and
membranes including an explicit representation of both monolayer leaflets in the bilayer structure8,11,12.

SD theory was originally formulated to predict the self-diffusion coefficients of integral membrane proteins2. For years, it was
generally accepted that this prediction (and its extension to larger diffusing bodies13) was a success14,15. However, more recent
studies are divided; some authors claim significant deviations between experiment and SD-predicted diffusion coefficients16–19,
while other authors find no such disparities20–23. Various theoretical models have been proposed24–29 to explain how deviations
between SD theory and experiment in the self-diffusion of membrane proteins might arise. However, it is worth emphasizing
that the application of hydrodynamic theories down to molecular scales (as in the prediction of self-diffusion coefficients for a
single protein) is always fraught with danger and ambiguities. For example, the relevant “hydrodynamic radius” and/or boundary
conditions associated with the diffusing molecule are difficult to predict from first principles, even in the case of simple molecules
or globular proteins in a traditional bulk solvent30,31. Additional complications arise in the case of membrane systems24–29, so
perhaps it is not surprising that hydrodynamic predictions for membrane-protein self-diffusion can be problematic.

The hydrodynamic picture for membrane dynamics (SD and its many extensions) has more far-reaching implications than
the prediction of self-diffusion coefficients. All dynamics at the membrane surface will be affected by hydrodynamic flows.
This includes, for example, the formation, fluctuations, motion and coarsening of lipid domains23,32–37, the rates of chemical
reactions involving membrane associated reactants38 and the influence of embedded protein inclusions on dynamics within the
membrane10,39–42. Therefore, it is important to test hydrodynamic predictions using measurements that are well-suited to the
task, as opposed to simply recognizing that self-diffusion measurements may not be adequate to fully validate hydrodynamic
models.

Hydrodynamics is a continuum theory and it is best tested over distances far exceeding the molecular scale. In recent work43,
we measured dynamic correlations between well-separated (hundreds of nanometers) lipids using a single-molecule implemen-
tation of two-particle microrheology44–46. In principle, under ideal circumstances, these measurements would provide a direct
measurement of the two-body lipid-lipid diffusion matrix, which is related to the hydrodynamic mobility matrix through a sim-
ple factor of temperature47,48. In the far field, off-diagonal elements of the mobility matrix report the “Oseen tensor”47,49,50 for
fluid flow (i.e., the Green’s function for fluid velocity response to point forcing). Consequently, two-particle microrheology
measurements should provide detailed data suitable for direct and robust comparison to hydrodynamic predictions.
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Current technical limitations preclude the simple comparison between experiment and theory outlined in the preceding
paragraph43. Lipid positions are measured via induced fluorescence with illumination windows on the order of a millisec-
ond. In that time, Brownian motion will likely displace a given lipid by over a hundred nanometers; these finite illumination
periods result in measurements that reflect averaged lipid positions over the pulse duration. Since the elements of the lipid-lipid
mobility/diffusion matrix are strongly separation dependent, the experimentally measured correlations do not reflect any specific
value of the diffusion matrix. Rather, elements of the diffusion matrix over a whole range of separations are entangled within the
readily available experimental observables. In Ref. 43, theoretical expressions for the measured correlations were used to fit the
experimental data. A derivation and comprehensive validation of these expressions were not presented in that work. The missing
derivation is provided here. The expressions presented in this work are truncated to linear order in the off-diagonal elements
of the Smoluchowski operator for particle motion. This is expected to be a good approximation for well-separated particles,
but a poor approximation for particles that approach each other very closely. For experimentally relevant cases and parameter
regimes, the approximation turns out to be very accurate. Validation of this fact is provided by direct comparison to Brownian
Dynamics simulations for a number of different cases. The approach described in this paper should be valuable for interpreting
any future two-particle microrheology experiments that are hindered by limited temporal resolution.

The organization of this paper is as follows. The following section presents a brief overview of the experimental measurements
of Ref. 43, in order to introduce theoretical quantities associated with the experimental data. Section III outlines the calculation of
these theoretical quantities, keeping all terms to linear order in hydrodynamic interactions. The performance of these expressions
(and the linear truncation in particular) is assessed in section IV by comparison to Brownian Dynamics simulations. In section
V, numerical calculations are presented to suggest that some of the experimental ambiguities encountered in Ref. 43 might be
resolvable if experiments were performed to measure the diffusion of transmembrane proteins in addition to lipids. Section VI
offers a brief conclusion.

II. EXPERIMENTALLY MEASURABLE CORRELATIONS

It is well known that the self-diffusion coefficient for a Brownian particle in a homogeneous environment can be inferred from
its mean squared particle displacements over time interval t via51,52

2Dt = ⟨∆x2⟩ = ⟨∆y2⟩. (1)

(This paper focuses exclusively on 2D systems; ⟨∆z2⟩ shares the same value as its x, y counterparts in 3D systems.) The duration
over which the displacement is measured is irrelevant; the mean squared displacement is proportional to the measurement time
and Eq. 1 is expected to hold true regardless of t. Further, since all positions in space are physically equivalent, displacements
starting anywhere are statistically identical and may be included in the averaging process. In contrast, for a particle moving in
an inhomogeneous environment, where D(r) depends on position, averaging must include only displacements initiated from the
same position r (denoted as ⟨. . .⟩r) and Eq. 1 makes sense only for a short interval ∆t

2D(r)∆t = ⟨∆x2⟩r = ⟨∆y2⟩r. (2)

∆t has to be short enough to guarantee that the particle’s random explorations do not lead to significant variations in D(r).
Equivalently, the correlations indicated in Eq. 2 are given by 2D(r)∆t only to lowest order in ∆t.

The correlated diffusion between multiple hydrodynamically-coupled Brownian particles follows as an extension of Eq. 247,53.
In the specific case of two identical and disk-like lipids/proteins with cylindrical symmetry in a membrane, the distinct and
nonzero elements of the diffusion matrix, D(r1, r2), are39,54

2Dt = ⟨∆x2
1⟩ = ⟨∆x2

2⟩ = ⟨∆y21⟩ = ⟨∆y22⟩
2DL

c (A)∆t = ⟨∆x1∆x2⟩(A,0)

2DT
c (A)∆t = ⟨∆y1∆y2⟩(A,0). (3)

These equations adopt the convention that the starting position of particle 1 defines the origin, that the vector initially separating
the two particles coincides with the x axis, and that A is the magnitude of this separation (see Fig. 1). The (A, 0) subscript then
specifies that averaging to determine longitudinal (L, along the particle separation vector) and transverse (T , perpendicular to
the separation vector) correlated diffusion coefficients is restricted to initial geometries with particle 1 at the origin and particle 2
at (A, 0). There is no loss of generality in this description for a homogeneous membrane. Any pair of particles can be translated
and rotated to satisfy the adopted convention without altering physical behavior. The magnitudes of DL

c (A) and DT
c (A) depend

only upon the scalar separation of the particles and Eq. 9 (see below) provides a general representation of D(r1, r2) in terms of
D, DL

c and DT
c for arbitrarily positioned particles.

In principle, the self-diffusion constant D also depends on particle separation and direction of motion, but this effect is
vanishingly small for typical lipid systems, unless the particles are practically colliding with one another54. Experimentally, A is
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of the order of 20 nm or larger, so D is assumed to be a true constant throughout this paper. Consequently, there is no restriction
to short times or initial positioning in the first line of Eq. 3.

In principle, Eq. 3 offers a clear prescription for the determination of D, DL
c (A) and DT

c (A) from measured particle trajecto-
ries. In practice experimentally, only D is readily determined from these equations. Both the smallness condition on ∆t and the
precise determination of particle ∆x, ∆y are difficult to realize experimentally, as summarized in Fig. 2. The two-color single-
particle-tracking pulsed-illumination scheme introduced in Ref. 43 is constrained by the detector dead time and limitations on
accumulated signal strength from single fluorophores. The resulting ∆t values are approximately a millisecond (longer for black
lipid membranes, shorter for supported bilayers); both bright and dark intervals contribute to this window, as illustrated in Fig. 2.
Using representative numbers from Ref. 43, D ∼ 15×10−12 m2/s and ∆t = ton+ toff ∼ 1.5 ×10−3 s, it is estimated that the
root mean squared lipid displacement (

√
4D∆t) is 300 nm. The elements of D(A) show significant variations for sub-micron

separations (see Sec. IV) and it is clear that the experimentally accessible ∆t values are too long for a naive application of Eq.
3 to yield reliable results for DL

c and DT
c .

While it is infeasible to determine DL
c and DT

c directly from Eq. 3, the experimental measurements do report on correlations
in the motion of pairs of lipids. Mathematically, these measurable correlations correspond to:

⟨(X1 −A1)(X2 −A2)⟩(A1,0,A2,0)

⟨Y1Y2⟩(A1,0,A2,0)
(4)

with

Xj =
1

ton

∫ 2ton+toff

ton+toff

dtxj(t)

Yj =
1

ton

∫ 2ton+toff

ton+toff

dtyj(t) (5)

Aj =
1

ton

∫ ton

0

dtxj(t)

0 =
1

ton

∫ ton

0

dtyj(t). (6)

The (A1, 0, A2, 0) subscript indicates that only pairs of lipids with averaged positions over the first bright interval of (A1, 0) for
particle 1 and (A2, 0) for particle 2 are to be included in the averaging. This coincides with how the experiments are analyzed43.
Lipid pairs with the same “initial” separation are rotated onto the x axis and binned together for analysis, by analogy to Eq. 3,
in order to provide separation-dependent observables akin to DL

c (A) and DT
c (A).

It should be clear that Aj and Xj are analogous physical quantities, corresponding to the averaged x coordinate of particle
j during the first and second bright intervals, respectively. (It is convenient, in order to maintain a notation symmetry between
particles 1 and 2 in the following section, to retain a general A1, even though A1 = 0 is specified in Figs. 1 and 2.) However,
Aj constrains the ensemble considered in the averaging of Eq. 4 in the same sense that r constrains the ensemble of Eq. 2. Aj is
simply a parameter defining the correlation in Eq. 4, it is not a dynamical variable and the notation has been chosen to emphasize
this point. The fact that the Aj constraints (and similar zero constraints in the y direction) extend over the entire interval [0, ton],
as opposed to simply specifying the particle positions at t = 0, leads to theoretical complications as discussed below.

The following section details the calculation of the correlations in Eq. 4. Indeed, the primary point of this paper is to present
a theoretical framework for prediction of Eq. 4 and to investigate some specific realizations of this prediction.
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III. THEORY

Consider two non-interacting identical disks (or “particles”) evolving via coupled Brownian motion in the x, y plane. The
probability distribution for the two particles evolves via the Smoluchowski equation47,52

∂f(r1, r2, t)

∂t
= (Ws +Wc)f(r1, r2, t) (7)

Ws ≡ D∇2
1 +D∇2

2 (8)

Wc ≡
∑
n=1,2

∑
m ̸=n

∂

∂rn,α
(D(r1, r2))n,α;m,β

∂

∂rm,β

=
∑
n=1,2

∑
m ̸=n

∂

∂rn,α
r̂12,α

(
DL

c (r12)−DT
c (r12)

)
r̂12,β

∂

∂rm,β

+
∑
n=1,2

∑
m ̸=n

∂

∂rn,α
DT

c (r12)
∂

∂rm,α
(9)

with the formal solution

f(r1, r2, t) = e(Ws+Wc)tf(r1, r2, 0). (10)

Here, D is the self-diffusion coefficient for a single particle whereas D(r1, r2) is the full diffusion matrix for the two disks.
The evolution/Smoluchowski operator has been explicitly separated into self-diffusion and coupled-diffusion components. rj is
the position vector for disk j in the x, y plane. r12 = |r1 − r2| and r̂12 = (r1 − r2)/r12. Note that the Einstein summation
convention is adopted for the Greek indices associated with Cartesian directions. There are only two independent elements of
D(r1, r2) for the coupled diffusion of two identical particles with cylindrical symmetry. These elements are associated with
“longitudinal” correlated diffusion along the vector separating the particles (DL

c (r12)) and “transverse” correlated diffusion
perpendicular to the separation vector (DT

c (r12)). As the notation suggests, these correlations are separation dependent, owing
to the hydrodynamic interactions that propagate through the membrane and surrounding fluid. Various hydrodynamic models
for lipid bilayers will be considered in Secs. IV and V, leading to different expressions and numerical values for D, DL

c (r12)
and DT

c (r12).
The goal of this section is to provide theoretical expressions for the experimentally measurable correlations (Eq. 4). For

concreteness, consider the longitudinal correlation (the transverse case follows similarly):

⟨(X1 −A1)(X2 −A2)⟩(A1,0,A2,0) =
1

t2on

∫ 2ton+toff

ton+toff

dtadtb ⟨(x1(ta)−A1)(x2(tb)−A2)⟩(A1,0,A2,0)
. (11)

Owing to the Markovian nature of the dynamics, the two-time correlation function within the integrals can be evaluated as52

⟨(x1(ta)−A1)(x2(tb)−A2)⟩(A1,0,A2,0) =

∫
dΓa

∫
dΓb

∫
dΓ(xa

1 −A1)P (Γa, ta|Γb, tb)×

(xb
2 −A2)P (Γb, tb|Γ, ton)f(Γ, ton)

P (Γa, ta|Γb, tb) = e(W
a
s +Wa

c )(ta−tb)δ(Γa − Γb). (12)

The above assumes ta > tb, but the reverse ordered case is similar. Here Γ ≡ (r1, r2) = (x1, y1, x2, y2) represents the system’s
position in “phase space” to simplify notation. f(Γ, ton) is the distribution of particles realized at time ton, starting from the flat
equilibrium distribution at time 0, f(Γ, 0) = feq(Γ) = 1/L4 (for a L×L box), and constrained to satisfy Eq. 6. P (Γa, ta|Γb, tb)
terms are transition probabilities from Γb at tb to Γa at ta. Note that the superscripts on the diffusion operators indicate the phase
space variables the operators are acting on; absence of a superscript means the operators are acting on plain Γ. Eq. 12 simplifies
to

⟨(x1(ta)−A1)(x2(tb)−A2)⟩ =
∫

dΓ(x1 −A1)e
(Ws+Wc)(ta−tb)(x2 −A2)e

(Ws+Wc)(tb−ton)f(Γ, ton), (13)

which can be seen by recognizing that the Ws and Wc operators are self-adjoint. The time evolution operators may thus be
moved off the delta functions and onto the remaining expression without any sign changes. The remaining intermediate integrals
may then be taken immediately because of the delta functions.

Calculation of f(Γ, ton) is somewhat involved due to the imposed constraints (Eq. 6) and is detailed in Appendix A. The
result is:
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f(Γ, ton) = f0(Γ, ton) (14)

+
1

(2π)4

∫ ton

0

dt′
∫

dke−ik·A
∫

dΓ′dΓ′′Q0(k/ton, ton − t′,Γ,Γ′)W
′

cQ0(k/ton, t
′,Γ′,Γ′′) + . . .

with

f0(Γ, ton) =
∏
α

1√
4πDton/3

e−
(Γα−Aα)2

4Dton/3 (15)

Q0(q, t,Γ
b,Γa) =

∏
α

1√
4πDt

exp

[
− (Γb

α − Γa
α)

2

4Dt
+

iqαt(Γ
a
α + Γb

α)

2
− q2αDt3

12

]

where the index α runs over the four components of Γ = (x1, y1, x2, y2) = (r⃗1, r⃗2), k = (kx1
, ky1

, kx2
, ky2

) = (k⃗1, k⃗2) and
A = (A1, 0, A2, 0) = (A⃗1, A⃗2). The explicit terms are those necessary to calculate Eq. 11 up to first order in Wc with higher
order terms in the expansion included in the dots.

The time evolution operators in Eq. 13 can be expanded in powers of Wc
48,55

e(Ws+Wc)t = eWst +

∫ t

0

dt′eWs(t−t′)Wce
Wst

′
+ . . . (16)

and substituting Eqs. 14 and 16 into Eq. 11 yields the perturbation expansion for the correlations

⟨(X1 −A1)(X2 −A2)⟩ = (17)

1

t2on

2∑
n ̸=m=1

∫ 2ton+toff

ton+toff

dta

∫ ta

ton+toff

dtb

∫
dΓ×

{
(xn −An)e

Ws(ta−tb)(xm −Am)eWs(tb−ton)f0(Γ, ton)

+(xn −An)

∫ ta

tb

dt1e
Ws(ta−t1)Wce

Ws(t1−tb)(xm −Am)eWs(tb−ton)f0(Γ, ton)

+(xn −An)e
Ws(ta−tb)(xm −Am)

∫ tb

ton

dt2e
Ws(tb−t2)Wce

Ws(t2−ton)f0(Γ, ton)

+
1

(2π)4

∫
dke−ik·A(xn −An)e

Ws(ta−tb)(xm −Am)eWs(tb−ton)

∫ ton

0

dt3

∫
dΓ′dΓ′′ ×

Q0(k/ton, ton − t3,Γ,Γ
′)W ′

cQ0(k/ton, t3,Γ
′,Γ′′) + . . .

}
(18)

A number of simplifications can be made quite quickly here. All factors of eWsτ appearing to the left of Wc (and all such
factors in the first term that lacks Wc) can be replaced by a 1. This is because the Laplacians in Ws yield zero contribution upon
evaluating the Γ integrals by parts. It is then seen that the first term inside the braces vanishes due to the odd integrals around
An(m). This makes perfect physical sense. The first term is the zeroth order contribution to the correlations and there are no inter-
particle correlations in the absence of Wc. The factors of eWsτ acting directly on f0(Γ, ton) reflect simple (uncorrelated) diffusive
evolution starting from a Gaussian distribution at time ton. The result is a broadened Gaussian with variance 2Dton/3 + 2Dτ
in each direction:

eWsτf0(Γ, ton) =
∏
α

1√
4π(Dton/3 +Dτ)

e−
(Γα−Aα)2

4(Dton/3+Dτ)

= f0(Γ, τ + ton) for τ ≥ 0. (19)

Also, the portion to the right of Wc in the second term evaluates as:

eWs(t1−tb)(xm −Am)eWs(tb−ton)f0(Γ, ton) = (xm −Am)
Dton/3 +D(tb − ton)

Dton/3 +D(t1 − ton)
f0(Γ, t1). (20)

This can be seen through expressing the factor (xm−Am) on the LHS as a derivative with respect to xm acting on the distribution
to its right. That derivative commutes with eWsτ , allowing the time propagation to continue to t1. When the derivative is then
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applied, the factor of (xm − Am) is returned. Finally, the integrals over Γ and Γ′′ in the final term may be performed using
results summarized in Eq. A12 in Appendix A. The results are

⟨(X1 −A1)(X2 −A2)⟩ = (21)

1

t2on

2∑
n ̸=m=1

∫ 2ton+toff

ton+toff

dta

∫ ta

ton+toff

dtb ×{∫ ta

tb

dt1

∫
dΓ(xn −An)Wc(xm −Am)

Dton/3 +D(tb − ton)

Dton/3 +D(t1 − ton)
f0(Γ, t1)

+

∫ tb

ton

dt2

∫
dΓ(xn −An)(xm −Am)Wcf0(Γ, t2)

+

∫ ton

0

dt3
1

(2π)4

∫
dke−ik·A

∫
dΓ′[(x′

n −An) + i
kxn

ton
D(ton − t3)

2][(x′
m −Am) + i

kxm

ton
D(ton − t3)

2]×

G(k/ton, ton − t3,Γ
′)W ′

cG(k/ton, t3,Γ
′) + . . .

}
(22)

where

G(k, t,Γ) =
∏
α

eikαΓαte−k2
αDt3/3. (23)

The calculation may proceed from this point without making further assumptions; the general results are included in Appendix
B for reference. However, the hydrodynamic models considered in this work assume the membrane to be incompressible, which
yields significant simplifications. The incompressibility condition results in diffusion matrices that are divergence free56:

∂

∂r1,α
(D(r1, r2))1,α;2,β =

∂

∂r2,β
(D(r1, r2))1,α;2,β = 0. (24)

As an immediate consequence,

Wc =
∑
n=1,2

∑
m ̸=n

(D(r1, r2))n,α;m,β

∂

∂rn,α

∂

∂rm,β

=
∑
n=1,2

∑
m ̸=n

∂

∂rn,α

∂

∂rm,β
(D(r1, r2))n,α;m,β , (25)

since the apparently missing (top line) or additional (bottom line) terms involving derivatives of D vanish when summed over.
Furthermore, in the evaluation of phase space integrals in Eq. 21, the derivatives in Eq. 25 can be made to act to the left via
integration by parts. As a consequence, the first term within braces in Eq. 21 vanishes and the second term evaluates very
simply. Evaluation of the remaining final term is more tedious, but the required derivatives can be taken and the Fourier integrals
evaluated. The final results are written most concisely in terms of averages over the the general zeroth order distribution valid
for all positive times (see Eq. A16) :〈

O(Γ, t)

〉
0

(t) ≡
∫

dΓf0(Γ, t)O(Γ, t) (26)

f0(Γ, t) =
∏
α

1√
2πσ2(t)

e
− (Γα−Aα)2

2σ2(t)

σ2(t) =

{
2Dt3+2D(ton−t)3

3t2on
(0 < t < ton)

2Dton
3 + 2D(t− ton) (t > ton)

where the observable O(Γ, t) is an arbitrary function of the phase space coordinates Γ and may also contain explicit time
dependence, as indicated. In this notation, we have

⟨(X1 −A1)(X2 −A2)⟩(A1,0,A2,0) = (27)

4

t2on

2ton+toff∫
ton+toff

dta

ta∫
ton+toff

dtb

tb∫
ton

dt

〈
DL

c x̂
2
12 +DT

c ŷ
2
12

〉
0

(t)

+

∫ ton

0

dt
2t2

t2on

〈
[DL

c −DT
c ]F1 +DT

c F2

〉
0

(t) + . . .
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with

F1 = (x̂12A1 + ŷ12B1) · (x̂12A2 + ŷ12B2)

F2 = (A1A2 + B1B2)

Aj =

[
(xj −Aj)

2

σ2(t)
− D(ton − t)2

ton

{
(xj −Aj)

2

σ4(t)
− 1

σ2(t)

}]
(28)

Bj =

[
(xj −Aj)yj

σ2(t)
− D(ton − t)2

ton

(xj −Aj)yj
σ4(t)

]
.

Note that x̂12 and ŷ12 are the components of the dimensionless separation vector, r̂12, introduced in Eq. 9. The related
expression for transverse correlations follows from an analogous calculation as

⟨Y1Y2⟩(A1,0,A2,0) = (29)

4

t2on

2ton+toff∫
ton+toff

dta

ta∫
ton+toff

dtb

tb∫
ton

dt

〈
DL

c ŷ
2
12 +DT

c x̂
2
12

〉
0

(t)

+

∫ ton

0

dt
2t2

t2on

〈
[DL

c −DT
c ]F̃1 +DT

c F̃2

〉
0

(t) + . . .

with

F̃1 =
(
ŷ12Ã1 + x̂12B̃1

)
·
(
ŷ12Ã2 + x̂12B̃2

)
F̃2 =

(
Ã1Ã2 + B̃1B̃2

)
Ãj =

[
y2j

σ2(t)
− D(ton − t)2

ton

{
y2j

σ4(t)
− 1

σ2(t)

}]
(30)

B̃j =

[
(xj −Aj)yj

σ2(t)
− D(ton − t)2

ton

(xj −Aj)yj
σ4(t)

]
.

Eqs. 26 - 30 are the main results of this paper. They provide an explicit prescription for evaluation of the experimentally
measurable lipid correlations. While these expressions are algebraically complicated, the ⟨. . .⟩0 averages are simply and effi-
ciently evaluated numerically. Compared to a direct evaluation of Eq. 4 via Brownian Dynamics simulation, the expressions
derived in this section are found to be at least three orders of magnitude more efficient numerically. Multiple factors contribute
to this efficiency gain. Among these factors are the automatic satisfaction of constraints from Eq. 6, the known explicit form of
f0(Γ, t), and statistical advantages inherent to the averaged expressions in Eqs. 27 and 29. The last point relates to the fact that
Eqs. 27 and 29 express the experimental correlations in terms of averages of diffusion matrix elements. Naive simulations must
infer the experimental correlations directly from fluctuations. As a trivial example, if DL

c = DT
c = 0, Eqs. 27 and 29 imme-

diately predict vanishing experimental correlations with no work at all. Determining that the experimental correlations vanish
from direct simulation requires substantial sampling. In effect, the results of Eqs. 26 - 30 are partially pre-averaged, leading to
significant numerical savings. Though not emphasized in this paper, the impetus for deriving Eqs. 26 - 30, was the computational
expense in using direct Brownian dynamics simulations to repeatedly evaluate Eq. 4 in the fitting of hydrodynamic predictions
to experimental data43. The results provided here greatly simply that task.

The results of this section, despite their numerical appeal, are of little use if they are inaccurate. And, it should be stressed
that the results derived here are only accurate to linear order in Wc. They will eventually break down when particles closely
approach one another and hydrodynamic correlations become large. Fortunately, the experiments are constrained by finite spatial
resolution, which effectively precludes measuring correlations for A values much smaller than 100 nm. While this restriction on
A (Eq. 6) doesn’t guarantee that two particles will never come into close proximity, problematic configurations are sufficiently
rare that the predicted experimental correlations are captured well by Eqs. 26 - 30. The following section compares the present
results to direct simulations and finds the theoretical predictions to be very accurate for all cases of experimental interest.
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IV. VALIDATION

Numerical methods and notation

Eqs. 26 - 30 require knowledge of D, DL
c (r12), D

T
c (r12), ton and toff as inputs to predict the measurable correlations. The

time scales and experimentally tunable parameters will be specified for each example discussed below. The elements of D are
properties of the specific membrane systems studied. Direct experimental measurements are available only for self-diffusion, D;
the difficulty in measuring D

L(T )
c directly is the primary reason why this paper exists. To compare theoretical predictions with

direct simulations, a number of theoretical models for the diffusion matrix are considered below. In the simplest case, closed
form analytical predictions are available. The more elaborate models, involving explicit treatment of the two opposing leaflets
in lipid bilayers, require numerical calculations of the diffusion matrix. These calculations are carried out using the interfacial
“regularized Stokeslet”57,58 (RS) approach that we have introduced and used previously12,43,54,59. Further details will not be
presented here, except to specify the relevant physical parameters used in individual examples. For comparison purposes, the
D

L(T )
c curves are included in all plots of the measured correlations presented below.
Numerical evaluation of Eqs. 27 and 29 is handled in straightforward fashion. Values of the various ⟨. . .⟩0(t) averages

are calculated at evenly spaced time points over the interval [0, 2ton + toff ] by sampling particle positions from the Gaussian
distrubutions specified in Eq. 26. The indicated time integrals are then carried out using the extended trapezoid rule60.

Brownian Dynamics with hydrodynamic interactions (BD)53 simulations are presented below to assess the accuracy of Eqs.
26 - 30. BD simulations converge toward an exact calculation of Eq. 4 for a given choice of D; any disparities between Eqs. 27
and 29 and their analogs computed via BD indicate shortcomings of the approximations introduced in the previous section. The
BD simulations reported here require various different two-particle diffusion matrices (D) appropriate to the tangential motion
of particles on membrane surfaces, as introduced below. The presented correlation curves (e.g., Fig. 3) required sampling tens
of millions of two-particle trajectories to obtain the indicated error bars. Initial particle positions were sampled from a uniform
distribution in space and were allowed to evolve without imposition of periodic boundary conditions, consistent with experiment.
Further details related to our implementation of the BD simulations can be found in the supplemental information of Ref. 43.

To simplify the comparison of results, the measurable correlations will be presented as

BL
c (A) ≡

⟨X1(X2 −A)⟩(0,0,A,0)

∣∣
BD

2[toff + ton]

BT
c (A) ≡

⟨Y1Y2⟩(0,0,A,0)

∣∣
BD

2[toff + ton]
(31)

CL
c (A) ≡

⟨X1(X2 −A)⟩(0,0,A,0)

∣∣
lin

2[toff + ton]

CT
c (A) ≡

⟨Y1Y2⟩(0,0,A,0)

∣∣
lin

2[toff + ton]
. (32)

The “B” quantities correspond to correlations evaluated via full Brownian Dynamics, whereas the “C” quantities report on the
linearized approximate results presented in Eqs. 26 - 30. BL

c (A) = DL
c (r12) in the limit of ton → 0 and small toff . This is

because the BD simulations are numerically exact (assuming infinite sampling) and the correlation functions in Eq. 31 reduce to
Eq. 3 in this limit. Also, CL

c (A) = DL
c (A) in the same limit, as is seen by evaluating Eq. 27. The corresponding equivalences

hold true for the transverse correlations. Plotting the B and C quantities in Eqs. 31 and 32 allows for a meaningful direct
comparison between D

L(T )
c , BL(T )

c and C
L(T )
c on the same set of axes. From the experimental perspective, one would like

to be able to extract DL(T )
c directly from measured correlations (Eq. 4). However, naively dividing the measured correlations

by 2∆t = 2[toff + ton] only yields correlated diffusion coefficients if the bright and dark intervals are sufficiently short. As
the following examples demonstrate, experimental time scales are not sufficiently short for this naive form of data analysis to
succeed. The examples will demonstrate that Eqs. 26 - 30 provide an accurate alternative to direct BD simulations, which serves
as a justification for the analysis of experimental data in Ref. 43.

Certain parameters are common to most of the presented simulations/numerics and are collected in table I for reference. The
remaining parameters are variable across the different examples and are detailed in the text and figures.

A. Traditional Saffman-Delbruck membrane

For a membrane treated as a single viscous sheet immersed in an infinite bath of surrounding solvent, the bilayer sur-
face viscosity ηb = 2ηm (twice the monolayer surface viscosity) and solvent viscosity ηf completely characterize membrane
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Parameters
parameter value meaning

r0 0.5 nm particle radius
ηm 1.6× 10−10 Pa s m monolayer viscosity
ηf 0.001 Pa s bulk water viscosity
b varies inter-leaflet friction coefficient
η−
f varies trapped water viscosity for supported bilayers
h 1.0 nm separation from support for supported bilayers
ton varies duration of bright pulses
toff varies separation between bright pulses

TABLE I. Generic lipid bilayer properties adopted in this work. Unless specified otherwise, the following examples and figures use these
values for physical parameters.

dynamics2,3. From a physical perspective, this model is well-suited to studying the motion of bodies that span the entire mem-
brane (e.g., transmembrane integral proteins or membrane-spanning peptides). By symmetry, an upright cylinder spanning both
leaflets will induce identical flows in both leaflets as it is forced; there is no need to consider inter-leaflet slip, as in the more
elaborate models introduced below for studying the motion of lipids or other monotopic bodies.

Theoretical expressions are commonly presented in terms of the Saffman-Delbruck length lSD ≡ ηb/2ηf = ηm/ηf =
160 nm, which marks the crossover between regimes of 2D dominated hydrodynamics within the membrane sheet itself (at
short scales) and 3D dominated hydrodynamics in the solvent surrounding the sheet (at long scales)3,4. (It should be noted that
experimental measurements of ηm vary widely, depending on the technique used, even for identical lipid systems61. The number
chosen here is motivated by our prior investigations, based on lipid diffusion43,59, and is on the lower end of numbers reported
in the literature.) The elements of the diffusion matrix are39,62

D =
kBT

4πηb

(
ln

2lSD

r0
− γe

)
DL

c (A) =
kBT

4ηb

[
H1(r̃)− Y1(r̃)

r̃
− 2

πr̃2
− r20

πA2

]
DT

c (A) =
kBT

4ηb

[
H0(r̃)−

H1(r̃)

r̃
− 1

2
(Y0(r̃)− Y2(r̃)) +

2

πr̃2
+

r20
πA2

]
(33)

where r̃ ≡ A/lSD is the dimensionless particle-particle separation, r0 is the radius of the particles (assumed identical), and γe ≃
0.58 is the Euler-Mascheroni constant. Hν and Yν are Struve functions and Bessel functions of the second kind, respectively.
These expressions assume r0 ≪ lSD, however it should be noted that DL(T )

c contain leading corrections in r0/A to the point-
particle Kirkwood-like approximation that would simply involve the membrane Oseen tensor4,63.

Fig. 3 compares D
L(T )
c , BL(T )

c and C
L(T )
c for the traditional SD membrane case, using parameters from table I. (The self-

diffusion coefficient is D = 6.0 µm2/s.) Correlation calculations were performed for three different displacement time intervals
∆t, i.e., ∆t = 200 µs (with ∆ton = 100 µs and ∆toff = 100 µs), ∆t = 500 µs (with ∆ton = 300 µs and ∆toff = 200 µs),
and ∆t = 1500 µs (with ∆ton = 1300 µs and ∆toff = 200 µs).

There are two main points to take away from Fig. 3. First, finite measurement times (∆t), lead to significant deviations
between the bare correlated diffusion elements and their measurable counterparts, especially at small separations. The disparity
gets more pronounced as ton and toff are increased. Second, the linearized results (CL(T )

c ) reproduce the BD simultions (BL(T )
c )

to within error bars; the two curves are nearly indistinguishable.
The linearized treatment of Wc in Sec. III breaks down at small inter-particle distances r12, and is thus expected to lead

to inaccurate predictions at small measured initial separations, A. It is difficult to observe this breakdown for experimentally
resolvable separations, but it can be seen for small separations. Fig. 4 zooms in on one of the cases from Fig. 3, showing slight
deviations in the BD predictions and linearized formalism for A < 50 nm.

B. Two-leaflet membranes

Attention is now turned to the motion of lipids. To realistically study the motion of lipids (or other monotopic bodies), the SD
model must be generalized to explicitly account for the two opposing monolayers in the membrane. A depiction of the relevant
hydrodynamic model is provided in Fig. 5, which is essentially the incompressible limit of the Seifert-Langer model11. We have
described the interfacial RS implementation of this model to calculate elements of the diffusion matrix previously12,43,59 and will
not provide further details on the calculation of D(A) here.
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Freely floating membranes

In traditional lipid membranes (as compared to the black lipid membranes discussed below), b is large64–67, leading to strongly
coupled leaflets. As a generic example of such a case, we consider an inter-leaflet friction coefficient of b = 1 · 108 Pas/m. This
leads to a lipid self-diffusion coefficient of D = 6.9 µm2/s and correlated measurements as depicted in Fig. 6 for lipids in the
same leaflet. Correlation calculations were again performed for three different displacement time intervals ∆t, i.e., ∆t = 200 µs
(with ∆ton = 100 µs and ∆toff = 100 µs), ∆t = 500 µs (with ∆ton = 300 µs and ∆toff = 200 µs), and ∆t = 1500 µs
(with ∆ton = 1300 µs and ∆toff = 200 µs). The correlations between lipids in opposing leaflets were also calculated, but yield
results indistinguishable from the intra-leaflet case, and are not explicitly presented. The present results are also very similar to
those for the traditional SD membrane from Fig. 3. The present model reduces to SD when b → ∞ and these results confirm
that b = 1 · 108 Pas/m is sufficiently large to effect the limiting regime.

In Ref. 43, experiments were carried out on black lipid membranes (BLMs) where a layer of organic co-solvent is sandwiched
between the two membrane leaflets (see Fig. 5). This additional layer, separating the two leaflets, can lead to a substantial
reduction in b. As a generic example of a BLM membrane, we consider b = 1 · 104 Pas/m, leaving all other parameters the
same. This results in a lipid self-diffusion coefficient of D = 11.1 µm2/s, approaching double that of the previous case where
the leaflets were strongly coupled. (Proceeding from b = ∞ to b = 0 will result in an exact doubling of D.) Fig. 7 displays
analogous calculations to Fig. 6, but with the BLM b value. In addition, the correlations for lipids in opposing leaflets are shown
in Fig. 8. The experiments in Ref. 43 were performed with ∆t = 1500 µs (with ∆ton = 1210 µs and ∆toff = 290 µs) for
BLMs, which is similar to the largest ∆t considered here in the calculations. The disparity between intra-leaflet and inter-leaflet
correlations is now quite apparent. The linearized equations continue to faithfully reproduce results of the full BD simulations
in all of these cases.

Supported membranes

Supported lipid bilayers (SLBs) require, in addition to the parameters already introduced, specification of the subfluid viscosity
(see Fig. 5). We first consider η−f = ηf = 0.001 Pas, corresponding to the water being unaffected by trapping in the h = 1 nm

thick slab between membrane and support. And, b = 1 · 107 Pas/m is assumed for the inter-leaflet friction. In this case,
the self-diffusion coefficient in the distal leaflet is D = 5.7 µm2/s, whereas it is D = 1.8 µm2/s in the proximal leaflet.
Intra-leaflet correlations are plotted in Figs. 9 and 10 for the distal and proximal leaflets, respectively. Due to the screening
of hydrodynamic interactions by the support, the SLB geometry requires a higher time-resolution compared to the previous
examples; the considered time scales are: ∆t = 100 µs (with ∆ton = 50 µs and ∆toff = 50 µs), ∆t = 200 µs (with
∆ton = 100 µs and ∆toff = 100 µs), and ∆t = 500 µs (with ∆ton = 300 µs and ∆toff = 200 µs). The largest scale
investigated is similar to the experimental ∆t = 640 µs (with ∆ton = 350 µs and ∆toff = 290 µs) in Ref. 43 for SLBs.
Experimentally, more rapid pulsing is possible (relative to the BLM case) due to the proximity of the SLB to the glass support.
This geometry makes it possible to image the membrane in total internal reflection mode and with a high numerical aperture
objective, thus collecting more photons per unit time than in the BLM setting.43

An interesting feature of the supported geometry is the non-monotonic behavior of the transverse diffusion coefficient, which
becomes negative at intermediate lipid-lipid separations. This curiosity has been noted previously12,68 and results from the
circulating flow pattern induced by a particle that is pushed across the bilayer surface (see ref. 12 for an explicit depiction of
the flow). The presented correlation predictions suggest that it might be possible to observe this phenomenon experimentally,
though the signature becomes quite weak in the measured signal as compared to that in the bare correlated diffusion coefficients.
Due to the strong coupling between leaflets, the measured correlations (and bare diffusion elements) are very similar in both
proximal and distal cases.

In the experiments of Refs. 43 and 59, it was found that the subfluid viscosity was substantially elevated relative to bulk
water. To model this case, we consider η−f = 1 Pas (again with b = 1 · 107 Pas/m), corresponding to a subphase viscosity
1000 times larger than bulk. Here, the self-diffusion coefficients in the distal and proximal leaflets are D = 4.5 µm2/s and
D = 0.03 µm2/s, respectively. In Figs. 11 and 12, the corresponding correlations are presented. The elevated subfluid viscosity
has the effect of nearly completely washing out the measurable correlations. The diffusion matrix itself does retain correlations
for separations of a few tens of nanometers in the distal leaflet, but this is too short ranged to be detected in experimental
measurements with realistic pulse times.

V. DIFFUSION FOR TRANSMEMBRANE PROTEINS

In Ref. 43, experiments were carried out on black lipid membranes (BLMs) formed from either n-decane (BLMd) or n-
hexadecane (BLMh) solvent. In the case of BLMd, the residual solvent sandwiched between the monolayers leads to a pro-
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nounced reduction in b relative to traditional membranes devoid of such a solvent layer (see Fig. 5). This was inferred by
fitting C

L(T )
c to the experimental correlations using b as the independent fit parameter. (Since lipid self-diffusion (D) was also

measured experimentally, a trial value of b implies an associated value of ηm through DRS(b, ηm) = Dexp. All other physical
parameters are known, leaving only a single independent unknown to be determined from the correlation curves. See the supple-
mental information of Ref. 43 for details of the fitting procedure.) However, for BLMh, attempted fitting of CL(T )

c to experiment
did not allow for determination of b (and ηm). The problem was not that the experimental correlations were inconsistent with
theoretical predictions, but rather that that a large range of b values were all consistent with experiment. The problem is illus-
trated, from a theoretical perspective, in Fig. 13. Choosing two vastly different values for b leads to measurable lipid correlations
that are nearly indistinguishable from one another. The raw elements of the diffusion matrix do deviate from one another at small
separations, but these differences aren’t sufficient to significantly influence the measurable correlations. The differences in the
measurable correlations are smaller than experimental error bars.

The “resolution” to this parameter degeneracy issue, used in Ref 43, was to simply assume ηm = 8 · 10−11 Pasm for BLMh,
which is the value found for BLMd. This approach implies that all differences in the dynamics between BLMh and BLMd
are solely due do differences in b. While this may be a reasonable guess, it is only a guess. It was suggested in Ref. 43
that experimental measurement of both lipids and membrane-spanning objects (e.g. transmembrane peptides or proteins) might
enable the determination of b and ηm for BLMh. Fig. 13 illustrates that this determination will likely not be possible on the
basis of measured correlations; the protein and lipid behaviors are all very similar regardless of the b, ηm pair considered. (The
protein calculations in Fig. 13 were performed using single-sheet RS calculations, which can be realized by setting b = 0 in
the two-leaflet model. b = 0 corresponds to completely decoupled monolayers and the top monolayer can then be identified
with the traditional SD membrane, provided that both the monolayer viscosity and fluid viscosity are doubled to associate the
whole bilayer with only the top leaflet. By symmetry, membrane spanning objects diffuse independently of monolayer slipping
dynamics, b is irrelevant and the pertinent dynamics are fully captured by single-sheet calculations.) However, the self-diffusion
of proteins is strongly dependent on the b, ηm pair considered through ηm. Dpro = 10.6 µm2/s for the ”high b” case and
Dpro = 7.2 µm2/s for the ”low b” case. By construction, lipid D = 13.3 µm2/s for both cases, because D was measured
experimentally and serves as the constraint binding b and ηm values together, as discussed above.

In principle, the conclusions of the previous paragraph could depend upon the assumed radii of the lipids/proteins. If one
doubles r0 to the value 1.0 nm, while retaining the values of b, ηm discussed above, there is a significant change in self-diffusion
constants: D = 11.6 µm2/s, Dpro = 6.3 µm2/s for the “low b” case and D = 10.8 µm2/s, Dpro = 9.2 µm2/s for the
“high b” case. However, the elements of D associated with particle correlations are nearly unaffected by particle size at all
but the closest possible particle-particle separations. This means that the primary influence of a larger radius on measured
correlations is the slower diffusion of the larger particles. The more slowly diffusing particles explore a smaller spatial region in
∆t, leading to (slightly) less pronounced suppression in moving from raw correlations to measurable correlations as compared
to the r0 = 0.5 nm case (see Fig. 13). However, the effect is small. Varying particle size (within reason) does not break the
degeneracy issue associated with the measurable correlation curves.

Self-diffusion is readily measured to high precision (better than ±0.5 µm2/s in Ref. 43). The results of the preceding
paragraph suggest that experimental measurement of Dpro in BLMh, when combined with the knowledge of lipid D, would
allow for the determination of b and ηm. So, although correlated diffusion of transmembrane objects will not help resolve the
experimental degeneracy for BLMh noted in Ref.43, there is every reason to believe that measuring self-diffusion of membrane
spanning objects would resolve this degeneracy and lead to a full characterization (b and ηm) of the system. While this possibility
is interesting from the theoretical standpoint, it must be mentioned that the experiment would likely require some care. BLMs
are swollen by the incorporation of solvent. In the case of BLMh, it is believed that the the bilayer may be 10% thicker than
a bilayer without n-hexadecane present69. This raises the possibility of a hydrophobic mismatch between bilayer and protein,
which could lead to consequences for protein motion that are not included in the quasi-2D modeling considered in this work. For
example, if the protein causes a bulge or dimple in the membrane, there would be additional contributions to dynamics beyond
those considered in this work24–29.

VI. CONCLUSION

The purpose of this paper is threefold. First, a detailed derivation of Eqs. 26 - 30 has been presented. These equations
were introduced without justification in Ref. 43. Second, the validity of Eqs. 26 - 30 for a range of membrane models, pulse
durations and physical parameters has been established through comparison to Brownian Dynamics simulations. Only when
particle separations become very small (comparable to lipid size), do the predictions begin to deviate from simulations. Such
cases are not experimentally relevant. Finally, one unsatisfying loose end of Ref. 43 has been revisited. The calculations in this
paper suggest that experimental measurements of membrane protein diffusion, when collected in concert with lipid diffusion,
could allow for a more complete hydrodynamic-level characterization of membranes.

The last point is somewhat interesting, because the diffusive motion of membrane spanning proteins is independent of b,
within the limitations of our modeling. This follows from symmetry. A cylindrical solid body extending through both leaflets
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will impose the same flow profiles in both leaflets when it is forced tangentially to the membrane plane, since there is nothing
to break the symmetry between the two leaflets. From a hydrodynamic standpoint, it is then clear that the mobility tensor (and
hence the diffusion tensor) for protein motions cannot depend upon b. The monlayers don’t slip against one another when they
are moving in concert. From the standpoint of thermal fluctuations and diffusion, the two monolayers can move out of phase
with one another, but such fluctuations are decoupled from the translation of the membrane-spanning objects.

It may seem ironic that measurement of a transport property that is independent of b, can help in the determination of b,
but this follows from Eq. 33. If Dpro is measured, one can back out the membrane viscosity (ηb) and ηm simply follows
as half that value. With ηm known, one can determine b from the lipid D measurement. D(ηm, b) implies b as an implicit
function of ηm for a known value of D. In the absence of a known value for Dpro, measuring D only provides b(ηm) and
additional measurements (or other information) are needed to characterize the system. Depending upon the physical regime
and the resolution of experimental measurements, lipid-lipid correlations may or may not provide the necessary information to
determine the b, ηm pair.

In cases where the correlations prove insufficiently discriminating, measurement of transmembrane protein motions in the
same system would seem to be a viable alternative. In this context, we emphasize that BLMh likely serves as a better proxy
for biological membranes (that contain no additional alkane solvent) than does BLMd. The swelling of BLMd is far larger than
BLMh

69, so it is not surprising that BLMh displays dynamic properties similar to those of a traditional membrane, while BLMd
has less conventional behavior43. Therefore, the practical degeneracy in parameter values associated with the lipid-only study
of BLMh is likely to be observed in traditional membrane systems when (if) it becomes possible to study them via two-color
fluorescence measurements similar to those introduced in Ref.43. (In a giant vesicle geometry for example.)
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Appendix A: Computing the particle distribution at the end of the first pulse

f(Γ, ton) can be computed as

f(Γ, ton) =

〈∏
α δ

(
1

ton

∫ ton
0

dtΓα(t)−Aα

)
δ(Γα(ton)− Γα)

〉
〈∏

α δ
(

1
ton

∫ ton
0

dtΓα(t)−Aα

)〉 (A1)

=

〈∏
α

∫
dkαδ(Γα(ton)− Γα)e

ikα

(
1

ton

∫ ton
0 dtΓα(t)−Aα

)〉
〈∏

α

∫
dkαe

ikα

(
1

ton

∫ ton
0 dtΓα(t)−Aα

)〉
=

∫
dke−ik·A ∫

dΓ0Q(k/ton, ton,Γ,Γ
0)∫

dke−ik·A
∫
dΓ

∫
dΓ0Q(k/ton, ton,Γ,Γ0)

(A2)

which follows from Bayes’ rule. The probability density for the system to be found at phase point Γ at time ton conditioned
on Eq. 6 holding true, is calculated as the joint probability density for the system to realize both Eq. 6 and Γ(ton) = Γ divided
by the probability density to realize Eq. 6. The angular brackets indicate averaging over the stochastic process consistent
with Eq. 10 and assuming the flat equilibrium distribution at t = 0. (Here, the (A1, 0, A2, 0) subscript from the main paper
is explicitly enforced via the delta functions.) The second line follows by introducing spectral representations for the delta
functions associated with the constraints of Eq. 6. The third line simplifies notation by abbreviating k ≡ (kx1

, ky1
, kx2

, ky2
),

A ≡ (A1, 0, A2, 0) and introducing

Q(k, t,Γb,Γa) = ⟨δ(Γ(t)− Γb)ei
∫ t
0
dτk·Γ(τ)δ(Γ(0)− Γa)⟩/⟨δ(Γ(0)− Γa)⟩

= P (Γb, t|Γa, 0)
〈
ei

∫ t
0
dτk·Γ(τ)

〉
Γb,Γa

(A3)

where the Γb,Γa subscript indicates that only those trajectories of Γ(t) satisfying Γ(0) = Γa and Γ(t) = Γb are included in the
average. The division by ⟨δ(Γ(0) − Γa)⟩ = feq(Γ

a) = 1/L4 provides a convenient definition for Q in the following analysis;
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the factors of L4 cancel between numerator and denominator in Eq. A2. Since the dynamics specified in Eq. 7 is Markovian,
it is possible to formulate a related equation for Q(k, t,Γb,Γa) via the Feynman-Kac theorem70 (perhaps more familiar as
Kubo-Anderson lineshape theory71,72 or rate processes with dynamical disorder73)

∂Q(k, t,Γb,Γa)

∂t
= (W b

s +W b
c + ik · Γb)Q(k, t,Γb,Γa) (A4)

Q(k, 0,Γb,Γa) = δ(Γb − Γa) (A5)

with the formal solution

Q(k, t,Γb,Γa) = e(W
b
s+W b

c+ik·Γb)tδ(Γb − Γa). (A6)

This solution may be expanded in powers of Wc to give

Q(k, t,Γb,Γa) =

[
e(W

b
s+ik·Γb)t +

∫ t

0

dt′e(W
b
s+ik·Γb)(t−t′)W b

c e
(W b

s+ik·Γb)t′ + . . .

]
δ(Γb − Γa)

= Q0(k, t,Γ
b,Γa) +

∫ t

0

dt′
∫

dΓ′Q0(k, t− t′,Γb,Γ′)W
′
cQ0(k, t

′,Γ′,Γa) + . . .

(A7)

Where Q0 is obtained from Eq. A3 or A4 by substituting Wc = 0 in the dynamics. Unlike the full Q, the stochastic dynamics
associated with Q0 are Gaussian and, furthermore, the dynamics of the individual components of Γ are statistically independent
of one another. This means that Q0(k, t,Γ

b,Γa), viewed as a weighted characteristic function of independent Gaussian pro-
cesses, is fully determined from the first and second cumulants of the individual Γ components. Assuming 0 ≤ t1 ≤ t2 ≤ t,
these cumulants are readily calculated as

κ1,α(t1) = ⟨Γα(t1)⟩0Γb,Γa =
t1
t
Γb
α +

t− t1
t

Γa
α (A8)

κ2,α(t2, t1) =
〈
(Γα(t2)− ⟨Γα(t2)⟩0Γb,Γa)(Γα(t1)− ⟨Γα(t1)⟩0Γb,Γa)

〉0
Γb,Γa

=
2D(t− t2)t1

t
,

with the index α specifying any one of the four Γ components (x1, y1, x2, y2). It follows that
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〈
ei

∫ t
0
dτk·Γ(τ)

〉0
Γb,Γa

=
∏
α

P0(Γ
b
α, t|Γa

α, 0)
〈
ei

∫ t
0
dτkαΓα(τ)

〉0
Γb
α,Γa

α

=
∏
α

1√
4πDt

exp

[
− (Γb

α − Γa
α)

2

4Dt
+ ikα

∫ t

0

dτκ1,α(τ)−
k2α
2

∫ t

0

∫ t

0

dt2dt1κ2,α(t2, t1)

]
=
∏
α

1√
4πDt

exp

[
− (Γb

α − Γa
α)

2

4Dt
+

ikαt(Γ
a
α + Γb

α)

2
− k2αDt3

12

]
(A9)

Using Eq. A9 in Eq. A7 to evaluate Eq. A2 yields

f(Γ, ton) = f0(Γ, ton)(1 + C + . . .) (A10)

+
1

(2π)4

∫ ton

0

dt′
∫

dke−ik·A
∫

dΓ′dΓ′′Q0(k/ton, ton − t′,Γ,Γ′)W
′

cQ0(k/ton, t
′,Γ′,Γ′′) + . . .

where

f0(Γ, ton) =
∏
α

1√
4πDton/3

e−
(Γα−Aα)2

4Dton/3 (A11)

is the distribution at time ton due to the constraints imposed in Eq. 6 under unperturbed evolution with Wc = 0. (Note that
this result is closely related to the distribution of polymer segments around the polymer center of mass for a Gaussian chain
model74.) The “ C ” term is a constant that is linear in Wc, originating from the denominator of Eq. A2. The exact value of
this constant is unimportant, since it will contribute only at higher than linear order in the final expressions for the correlation
function (Eq. 11); it has been omitted from the expressions in the main text. The dots all indicate terms of second and higher
order.
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The following integrals of Q0 are also needed in the main text and are collected here.

∫
dΓaQ0(k, t,Γ

b,Γa) =
∏
α

eikαΓb
αte−k2

αDt3/3 ≡ G(k, t,Γb) (A12)∫
dΓbQ0(k, t,Γ

b,Γa) =
∏
α

eikαΓa
αte−k2

αDt3/3 = G(k, t,Γa)∫
dΓb(xb

1 −A1)(x
b
2 −A2)Q0(k, t,Γ

b,Γa) = [(xa
1 −A1) + ikx1Dt2][(xa

2 −A2) + ikx2Dt2]G(k, t,Γa)

As a slight extension to the above, it is possible to calculate the zeroth order distribution prior to the end of the first pulse, but
still subject to the constraints in Eq. 6. This result is useful for expressing the averages derived in the body of the paper. From
definition A3 it follows that Q (and Q0) obey a property analogous to Chapman-Kolmogorov52:

Q(k, t− t0,Γ
c,Γa) =

∫
dΓbQ(k, t− t′,Γc,Γb)Q(k, t′ − t0,Γ

b,Γa) (A13)

and it follows that

f0(Γ, t) =

〈∏
α δ

(
1

ton

∫ ton
0

dtΓα(t)−Aα

)
δ(Γα(t)− Γα)

〉
0〈∏

α δ
(

1
ton

∫ ton
0

dtΓα(t)−Aα

)〉
0

(A14)

=

∫
dke−ik·A ∫

dΓfdΓiQ0(k/ton, ton − t,Γf ,Γ)Q0(k/ton, t,Γ,Γ
i)∫

dke−ik·A
∫
dΓf

∫
dΓiQ0(k/ton, ton,Γf ,Γi)

(A15)

for 0 < t < ton. Using the integrals in Eq. A12, one arrives at

f0(Γ, t) =
∏
α

1√
2πσ2(t)

e
− (Γα−Aα)2

2σ2(t) (A16)

σ2(t) =
2Dt3 + 2D(ton − t)3

3t2on
.

Appendix B: Results for diffusion tensors that are not divergence-free

As explained in the main text, Eqs. 27 - 30 assume a diffusion tensor that is everywhere divergence free. Although one
generally expects this condition to hold true in the Stokes limit for the exact diffusion tensor for pairs of cylindrical particles56,
the diffusion tensors used in some simulation schemes can exhibit non-zero divergence at small particle-particle separations75.
The results of the main paper can be extended to the general case, though the calculations are tedious. The expressions are
presented here for future reference.

⟨(X1 −A1)(X2 −A2)⟩ = (B1)

1

t2on

2ton+toff∫
ton+toff

dta

ta∫
ton+toff

dtb

ta∫
tb

dt
σ2(tb)

σ2(t)

〈
[DL

c −DT
c ]
(
−2x̂2

12 + E1

)
+DT

c (−2 + E2)

〉
0

(t)

+
2

t2on

2ton+toff∫
ton+toff

dta

ta∫
ton+toff

dtb

tb∫
ton

dt

〈
[DL

c −DT
c ]E1 +DT

c E2

〉
0

(t)

+

∫ ton

0

dt

〈
[DL

c −DT
c ]F1 +DT

c F2

〉
0

(t) + . . .
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where r̂12 = (x̂12, ŷ12) is the unit length separation vector between particles 1 and 2) and the various terms are:

E1 =
1

σ2(t)

( ∑
n=1,2

x̂12(xn −An)r̂12 · (r⃗n − A⃗n)

)

E2 =
1

σ2(t)

( ∑
n=1,2

(xn −An)
2)

)
F1 = −

∑
n=1,2

∑
m ̸=n

(x̂12A+ ŷ12C) · (x̂12B + ŷ12D)

F2 = −
∑
n=1,2

∑
m ̸=n

(AB + CD)

A =

[
− (xn −An)

2(ton − t)

σ2(t)ton
+

D(xn −An)
2(ton − t)3

σ2(t)2t2on
− D(ton − t)3

σ2(t)t2on
+ 1

]
B =

[
− (xm −Am)2t

σ2(t)ton
+

D(xm −Am)2(ton − t)2t

σ2(t)2t2on
− D(ton − t)2t

σ2(t)t2on

]
C =

[
− (xn −An)yn(ton − t)

σ2(t)ton
+

D(xn −An)yn(ton − t)3

σ2(t)2t2on

]
D =

[
− (xm −Am)ymt

σ2(t)ton
+

D(xm −Am)ym(ton − t)2t

σ2(t)2t2on

]
(B2)

The related expressions for the transverse motions follow by substituting x̂ → ŷ and (xn(m) − An(m)) → (yn(m)) in the
above:

⟨Y1Y2⟩ = (B3)

1

t2on

2ton+toff∫
ton+toff

dta

ta∫
ton+toff

dtb

ta∫
tb

dt
σ2(tb)

σ2(t)

〈
[DL

c −DT
c ]
(
−2ŷ212 + Ẽ1

)
+DT

c

(
−2 + Ẽ2

)〉
0

(t)

+
2

t2on

2ton+toff∫
ton+toff

dta

ta∫
ton+toff

dtb

tb∫
ton

dt

〈
[DL

c −DT
c ]Ẽ1 +DT

c Ẽ2

〉
0

(t)

+

∫ ton

0

dt

〈
[DL

c −DT
c ]F̃1 +DT

c F̃2

〉
0

(t) + . . .

Ẽ1 =
1

σ2(t)

( ∑
n=1,2

ŷ12(yn)r̂12 · (r⃗n − A⃗n)

)

Ẽ2 =
1

σ2(t)

( ∑
n=1,2

(yn)
2

)
F̃1 = −

∑
n=1,2

∑
m ̸=n

(ŷ12A′ + x̂12C′) · (ŷ12B′ + x̂12D′)

F̃2 = −
∑
n=1,2

∑
m ̸=n

(A′B′ + C′D′)

A′ =

[
− (yn)

2(ton − t)

σ2(t)ton
+

D(yn)
2(ton − t)3

σ2(t)2t2on
− D(ton − t)3

σ2(t)t2on
+ 1

]
B′ =

[
− (ym)2t

σ2(t)ton
+

D(ym)2(ton − t)2t

σ2(t)2t2on
− D(ton − t)2t

σ2(t)t2on

]
C′ =

[
− (xn −An)yn(ton − t)

σ2(t)ton
+

D(xn −An)yn(ton − t)3

σ2(t)2t2on

]
D′ =

[
− (xm −Am)ymt

σ2(t)ton
+

D(xm −Am)ym(ton − t)2t

σ2(t)2t2on

]
(B4)
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It is worth mentioning that the order of the nested integrals in Eqs. B1 and B3 can be reduced via∫ B

A

dta

∫ ta

A

dtb

∫ ta

tb

dtf(tb, t) =

∫ B

A

dtb

[
B

∫ B

tb

dtf(tb, t)− tb

∫ tb

A

dtf(t, tb)

]
∫ B

A

dta

∫ ta

A

dtbf(tb) =

∫ B

A

dtb(B − tb)f(tb) (B5)

if this is convenient for numerical purposes.
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FIG. 1. Two particles separated by distance A are treated for notational convenience as lying on the x axis, with particle 1 at the origin and
particle 2 at (A, 0). In this convention, “longitudinal” particle motions, along the separation vector, correspond to displacements on the x axis.
Displacements perpendicular to the separation vector, in the y direction, are designated as “transverse” motions. The figure is not to scale.
A ≫ r0 for the cases studied in this work, where r0 is the particle radius.

FIG. 2. Schematic of the experimental measurement of lipid correlations. (a) Theoretically, elements of the diffusion matrix can be inferred
from short-time correlations in the displacement of lipids from initial (frame n) to final (frame n+1) positions via Eq. 3. (b) In practice, “initial”
particle positions are collected over the entire first bright interval [0, ton] of the pulsed fluorescence measurement; “final” particle positions
are determined over the entire second bright interval [ton + toff , 2ton + toff ]. The inferred initial and final positions of the lipids reflect time
averages of duration ton, corresponding to sampling lipid positions over the bright intervals. (Experimentally, these time averages also include
the localization uncertainty for single molecules, which is not explicitly considered in this work.) (c) Additionally, the lipids sample different
relative positions with different D(r1, r2) during the entire measurement spanning [0, 2ton + toff ]. Adapted from Ref. 43.
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FIG. 3. Correlated diffusion in a single-sheet SD membrane. Measurable correlations obtained using the linearized formalism, CL(T )
c (A),

and BD simulations, BL(T )
c (A), are compared to bare diffusion matrix elements, DL(T )

c (A). (a) ∆t = 200 µs (with ∆ton = 100 µs and
∆toff = 100 µs). (b) ∆t = 500 µs (with ∆ton = 300 µs and ∆toff = 200 µs). (c) ∆t = 1500 µs (with ∆ton = 1300 µs and
∆toff = 200 µs). Longitudinal correlations are on the top plots and transverse correlations on the bottom plots. Note that DL(T )

c (A) are
not affected by the pulse duration. The diffusion matrix is an intrinsic property of the membrane and remains identical for all ∆t values; it is
included in all the plots for comparison purposes.

FIG. 4. Correlated diffusion in a single-sheet SD membrane at small particle separations with ∆t = 200 µs. The plots correspond to the
leftmost case in Fig. 3, but zooming in on smaller A. The deviations between C

L(T )
c (A) and B

L(T )
c (A) are due to inaccuracies in the

linearization approximation.
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FIG. 5. Membrane model. (a) The diffusion matrix for lipids (or other monotopic bodies) in a two-leaflet membrane in the creeping flow
limit depends upon: monolayer surface viscosity (ηm, both leaflets are assumed identical throughout this work), bulk fluid viscosity for the
surrounding solvent (ηf ) and the inter-leaflet friction coefficient (b). Additionally, if the membrane is supported by a solid substrate, it is
necessary to specify the separation between the membrane and support (h) and the viscosity of the trapped water (η−

f ), which may differ
substantially from the infinite bulk value76,77. In the case of freely floating membranes, η−

f = ηf and h = ∞. (b) Schematic of a black lipid
membrane (BLM) with alkane co-solvent sandwiched between the two membrane leaflets, leading to reduced inter-leaflet friction as compared
to a traditional lipid bilayer. The extent of membrane swelling depends upon the particular alkane used, with shorter chain alkanes typically
causing more swelling than longer chain alkanes. For example, n-decane is believed to swell bilayers by 62% as compared to 10% sweelling
by n-hexadecane69.

FIG. 6. Intra-leaflet correlated diffusion in a two-leaflet membrane with high inter-monolayer friction (i.e., b = 1·108 Pas/m). The analogous
results for inter-leaflet correlations are indistinguishable from these results and are not explicitly plotted. Indeed, both the inter- and intra-leaflet
correlations are essentially identical to the single-sheet SD results of Fig. 3, reflecting the tight coupling between leaflets imposed by high b
values. The cases (i.e. pulsing conditions) considered here are identical to those in Fig. 3.
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FIG. 7. Intra-leaflet correlated diffusion in a two-leaflet membrane with low inter-monolayer friction (i.e., b = 1 · 104 Pas/m). The cases
considered here are identical to those in Fig. 3.

FIG. 8. Inter-leaflet correlated diffusion in a two-leaflet membrane with low inter-monolayer friction (i.e., b = 1 · 104 Pas/m). The cases
considered here are identical to those in Fig. 3.
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FIG. 9. Correlated diffusion in the distal leaflet of an SLB with low subphase viscosity (i.e., η−
f = 0.001 Pas). Measurable correlations ob-

tained using the linearized formalism, CL(T )
c (A), and BD simulations, BL(T )

c (A), are compared to bare diffusion matrix elements, DL(T )
c (A).

(a) ∆t = 100 µs (with ∆ton = 50 µs and ∆toff = 50 µs). (b) ∆t = 200 µs (with ∆ton = 100 µs and ∆toff = 100 µs). (c) ∆t = 500 µs
(with ∆ton = 300 µs and ∆toff = 200 µs). Longitudinal correlations are on the top plots and transverse correlations on the bottom plots.

FIG. 10. Correlated diffusion in the proximal leaflet of an SLB with low subphase viscosity (i.e., η−
f = 0.001 Pas). The remaining parameters

are identical to Fig. 9.



24

FIG. 11. Correlated diffusion in the distal leaflet of an SLB with high subphase viscosity (i.e., η−
f = 1 Pas). The remaining parameters are

identical to Fig. 9.

FIG. 12. Correlated diffusion in the proximal leaflet of an SLB with high subphase viscosity (i.e., η−
f = 1 Pas). The remaining parameters

are identical to Fig. 9.
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FIG. 13. Parameter degeneracy issue for the BLMh system with ∆t = 1500 µs (with ∆ton = 1300 µs and ∆toff = 200 µs). (a) The
predicted measurable correlations, CL(T )

c (A), are shown for lipids as well as transmembrane proteins of the same radius (r0 = 0.5 nm, solid
lines). Two different limiting cases, ”high b” (b = 1.8 · 107 Pas/m) and ”low b” (b = 1 · 104 Pas/m), are presented. Both cases are
consistent with the experimentally measured value of D = 13.3 µm2/s for the lipids when r0 = 0.5 nm. The corresponding values of ηm set
by this experimental constraint on D are ηm = 8 · 10−11 Pasm for the “high b” case and ηm = 13 · 10−11 Pasm for the “low b” case. The
measurable correlations are essentially identical (within experimental error bars) for both cases and even for proteins as compared to lipids
for the parameter regime associated with BLMh. For comparison purposes, data for r0 = 1.0 nm and the same b, ηm values from above are
presented as crosses. The larger, more slowly diffusing, particles are subject to less spatial averaging and hence the correlations curves are
slightly elevated relative to the r0 = 0.5 nm case. However, the curves remain indistinguishable within experimental errors. Section IV has
firmly established the excellent correspondence between C

L(T )
c and B

L(T )
c ; only the C

L(T )
c curves are explicitly displayed here for clarity.

(b) Regularized Stokeslet calculations for the raw diffusion matrix elements, DL(T )
c (A), for the different scenarios presented in (a). Note that

these figures focus attention on smaller separations, where differences are most apparent. Correlated diffusion is essentially unaffected by
particle radius, unless the particles are nearly contacting each other.
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