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Drop impact experiments allow the modelling of a wide variety of natural processes, from

raindrop impacts to planetary impact craters. In particular, interpreting the consequences

of planetary impacts requires an accurate description of the flow associated with the

cratering process. In our experiments, we release a liquid drop above a deep liquid pool

to investigate simultaneously the dynamics of the cavity and the velocity field produced

around the air–liquid interface. Using particle image velocimetry, we analyse quantitatively

the velocity field using a shifted Legendre polynomial decomposition. We show that the

velocity field is more complex than considered in previous models, in relation to the non-

hemispherical shape of the crater. In particular, the velocity field is dominated by degrees 0

and 1, with contributions from degree 2, and is independent of the Froude and the Weber

numbers when these numbers are large enough. We then derive a semi-analytical model based

on the Legendre polynomial expansion of an unsteady Bernoulli equation coupled with a

kinematic boundary condition at the crater boundary. This model explains the experimental

observations and can predict the time evolution of both the velocity field and the shape of

the crater, including the initiation of the central jet.

1. Introduction

When a raindrop splashes on the surface of a pond, it takes less than the blink of an

eye for a crater to form beneath the surface, throwing a fluid crown into the air, and for

it to collapse, propelling upwards a fluid jet. These are the key features of the splashing

regime, which occurs within a specific range of drop radius, impact velocity, impact angle,

and physical properties of the fluids such as surface tension, density and viscosity (Rein

1993). Worthington (1908) was the first to report these features using pioneering high-speed

photography methods. The splashing regime was then extensively investigated, regarding, in

particular, the time evolution of the transient crater following the impact (e.g. Engel 1967;

Morton et al. 2000; Bisighini et al. 2010), and the scaling of the maximum crater radius (e.g.

Macklin & Metaxas 1976; Engel 1966; Lherm et al. 2022). The formation, evolution and

fragmentation of the fluid crown (e.g. Allen 1975; Krechetnikov & Homsy 2009; Zhang et al.
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2010; Agbaglah et al. 2013) and of the central jet (e.g. Fedorchenko & Wang 2004; Ray et al.

2015; van Rĳn et al. 2021) have also been examined.

The drop impact processes cover a wide variety of applications. This includes engineering

applications such as the water entry of projectiles (Clanet et al. 2004) or spray painting

(Hines 1966). This also includes Earth sciences applications such as the production of

oily marine aerosol by raindrops (Murphy et al. 2015), spray generation from raindrop

impacts on seawater and soil (Zhou et al. 2020), and planetary impact craters (Melosh

1989; Landeau et al. 2021; Lherm et al. 2021, 2022). Planetary impacts occur on terrestrial

planets from the early stages of accretion to modern meteorite impacts. During planetary

formation, thermal and chemical partitioning between the core and the mantle is influenced

by the physical mechanisms of segregation between the metal of the impactors’ core and

the silicates of the growing planet (Stevenson 1990; Rubie et al. 2015; Lherm & Deguen

2018), with major implications on the chemical, thermal and magnetic evolution of the planet

(Fischer et al. 2015; Badro et al. 2018; Olson et al. 2022). In particular, the cratering process

is responsible for the initial dispersion and mixing of the impactors’ core (Landeau et al.

2021; Lherm et al. 2022). In planetary science, impact craters are also a tool to sample the

shallow interior of planets and satellites by combining observations of planetary surfaces

with excavation and ejecta deposition models (Maxwell 1977; Barnhart & Nimmo 2011;

Kurosawa & Takada 2019). Therefore, understanding the implications of these planetary

impacts requires to model the velocity field produced during the formation of the crater.

In the splashing regime, the fate of the crater, the fluid crown and the central jet is directly

related to the velocity field produced around the crater boundary. The dynamics of the crater

is indeed closely related to the velocity field in the ambient fluid, in particular regarding

the evolution of the shape of the cavity. The formation of the fluid crown is also related to

the ambient velocity field through the mass flux distribution across the initial water surface.

Finally, the production of the central jet is associated with a convergent velocity field, resulting

from the collapse of the crater due in part to buoyancy forces.

The velocity field associated with the crater evolution in the splashing regime has been

investigated both experimentally and numerically in previous studies. Engel (1962) was the

first to examine the velocity field around the crater by seeding the flow with particles in order

to visualize the flow streamlines. These observations allowed to determine the velocity field

configuration associated with the crater expansion and its subsequent collapse. More recently,

the velocity field was investigated using modern Particle Image Velocimetry (PIV) methods.

These velocity field measurements have been used to investigate the origin of vortex rings

beneath the crater (Liow & Cole 2009), the formation of the central jet (van Rĳn et al. 2021),

or solutocapillary flows following the impact of drops on salted water (Musunuri et al. 2017).

Numerical simulations have also focused on the crater velocity field, regarding in particular

the entrapment of air bubbles when the crater collapses and the formation of the central jet

(Morton et al. 2000; Ray et al. 2015).

Most of the models involving a prediction of the crater velocity field assume either an

arbitrary velocity field (Maxwell 1977) or an arbitrary velocity potential associated with

an imposed crater geometry, such as a hemispherical crater (Engel 1967; Leng 2001) or a

spherical crater able to translate vertically (Bisighini et al. 2010). Since these models have

only been compared with experimental measurements of the crater size and/or shape, a

comparison with experimental measurements of the velocity field is thus required to assess

their accuracy. In any event, a new model is required to consistently model the geometry of

the cavity without the use of an arbitrarily imposed velocity field or potential.

In this paper, we examine simultaneously the dynamics of the cavity and of the velocity

field produced in drop impact experiments. In § 2, we present the experimental setup, methods

and diagnostics, as well as the set of dimensionless numbers used in this study. In § 3, we
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Figure 1: Schematic view of the drop impact experimental setup.

describe the experimental results obtained for the crater shape and the velocity field. In § 4,

we compare the existing velocity field models with our experimental measurements. In § 5,

we finally derive a Legendre polynomials model based on an unsteady Bernoulli equation

coupled with a kinematic boundary condition.

2. Experiments

2.1. Experimental setup

In these experiments, we release a liquid drop in the air above a deep liquid pool of the same

liquid (figure 1). We vary the impact velocity �푈�푖 by changing the release height of the drop

while keeping the drop radius �푅�푖 fixed. We also keep constant the density �휌, the viscosity �휇

and the surface tension �휎 of the fluids.

The liquid pool is contained in a 16×16×30 cm glass tank. The pool level is set at the top

of the tank to minimise the thickness of the meniscus on the sides of the tank. This allows

to image a field of view unperturbed by the free surface meniscus effect. We generate the

drops using a needle supplied with fluid by a syringe driver. When the weight of the drop

exceeds the surface tension forces, the drop comes off. We use a nylon plastic needle with

an inner diameter of 4.7 mm, generating drops with a radius �푅�푖 = 2.7 mm. We measured the

drop size based on a calibration using mass measurements of dozens of drops and assuming

the drop is spherical. We validate this method using high-speed pictures of the drop prior

to impact where we can directly measure the drop radius. We obtain a relative difference

of 1.4% between mass measurements and direct measurements. Impact velocities are in

the range �푈�푖 = 1 − 5 m.s−1. We calculate the impact velocity for each experiment using a

calibrated free-fall model for the drop, including a quadratic drag. We validate this method

using high-speed pictures of the drop prior to impact where we can directly measure the
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Case A B C D

�퐹�푟 103 444 706 979
�푊�푒 100 429 682 946

�푅�푒 4.41 × 103 9.15 × 103 1.15 × 104 1.36 × 104

Table 1: Dimensionless numbers used in the experiments (see equation 2.1 for details).

drop velocity. We obtain a relative difference of 0.6% between the velocity model and direct

measurements. We use water both in the drop and in the pool, in a temperature-controlled

environment. The density is �휌 = 998±1 kg.m−3. It was measured using an Anton Paar DMA

35 Basic densitometer. The viscosity is �휇 = 1 ± 0.01 mPa.s (Haynes 2016). The surface

tension at the air-water interface is �휎 = 72.8 ± 0.4 mJ.m−2 (Haynes 2016).

In our experiments, we position the camera at the same height as the water surface. We

record images at 1400 Hz with a 2560 × 1600 pixels resolution (21 �휇m/px) and a 12 bits

dynamic range, using a high-speed Phantom VEO 640L camera and a Tokina AT-X M100

PRO D Macro lens.

2.2. Dimensionless numbers

In these experiments, the impact dynamics depends on �푈�푖 , �푅�푖 , �휌, �휇, �휎, and the acceleration

of gravity �푔. Since these six parameters contain three fundamental units, the Vaschy-

Buckingham theorem dictates that the impact dynamics depends on a set of three independent

dimensionless numbers. We choose the following set:

�퐹�푟 =
�푈2
�푖

�푔�푅�푖

, �푊�푒 =
�휌�푈2

�푖
�푅�푖

�휎
, �푅�푒 =

�휌�푈�푖�푅�푖

�휇
. (2.1)

The Froude number �퐹�푟 is a measure of the relative importance of impactor inertia and gravity

forces. It can also be interpreted as the ratio of the kinetic energy �휌�푅3
�푖
�푈2
�푖 of the impactor to its

gravitational potential energy �휌�푔�푅4
�푖

just before impact. The Weber number�푊�푒 compares the

impactor inertia and interfacial tension at the air-liquid interface. The Reynolds number �푅�푒

is the ratio between inertial and viscous forces. In the following, time, lengths and velocities

are made dimensionless using the drop radius and the impact velocity, i.e. using respectively

�푅�푖/�푈�푖 , �푅�푖 , �푈�푖. These dimensionless quantities are denoted with a tilde. For example, we use

a dimensionless time �푡 = �푡/(�푅�푖/�푈�푖).
We focus on four cases with Froude numbers, Weber numbers and Reynolds numbers

respectively in the range �퐹�푟 ≃ 100 − 1000, �푊�푒 ≃ 100 − 1000 and �푅�푒 ≃ 4400 − 13600

(table 1). For each case, we conducted three acquisitions, with similar experimental results

regarding both the crater shape (e.g. figure 4) and the velocity field (e.g. figure 11). This

validates the repeatability of the experiments.

2.3. Particle Image Velocimetry

The velocity field is obtained using PIV. We seed the tank with polyamide particles (figure

1), the concentration, diameter and density of which being respectively �퐶�푝 = 0.26 g.L−1,

�푑�푝 = 20 �휇m and �휌�푝 = 1030 kg.m−3. We illuminate these particles in suspension with a

1 mm thick laser sheet (532 nm), produced using a continuous 10 W Nd:YAG laser, together

with a diverging cylindrical lens and a telescope. The laser sheet is verticalised using a 45◦

inclined mirror located below the tank. The laser wavelength is isolated using a band-pass

filter (532 ± 10 nm).

Focus on Fluids articles must not exceed this page length
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Figure 2: Velocity field resulting from the PIV procedure, superposed on a corresponding
experimental raw image. The solid lines correspond to the shape of the crater obtained
from the shifted Legendre polynomials decomposition (equation 2.2), for degrees �푘 = 0

(blue), �푘 = 1 (orange) and �푘 = 2 (green). The definitions of the Cartesian (�푥, �푦, �푧) (black)
and of the spherical (�푟, �휃, �휑) (red) coordinate systems are also represented.

In order to calculate the velocity field, the camera records two images of the field

of view separated by a short time (Δ�푡 = 200 �휇s). These two images are divided into

interrogation windows in which a cross-correlation operation allows to obtain the average

particle displacement. This involves a five-stage multi-pass processing with interrogation

windows decreasing in size. The final interrogation window size is a 64 px square with

an overlap of 75%. In each window, a velocity vector is then calculated, which allows to

construct the velocity field over the whole field of view. Finally, the velocity field is spatially

calibrated using a sight.

2.4. Experimental diagnostic

2.4.1. Crater shape

The crater shape is directly obtained from the raw images used in the PIV procedure (figure

2). The crater corresponds to a particle-free area, together with a high light intensity area,

explained by reflections at the air-water interface, in particular at the bottom of the crater.

The crater boundary is defined using these image properties, which allow to delineate the

cavity using background removal, an intensity threshold method and image binarisation.

We fit the crater boundary position �푅 (figure 2), which depends on the polar angle �휃 and

time �푡, using a set of shifted Legendre polynomials �̄푃�푘 up to degree �푘�푚�푎�푥 = 2

�푅(�휃, �푡) =
�푘<0G∑

�푘=0

�푅�푘 (�푡)�̄푃�푘 (cos �휃), (2.2)

where �푅�푘 (�푡) are coefficients fitted with a least-square method. The shifted Legendre polyno-

mials are an affine transformation of the standard Legendre polynomials �̄푃�푘 (�푥) = �푃�푘 (2�푥−1),
and are orthogonal on [0, 1], i.e. on a half-space. The coefficients �푅�푘 (�푡) correspond to

increasingly small scale deviations from a hemispherical shape. �푅0(�푡) corresponds to the

mean crater radius (figure 2, blue line). �푅1(�푡) corresponds to a deformation of the crater, linear
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Figure 3: Coefficients �푅0 (�푡)/�푅�푖 (a), �푅1 (�푡)/�푅0 (b) and �푅2 (�푡)/�푅0 (c) as a function of time �푡.
The circles and the solid lines correspond to the crater shape obtained respectively from
the PIV procedure (case B, �퐹�푟 = 444) and a similar backlight experiment (�퐹�푟 = 442).

in cos �휃, with respect to an hemisphere (figure 2, orange line). When �푅1(�푡) > 0, the crater

is stretched vertically, resulting in a prolate cavity. When �푅1(�푡) < 0, the crater is stretched

horizontally, resulting in an oblate cavity. Finally, �푅2(�푡) corresponds to a deformation of the

crater, quadratic in cos �휃, with respect to a hemisphere (figure 2, green line).

In order to validate the crater shape determination procedure, we compare the coefficients

�푅�푘 (�푡) obtained from the raw images used in the PIV procedure (e.g. figure 2), with the

coefficients obtained from an experiment in the same condition, but illuminated from behind

(e.g. figure 13). This backlight experiment (see Lherm et al. (2022) for experimental details)

allows to determine reliably the shape of the crater. Figure 3 shows that the coefficients

are very similar between the two methods, which validates the crater shape determination

procedure from PIV raw images.

2.4.2. Velocity field

We aim to compare the experimental velocity field obtained using the PIV procedure with

velocity models. For that purpose, the velocity field u = (�푢�푟 , �푢�휃 , �푢�휑) is expressed in a

spherical coordinate system (�푟, �휃, �휑) defined such that �푢�푟 and �푢�휃 are in the plane of the laser

sheet (figure 2, red coordinates). The origin of this coordinate system is the contact point

between the impacting drop and the target liquid (figure 2, point O).

We decompose the components of the velocity field on a shifted Legendre polynomials

basis

�푢�푟 (�푟, �휃, �푡) =
+∞∑

�푙=0

�푢�푟 ,�푙 (�푟, �푡)�̄푃�푙 (cos �휃), (2.3)

�푢�휃 (�푟, �휃, �푡) =
+∞∑

�푙=0

�푢�휃,�푙 (�푟, �푡)�̄푃�푙 (cos �휃), (2.4)

where �푢�푟 ,�푙 (�푟, �푡) and �푢�휃,�푙 (�푟, �푡) are respectively the decomposition coefficients of �푢�푟 and �푢�휃 .

The shifted Legendre polynomials �̄푃�푙 (cos �휃) being orthogonal on half-hemispheres (�휃 ∈
[0, �휋/2]), we obtain the �푢�푟 ,�푙 (�푟, �푡) and �푢�휃,�푙 (�푟, �푡) coefficients using a least-square inversion of

the experimental velocity components over the separate half-hemispheres �휃 > 0 and �휃 < 0,

before averaging the results from the left and right half-hemispheres. Since the flow is close

to axisymmetric (e.g. figure 2), the coefficients obtained by the inversion over each half-

hemisphere are very close to each other. Assuming an axisymmetric flow, note that �푢�푟 ,0(�푟, �푡)
is the average of �푢�푟 over the full hemisphere.
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Figure 4: Coefficients �푅0 (�푡)/�푅�푖 (a), �푅1 (�푡)/�푅0 (�푡) (b) and �푅2 (�푡)/�푅0 (�푡) (c) as a function of
time normalised by the opening timescale of the crater �푡/�푡�푚�푎�푥 , in the four cases. Inset:

Maximum mean crater radius �푅0<0G
/�푅�푖 as a function of the Froude number �퐹�푟 . For each

case, the different types of markers correspond to different experiments.

3. Experimental results

3.1. Crater shape

Figure 4 shows the fitted coefficients of the shifted Legendre decomposition of the crater

boundary (equation 2.2) as a function of time, for all experimental cases. We normalise

the fitted coefficients �푅1(�푡) and �푅2(�푡) by �푅0(�푡), i.e. the mean crater radius. Using this

normalisation, we quantify the deviation of the crater geometry from a hemisphere. We also

normalise time by the opening timescale of the crater (Lherm et al. 2022)

�푡�푚�푎�푥 =
1

2

(
8

3

)1/8
B

(
1

2
,
5

8

)
Φ

1/8�휉1/2�퐹�푟5/8, (3.1)

whereΦ and �휉 are respectively energy partitioning and kinetic energy correction coefficients,

and B is the beta function. This scaling is obtained by using an energy conservation equation

where the sum of the potential energy of the crater and of the kinetic energy of the crater,

corrected by �휉, is equal at any instant of time to the kinetic energy of the impacting drop,

corrected by Φ. Assuming that the kinetic energy of the crater vanishes when the cavity

reaches its maximum size (Lherm et al. 2022), the maximum crater radius scales as

�̃푅�푚�푎�푥 =

(
8

3

)1/4
Φ

1/4�퐹�푟1/4. (3.2)

Using this �퐹�푟1/4 scaling law, the energy conservation equation is integrated between �푡 = 0

and �푡 = �푡�푚�푎�푥 to obtain the opening timescale of the crater given by equation 3.1. More details

can be found in Lherm et al. (2022). With our experimental range of Froude number, we use

Φ = �퐹�푟−0.156 and �휉 = 0.34 (Lherm et al. 2022). This normalisation allows to collapse our

experiments on the same timescale.

In figure 4, the crater shape evolution of case A is markedly different from cases B, C and

D. Thus, we describe this case separately. We first deal with the high �푊�푒 experiments (cases

B, C and D), where surface tension effects are negligible in comparison with the impactor

inertia (e.g. Pumphrey & Elmore 1990; Morton et al. 2000; Leng 2001; Ray et al. 2015).

The crater size increases with the Froude number (figure 4, inset), in a way that is compatible

with a �퐹�푟1/4 scaling law for the maximum mean crater radius �푅0<0G
(Engel 1966; Leng

2001; Lherm et al. 2022). Furthermore, the evolution of the crater shape relative to the mean

crater size is independent of the Froude number, with similar evolution of �푅1(�푡)/�푅0(�푡) and

�푅2(�푡)/�푅0(�푡) (figure 4b-c).



8

At early times of the crater opening stage (�푡/�푡�푚�푎�푥 . 0.25), the mean radius of the crater

�푅0(�푡) increases (figure 4a) as the cavity opens. The crater has a flat-bottomed oblate shape

(e.g. figure 5, i) as a result of the spread of the drop on the surface of the pool, with negative

�푅1(�푡) (figure 4b). The flat-bottomed oblate cavity gradually becomes hemispherical as a

result of the overpressure produced at the contact point between the impacting drop and the

surface (e.g. figure 5, ii). The magnitude of �푅1(�푡)/�푅0(�푡) indeed decreases with time during

this stage (figure 4b). The crater is also deformed at higher degrees with mostly negative

�푅2(�푡)/�푅0(�푡) (figure 4c). This corresponds to second-order deviations from the hemispherical

shape, with a flattened crater boundary close to the surface (e.g. figure 5, i).

At intermediate times of the crater opening stage (0.25 . �푡/�푡�푚�푎�푥 . 0.5), the crater

continues to open (figure 4a). The cavity is still stretched vertically, which leads to

increasingly positive �푅1(�푡)/�푅0(�푡) (figure 4b), i.e. a prolate cavity (figure 5, iii). The crater

reaches a maximum prolate deformation when �푡/�푡�푚�푎�푥 ≃ 0.5, with �푅1(�푡)/�푅0(�푡) ≃ 0.08 (figure

4b). The crater is also deformed at higher degrees, with positive �푅2(�푡)/�푅0 (�푡) (figure 4c).

This corresponds to a vertical crater boundary close to the surface (figure 5, iii).

At late times of the crater opening phase (0.5 . �푡/�푡�푚�푎�푥 . 1), the mean crater radius

still increases (figure 4a) but the crater starts to flatten with decreasing �푅1(�푡)/�푅0(�푡) (figure

4b). As the opening velocity of the crater decreases, buoyancy forces become significant,

resulting in the horizontal stretching of the cavity. The crater flattens to give an approximately

hemispherical crater at �푡/�푡�푚�푎�푥 ≃ 1 (figure 5, v).

After the crater has reached its maximum size (�푡/�푡�푚�푎�푥 & 1), the mean crater radius starts

to decrease (figure 4a). �푅1(�푡)/�푅0(�푡) decreases at a rate higher than in the opening stage of

the crater (figure 4b). Horizontal stretching of the crater is accelerated, as expected since

buoyancy forces are now prevailing. This leads to the formation of an increasingly oblate

cavity (figure 5, vi-vii). When �푡/�푡�푚�푎�푥 & 1.5, higher degrees eventually deviate from zero

with positive �푅2(�푡)/�푅0(�푡) (figure 4c). In addition to the negative value of �푅1(�푡)/�푅0(�푡), this

corresponds to the formation of the central jet (figure 5, viii-ix).

We now deal with the moderate �푊�푒 experiment (case A), where surface tension effects

are significant in comparison with the impactor inertia (e.g. Pumphrey & Elmore 1990;

Morton et al. 2000; Leng 2001; Ray et al. 2015). In this case, a downward propagating

capillary wave develops at the cavity interface and drives the crater deformation, often leading

to the entrapment of a bubble due to the pinching of the cavity (e.g. Oguz & Prosperetti 1990;

Pumphrey & Elmore 1990; Prosperetti & Oguz 1993; Elmore et al. 2001). This mechanism

is typically expected at moderate �푊�푒, i.e. �푊�푒 ≃ 30 − 140 (figure 6 in Pumphrey & Elmore

1990). During crater opening, this explains why the maximum prolate deformation occurs

later than in the other cases, at �푡/�푡�푚�푎�푥 ≃ 0.8, and why the prolate deformation is larger,

with �푅1(�푡)/�푅0 (�푡) ≃ 0.2 (figure 4b). During crater closing, the evolution of �푅1(�푡)/�푅0(�푡) and

�푅2(�푡)/�푅0(�푡) is markedly different from the other cases due to the convergence of the capillary

wave at the bottom of the crater.

3.2. Velocity field

3.2.1. Velocity maps

Figure 5 shows the evolution of the norm of the velocity |u | = (�푢2
�푥 + �푢2

�푧)1/2 as a function

of time, for case B. During the opening stage of the crater, the velocity around the crater

gradually decreases due to the deceleration of the crater boundary (figure 5, i-iv). The

maximum velocity is ≃ 1.1 m.s−1 at time 1.3 ms after contact (figure 5, i), which corresponds

to 32% of the impact velocity. When �푡/�푡�푚�푎�푥 & 0.1, the norm of the velocity decreases radially

around the crater (figure 5, ii-iv), whereas, when �푡/�푡�푚�푎�푥 . 0.1, the velocity decreases at a

higher rate on the side of the crater. This may be explained by the initial oblate shape of
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Figure 5: Time evolution of the velocity |u | = (�푢2
�푥 + �푢2

�푧 )1/2 for case B. The vector field
corresponds to the experimental velocity field, normalised by its maximum value in each
snapshot. The solid green line corresponds to the crater boundary determined using the

Legendre polynomial decomposition (equation 2.2).

the crater, related to the spread of the drop on the water surface upon impact, which leads

to a higher velocity beneath the crater as it becomes gradually hemispherical. The velocity

field is composed of a dominant radial component and of a polar component responsible for

an upward flow across the initial water surface (figure 5, i-iv). The polar component is thus

responsible for the formation of the liquid crown above the water surface (e.g. Rein 1993;

Fedorchenko & Wang 2004; Zhang et al. 2010).

When the crater reaches its maximum size (figure 5, v), the cavity is nearly hemispherical

and the velocity field seems to vanish simultaneously in the entire flow, consistently with

Engel (1966)’s observations, which were subsequently used in several velocity models

(e.g. Engel 1967; Prosperetti & Oguz 1993). However, this first-order assumption on the

simultaneous vanishing velocity field does not hold when the flow is examined in detail.

Beneath the cavity, the velocity gradually decreases and eventually vanishes just before the

crater reaches its maximum size. The velocity is directed downwards due to the expansion of

the crater. The velocity then increases again but is directed upwards due to the collapse of the

crater. On the side of the cavity, close to the surface, the velocity does not vanish when the

crater reaches its maximum size. The collapse of the crater takes over its initial expansion,

which allows to keep outward velocities on the side of the crater.

When the crater collapses (figure 5, vi-ix), a convergent flow forms towards the centre of

the cavity. This leads to the formation of the central jet.

Figure 6 shows the evolution of the vorticity �휔�푦 = �휕�푢�푥/�휕�푧− �휕�푢�푧/�휕�푥 as a function of time,

for case B. The vorticity produced by the impact around the crater is confined close to the

air-water boundary, in particular when the crater is strongly deformed, at the beginning of
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Figure 6: Time evolution of the vorticity �휔�푦 = �휕�푢�푥/�휕�푧 − �휕�푢�푧/�휕�푥 for case B. The vector
field corresponds to the experimental velocity field, normalised by its maximum value in
each snapshot. The solid green line corresponds to the crater boundary determined using

the Legendre polynomial decomposition (equation 2.2).

the crater opening (figure 6, i-ii) and when it collapses (figure 6, vi-ix). This suggests that the

flow is mostly irrotational, which supports the potential flow assumption used in previous

models (§4). Furthermore, some of the vorticity observed around the crater boundary may

be an artefact related to spurious velocity measurements produced by cross-correlations on

reflections at the air-water interface, and not on PIV particles. This assumption is supported

by the estimated diffusion length of the vorticity (0.3 mm in 100 ms) which is significantly

smaller than the typical size of the vorticity band.

3.2.2. Velocity coefficients

Figure 7 shows the coefficients �푢�푟 ,�푙 (�푟, �푡) and �푢�휃,�푙 (�푟, �푡) (equations 2.3-2.4) as a function of

the radial coordinate at a given time �푡 = 15.4 (�푡/�푡�푚�푎�푥 = 0.43) during the crater opening

stage of case B. During this stage, the velocity field is dominated by the degrees �푙 = 0 and

�푙 = 1, the higher degrees �푙 > 2 being much smaller. When �푟 . 1.2�푅0, we observe a decrease

in the slope of the coefficients. This may be related to the deviation of the crater from a

hemisphere. The coefficients indeed sample points located at varying distances from the

actual crater boundary, including artefacts located into the crater, which may influence the

radial dependency of these coefficients close to the crater boundary. In figure 7, we identify

this misleading trend by using dashed lines when the radius is smaller than max{�푅(�휃)}
(�푟 6 1.11�푅0 in figure 7).

Figures 8 and 9 compare the time evolution of the coefficients �푢�푟 ,�푙 (�푟, �푡) and �푢�휃,�푙 (�푟, �푡)
(equations 2.3-2.4) between the cases, for �푙 6 2. Except for the different normalisation, figure

7 is thus similar to a radial slice of these coefficients maps, for case B, at �푡/�푡�푚�푎�푥 = 0.43. As

Rapids articles must not exceed this page length
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Figure 7: Coefficients �푢�푟 ,�푙 (�푟, �푡) and �푢�휃,�푙 (�푟, �푡) normalised by the mean crater velocity
¤�푅0 (�푡), as a function of the radial coordinate �푟 , normalised by the mean crater radius �푅0 (�푡),

up to degree �푙 = 5. Dashed lines correspond to regions where the coefficients sample
velocity artefacts are located in the crater. The coefficients are calculated at �푡 = 15.4

(�푡/�푡�푚�푎�푥 = 0.43) for case B.

for the crater shape, the moderate �푊�푒 case A is different from the high �푊�푒 cases B, C and

D, both for the radial (figure 8) and the polar (figure 9) component of the velocity field. We

thus deal with this case separately.

We first deal with the high�푊�푒 experiments (cases B, C and D), where both components of

the velocity field are similar among cases, regardless of the degree in question. The velocity

field is mostly dominated by the degrees �푙 = 0 and �푙 = 1, both during the opening and the

closing stage of the crater, in agreement with figure 7.

During the crater opening stage (�푡/�푡�푚�푎�푥 . 1), the dominant degrees of the radial component

�푢�푟 ,0(�푟, �푡) and �푢�푟 ,1(�푟, �푡) are positive (figure 8). This corresponds to the strong radial velocity

field related to the expansion of the cavity. The dominant degrees of the polar component

�푢�휃,0 (�푟, �푡) and �푢�휃,1(�푟, �푡) are concomitantly positive and negative, respectively (figure 9), with

a lower magnitude. This corresponds to a polar perturbation of the dominant radial velocity

field, related to the mass flux across the surface �푧 = 0 which produces the fluid crown. The

positive coefficient �푢�휃,0 (�푟, �푡) indeed corresponds to a flow toward the surface, while the

negative coefficient �푢�휃,1(�푟, �푡) corresponds to a degree �푙 = 1 perturbation, linear in cos �휃. The

degree �푙 = 2 also contributes to the velocity field of both components, in particular when

the crater is strongly deformed due to the spread of the drop at the surface of the pool, at the

beginning of the opening stage (�푡/�푡�푚�푎�푥 . 0.25).

When the crater reaches its maximum size (�푡/�푡�푚�푎�푥 ≃ 1), the dominant degrees of both

components change signs as the crater starts to collapse. In detail, �푢�푟 ,0(�푟, �푡) vanishes later

(�푡/�푡�푚�푎�푥 ≃ 1) than �푢�푟 ,1(�푟, �푡) (�푡/�푡�푚�푎�푥 ≃ 0.6) (figure 8) and �푢�휃,0(�푟, �푡) (�푡/�푡�푚�푎�푥 ≃ 0.8) (figure

9). This is in agreement with the observations of figure 5 at �푡/�푡�푚�푎�푥 ≃ 1, where the velocity

vanishes beneath the crater but not on the sides.

During the crater closing stage (�푡/�푡�푚�푎�푥 & 1), �푢�푟 ,0(�푟, �푡) and �푢�푟 ,1(�푟, �푡) are both negative

(figure 8) and �푢�휃,0(�푟, �푡) is negative (figure 9). This corresponds to the development of the

convergent flow related to the collapse of the crater and the formation of the central jet.

As at the beginning of the opening stage, the degree �푙 = 2 of both components contributes

significantly to the velocity field at the end of the closing stage (�푡/�푡�푚�푎�푥 & 1.5), in relation

with the strongly deformed crater boundary.
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Figure 8: Time evolution of the coefficient �푢�푟 ,�푙 (�푟, �푡) (�푙 ∈ {0, 1, 2}) normalised by the
impact velocity �푈�푖 , as a function of the radial coordinate �푟 normalised by the drop radius

�푅�푖 , for case B. Time is normalised by the opening timescale of the crater �푡�푚�푎�푥 .

We now deal with the moderate �푊�푒 experiment (case A). Although the degree �푙 = 0

of both components is similar to the high �푊�푒 cases, the degrees �푙 = 1 and �푙 = 2 of case

A are significantly larger than their counterparts of cases B, C and D. Furthermore, the

time at which �푢�푟 ,1(�푟, �푡) and �푢�휃,0(�푟, �푡) vanish is significantly modified. This may also be a

consequence of significant surface tension effects in this moderate�푊�푒 experiment, related to

vigorous deformations of the crater boundary by the propagation of a capillary wave towards

the bottom of the crater.

4. Comparison with existing velocity models

In this section, we review the velocity models proposed by Engel (1967), Maxwell (1977),

Leng (2001) and Bisighini et al. (2010), and compare their predictions with our observations.

Since most of these models have been designed to understand the crater opening stage, we

compare these models with our experimental velocity measurements by focusing on a typical

snapshot of this initial stage. For that purpose, figure 10 shows the dominant coefficients

�푢�푟 ,0(�푟, �푡), �푢�푟 ,1(�푟, �푡), �푢�휃,0 (�푟, �푡) and �푢�휃,1 (�푟, �푡) of case B as a function of the radial coordinate

at �푡/�푡�푚�푎�푥 = 0.24, as well as the predictions of the models.
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Figure 9: Time evolution of the coefficient �푢�휃,�푙 (�푟, �푡) (�푙 ∈ {0, 1, 2}) normalised by the
impact velocity �푈�푖 , as a function of the radial coordinate �푟 normalised by the drop radius

�푅�푖 , for case B. Time is normalised by the opening timescale of the crater �푡�푚�푎�푥 .

4.1. Engel (1967)’s model

Engel (1967)’s model assumes an energy balance where the potential energy of the crater,

the potential energy of a cylindrical wave developing above the surface, the surface tension

energy of the produced interface, the kinetic energy of the flow around the crater, the kinetic

energy of the cylindrical wave and viscous dissipation are equal at any time to half of

the kinetic energy of the impacting drop. Among the assumptions of such a model, Engel

(1967) assumes a hemispherical crater with a radius �푅0(�푡) and a potential flow with a

velocity potential �휙 satisfying the boundary conditions on the velocity |u |(�푟 = +∞) = 0 and

|u | [�푟 = �푅0(�푡)] = ¤�푅0(�푡). The velocity potential used in the model is

�휙 = −
¤�푅0�푅

2
0

cos �휃

�푟
. (4.1)

The radial component �푢�푟 and the polar component �푢�휃 of the velocity field, obtained by

deriving the velocity potential, write

{
�푢�푟 =

¤�푅0�푅
2
0

cos �휃

�푟2

�푢�휃 =
¤�푅0�푅

2
0

sin �휃

�푟2

. (4.2)
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Figure 10: Coefficients �푢�푟 ,0 (�푟, �푡) (a), �푢�푟 ,1 (�푟, �푡) (b), �푢�휃,0 (�푟, �푡) (c) and �푢�휃,1 (�푟, �푡) (d)

normalised by the mean crater velocity ¤�푅0 (�푡), as a function of the radial coordinate �푟 ,
normalised by the mean crater radius �푅0 (�푡). The circles correspond to case B at

�푡/�푡�푚�푎�푥 = 0.24. The dash-dotted lines correspond to the models of Engel (1967), Maxwell
(1977), Leng (2001) and Bisighini et al. (2010). The solid line corresponds to the solution

of the predictive model, using the simplified equation system (equation 5.13) with the
reference set of initial conditions (equation 5.14).

This model allows to capture the evolution of the mean crater radius (e.g. Engel 1967, figure

3). The velocity field has a �푙 = 0 (figure 10a) and �푙 = 1 (figure 10b) radial components and a

�푙 = 0 (figure 10c) and �푙 = 1 (figure 10d) polar components. This allows to obtain a velocity

field qualitatively similar to the experiments, including in particular a degree �푙 = 1 of the

radial component, and a polar component. However, the slopes of the velocity components

are smaller than the experimental slopes, in particular the 1/�푟2 slope of �푢�푟 ,0(�푟, �푡). The main

limitations of Engel (1967)’s model are the fixed hemispherical geometry of the crater and

the arbitrary velocity potential defined to fit experimental observations of the velocity field.

More importantly, this velocity potential (equation 4.1) corresponds to the flow around an

expanding cylinder (with �푟 being the distance from the cylinder axis, and �휃 the angular

position around this axis) rather than around an expanding sphere, as incorrectly assumed in

Engel (1967). It is not a solution of the Laplace equation in spherical coordinates and has a

non-zero divergence.

4.2. Maxwell (1977)’s model

Maxwell (1977)’s model assumes an empirical form of the velocity field based on planetary

cratering observations. The model assumes that the radial component �푢�푟 is independent of �휃

and that its radial dependency is a power �푍 of the radius �푟. �푢�휃 is then calculated using fluid
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incompressibility. The velocity field thus writes

{
�푢�푟 =

�훼(�푡)
�푟/

�푢�휃 = (�푍 − 2) sin �휃
1+cos �휃

�훼(�푡)
�푟/

, (4.3)

where �훼(�푡) is an arbitrary coefficient corresponding to the time-dependent flow intensity.

According to Maxwell (1977) and Melosh (1989), the value �푍 = 3 gives a velocity field

consistent with numerical simulations of explosion and planetary impacts.

This model allows to predict the experimental �푢�푟 ,0(�푟, �푡) (figure 10a), �푢�휃,0(�푟, �푡) (figure 10c)

and �푢�휃,1(�푟, �푡) (figure 10d) using �푍 = 3 and �훼(�푡) = 1. In particular, the slopes predicted by

the model are very close to the experimental slopes. However, this model does not allow a

degree �푙 = 1 of the radial velocity component. The main limitations of Maxwell (1977)’s

model are the arbitrary choice for the model time-dependency, with �훼(�푡), the fact that �푍

could depend on �휃, which would yield a degree �푙 = 1 for �푢�푟 , and the fact that Maxwell’s flow

is not potential, which is inconsistent with the experimental results (figure 6).

4.3. Leng (2001)’s model

Leng (2001)’s model is similar to Engel (1967)’s model since it uses a hemispherical crater

with a radius �푅0(�푡) and a potential flow. The velocity potential �휙 writes

�휙 = −
¤�푅0�푅

2
0

�푟
, (4.4)

which allows to obtain the velocity components �푢�푟 and �푢�휃 of the velocity field

{
�푢�푟 =

¤�푅0�푅
2
0

�푟2

�푢�휃 = 0
. (4.5)

This velocity potential satisfies the boundary conditions and is a solution of the Laplace

equation in spherical coordinates.

This model allows, in particular, to capture the evolution of the mean crater radius using

an energy balance, although it requires to multiply the kinetic energy and the total energy

by empirical correction factors (e.g. Lherm et al. 2022). However, the velocity field has only

a degree �푙 = 0 (figure 10a) on the radial component and no polar component. As for Engel

(1967)’s model, the 1/�푟2 slope of �푢�푟 ,0(�푟, �푡) is smaller than the experimental slope. The main

limitations of Leng (2001)’s model are the hemispherical geometry and the oversimplified

velocity potential which prevents a polar dependency of the radial component and a polar

component of the velocity field.

4.4. Bisighini et al. (2010)’s model

Bisighini et al. (2010)’s model assumes an expanding spherical crater able to translate

vertically over time, with a radius �푅0(�푡) and a vertical position of the crater barycenter

�푧�푐 (�푡). This allows to define a velocity potential �휙 which corresponds to the superposition

between the radial expansion of the crater and the flow past a translating sphere. This potential

satisfies the boundary conditions and the Laplace equation in spherical coordinates. In the

moving sphere coordinate system (�푟 ′, �휃 ′), it writes

�휙 = −
¤�푅0�푅

2
0

�푟 ′
− ¤�푧�푐�푟 ′

(

1 −
�푅3

0

2�푟 ′3

)

cos �휃 ′, (4.6)
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with components �푢�푟 and �푢�휃 of the velocity field writing




�푢�푟 =
¤�푅0�푅

2
0

�푟 ′2
−
(
1 − �푅3

0

�푟 ′3

)
¤�푧�푐 cos �휃 ′

�푢�휃 =

(
1 + �푅3

0

2�푟 ′3

)
¤�푧�푐 sin �휃 ′

. (4.7)

Bisighini et al. (2010) then use an unsteady Bernoulli equation to determine the evolution

of the sphere radius and position over time. To compare Bisighini et al. (2010)’s model

with our experimental data, we need to calculate the corresponding velocity field in the

fixed frame of reference by adding the velocity of the crater barycenter ¤�푧�푐 (cos �휃,− sin �휃) to

equation 4.7, and expressing �푟 ′ and �휃 ′ as functions of �푟 and �휃 (�푟 ′ =
√
�푟2 + �푧2

�푐 − 2�푧�푐�푟 cos �휃,

cos �휃 ′ = (�푟 cos �휃 − �푧�푐)/�푟 ′, sin �휃 ′ = �푟 sin �휃/�푟 ′).
The velocity field has a �푙 = 0 (figure 10a) and a �푙 = 1 (figure 10b) radial component,

as well as a �푙 = 0 (figure 10c) and a �푙 = 1 (figure 10d) polar component. The coefficients

are calculated using �푧�푐 = 0 and ¤�푧�푐 = 0.2�푈�푖, which corresponds to typical values during

crater opening (e.g. figure 5). This model explains relatively well the shape of the crater (e.g.

Bisighini et al. 2010, figure 17), and the key tendencies of the experimental components of

the velocity field. However, Bisighini et al. (2010)’s model strongly constrains the geometry

of the crater, as well as the related velocity potential definition. As in Engel (1967)’s and

Leng (2001)’s models, the 1/�푟2 slope of �푢�푟 ,0 is smaller than the experimental slope.

4.5. Towards a new model

In all models, either the geometry of the velocity field (Engel 1967; Maxwell 1977; Leng

2001) or the shape of the cavity (Engel 1967; Leng 2001; Bisighini et al. 2010) are imposed.

This leads in particular to an incorrect radial dependency of �푢�푟 , with an exponent much

larger in the experiments than in the models, except for Maxwell (1977)’s model where the

radial dependency is arbitrarily imposed by the parameter �푍. The experimental observation

that the radial velocity field decreases with �푟 faster than 1/�푟2 is unexpected since it suggests

that the flow component associated with an isotropic expansion of the cavity (∝ 1/�푟2) is not

dominant. New models are thus required to explain the geometry of the experimental velocity

field, as well as the evolution of the non-hemispherical shape of the cavity. In the following

section, we develop a semi-analytical model based on a Legendre polynomials expansion of

an unsteady Bernoulli equation, coupled with a kinematic boundary condition at the crater

boundary.

5. Legendre polynomials model

In this model, we assume that the fluid is inviscid (i.e. �휇 = 0), incompressible (i.e. ∇ · u = 0),

and that the flow is irrotational (i.e. ∇ × u = 0). This means that the flow is potential and

satisfies the Laplace equation ∇2�휙 = 0, where �휙 is the velocity potential defined as u = ∇�휙.

In the spherical coordinate system (�푟, �휃, �휑), assuming an axisymmetric flow, the solution of

the Laplace equation writes

�휙(�푟, �휃, �푡) =
+∞∑

�푛=0

�휙�푛 (�푡)
�푟�푛+1

�푃�푛 (cos �휃), (5.1)
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where �휙�푛 (�푡) are time-dependent coefficients and �푃�푛 (�푥) are the standard Legendre polyno-

mials, orthogonal on [−1, 1]. The components �푢�푟 and �푢�휃 of the velocity field then writes
{

�푢�푟 (�푟, �휃, �푡) =
�휕�휙

�휕�푟
=

∑+∞
�푛=0 −(�푛 + 1) �휙= (�푡)

�푟=+2 �푃�푛 (cos �휃)
�푢�휃 (�푟, �휃, �푡) =

1
�푟

�휕�휙

�휕�휃
=

∑+∞
�푛=0

�휙= (�푡)
�푟=+2

�휕�푃= (cos �휃)
�휕�휃

. (5.2)

We also assume a non-hemispherical crater, where the shape of the cavity is decomposed on

a set of shifted Legendre polynomials (equation 2.2).

Since we assume that the fluid is inviscid and a potential flow, the flow is governed by an

unsteady Bernoulli equation

�휕�휙

�휕�푡
+ 1

2
�푢2 − �푔�푧 + �푝

�휌
= constant, (5.3)

where �휌 is the fluid density, �푢 is the norm of the velocity, �푝 is the pressure, �푔 is the acceleration

due to gravity and �푧 is the vertical coordinate below the initial fluid surface. This equation

is constant in the entire fluid domain. Far from the crater, �푢 → 0, �휙 → 0 and the pressure

is hydrostatic �푝(�푧) = �푝0 + �휌�푔�푧, where �푝0 is the atmospheric pressure. This means that the

constant is equal to �푝0/�휌.

At the crater boundary, i.e. at �푟 = �푅(�휃, �푡) (equation 2.2), the Young-Laplace equation

writes

�푝(�푅) − �푝0 = �휎�퐶, (5.4)

where �퐶 (�휃, �푡) is the mean local curvature of the interface and �휎 the surface tension. In

cylindrical coordinates, the curvature writes

�퐶 (�휃, �푡) =
�푅2 + 2

(
�휕�푅
�휕�휃

)2

− �푅 �휕2�푅
�휕�휃2

[
�푅2 +

(
�휕�푅
�휕�휃

)2
]3/2 . (5.5)

The Bernoulli equation at the crater boundary thus writes
(
�휕�휙

�휕�푡

)

�푟=�푅

+ 1

2
�푢(�푅)2 − �푔�푅 cos �휃 + �휎

�휌
�퐶 = 0. (5.6)

We also use a kinematic boundary condition at the crater boundary

�휕�푅

�휕�푡
+ u · ∇�푅 =

�휕�푅

�휕�푡
+ �푢�휃 (�푅)

1

�푅

�휕�푅

�휕�휃
= �푢�푟 (�푅). (5.7)

Equations 5.6 and 5.7 are made dimensionless using the scaling laws for the crater opening

timescale �푡�푚�푎�푥 (equation 3.1) and the maximum crater radius �̃푅�푚�푎�푥 (equation 3.2), which

gives the partial differential equation system
{ (

�휕�휙∗

�휕�푡∗

)

�푟∗=�푅∗
= − 1

2
�푢∗(�푅∗)2 + 1

4
B
(

1
2
, 5

8

)2

�휉�푅∗ cos �휃 − 1
8

√
3
2
B
(

1
2
, 5

8

)2
�휉√
Φ

√
�퐹�푟

�푊�푒
�퐶∗

�휕�푅∗

�휕�푡∗ = �푢∗�푟 (�푅∗) − �푢∗
�휃
(�푅∗) 1

�푅∗
�휕�푅∗

�휕�휃

, (5.8)

where the star notation denotes quantities made dimensionless with �̃푅�푚�푎�푥 and �푡�푚�푎�푥 , e.g.

�푡∗ = �푡/�푡�푚�푎�푥 .

We solve this differential equation system (equations 5.8) by expanding the velocity

potential (equation 5.1) up to degree �푛�푚�푎�푥 = 2

�휙∗(�푟∗, �휃, �푡∗) =
�휙∗

0
(�푡∗)
�푟∗

+
�휙∗

1
(�푡∗) cos �휃

�푟∗2
+
�휙∗

2
(�푡∗)

(
3 cos2 �휃 − 1

)

2�푟∗3
. (5.9)
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The components of the velocity field then write (equation 5.2)
{

�푢∗�푟 (�푟∗, �휃, �푡∗) = − �휙∗
0
(�푡∗)

�푟∗2 − 2�휙∗
1
(�푡∗) cos �휃

�푟∗3 − 3�휙∗
2
(�푡∗) (3 cos2 �휃−1)

2�푟∗4

�푢∗
�휃
(�푟∗, �휃, �푡∗) = − �휙∗

1
(�푡∗) sin �휃

�푟∗3 − 3�휙∗
2
(�푡∗) sin �휃 cos �휃

�푟∗4

. (5.10)

We also expand the crater boundary position (equation 2.2) up to degree �푘�푚�푎�푥 = 1

�푅∗(�휃, �푡∗) = �푅∗
0(�푡

∗) + �푅∗
1(�푡

∗) (2 cos �휃 − 1). (5.11)

Note that the crater position �푅∗(�휃, �푡∗) is written as a sum of shifted Legendre polynomials,

while the velocity potential �휙∗(�푟∗, �휃, �푡∗) is a sum of standard Legendre polynomials.

We then project the differential equation system (equation 5.8) on a set of shifted Legendre

polynomials �̄푃�푚 up to degree �푚�푚�푎�푥 = 2 for the Bernoulli equation and degree �푚�푚�푎�푥 = 1 for

the kinematic boundary condition. The projection of a function �푋 writes

〈�푋, �̄푃�푚〉 = (2�푚 + 1)
∫ �휋/2

0

�푋�̄푃�푚(cos �휃) sin �휃d�휃. (5.12)

We simplify the equations by expanding the Bernoulli equation and the kinematic boundary

condition to the third and the fourth order in �푅∗
1
. We obtain a system of five equations with

five unknowns �휙∗
0
(�푡∗), �휙∗

1
(�푡∗), �휙∗

2
(�푡∗), �푅∗

0
(�푡∗) and �푅∗

1
(�푡∗) (equations A 1-A 5).

The general equation system (equation 5.8) and its projection (equations A 1-A 5) may

be further simplified. The third term on the right-hand side of the Bernoulli equation (in

equation 5.8) corresponds to surface tension effects associated with the curvature of the

air-water interface. If this term is neglected, which corresponds to
√
�퐹�푟/�푊�푒 ≪ 1, equation

5.8 then simplifies as
{ (

�휕�휙∗

�휕�푡∗

)

�푟∗=�푅∗
= − 1

2
�푢∗(�푅∗)2 + 1

4
B
(

1
2
, 5

8

)2

�휉�푅∗ cos �휃

�휕�푅∗

�휕�푡∗ = �푢∗�푟 (�푅∗) − �푢∗
�휃
(�푅∗) 1

�푅∗
�휕�푅∗

�휕�휃

. (5.13)

In our experiments,
√
�퐹�푟/�푊�푒 is two to three times larger for case A (1.0 × 10−1) than for

cases B, C and D (4.9×10−2, 3.9×10−2 and 3.3×10−2, respectively). This is consistent with

the surface tension argument used to explain the difference between case A and the other

cases (§3). Since �휉 is independent of �퐹�푟 and �푊�푒 in our experimental range (Lherm et al.

2022), this normalised equation system without surface tension is independent of the impact

parameters and may be used to provide a predictive model.

The general and the simplified equation systems are solved numerically as initial value

problems, using a differential equation solver. The solution thus depends on the choice

of initial conditions. On one hand, we can solve the equation systems separately for each

experiment. The initial conditions are defined at �푡 = 1, which corresponds to an advection

time of the impacting drop, and fitted on each experiment by using a joint least-square

inversion of the five experimental coefficients over the entire time series. On the other hand,

we can solve the equation systems at the same time for all the experiments. The initial

conditions are also defined at �푡 = 1 but fitted simultaneously on all the experiments using

the joint least-square inversion over the entire time series. This method allows to define a

unique set of initial conditions that may be used in a predictive model. In both cases, the

fitting procedure is motivated by the sensitivity of the model to the initial conditions used.

A slight modification of the initial conditions may change significantly the time evolution of

the coefficients. This sensitivity might be related to the exact impact conditions, including a

possible variability in the contact dynamics with the surface of the pool and in the shape of

the drop upon impact. Furthermore, the sensitivity to initial conditions might be amplified by

the truncation of the crater shape and of the velocity potential expansion, which is probably
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insufficient to model properly the early evolution of the crater. This sensitivity is investigated

in more detail in appendix B.

We now define two models using different systems of equations and definitions of initial

conditions. The first model, referred to as the general model, accounts for surface energy

effects and uses the general equation system (equation 5.8) and initial conditions fitted on

single experiments. This means that the number of sets of initial conditions is equal to the

number of experiments. For example, the initial conditions of a given experiment in case B

are �휙∗
0
(1) = −0.07±0.02, �휙∗

1
(1) = −0.07±0.02, �휙∗

2
(1) = 0.009±0.003, �푅∗

0
(1) = 0.41±0.03

and �푅∗
1
(1) = −0.28 ± 0.02. Uncertainties on the coefficients correspond to 1 − �휎 standard

deviations on the parameters in the least-square inversion. The initial conditions of all the

experiments are presented in appendix B. The second model, referred to as the simplified

model, uses the simplified equation system, without surface tension and independent of the

impact parameters (equation 5.13), as well as initial conditions fitted on all the experiments.

The reference set of initial conditions is
{
�휙∗

0
(1) = −0.21 ± 0.01, �휙∗

1
(1) = 0.002 ± 0.005, �휙∗

2
(1) = 0.0004 ± 0.0005,

�푅∗
0
(1) = 0.29 ± 0.02, �푅∗

1
(1) = −0.39 ± 0.02.

(5.14)

Given the uncertainties, this set of initial conditions can be further simplified by using �휙∗
1
(1) =

�휙∗
2
(1) = 0, which corresponds to an initial velocity field given by (�푢∗�푟 = −�휙∗

0
(1)/�푟∗2, �푢∗

�휃
= 0).

The physical interpretation of these initial conditions should be investigated in the future. It

probably involves the contact dynamics between the drop and the pool and the early evolution

of the crater. Nonetheless, the simplified model is a predictive model, independent of the

impact parameters, that can be used to predict the crater and velocity field evolution within

the range of �퐹�푟 and �푊�푒 covered by our experiments. However, we anticipate the model

to show predictability limitations outside of this range, in particular at low �퐹�푟 and �푊�푒 in

the bubble entrapment region (e.g. Pumphrey & Elmore 1990), due to the neglected surface

tension term and more generally to the relatively low degree of truncation used in our model.

Figure 11 compares the experimental coefficients �휙∗
0

(a), �휙∗
1

(b) and �휙∗
2

(c) of the velocity

potential and the experimental coefficients �푅∗
0

(d) and �푅∗
1

(e) of the crater shape with

the coefficients obtained with the general (coloured solid lines) and the simplified (black

solid lines) models. We determine the experimental velocity potential coefficients from the

experimental velocity field using a joint least-square inversion of the radial and the polar

components (equation 5.2). We also obtain the experimental crater shape coefficients by fitting

the crater boundary position with the shifted Legendre polynomials expansion (equation 2.2),

using the method described in § 2.4.1.

The models capture well the evolution of the velocity potential (figure 11a-c) for all cases.

In detail, the models are dominated by �휙∗
1

and are slightly less accurate when it comes to fit

�휙∗
2
, as expected since this corresponds to velocity fluctuations on smaller scales. These results

are consistent with the good agreement between the simplified model and the experimental

velocity coefficients of figure 10, in particular regarding the slope of �푢�푟 ,0(�푟, �푡). Although

�푢�푟 ,0(�푟, �푡) remains less steep than in the experiments, it decreases significantly faster than

1/�푟2. The models also capture well the evolution of the crater shape (figure 11d-e). Note that

�̃푅�푚�푎�푥 slightly overestimates the experimental maximum crater radius, with maximum �푅∗
0

systematically smaller than 1. This can be explained by the neglected surface energy in the

energy balance (Lherm et al. 2022). In detail, �푅∗
1

is slightly underestimated and changes at a

higher rate than experimental data when �푡/�푡�푚�푎�푥 . 0.4 and �푡/�푡�푚�푎�푥 & 1.7. This corresponds

respectively to the early opening of the crater and the end of crater collapse, including the

formation of the central jet, where an expansion of �푅 to a higher degree (at least �푘 = 2)

would be required to model the observed degree of deformation of the cavity (e.g. figure 4c).
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Figure 11: Coefficients �휙∗
0

(a), �휙∗
1

(b), �휙∗
2

(c), �푅∗
0

(d) and �푅∗
1

(e) as a function of time

normalised by the opening timescale of the crater �푡/�푡�푚�푎�푥 , in the four cases. For each case,
the different types of markers correspond to different experiments. The coloured solid
lines give the solution of the general model, where the initial conditions are fitted on a

single experiment of the corresponding case. The black solid lines give a solution to the
simplified model, where the initial conditions are fitted simultaneously on all the

experiments. The black dashed lines give a solution to the simplified model, where the
initial conditions are modified by ±25% with respect to their reference value.

Note that the predictive model, using the simplified equation system (equation 5.13) with

the reference set of initial conditions (equation 5.14), is particularly in good agreement with

the experimental data. The sensitivity of the simplified model to the initial conditions is

illustrated with two solutions where the initial conditions have been modified by ±25% with

respect to their reference value (figure 11, black dashed lines).

Although case A is slightly different from cases B, C and D due to surface tension effects

(see §3), the models capture properly the general cratering dynamics. In detail, �휙∗
2

and �푅∗
1

are significantly underestimated when 0.5 . �푡/�푡�푚�푎�푥 . 1.4, as expected since the models do

not account for the capillary wave propagation responsible for this cavity deformation.

Figure 12 compares snapshots of the radial (a-b) and polar components (c-d) of the ex-

perimental velocity field (a-c) with the components calculated from the predictive simplified

model (b-d), in case B. The comparison is conducted at different times during the opening

stage (i), just before the crater reaches its maximum size (ii), and during the closing stage

(iii). This illustrates that the velocity fields from the simplified model and the experiment are

very similar during all stages of the cratering process. The differences observed are mainly

in the magnitude of the velocity, in particular close to the crater and the initial water surface

(�휃 = ±�휋/2). Similar results are obtained in the other cases. The good agreement between the

experimental velocity field and the simplified model shows that the truncation used in the

model (degree �푘 = 1 in shifted Legendre polynomials for �푅∗ and degree �푛 = 2 in Legendre

polynomials for �휙∗) is sufficient to accurately capture the flow dynamics.

Figure 13 compares the crater shape obtained in a backlight experiment similar to case
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Figure 12: Radial (a, b) and polar (c, d) component of the velocity field from experimental
data (a, c) and from the simplified model (b, d), in case B. The snapshots correspond to

times when the crater is opening (i), when the crater is almost at its maximum size (ii) and
when the crater is closing (iii). The solid green lines correspond to the experimental crater

boundary.

B (�퐹�푟 = 442) with the crater boundary position calculated from the predictive simplified

model. The crater shape is well captured by the model, consistently with the results of figure

11d-e. In detail, at the very beginning of the crater opening stage (figure 13, i), the model

overestimates the width of the crater and does not capture accurately the flat-bottomed shape

of the cavity. During the crater opening stage and the beginning of the crater collapse stage

(figure 13, iii-v), the model slightly underestimates the crater depth and width, consistently

with the coefficients of figure 11d-e. Finally, when the crater collapses (figure 13, vi), the

model shows the central jet initiation, although it visibly lacks higher degrees to account

for the vertical walls of the cavity. Figure 13 also compares the experimental velocity field

obtained in case B with the velocity field obtained from the simplified model. The comparison

shows a good agreement between the two, which is consistent with the analysis of figure 12.
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Figure 13: Time evolution of the crater shape obtained in a backlight experiment similar to
case B (�퐹�푟 = 442). The solid green lines correspond to the crater boundary obtained from

the simplified model. The black arrows correspond to the experimental velocity field,
normalised by its maximum value in each snapshot. The grey arrows correspond to the
velocity field obtained from the simplified model, normalised by its maximum value in

each snapshot.

6. Conclusion

In this paper, we analyse quantitatively the velocity field around the crater produced by the

impact of a liquid drop onto a deep liquid pool. Using new high-resolution PIV measurements,

we obtain simultaneously the evolution of the velocity field around the cavity and the crater

shape. We found that the shape of the cavity and the velocity field seem to be independent

of �퐹�푟 and �푊�푒 at a given �푡/�푡�푚�푎�푥 , when these two dimensionless numbers are large enough

(cases B, C and D). The velocity field is dominated by the degrees 0 and 1 in terms of shifted

Legendre polynomials, with the degree 0 of the radial component �푢�푟 ,0(�푟, �푡) decreasing faster

than 1/�푟2. Furthermore, the radial component of the velocity field is dominated by the degree

1 in terms of standard Legendre polynomials. This is not inconsistent with the growth of the

crater because the degree 1 of the radial component has a non-zero average over a hemisphere.

The experiments also show significant contributions from the degree 2, in particular when the

crater is strongly deformed. This is possibly related to the non-hemispherical shape (degree

1) of the cavity. We also found that the velocity field does not vanish when the crater reaches

its maximum size.

In the previous velocity models (Engel 1967; Maxwell 1977; Leng 2001; Bisighini et al.

2010), strong constraints were imposed on the crater shape and/or on the velocity field.

They were unable to explain the properties observed in our experimental measurements,



23

in particular the radial dependency of the radial component of the velocity field and the

evolution of the shape of the cavity. We thus developed a semi-analytical model based on a

Legendre polynomials expansion of an unsteady Bernoulli equation, coupled with a kinematic

boundary condition at the crater boundary. Assuming that the surface tension term involved

in the Bernoulli equation is negligible, we define a simplified model, independent of the

impact parameters, that can predict the evolution of the crater shape and of the velocity field

within the range of �퐹�푟 and �푊�푒 numbers covered in our experiments. Although the model is

sensitive to the initial conditions, it remains predictive by using a unique set of fitted initial

conditions. In particular, the model can capture the initiation of the central jet. However, one

intrinsic limitation of the model is that it assumes the cavity radius to be a bĳective function

of �휃. While this assumption is true during the opening stage and part of the crater closing

stage, including the central jet initiation, it eventually fails when the central jet reaches a

critical height, since the air/water interface can be crossed twice at a given �휃. The model can

therefore not be used to describe the full growth of the central jet.
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Appendix A. Equations of the Legendre polynomials model

The Legendre polynomials model equations correspond to the projection of equation 5.8

up to degree �푚�푚�푎�푥 = 1 for the kinematic boundary condition and up to degree �푚�푚�푎�푥 = 2

for the Bernoulli equation. The projected boundary conditions and Bernoulli equations are

respectively expanded to the fourth and the third order in �푅∗
1
. The boundary condition then

writes

¤�푅∗
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0
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and the Bernoulli equation writes
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The simplified version of the equation system (equation 5.13) can be obtained by using√
�퐹�푟/�푊�푒 = 0 in equations A 1-A 5.

Appendix B. Initial conditions of the Legendre polynomials model

Figure 14 shows the initial conditions of the general model, obtained by fitting individually

the experiments, and of the simplified model, obtained by fitting all the experiments

simultaneously. They are both defined at �푡 = 1 and use a joint least-square inversion of the

experimental coefficients over the entire time series. Uncertainties on the initial conditions

correspond to 1 − �휎 standard deviations on the parameters in the least-square inversion.

At low
√
�퐹�푟/�푊�푒, corresponding to high �퐹�푟 and�푊�푒 numbers (cases B, C, D), the dispersion

of the initial conditions is larger than the uncertainties associated with the least-square

inversion, whereas at higher
√
�퐹�푟/�푊�푒, corresponding to moderate �퐹�푟 and�푊�푒 numbers (case

A), the initial conditions are clustered within the inversion uncertainties. This dispersion at

higher �퐹�푟 and �푊�푒 suggests a higher variability of the crater shape and of the velocity field

upon impact. This might be related to a greater sensitivity to the exact impact conditions,

possibly including variability in the contact dynamics with the surface of the pool and in

the shape of the drop upon impact. Furthermore, we do not find any secondary dependency

on �퐹�푟 or �푊�푒. Finally, the initial conditions of the simplified model, obtained by fitting

all the experiments simultaneously, are similar to the initial conditions obtained by fitting

individually the experiments.

The relatively large dispersion observed for a given case (except for case A) indicates

that the model is sensitive to the initial conditions. For example, a change in all the initial

conditions by ±25% gives a significantly modified evolution of the coefficients over time

(figure 11, black dashed lines). In order to further investigate this initial condition sensitivity,

we conducted a quantitative test on the simplified model. Figure 15 shows the relative change

of the model coefficients with respect to the simplified model, as a result of an individual

modification of a single initial condition from the reference value defined in equation 5.14.

The relative change �훿�푋 is defined as the absolute change in �푋 = {�휙∗
0
, �휙∗

1
, �휙∗

2
, �푅∗

0
, �푅∗

1
}, �푋−�푋ref ,

scaled by the root mean square of the simplified model RMS(�푋ref ). We choose to scale the

absolute change by the root mean square of the simplified model to ensure a non-diverging

value of the relative change when �푋ref → 0. Note that this sensitivity test only investigates the

role of independent parameter modifications. Coupled modifications of the initial conditions
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Figure 14: Initial conditions (at �푡 = 1) of the Legendre polynomials models, for the
coefficients �휙∗

0
(a), �휙∗

1
(b), �휙∗

2
(c), �푅∗

0
(d) and �푅∗

1
(e), obtained using a joint least-square

inversion of the experimental coefficients over the entire time series. The coloured
markers correspond to the general model, where initial conditions are obtained by fitting
experiments individually. The black circles correspond to the simplified model, where

initial conditions are obtained by fitting all the experiments simultaneously. Uncertainties
correspond to 1 − �휎 standard deviations on the parameters in the least-square inversion.

(as in figure 11, black dashed lines) might amplify significantly the changes in the evolution

of the coefficients.

Within the range of parameter modifications (by ±40%), the coefficients are generally

more influenced by modifications of the initial conditions of the crater shape, i.e. �푅∗
0
(1)

(figure 15d) and �푅∗
1
(1) (figure 15e). Besides, the coefficient �푅∗

0
is the least modified with

a maximum change of ∼ 30% (figure 15iv), while �휙∗
0
, �휙∗

1
, �휙∗

2
and �푅∗

1
reach respectively

∼ 300% (figure 15i), ∼ 150% (figure 15ii), ∼ 200% (figure 15iii) and ∼ 100% (figure 15v).

Finally, the change in the coefficients over time is not homogeneous. For example, �휙∗
0

is

changed relatively uniformly over time (in magnitude), independently of the modified initial

condition, while �휙∗
2

is changed much more heterogeneously and depends on the modified

initial condition.
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