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With advances in instrumentation and the tremendous increase in computational power, vast amounts of data

are becoming available for many complex phenomena in macroscopically heterogeneous media, particularly

those that involve flow and transport processes, which are problems of fundamental interest that occur in a

wide variety of physical systems. The absence of a length scale beyond which such systems can be considered

as homogeneous implies that the traditional volume or ensemble averaging of the equations of continuum

mechanics over the heterogeneity is no longer valid and, therefore, the issue of discovering the governing

equations for flow and transport processes is an open question. We propose a data-driven approach that uses

stochastic optimization and symbolic regression to discover the governing equations for flow and transport

processes in heterogeneous media. The data could be experimental or obtained by microscopic simulation. As

an example, we discover the governing equation for anomalous diffusion on the critical percolation cluster at the

percolation threshold, which is in the form of a fractional partial differential equation, and agrees with what has

been proposed previously.
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Heterogeneous media and materials, both natural and en-

gineered, are ubiquitous [1,2]. They are often multiscale

systems in which the heterogeneity is relevant over multiple

and disparate length scales and contain long-range correla-

tions. They vary anywhere from tissues and other biological

materials to composite solids, membranes, such large-scale

porous media as aquifers, and a vast number of other systems.

Many phenomena occur in heterogeneous media that are of

fundamental and practical interest, and include flow, transport,

reaction, deformation, and other physical processes.

A most important question regarding heterogeneous ma-

terials and media is the governing equations for the physical

phenomena that occur in them. To address this question, we

first divide them into two groups. In one group are those

that are microscopically disordered but macroscopically ho-

mogeneous. Thus, provided that the size of such media is

larger than the representative elementary volume (REV)—the

minimum size for macroscopic homogeneity—the phenom-

ena of interest are governed by the classical equations of

continuum mechanics [3], averaged over the REV, such as

the Navier-Stokes equations for fluid flow, the convective-

diffusion equation (CDE) for heat and mass transfer, and

equations of linear elasticity. The transport coefficients that

appear in such equations represent averaged values, with the

averaging taken over the distribution of the heterogeneities,
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and must be measured by experiments or predicted based on a

model of the media.

In the second group are materials and media that are macro-

scopically heterogeneous [4], implying that the REV is either

larger than their size or does not exist. This implies that

volume or ensemble averaging of the equations of continuum

mechanics is no longer appropriate. A review of a broad class

of heterogeneous materials and media indicates that macro-

scopic heterogeneity is more of a rule than an exception, as

they are encountered in astrophysics [5], oceanography [6,7],

large-scale porous media [8,9], spatial patterns of environ-

mental pollution [10], and biological tissues and organs [11].

In addition, any statistically self-similar fractal structure, such

as the critical percolation cluster (CPC) at the percolation

threshold pc, is also macroscopically heterogeneous up to the

length scale over which it is self-similar.

Even if one attempts to carry out a large-scale averaging

[12–14] over multiple scales, the result is a highly complex

equation with many terms, such that direct computer simu-

lation of the phenomena and averaging the numerical results

over the relevant length scales are more straightforward than

solving the equations that result from large-scale averaging. It

is also known that averaging over strong heterogeneity gives

rise to the memory effect [15,16], hence complicating the task

of deriving the governing equations. To include the memory

effects, approaches based on continuous-time random walks

[17], miltirate mass transfer equations [18,19], and fractional

advective equation [20,21] have been developed. Such ap-

proaches are, however, mostly phenomenological.
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In this Letter, we propose an approach that uses a set of data

for a transport process in a heterogeneous medium, obtained

by either experiments or computer simulation, together with a

stochastic optimization method and symbolic regression (see

below), to discover the governing equation for the process.

An approach for discovering the governing equation for data

sets that represent a nonstationary time series has already been

developed [22,23]. In addition, the Mori-Zwanzig approach

[24,25] provides a procedure for developing reduced-order

models for high-dimensional systems and data, which are

constructed based on projection operators, although determin-

ing the precise form of the kernel in their approach remains

difficult. Our goal in the present Letter is to develop an ap-

proach for flow and transport in two- or three-dimensional

heterogeneous media.

Suppose that T is the transport process in a heterogeneous

medium for which we have an extensive set of data describing

the spatiotemporal evolution of a quantity q(r, t ), where r is

the position vector at time t . According to the equations de-

scribing conservation of mass, momentum, and energy, the

searched-for model M for the transport process is described

by partial differential equations (PDEs). Large-scale aver-

aging methods [12–14] tell us that the spatial variability is

expressed by the PDEs that contain, first- and second-order,

and possibly third-order, spatial partial derivatives of q, while

we also know that averaging over the spatial heterogeneity in-

duces long-term memory [15,16]. Thus, the time evolution of

q(r, t ) might be described by its fractional derivative, defined

by [26]

∂tα q ≡
∂αq

∂tα
=

1

�(1 − α)

∂

∂t

∫ t

0

dτ
q(r, τ )

(t − τ )α
, (1)

where �(x) is the gamma function. Thus, the goal is to identify

a model M that minimizes the difference between its pre-

dictions qp and the given data qd , i.e., it minimizes the loss

function L = σ 2 + np, where σ 2 is the normalized error σ 2,

defined by

σ 2 =

∑

i

∑

j[qp(ri, t j ) − qd (ri, t j )]
2

∑

i

∑

j[qd (ri, t j )]2
, (2)

with n being the number of the nodes in the binary expression

tree converted from the PDE, and p is a complexity penalty

coefficient (see the Supplemental Material (SM) [27], as well

as Refs. [15,16,28–32]). Minimizing L is, of course, a non-

linear optimization problem for which many approaches have

been developed [33], such as simulated annealing [34] and the

genetic algorithm (GA) [35].

To describe the method concretely, we consider diffusion

on 2D CPC at pc, which has a fractal dimension D f =

91/48 � 1.9 at all length scales. Diffusion in the CPC is

anomalous [36], i.e., the mean-squared displacement of a

diffusant grows with time as 〈R2(t )〉 ∝ tα , where α = 2/Dw.

Here, Dw = 2 + (μ − β )/ν is the fractal dimension of the

walk, with μ, β, and ν being, respectively, the scaling ex-

ponents of the conductivity, order parameter, and correlation

length of percolation, so with μ � 1.3, β = 5/36, and ν =

4/3 in 2D, one obtains Dw � 2.87. An important, and for

quite some time controversial, issue was the governing equa-

tion for q = P(r, t ), the average probability that a diffusant is

at position r at time t , for which various equations [32,37,38]

were suggested. It now appears that the equation derived by

Metzler et al. [32] is the generally accepted correct equation

(see below).

We generated the CPC on the square lattice at its site

percolation threshold, pc � 0.5927, using the Leath algorithm

[39], with periodic boundary conditions in both directions.

The size of the cluster was 4096 × 4096, and we averaged

the computed P(r, t ) over 500 realizations of the clusters.

Diffusion was simulated by an unbiased random walk (RW)

on the CPS by the so-called blind ant method [40] using a

highly efficient RW simulator, which is an open-source GPU-

accelerated [41] algorithm, hence allowing us to use 30 000

particles and simulate 106 time steps.

For each realization i, the probability Pi(r, t ) (r = |r|)

of a diffusant being within a hyperspherical shell between

(r − 	r/2) and (r + 	r/2) at time t (counted as the number

of RW steps) was computed (we used 	r = 4 in units of the

bonds’ length). The probability distribution function of Pi(r, t )

was then computed by normalizing the numerical results, i.e.,

by setting,
∫ ∞

0
rD f −1Pi(r, t )dr = 1, and then averaging over

all the realizations.

Though any optimization algorithm can be used, we

utilized the genetic programming for system identification

(GPSI) [28]. The complete details are given in the SM [27]

(see also Ref. [28]). Briefly, one first specifies the mathemat-

ical expressions that will be tried by the GPSI. We included

∂nP/∂rn (n = 0, 1, and 2), ∂P/∂t , and ∂tα P(r, t ) (0 < α � 1),

together with the boundary conditions, and used the fourth-

order Runge-Kutta method when the time derivative was

simply ∂P/∂t , and the predictor-corrector method suggested

by Diethelm et al. [29] when the trial PDEs involved fractional

derivatives. The GPSI generates a PDE at random, solves it

numerically to compute P(r, t ), and calculates the loss func-

tion σ 2. If σ 2 is larger than a threshold ε, the algorithm

continues generating the trial PDEs through the evolutionary

process of the GA—the crossover and mutation—until σ 2 <

ε. This generates a few plausible solutions, most of which can

be eliminated by imposing other physical constraints, such

as 0 < P(r, t ) � 1. Such a procedure amounts to symbolic

regression [42,43], since one tries to fit certain expressions

in terms of spatial and temporal derivatives to a given set of

data.

As a test, we first carried out RW simulations on the fully

connected square lattice at p = 1. The algorithm easily iden-

tified the spherically symmetric diffusion equation as the only

viable governing equation. The simulations on the CPC at pc

yield Dw � 2.875 ± 0.003, in agreement with the theoretical

expectation. We used the data for the final 40% of time steps

and, therefore, the predictions of the equation to be discovered

for the initial 60% of the total time is a stringent test of its

accuracy. The algorithm rejected all the PDEs with integer-

order time derivatives of P(r, t ). Only three possible solutions

with fractional derivatives were deemed viable. Of the three,

one given by

∂0.718P

∂t0.718
= −0.288P2 + 0.202

∂2P

∂r2
(3)

was rejected, even though its predictions for P(r, t ) were

accurate, because it violates mass balance. A second
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FIG. 1. Comparison of the predictions of the discovered fractional diffusion equation (curves) with the results of numerical simulations of

diffusion on the critical percolation cluster at the percolation threshold: (a) Eq. (5) and (b) Eq. (7). To discover the equation, the last 40% of the

data at the longest times were used; circle. Triangles and squares represent the numerical results, while red, green, and blue show the model’s

predictions.

solution,

∂0.645P

∂t0.645
=

0.555

r

∂P

∂r
+ 0.640

∂2P

∂r2
, (4)

which is still accurate, was also rejected because it implies

anisotropic diffusion. Thus, the final governing equation iden-

tified by the approach is given by

∂0.614P

∂t0.614
=

0.849

r

∂P

∂r
+

∂2P

∂r2
. (5)

Note that the factor 1/r in the first term of the right side of

Eq. (5) was identified by the algorithm, and was not included

in the set of trial searches.

On the other hand, the governing equation for P(r, t ), de-

rived by Metzler et al. [32], is given by

∂αP

∂tα
=

1

rds−1

∂

∂r

[

rds−1 ∂P(r, t )

∂r

]

=
ds − 1

r

∂P

∂r
+

∂2P

∂r2
, (6)

where ds = 2D f /Dw � 1.321 is the spectral dimension [44].

Thus, substituting for ds and α = 2/Dw � 0.696, Eq. (6) be-

comes

∂0.669P

∂t0.669
=

0.321

r

∂P

∂r
+

∂2P

∂r2
, (7)

which is practically identical with what the proposed approach

identified. In Fig. 1, we compare the predictions of Eqs. (5)

and (7); the agreement is excellent. Since only the last 40%

of the data was used in the stochastic optimization, we com-

pare in Fig. 2 the predictions of the discovered equation for

FIG. 2. Comparison of the predictions of the discovered fractional diffusion equation (curves) with the results of numerical simulations of

diffusion on the critical percolation cluster at the percolation threshold over the entire simulation time: (a) Eq. (5) and (b) Eq. (7). Diamond,

cross, circle, triangle, and square represent the numerical results while cyan, magenta, red, green, and blue show the predictions.
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P(r, t ) over the entire time that was simulated. It is clear

that Eq. (5) provides accurate predictions even for the initial

60% of the data. Note that since our estimate of α = 2/Dw is

in agreement with the theoretical expectation, the reason for

the difference between the value of ds � 1.849 that Eq. (5)

identified and the theoretical prediction, ds � 1.321, is due

to the finite-size effect that influences the value of the fractal

dimension D f of the CPC.

Let us point out that, as He et al. [45] showed, the dynamics

of transport processes in heterogeneous media that are de-

scribed by a fractional diffusion equation is not self-averaging,

in that time and ensemble averages of the observables, such

as the mean-squared displacements, do not converge to each

other. This is consistent with what is known for diffusion

on the CPC at the percolation threshold [46,47], for which

the distribution of the displacements of the diffusing particle

does not exhibit self-averaging. Our discovery of a fractional

diffusion equation for diffusion on the CPC at the percolation

threshold is fully consistent with this picture and indicates the

accuracy of the approach.

As a further test of the method, we used experimental data

of Scheidegger [48] for dispersion of a solute in the flow of a

solvent through a heterogeneous porous medium, which have

been subject to debate for decades because the data cannot be

accurately described by the standard 1D CDE,

∂C

∂t
+ v

∂C

∂z
= DL

∂2C

∂z2
, (8)

where C is the solute concentration, v is the mean flow veloc-

ity, and DL is the dispersion (effective diffusion) coefficient.

Our preliminary computations based on the method proposed

here indicate that the data can be accurately described by a

fractional CDE of the following form:

∂αC

∂tα
+ v

∂C

∂z
= DL

∂βC

∂zβ
, (9)

where α < 1 and 1 < β < 2, hence shedding light on

decades-old experimental data. The details will be reported

elsewhere [49].

Summarizing, with advances in instrumentation and the

tremendous increase in computational power, vast amounts

of data are becoming available for various phenomena in

macroscopically heterogeneous media. To understand and an-

alyze such data and make predictions for future states of the

phenomena, one must be able to represent them by accurate

governing equation(s). We proposed a data-driven approach,

based on stochastic optimization and symbolic regression,

which provides an effective solution for this unsolved prob-

lem and opens the way to many applications of the method

for a wide variety of complex phenomena in heterogeneous

media.
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