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ABSTRACT: A new mode for complexity-building photochemical cascades which offer experimentally simple transition metal-
free intramolecular Cgpy-Cgps cross coupling of aromatic amides attained via an unprecedented [2+2] reactivity of ESIPT-generated
azaxylylenes. Coupled with short and straightforward post-photochemical modifications of the primary photoproducts, these cas-
cades allow for a significant step-normalized growth of molecular complexity while accessing diverse and complex polyheterocy-

clic molecular architectures.

Recent renaissance in photoassisted organic chemistry drives
modern synthetic method development and, at the same time,
offers boundless opportunities for integrating the newly elaborat-
ed methods into complexity-building photochemical sequences.
This is true for visible light photocatalysis,'= and this is also true
for photoinduced cascades triggered by the Excited State Intramo-
lecular Proton Transfer (ESIPT), which yield complex polyheter-
ocyclic molecular architectures via simple experimental proce-
dures.

In this context, discovery of new C-C bond-forming reactions
and their incorporation into such complexity-building photoin-
duced synthetic cascades is appealing on several levels. From the
substrate perspective, one noticeable deficiency in synthetic ap-
proaches is the lack of direct methods to displace amido groups in
ubiquitous anilides (or amido-heterocycles) with a carbon 'nucle-
ophile.'

Scheme 1. Functionalization of anilides.
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Most common workarounds are based on cross-coupling reac-
tions involving transient arenediazonium salts (Scheme 1a),’ alt-
hough a number of catalytic reactions for cleavage of amide
C(aryl)-N bonds are known (Scheme 1b).”# A catalyst-free elec-
trochemical redox addition-elimination approach was also sug-
gested for the replacement of an amido group with C-nucleophiles
(Scheme 1c¢).°

In this communication we disclose a transition metal-free for-
mal Csp2-Csp3 cross-coupling in aromatic amides based on unprec-
edented [2+2] reactivity of o-azaxylylenes photogenerated via
ESIPT and its application in synthesis of topologically novel
complex polyheterocycles.

Scheme 2. General topological considerations.
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As shown in Scheme 2, precedented ground state reactions of
o-azaxylylenes follow inverse electron demand hetero-Diels Alder
mode, yielding tetrahydroquinolines.'®'> As we demonstrated in
our prior work, with photogenerated azaxylylenes both [4+2] and
[4+4] cycloadditions are also achievable.'>~!7 Notice that, formal-
ly, azaxylylenes possess a conjugated C=NR (i.e. imine) moiety.
This motivated us to explore an atypical reactivity for photogen-
erated azaxylylenes, namely the [2+2] imine cycloadditions in the
exited state. We now report that this distinctive reaction topology
indeed could be realized. Additionally, when paired with other
photochemical and post-photochemical steps, it offers effective
photoinduced complexity-building cascades for rapid access to
novel polyheterocyclic cores.
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Scheme 3 illustrates experimentally simple modular access to
photoprecursors 4 by linking anilines (1) and aminothiophenes (3)
with oxalyl amide tether. Irradiation of 4 with 365nm LEDs in
DCM triggers their conversion to isoquinolinols 5, which involves
formal Csp2-Csp3 cross-coupling between the anilide and thiophene
moiety and is accompanied by substantial growth of complexity,
as quantified by the Béttcher score'3-2° calculations.

The new photoinduced cascade has a broad scope as illustrated
by Table 1. Reaction conditions were optimized by NMR scale
experiments with acetone, DMSO, methanol, acetonitrile, DCM,
and toluene. DCM was identified as the best solvent, with ace-
tone being second best, performing marginally better in some of
the cases. All reactions were run at ambient temperature and did
not require temperature control. Structure of 5j was confirmed by
x-ray crystallography, while the rest of the products were charac-
terized by NMR and corroborated computationally with
DUSML.?!

Scheme 3. Modular access to photoprecursors 4 and the complex-
ity-building photochemical cascade yielding isoquinolinols 5.
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Table 1. Photoprecursors and fused isoquinolinol photoproducts (isolated yields).
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* 5f was isolated as methyl aminoacetals after column chromotography with methanol-chloroform eluent.

The formal mechanistic considerations are presented in Scheme
4. The initial attack of the N-centered terminus of azaxylylene's
triplet on the tethered alkenic moiety yields a common 1,6-
diradical which, after second intersystem crossing (ISC), could
either collapse into quinolinol (path a, [4+2]), or undergo a novel

[2+2] imine cycloaddition (path b, [2+2]) yielding a strained spi-
ro-azetidine intermediate. Rearomatization of this intermediate
via the amide elimination, plausibly accelerated by proton trans-
fer, completes the reaction, which is formally a replacement of



nitrogen by carbon. In this rearrangement, the o-ketone moiety is
utilized as an auxiliary group to temporarily 'park' the NH proton.

Scheme 4. Diverging typical [4+2] and alternative [2+2] reactivi-
ties of triplet azaxylylenes - formal mechanistic considerations.
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It is evident that the partitioning in favor of path b is controlled
by factors rendering the 1-6 collapse in the 1,6-diradical less fa-
vorable than 1-4 diradical recombination. What are those factors?
Our prior work suggests that the oxalyl-tethered anilines or ami-
no-heterocycles normally react with the o-azaxylylene photoac-
tive cores in a [4+2] fashion. In this work, the serendipitous dis-
covery was that the secondary unsaturated auxiliary group, i.e. the
N-homoallyl, perturbed the typical flow of this reaction.

This hypothesis is detailed in Scheme 5. It is plausible that the
initial excited state of the photoprecursor favors the shown [2+2]
cycloaddition of the homoallylic moiety to aminothiophene,
which occurs faster than the competing azaxylylene cycloaddi-
tion. This step yields a tricyclic dihydrothiophene cycloadduct A
which is subsequently engaged with o-azaxylylene, ESIPT-
generated in a secondary excitation. The difference from the pre-
viously studied topology is that the N-centered terminus of the
azaxylylene triplet could only react with the dihydrothiophene
pendant via a 6-membered transition state, yielding a topological-
ly unique 1,6-diradical possessing the diketopiperazine moiety
fused to thieno-cyclobutapyrrolidine.

Scheme 5. Initial thiophene-homoallyl [2+2] cycloaddition biases
the partitioning of 1,6-diradical B in favor of spiro-azetidine C.
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We cannot fully rule out a possibility that each step in this dual
(formal) [2+2] cascade occurs in a singlet excited state as a con-
certed reaction. However, two control experiments shown in
Scheme 6 seem to support our mechanistic hypothesis.

Both, acetylated aminothiophene 6 and cyclic acetal 8 (i.e. ace-
tal-protected photoprecursor 4a) are unreactive upon direct irradi-
ation in DCM, while sensitization with 4,4'-dimethoxybenzo-
phenone (DMBP) yields the expected [2+2] cycloadducts 7 and 9.
It is plausible that azaxylylenes derived from photoprecursors 4
(in Scheme 3) act as triplet sensitizers for the initial thiophene-
homoallyl [2+2] cycloaddition.

Scheme 6. Control experiments on direct and sensitized irradia-
tion of truncated homoallyl-amidothiophenes, not capable of
azaxylylene generation.
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Additionally, the quantum yield for the formation of product Sb
is reduced with oxygen saturation, pointing to the involvement of
the triplet state (for details see Supporting Information).

As seen in Table 1, occasionally hemiaminal photoproducts de-
hydrate to enamides, for example 5k. This dehydration could be
nearly quantitative in cyclic ketones, such as tetralone, especially
under acid catalysis. Further, the tetralone enamide moiety could
be fully aromatized under mild DDQ oxidation, giving access to
complex fused benzo[de]quinolines, summarized in Table 2.
These reactions also boast significant growth of molecular com-
plexity as corroborated by the Bottcher scores.

The primary photoproducts could be introduced into simple yet
advantageous post-photochemical transformations to further grow
the core scaffold complexity and diversity, or to decorate the
cores with various functionalities and (hetero)aromatic pendants.
For example, the hemiaminal moiety in 5d is tolerant of the Suzu-
ki cross-coupling conditions, yielding biaryl 12 and arylfuran 13
in good yields, Scheme 7. The enamide moiety in 10n lends itself
to post-photochemical 1,3-dipolar cycloaddition furnishing 14,
which possesses a reactive bromoisoxazoline functionality and
could be further modified. Even without subsequent potential
transformations, the Bottcher complexity score for 14 is calculat-
ed at Cn = 742.7 mcbit, which translates into step-normalized
complexity increases of AC, = 110.8 mcbit in the three-step syn-
thetic sequence starting from photoprecursor 4n.



Table 2. Access to complex fused benzo[de]quinolines from aminotetralone-based photoprecursors (isolated yields).
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Scheme 7. Post-photochemical modifications
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In conclusion, we have elaborated a new mode for complexity-
building photochemical cascades which offer experimentally sim-
ple transition metal-free Csp2-Csps cross coupling of aromatic am-
ides attained via an unprecedented [2+2] reactivity of ESIPT-
generated azaxylylenes. Coupled with short and straightforward
post-photochemical modifications of the primary photoproducts,
these cascades allow for a significant step-normalized growth of
molecular complexity while accessing diverse and complex poly-
heterocyclic molecular architectures.
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