Space Science Reviews (2023) 219:15
https://doi.org/10.1007/s11214-023-00961-3

SPECIAL COMMUNICATION ——

™

Check for
updates

Internal and External Jovian Magnetic Fields: Community
Code to Serve the Magnetospheres of the Outer Planets
Community

R.J. Wilson'@®) - M.F. Vogt?(® - G. Provan3(®) - A. Kamran3@) - M.K. James?
M. Brennan*(®) - S.W.H. Cowley?

Received: 17 November 2022 / Accepted: 24 January 2023 / Published online: 13 February 2023
© The Author(s), under exclusive licence to Springer Nature B.V. 2023

Abstract

We report on a new international community coding project to provide shared scientific
computer code that performs common calculations to aid in planning scientific observations,
modeling, and data analysis. We have developed code which calculates Jupiter’s internal and
external magnetic fields. All magnetic field model code is provided in four programming
languages (C++, IDL, MATLAB and Python). The code is freely available on GitHub. For
Jupiter’s internal magnetic field, we present a number of spherical harmonic internal mag-
netic field models. These include JRM33, the latest Jupiter internal magnetic field model
(Connerney et al. in J. Geophys. Res., Planets 127(2):e07055, 2022), as well as older jo-
vian models (e.g. JRMO09 (Connerney et al. in Geophys. Res. Lett. 45(6):2590-2596, 2018),
06 (Connerney in Planetary Radio Emissions III, pp. 13-33, 1992), VIP4 (Connerney et al.
in J. Geophys. Res. 103(A6):11,929-11,940, 1998) and VIPAL (Hess et al. in J. Geophys.
Res. Space Phys. 116(A5):A05217, 2011)). The internal magnetic field code can be easily
modified for other planets by simply inputting another spherical harmonic magnetic field
model. We have also developed code to calculate the magnetic field perturbations due to the
azimuthal and radial currents flowing externally around Jupiter in the jovian magnetodisc
according to the model of Connerney et al. (J. Geophys. Res. 86(A10):8370-8384, 1981;
J. Geophys. Res. Space Phys. 125(10):e28138, 2020). The internal and external magnetic
field codes can be combined to model the magnetic field in Jupiter’s magnetosphere. Finally,
we provide field-line tracing software (C++ and a Python wrapper for C++) that utilizes the
internal and external magnetic field models. The software can be used to trace along field
lines from any position in the jovian magnetosphere to, for example, the ionosphere or an
equator, and can also be utilized at different planets.

Keywords Jupiter - Magnetic field - Spherical harmonic model - Current sheet model -
Community code

Note by the Editor: This is a Special Communication. In addition to invited review papers and topical
collections, Space Science Reviews publishes unsolicited Special Communications. These are papers
linked to an earlier topical volume/collection, report-type papers, or timely papers dealing with a strong
space-science-technology combination (such papers summarize the science and technology of an
instrument or mission in one paper).

Extended author information available on the last page of the article

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11214-023-00961-3&domain=pdf
http://orcid.org/0000-0001-9276-2368
http://orcid.org/0000-0003-4885-8615
http://orcid.org/0000-0001-7442-4154
http://orcid.org/0000-0003-3736-9680
http://orcid.org/0000-0002-5699-6121
http://orcid.org/0000-0003-0796-4251
http://orcid.org/0000-0002-4041-0034

15 Page20f40 R.J. Wilson et al.

1 Introduction

Spherical harmonic models of Jupiter’s planetary magnetic field were first developed from
Pioneer 11 data using the vector helium magnetometer observations (Smith et al. 1976)
and the high field flux gate magnetometer observations (Acufia and Ness 1976). Data from
Pioneer 10 and 11 also showed the distortion of the magnetic field at low latitudes and equa-
torial regions by the jovian magnetodisc. The existence of a jovian magnetodisc feature was
first suggested by Gledhill (1967) (see also Caudal (1986)). Magnetic field perturbations
associated with this external magnetodisc made it difficult for Ness et al. (1979) to develop
an internal field model from Voyager 1 magnetometer observations. Connerney et al. (1981)
developed a model of the magnetic field perturbations associated with the large-scale exter-
nal magnetodisc current system. This has become known as the CAN current sheet model
(Connerney, Acuiia and Ness). Connerney et al. (1982) then developed a model of Jupiter’s
magnetic field from Voyager data, using an internal spherical harmonic expansion combined
with an explicit model of the magnetic field created due to the external current systems. This
two-step approach, considering the internal and external magnetic fields separately, is now
seen as essential when modeling the magnetic field in Jupiter’s magnetosphere.

The ability to accurately model both the internal and external magnetic fields of Jupiter
is, of course, of great importance to colleagues studying the jovian magnetic environment.
Over the years a number of internal magnetic field models of Jupiter’s magnetic field have
been developed. These include O6 (Connerney 1992), VIP4 and VIT4 (Connerney et al.
1998), VIPAL (Hess et al. 2011), ISaAC (Hess et al. 2017), JRM09 (Connerney et al. 2018),
and JRM33 (Connerney et al. 2022). All these models present the internal magnetic field
in terms of a spherical harmonic expansion, with the values of the coefficients and the or-
der of the expansion varying between the models. Both Connerney (2007) and Russell and
Dougherty (2010) provide good introductions to spherical harmonic models generally, and
of models for different planets, while the methods of Imai (2016) provide the source material
for this work. A number of different external field models have previously been developed
(e.g. Khurana (1997); Alexeev and Belenkaya (2005); Khurana and Schwarzl (2005); Pen-
sionerov et al. (2019)), including the CAN magnetodisc model that parameterizes the jovian
current sheet by a current sheet field parameter, the radii of the inner and outer edges of
the current sheet, and current sheet thickness. This work uses Con2020, an updated CAN
model, described by Connerney et al. (2020). More recently, Wang et al. (2021) presented
a global magnetic field model for Jupiter, and Wang et al. (2022) developed a new empiri-
cal model for the Jovian current sheet. Just as this paper was being finalized (too late to be
considered for code here), Khurana et al. (2022) presented a model to determine the global
structure of Jupiter’s current sheet, developed from spacecraft data at Jupiter (Pioneers 10
and 11, Voyagers 1 and 2, Ulysses, Galileo, but not Juno) to determine the global structure
of Jupiter’s current sheet.

Many colleagues have written their own code to calculate the various internal field mod-
els, with the code shared informally between colleagues. However, confusion can easily
occur when swapping from one field model to another, with different models expecting
different inputs and outputs, using different units and defining key parameters slightly dif-
ferently. For example, the value of one jovian radius (R;) has changed over time, as has
the definition of the System III co-ordinate system. Furthermore some models express the
magnetic field in Gauss (G), and others in nano-Tesla nT (where 1 G = 10° nT). It is be-
cause of the importance of these magnetic field models to the Magnetospheres of the Outer
Planets (MOP) community that we decided to develop a community coding repository, shar-
ing code that is well-written, clearly-documented and extensively tested. All magnetic field

@ Springer

Jovian Magnetic Field Community Codes Page30f40 15

model code is presented in IDL, MATLAB, Python and C++, with some additional C++
code also included for field-line tracing and other functionalities. We have standardized the
inputs and the outputs to the magnetic field model, as described in Sect. 2 below. Collecting
these coefficients was not always trivial, as different papers defined the coefficients to differ-
ent numbers of significant figures and sometimes typographical errors have been introduced
over the years. However, this only exemplifies the importance of producing standardized
models and codes for community use.

2 Standards

The codes presented here are standardized to take the same input forms, and give the same
output forms. The coordinate system in use is the right handed System III (1965), which
defined Jupiter’s rotation rate as 870.536° per day. Colleagues should be aware however,
especially when looking at older datasets, that there was a 1957 version of System III that
defined Jupiter’s rotation rate as 870.544° per day. This was superseded by the 1965 ver-
sion, but some of the earlier Jupiter spherical harmonic models used this System III (1957)
system. (For historical context, Table 3 in Russell and Dougherty (2010) provides details on
Systems I, II, III (both 1957 and 1965) and IV.)

SPICE (Acton 1996) is a common tool for calculating planetary and spacecraft positions
and performing rotations into various coordinate systems. It is commonly assumed that the
SPICE frame ‘TAU_JUPITER’ is equivalent to a right handed System III. At the time of
writing, the current SPICE planetary kernel is ‘pck00010.tpc’, which is dated 2011 Octo-
ber 21 and uses the 1965 System III definition. The same was true for the first available
planetary kernel, ‘pck00003.tpc’ dated 1990 June 25 (versions 1, 2 and 4 have been lost
to time (personal communication with SPICE team)). However, the IAU had a blip, where
Jupiter’s spin period was defined as a different rate, before reverting back. This affected three
planetary kernels, pckO0007.tpc (dated 2000 April 24), pck00008.tpc (2004 September 21)
and pck00009.tpc (2010 March 03), which all used a Jupiter rotation rate of 870.5366420°
per day. Therefore, using SPICE for the IAU_JUPITER frame (assuming it was System III
(1965)) from early 2000 to late 2011 would have produced an offset.

SPICE planetary kernels define the equatorial radius of Jupiter, 1 R; = 71,492 km, and
all the codes we have developed and describe here uses this (1 bar radius) IAU standard. All
the codes then take input position distances in units of this jovian radii (R ;). However, his-
torically, that has not always been the case, and published spherical harmonic models have
also used 71,372 km, 71,398 km, or 71,323 km as the definition of one jovian radius (further
detail is provided in later sections). If the spherical harmonic model called uses a different
R, definition, then our code will expect the input in terms of 1 R; = 71,492 km, and will
re-scale the input internally in the code (by multiplying input distances by 71492/ R}*d!
prior to the spherical harmonic calculations).

There are two main sets of code options: Cartesian or Spherical. For Cartesian inputs,
position is provided in right-handed System III (1965) x, y and z (each in units of R;). The
Cartesian output is the magnetic field vector B= [B,, By, B.] with all three elements in units
of nT. For Spherical inputs, position is provided in right-handed System III (1965) radial
distance (r, units of R;), Co-Latitude (6, units of radians, 0-7), and East Longitude (¢,
units of radians, 0-27). The Spherical output is the magnetic field vector B= [B,, By, By]
with all three elements in units of nT.

All the codes will accept inputs as scalar values, or 1-dimensional (1D) arrays. For in-
stance, if you want to know the internal field contribution of B along a known trajectory,

@ Springer

15 Page4of40 R.J. Wilson et al.

then passing a 1D array of all the positions is much faster computationally that calling the
code one position at a time.

The codes in C++, MATLAB, IDL and Python have been tested against each other, and
found to provide the same outputs given the same inputs to within rounding errors (of the
order of 2x107'% nT or less).

For all models in our codes, the degree and order of the spherical harmonic expansions
are equal. Therefore, our codes use the words interchangeably, or only give the value for one
of them, but the value would apply to both degree and order.

To summarize this section, inputs must be in right-handed System III (1965) co-ordinates,
with distances in R; where 1 R; = 71,492 km, the position angles (Spherical only) in
radians, and outputs are always magnetic field in nT.

3 Spherical Harmonic Internal Planetary B-Field
3.1 Spherical Harmonics Basic Equations

The magnetic field environment about a planetary body is comprised of contributions from
an internal magnetic field and an external magnetic field model:

B = Blmernal + BExternal (1)

The external contribution varies with planet and methodology of modeling, such as a current
sheet model used for Jupiter, discussed later in this paper. A planet’s internal magnetic field
is often modeled using spherical harmonics, where variations in the field are built up through
a series of trigonometric Legendre polynomials. A set of coefficients to these polynomials
generate a planet’s particular internal magnetic field, fitted from past observations.

The internal magnetic field is calculated using a scalar potential, V, (e.g. Winch et al.
2005):

Blnterrml =-VV (2)
= B,/ + ByO + By 3)
where
Rmax n+l n
V= Z <) > P (cosO)[gy cos(me) +) sin(me)])
m=0

P}"(cos @) is a Schmidt-normalized Legendre function of degree n and order m, g, and A}
are the Schmidt coefficients for the internal ﬁeld

10 _1
In spherical polar coordinates, where V = dr ;36" rving 3¢

(2)-(4) for the three components of the magnetic field are:

) the solution to equations

Nmax 1 n

B=—"-=3" iy ,ntz) Y lg) cos(me) + ki sin(me)1 P, (cos 6) ©)
n=1 m=0

By =0V —Z : Z[(m) + hl! (¢)]—P’”(0))

1="7"33 2 g, cos(m sin(m cos

n=1

@ Springer

Jovian Magnetic Field Community Codes Page50f40 15

1 3V 1 =~ 1 - m .3 m m
By=— @ 98 = @) > 0 > ml[—gy sin(me) + h}! cos(m@)] Py (cos 0)
@)

n=1 m=0

Further details of the derivation and formulation of the spherical harmonic modeling
of planetary magnetic fields can be found in numerous other works, i.e. Imai (2016) and
Connerney (1993).

3.1.1 Pitfalls of Spherical Harmonic Models

The Spherical Harmonic coefficients are found by fitting data close to the planet, but apply
at all distances (the contribution of the higher order terms fall off as distance increases).
As one moves further from the planet, the internal planetary field is superposed with other
sources of magnetic fields, such as those due to current flow in the plasma disk. Therefore,
the internal field represented by the Spherical Harmonic model is, by itself, not a good
representation of the observed magnetic field at large distances and one should superpose
on external field models to get a better observational match.

The equations do have a mathematical singularity to avoid: Spherical Harmonic equation
(7) has a divide by sin(0) (sine of colatitude), which goes to infinity if sin(8) goes to zero, i.e.
at the north or south pole. This situation is rare, so far no spacecraft has ever come close to
being that closely aligned to a pole, but it is plausible that one might encounter this situation
when performing field line tracing. Our codes behave differently when sin(8) < 0.00001,
which translates to colatitudes less than 0.000573° or greater than 179.999427°, but the
code will still return a value rather than an infinity or crashing the code. It is unclear what
the best equations to use in such a situation are, and we have yet to find a published solution.
Since it is such a rare occurrence, we have simply borrowed techniques found in previous
codes without questioning the origin. However, this situation is the biggest item on where
the Spherical Harmonic code could be improved. If concerned, it is up to the user to check
whether their input positions are this closely aligned with the pole, and if so, to decide if the
code outputs look sensible.

As previously stated, the codes presented here assume 1 R; = 71,492 km, and if the
model requested used a different value, the code will automatically adjust distances inter-
nally to match the value of R; that model expected; that is all invisible to the code user.
However, if the user is extracting input positions from older datasets in units of R, the user
should check which R; value they used, and if not 71,492 km, they should rescale those
values to the 1 R; = 71,492 km equivalent.

Similarly, some older models originally used a co-ordinate system different to System III
(1965). If those models are in code form here, they have been rotated into System IIT (1965).
If the input position is from an older dataset that was not in System III (1965), then one will
need to convert to System III (1965) before use.

3.2 Jupiter Internal Magnetic Field Models

There have been many previous spherical harmonic models used to represent Jupiter’s inter-
nal magnetic field over the years, starting from the Pioneer data. Many of these are simply
too old (or to too few orders, based on a single fly-by) to still be in use, so our work focuses
on the subset of models that are commonly used today.

Many, excluding the latest JRM models, are summarized in Connerney (2007), and their
Table 3 provides the coefficients to many of these (although units are nT, not G as stated).

@ Springer

15 Page 6 0f 40 R.J. Wilson et al.

Table 1 Spherical harmonic information of the different time independent models

Order Fit Range® Datasets® erf in km®

06 3 1.6<R; <10 P11, V1 71372

VIP4d 4 24<Rjy<14 P11,V1,U 71323
+ Hubble
+ Ground Telescopes

VIT4 4 Ry <7 V1 71323
+ Hubble
+ Ground Telescopes

VIPAL® 5 4<Ry P10, P11, V1 71492
+ Hubble

ISaAC 10 R; <10 P10,P11,V1,U,G 71492
+ Hubble

JRMO09 10 Ry <17 J 71492

JRM33 130r18 Ry <25 J 71492

4Extreme bounds if multiple spacecraft were used.
5P10 = Pioneer 10, P11 = Pioneer 11, V1 = Voyager 1, U = Ulysses, G = Galileo, J = Juno.

It R;ef # 71492, our code multiplies input distances by 71492/ R;ef to adjust for the different R; each
model expects.
ClConnerney et al. (1998) state VIP4 is accurate for distances < 30R .

®Hess et al. (2011) state VIPAL is well fitted for distances < 15R s, but other models should be used further
out.

Each model’s coefficients have been converted to System III (1965) co-ordinates, and are
often listed to more significant figures than in the original papers while also changing units
tonT, e.g. O4 was published in Table 1 of Connerney et al. (1982) in units of G, while VIP4
was originally published in Connerney et al. (1998) to 3 decimal place, in units of G, while
Connerney (2007) effectively lists them to 5 decimal places in G (then converts to nT).

We note that Table 3 of Connerney (2007) lists the SHA model gg value incorrectly
as 11300 (nT). The earlier Connerney et al. (1982) lists the same value as being negative,
—0.113 G, quoting it from the even earlier Smith et al. (1976) (page 803) that had been
calculated in System III (1957), but also lists gg = —0.113 G. Hence, we believe this to
be a typographic error, and that for the SHA model g = —11300 nT. None of these three
sources mention alongside their tables which R; to use for SHA, but do give R; earlier in
their texts: Smith et al. (1976) (from page 20) used 71,398 km, while Connerney et al. (1982)
(page 3623) stated 71,323 km. Connerney (personal communication) suggests to always use
the value of the original publication, thus we recommend using 71,398 km for SHA.

The following sections provide comments on the models that have been in use in recent
years, for which we have developed code. The models are also summarized in Table 1. All
seven of these time independent models were developed in the System III (1965) coordinate
system, however they did not all use the same R, value, and fitted to data from different
radial ranges of the magnetosphere.

3.2.1 06

The O6 model is of order 3, with coefficients provided in units of G to 5 decimal places as
presented in Table 1 of Connerney (1992) (with the warning that 5 decimal places is to aid

@ Springer

Jovian Magnetic Field Community Codes Page70f40 15

conversion to nT, and not an indication of parameter accuracy). The O6 model assumed 1
R, = 71,372 km, and for the fitting, used Pioneer 11 data out to 5 R, and Voyager 1 data
out to 10 R;. Connerney et al. (1998) also presents O6 coefficients in G to 3 decimal places
(see their Table 1). Our codes for O6 are order 3, with Connerney (1992) Table 1 values
converted from G to whole nT.

Yu et al. (2010) repeated the O6 model method (order of 3) but used 22 orbits of Galileo
data as the input to look for secular variation. However, the planetary moment they calcu-
lated was, within error, the same as that for the O6 model that used Pioneer data, so no
secular variation was identified. While they provided the g and & values as calculated from
Galileo data, we have not provided code for that model here since it does not significantly
improve on the O6 model concept.

3.2.2 VIP4and VIT4

VIP4 and VIT4 are spherical harmonic models of order 4 that are constrained by Io’s flux
tube footprint. VIP4 fits used 100 locations of the Io flux tube footprint, and the magnetome-
ter data from Pioneer 11 between 2.4 to 8.0 R;, Voyager 1 data out to 10 R; and Ulysses
data out to 14 R;. Whereas VIT4 used 500 locations of the Io flux tube footprint and just the
theta component (hence the T in VIT4) of the Voyager 1 magnetometer data within 7 R;.
The models are originally presented in Connerney et al. (1998), with Table 1 giving values
for the VIP4 coefficients in G to 3 decimal places (but not VIT4). However, in a later book,
Connerney (2007), Table 3 lists the VIP4 and VIT4 coefficients in whole nT (e.g. equivalent
to 5 decimal places in G), however incorrectly presents them in units of G rather than nT,
while citing the original paper for VIT4.

VIP4 and VIT4 coefficients are thus given in nT to 0 decimal place, were calculated in
System III (1965) and with 1 R; = 71,323 km. The value of 71,323 km comes from Table 1
of Connerney et al. (1998), although earlier in their text when explaining spherical harmonic
expansions they state “where a is the equatorial radius of Jupiter (71,398 km)”. The later
book does not resolve the issue, first claiming that Jupiter has a radius of 71,372 km and not
explicitly providing the R; value used for VIP4 (or VIT4) in the table caption (although it
does for earlier Ulysses and Voyager models). However, when referring to Table 3 it states
“The original publication should be consulted.” Hence we will assume these models were
created with 1R; = 71,323 km.

Our codes for VIP4 and VIT4 are to order 4, with the coefficient values taken from
Table 3 of Connerney (2007), with the units assumed to be nT.

Hess et al. (2011) also list VIP4 and VIT4 values in their Table 3, but to a lower precision,
rounded 4 decimal places in units of G, but with two exceptions for VIT4 only: their value
for VIT4 g? was rounded to 3 decimal places in G, and their value for VIT4 hj of 0.0126 G
was likely mistyped, and is likely meant to have been 0.1264 G.

3.2.3 VIPAL

VIPAL (Hess et al. 2011) utilized Pioneer and Voyager data, together with the position of
jovian moon footprints in the aurora, as viewed by Hubble, to better constrain their spherical
harmonic model, with the aim to give a “better description of the satellite-related aurorae”.
They note that calculating dipole moments from the fit of the Io footprint positions is ~5°
off from that when calculated from the magnetic field alone, which appears to be directly
related to using the IAU rotation rate of Jupiter at the time (presumably SPICE planetary
kernels 7, 8 or 9), rather than the rotation rate of System III (1965), see their paper for
further discussion.

@ Springer

15 Page 80f40 R.J. Wilson et al.

VIPAL coefficients are presented in Table 3 (and also in their Supporting Information
of Table 3 as a text file) in G to 1 to 4 decimal places depending on the coefficient, were
calculated in System III (1965) and with 1R; = 71,492 km, and only fitted to magnetometer
data from distances above 4 R;. The VIPAL authors state that the aim of their model was
for investigating satellite related aurora, and suggest other field model codes are used for
distances > 15 R;.

Our codes for VIPAL are to order 5, with coefficient values defined in Hess et al. (2011)
Table 3, converted from G to nT.

3.2.4 1SaAC

ISaAC (Hess et al. 2017) is an update to the VIPAL model, combining magnetometer data
with auroral footprints of the moons, with the following stated aim: “The main purpose of
the present model is to be an engineering model to perform studies requiring an accurate
modeling of the magnetic field line topology and to process Juno data before the final Juno
model is published.” They add Ulysses and Galileo data to the previously used Pioneer and
Voyager data.

ISaAC coefficients are shown in their Table 1 in G to 4 to 6 decimal places depending on
the coefficient, were calculated in System III (1965) with 1 R; = 71,492 km, and only fitted
magnetometer data at distances below 10 R;. The model is to order 10, but they state “high
degree coefficients should not be considered as physically meaningful.”

Our codes for ISaAC are order 10, with their Table 1 values converted from G to nT.

3.2.5 JRM09

JRMO09 (Connerney et al. 2018) uses the first 9 orbits of Juno to fit a 20 order spherical
harmonic model to the Juno magnetic field data observed within 7 R of Jupiter. The JRM09
coefficients were calculated in System III (1965), with 1 R; = 71,492 km. The JRM09
coefficients are given in nT to 0 decimal place. The values of the coefficients up to order 10
are provided in Table S1 of Connerney et al. (2018) Supporting Material (higher orders of
11 to 20 are “poorly constrained, or unconstrained”). However, the coefficients for the full
20 orders fit are available on the Planetary Data System (PDS) by Connerney (2017) in the
DATA/MODEL/JRMO09 directory.

Our codes for JRMOQ9 are to order 10, to match Table S1 of Connerney et al. (2018). It is
not recommended to try to use JRMO9 up to spherical harmonic order 20.

3.2.6 JRM33

JRM33 (Connerney et al. 2022) uses the first 33 orbits of Juno to fit an order 30 spherical
harmonic model to 30 s averaged magnetic field data observed within 2.5 R; of Jupiter.
The use of the first 33 orbits completes Juno’s primary mission map of sampling perijoves
around Jupiter at 32 evenly spaced System IIT (1965) longitudes (Juno went into safe mode
on approach to perijove 2, hence required 33 orbits to complete the map), each ~11.25°
apart.

JRM33 coefficients are given in nT to 1 decimal place and were calculated in System
IIT (1965) with 1 R; = 71,492 km. The values of the coefficients are provided in Table
S1 of Connerney et al. (2022). The same file of values is also on the PDS at Connerney
(2017) in the DATA/MODEL/JRM33 directory. Personal communication with the authors

@ Springer

Jovian Magnetic Field Community Codes Page90f40 15

suggests that most people should use JRM33 up to order and degree 13, since higher order
coefficients are not “well resolved”. In Connerney et al. (2022) they state “Therefore, in
applying the model to calculate the field where it has not been measured, we use terms
through degree 18 only, or through degree 13 only, if being more conservative. The satellite
footprints calculated in Tables S2 and S3 use terms through degree 18”.

Codes for JRM33 order 13 and order 18 are included in the community code, it is not
recommended to try to use an order 30 set.

3.2.7 Time-Dependent Models Excluded from Our Coding Work

Here we briefly note the following time-dependent spherical harmonic models of Jupiter’s
internal field, which we have excluded from our coding work:

e JCF and JSV: Ridley and Holme (2016) also provided some order 7 spherical harmonic
fits in their Table 3, that are time dependent. They used magnetometer data from both
Pioneers, both Voyagers, Ulysses and Galileo.

e The Sharan et al. (2022) Jupiter Field Model: Sharan et al. (2022) use data from the
first 4 years of Juno at Jupiter to simultaneously compute spherical harmonic models for
a static field to 16 orders and a time varying spherical harmonic field model to 8 orders.
They used data from the first 28 orbits, excluding data from orbit 2 (where there was no
data due to Juno safing) and orbit 19 (due to “spurious oscillation” in the data).

e Bloxham et al. (2022) is a companion study to the JRM33 paper that further investigates
the first 33 orbits of Juno data for secular variation, which they identify.

3.3 The JupiterMag and libjupitermag Packages for Spherical Harmonics

This section describes the installation and basic usage of the 1ibjupitermag C++ library
(James et al. 2022b) and its Python-based wrapper, JupiterMag (James et al. 2022a). This
code provides access to the spherical harmonic models discussed in Sect. 3.1.1 (among other
functionalities) and has been tested under Linux Mint 20.3, Windows 10 and MacOS 11 Big
Sur. The JupiterMag module provides an interface which allows the models contained in
libjupitermag to be called by Python.

3.3.1 Compiling and Installing libjupitermag

The compilation of 1ibjupitermag requires the installation of g++ (part of gcc), GNU
make (for Linux and Mac OS) and 1d (Linux) or 1ibtool (Mac OS). In Windows,
this would require the installation of TDM-GCC (https://jmeubank.github.io/tdm-gcc/). In
MacOS, installing Xcode will provide the necessary tools for compiling the code. Finally, in
Linux the tools may be installed from the Linux distribution’s repositories, e.g. for Debian-
based systems:
$ sudo apt install build-essential
or RPM-based systems:
$ sudo dnf install make gcc gcc-c++

Once the utilities required for building the library are installed, then the GitHub reposi-

tory can be cloned:
$ git clone --recurse-submodules https://github.com/mattkjames7/libjupitermag.git

then compiled for Linux or Mac OS:

@ Springer

https://jmeubank.github.io/tdm-gcc/

15 Page 10 of 40 R.J. Wilson et al.

$ cd libjupitermag
S make

#optionally fully install the library system-wide
S sudo make install

equivalently in a Windows command line or PowerShell:

> cd libjupitermag

> compile.bat

If the compilation is successful, then a new library file will be created in the 1ib/1ib-
jupitermag subdirectory (1ibjupitermag.so or libjupitermag.dll) and a
header file is placed within the include subdirectory (jupitermag.h) (for Windows
paths, swap / with \).

If the library is installed system-wide on a Mac or Linux machine, then the header
will be placed in /usr/local/include and the shared object file in /usr/local/
1lib directories by default. The header can simply be included into a C++ source
file using #include <jupitermag.h> and the library can be linked by using
the -1jupitermag flag. If it is to be used locally instead, then either a full or a rel-
ative path must be used to include the header (e.g. #include "/abs/path/to/
jupitermag.h") and the full or relative path to the library must be provided to the
linker during compilation.

To report any bugs or for feature requests, please visit https://github.com/mattkjames7/
libjupitermag/issues to submit a new issue.

3.3.2 Installing JupiterMag

There are multiple methods for installing the JupiterMag Python module - all of which
require an installation of Python 3, and the following Python packages: NumPy, Matplotlib,
DateTimeTools, RecarrayTools and PyFilelO.
The easiest and preferred method is to use Python’s pip command as this will automat-
ically install any dependencies, e.g.:
S pip3 install JupiterMag --user
Another option would be to visit the releases page for the GitHub repository (https://
github.com/mattkjames7/JupiterMag/releases), download the latest release and install using
pip e.g. for version 1.0.8:
S pip3 install --user JupiterMag-1.0.8-py3-none-any.whl
For the very latest code, the GitHub repository could be cloned directly,
$ git clone https://github.com/mattkjames7/JupiterMag.git
$ cd JupiterMag
then installed with pip
$ python3 setup.py bdist wheel
$ pip3 install dist/JupiterMag-1.0.8-py3-none-any.whl --user
or without pip,
S python3 setup.py install --user
Note that this installation method may include the latest bugs along with the latest features!
The JupiterMag Python module contains the 1ibjupitermag library within it,
precompiled for Linux and Windows. If it cannot be loaded when JupiterMag is imported
for the first time in Python, then it will attempt to automatically recompile itself for the host
system. In order to be able to recompile itself, it requires the tools listed in Sect. 3.3.1.
The JupiterMag package can easily be upgraded if pip3 was used to install it, e.g.:
pip3 install JupiterMag --user --upgrade

@ Springer

https://github.com/mattkjames7/libjupitermag/issues
https://github.com/mattkjames7/libjupitermag/issues
https://github.com/mattkjames7/JupiterMag/releases
https://github.com/mattkjames7/JupiterMag/releases

Jovian Magnetic Field Community Codes Page 110f40 15

which will replace the currently installed code with the latest release.
For issues or bugs relating to JupiterMag, please report them at https://github.com/
mattkjames7/JupiterMag/issues.

3.3.3 Examples

In this section we provide a few simple examples of how to call the internal field model
code contained within the JupiterMag Python module and the 1ibjupitermag C++
library. Section 4.3 will discuss using them for external field models. All Python examples
shown below should be run either in a Python script or a Python shell and C++ examples
should be compiled and run in a terminal.

In Python, the internal field models are accessed via the JupiterMag.Internal
module, which contains 6 functions including Config () and Field (). The Config()
function can be used to set and return the current model configuration and should be called
every time the model settings need to be altered. To return and display the current internal
field model configuration:
import JupiterMag as jm

cfg = jm.Internal.Config()
where cfg is a dictionary. The cfg dictionary contains the following keys:

*Model’: Lower case string containing the name of the model.

‘CartesianIn’: Boolean, if True then the input positions to the Field () function

should be Cartesian, otherwise they should be spherical polar.

e ‘CaresianOut’:Boolean, if True then the outputof Field () is Cartesian, or spher-
ical polar if False.

e ‘Degree’: Integer - maximum degree (or order) of the model to use.

Each of the keys used in the cfg dictionary can also be used as a keyword argument in

order to reconfigure the model, e.g.
use the JRM33 model
jm.Internal.Config(Model="'jrm33")

set the input and output coordinate systems to spherical polar
jm-Internal.Config(CartesianIn=False,CartesianOut=False)

set the maximum model degree to 5

jm.Internal.Config(Degree=5)

where the configuration dictionary returned by cfg = jm.Internal.Config()
would be

{'Model':'jrm33', 'CartesianIn':False, 'CartesianOut':False, 'Degree':5}
The configuration may also be set using a dictionary, e.g.:

create the dictionary

cfg = { 'Model' : 'o6"',
'CartesianIn' : True,
'CartesianOut' : True,
'Degree' : 3}

alter config
jm.Internal.Config (**cfg)

@ Springer

https://github.com/mattkjames7/JupiterMag/issues
https://github.com/mattkjames7/JupiterMag/issues

15 Page 12 0f40 R.J. Wilson et al.

Finally, the configuration can be returned to the default using:
jm.Internal.Config('default!')

where the default configuration uses the degree 10 JRM09 model with Cartesian coordi-
nates for both input and output. When configuring the model, invalid model strings will be
ignored (the previous model will continue to be used) and the degree (or order, since degree
= order in the codes) of the model must be an integer value between 1 and the maximum
degree of the model.

Once the internal field model has been configured, the Field () function can be called
to provide magnetic field vector(s). This function requires three input arguments, b0, bl
and b2 which are either the Cartesian x, y and z System III (1965) coordinates (if Carte-
sianIn=True) or spherical polar coordinates r, 6 and ¢. Field () also accepts the optional
MaxDeg keyword which temporarily overrides the degree of the model being used. Some

examples are shown below,
import numpy as np
import JupiterMag as jm

configure the model to accept Cartesian coordinates
jm.Internal.Config(CartesianIn=True, CartesianOut=True)

Field() accepts scalars, lists, tuples and NumPy arrays

Bx,By,Bz = jm.Internal.Field(5.0,0.0,0.0)

Bx,By,Bz = jm.Internal.Field([5.0,6.0],[0.0,0.0],[0.0,0.01)

Bx,By,Bz = jm.Internal.Field((5.0,6.0),(0.0,0.0),(0.0,0.0))

Bx,By,Bz = jm.Internal.Field(np.array([5.0,6.0]), # continue on next line
np.array([0.0,0.0]), np.array([0.0,0.0]1))

configure polar coordinates
jm.Internal.Config(CartesianIn=False,CartesianOut=False)

temporarily adjust the model degree

r = np.array([5.0,6.01)

theta = np.array([np.pi/2.0,np.pi/2.0])

phi = np.array([0.0,0.01)

Br,Bt,Bp = jm.Internal.Field(r, theta,phi,MaxDeg=5)

The JupiterMag.Internal submodule contains four other functions, each of which
provides a test output. JupiterMag.Internal.Test () produces a figure similar to
Fig. 4 of Connerney et al. (2018) showing the radial component of the JRMO09 field model
at r. = 0.85 R;. JupiterMag.Internal.TestOutput () produces a terminal out-
put of the model components at a few select positions in space. JupiterMag. Inter-
nal.JRMFig5 () and JupiterMag.Internal.JRMFig7 () produce plots based on
Figs. 5 and 7 of Connerney et al. (2022). The output of JupiterMag.Internal .JRM-
Fig5 () is presented in Fig. 1, showing the radial component of the JRM33 magnetic field
model at the presumed dynamo source region using the default degree 13 model (panel a)
and the degree 18 model (panel b) as presented in Connerney et al. (2022).

Similarly, in C++ the spherical harmonic code can be accessed via an instance of the

InternalModel class, e.g.

/* contents of example.cc */
#include <stdio.h>

#include <jupitermag.h>

int main()

/* create an instance of the InternalModel class */
InternalModel model;

@ Springer

Jovian Magnetic Field Community Codes Page 130f40 15

JRM33 (Deg=13)

55 80
804 (a) 10<J
60
40 f
~ S
z 20 ©
g N
© m
;—20' _zoé
(2]
—40 9
—40
-60 TTTTTTTmm——e
-60
=80 T TTS=——____
; -— ; -80
0 50 200 250
Slll East Longitude (°)
JRM33 (Deg=18)
80 1
60 -
-
40 A n
~ @
3 5]
% 201 Il
-
2 01 0o %
= —
;—20' _20%
(2]
-404 -, - PN e
A <o e S == o —4005
e k .
—60'\ —————————— S —— 10 —_———
e N /. -60
—80fmmmmm e S)
T T ————————— -80
0 50 100 150 200

Slll East Longitude (°)

Fig. 1 A map of the radial component of the JRM33 degree/order 13 (a) and 18 (b) magnetic field model at
re =0.85 Ry in System III (1965) coordinates

/* tell the object to use a specific model =/
model.SetModel ("jrm09") ;

/* also tell it whether the input and output coordinates
* are spherical polar or Cartesian */

model.SetCartIn (true) ;

model.SetCartOut (true) ;

/* either evaluate at a single position */
double x = 10.0;

double y = 5.0;

double z = 2.0;

double Bx,By,Bz;

model .Field (x,vy, z, &Bx, &By, &Bz) ;

@ Springer

15 Page 14 0f 40 R.J. Wilson et al.

printf ("B=[%6.1f,%6.1f,%6.1f] at [%4.1f,%4.1f,%4.1f]\n",
Bx,By,Bz,X,y,z);

/* or at an array of positions */
double xal5], val5], =zal5];
double Bxal[5], Byal[5], Bzal5];

int i;

for (i=0;1i<5;1i++) {
xali] = 5.0x(i + 1);
yval[il = 0.0;
zal[i] = 10.0;

}

model.Field(5,xa,ya, za,Bxa,Bya,Bza) ;
for (i1=0;1i<5;1i++) {
printf ("B=[%6.1f,%6.1f,%6.1f] at [%4.1f,%4.1f,%4.1f]\n",
Bxal[i] ,Byalil],Bzalil, xal[il,yalil,zalil);

}

return O;
}
which can be compiled and ran on Linux (as an example) using:
$ g++ example.cc -o example -ljupitermag
$./example
and would print out the following B-field vectors at the positions evaluated by the model:

B=[82.1, 5.4,-265.9] at [10.0, 5.0, 2.0]
B=[372.8, -12.1, 344.0] at [5.0, 0.0,10.0]
B=[203.0, -6.9, 33.7] at [10.0, 0.0,10.0]
B=[83.1, -3.5, -22.0] at [15.0, 0.0,10.0]
B=[34.9, -1.9, -22.1] at [20.0, 0.0,10.0]
B=[15.9, -1.1, -15.9] at [25.0, 0.0,10.0]

In the C++ example shown above, the model object is an instance of the In-
ternalModel class with member functions InternalModel: : SetModel (const
char =*) for selecting the model to use; InternalModel: :SetCartIn (bool)
and InternalModel: : SetCartOut (bool) which determine whether the input and
output coordinates are Cartesian or spherical polar System III (1965). The Inter-
nalModel: :Field () member function outputs magnetic field vectors when provided
with System III (1965) position vectors. It is an overloaded function which can use vari-
ous input/output argument types (see jupitermag.h for more details) and can therefore
provide individual components of a single vector, or 1D arrays of components for multiple
B-field vectors.

3.4 The PSH Codes for Spherical Harmonics

The Planetary Spherical Harmonic, PSH, codes are available in IDL, MATLAB and Python,
with separate codes per field model per Cartesian or Spherical coordinate system.

3.4.1 Notes
Equivalent codes are available in MATLAB, IDL and Python, with file extensions of .m, .pro

and .py respectively. These are platform independent languages, and will run on a PC, Mac
or Linux machine. The speed of each is dependent both on your machine and which version

@ Springer

Jovian Magnetic Field Community Codes Page 150f40 15

of the software you have; use the option that is most convenient to yourself. For each model,
a Cartesian (xyz) only and Spherical (rtp) only form is available per language, where both
the inputs and outputs are in the same system.

File names specify the planet, the model, the order, Cartesian or Spherical and language:
e.g. jovian_jrm33_order13_internal xyz.m is the Jupiter based jrm33 model to order 13, in
Cartesian form, for MATLAB.

In order to standardize these many files, a separate code was written that loops through
and writes out the MATLAB, IDL and Python (3) codes for each model and xyz or rtp form.
Essentially each language’s code is a direct line for line translation of each other. Each code
has comment headers that state the model, order, reference and specific g and & coefficients
assumed (these are processed for later inclusion in the code in order to speed it up).

The Python models code’s first line imports the NumPy library (Harris et al. 2020), but
that is the only required Python library that must be locally installed (and often is pre-
installed with Python).

Each code takes an input position vector as 3 separate variables, that are ideally doubles
(but singles or integers are also accepted, or NumPy arrays for Python). These 3 variables
may be scalar, or 1-dimensional arrays. In the case of MATLAB 1-dimensional arrays, it
must be size n by 1, and not size 1 by n. While the code could simply check for that and
transpose if necessary, that would slow it down, so it is faster to get the user to stick to the
native 1-dimensional form in MATLAB.

Output will be a vector of size n by 3, where n = 1 if inputs were scalar, and is always
of type double.

3.4.2 Install

Each code stands alone without any dependencies; save it to your local working directory
and use. For Python, one must import each code prior to use, as is standard Python practice
(see example in next section).

3.4.3 Examples

Figure 2 shows screens shots in the three languages for three quick tests (on the left) and
their output (on the right). Aside from the difference in the native number of printed decimal
places of each language, the values are identical. There is row- vs. column-major differences
in languages (e.g. you’d have to transpose the IDL output to get it visually in the same form
as the MATLAB or Python output), however, the order of dimensions in the output array is
the same in all languages, n by 3.

3.5 Computational Speed Tests

Figure 3 shows the results from example speed tests, which should only be judged on trends.
Actual speeds depend on the user’s specific computer (e.g. CPU and memory available, is
the user using a laptop in battery saving profile, etc.), and what other programs the user may
be running. In addition the running speed will depend on which version of MATLAB, IDL,
Python and our community codes the user is utilizing. Furthermore, the higher order codes
will take longer to run, since the higher orders require more loops within the code. For this
test we used 75,641 different positions (simulating a Juno orbit from apojove (=112 R;) to
apojove (for the Juno prime mission), which we used as inputs to the spherical harmonic
codes, both in one go as a vector, or as separate runs in a for loop doing one position at a

@ Springer

15 Page 16 of 40 R.J. Wilson et al.

MATLAB test code MATLAB test Output
function MATLAB_test Brtp_scalar =
% Spherical coordinate example for scalar at 10 Rj, Colatitude on equator -79.8398 399.4828 -53.4823
% at East longitude of 38 degrees (converted to radians)
Brtp_scalar = jovian_jrm33_order13_internal_rtp(10, pi/2, 38*pi/180); Brtp =

Brip_scalar % print 10 screen

-250.0396 3628 -48.0068
% Spherical coordinate example. 38.3079 551.8268
% 4 Quadrants all on the equator, with increasing r 152.3795 1121
r=[8:9:10;11]; -42.3894 .6507
t=pif2 "1;1:1:1);
p = [0; pif2; pi; 1.5°pil; Bryz =
Brip n_jrm33_order13_internal_rip(r, t, p);
Brp % print to screen -250.0396 -48.
92.0848
% Same 4 positions but now in Cartesian -152.3795
x=[B 0;-10; 0]; 55.7882 3894 -313.6507
y=
2= 0; 0; 0; 0 Name size Bytes Class Attributes
Bxyz = jovian_jrm33_order13_internal xyz(x, y, 2);
Bxyz % print to screen Brtp 4x3 96 double
Brtp_scalar 1x3 24 double
whos Brip_scalar Brip Bxyz Bxyz x3 96 double
IDL test code IDL test Output
PRO IDL_Test Brep_scalar =
; Spherical coordinate example for scalar at 10 Rj, Colatitude on equator -79.839826
i at East longitude of 38 degrees (converted to radians)
Brtp_scalar = (10d, 1DPI/2d, 38d*!DPI/180d)
PRINT, 'Brtp_scalar = *
PRINT, Brtp_scalar 38.307890 152.37954 -42.389403
551.82685 421.11209 313.65069
; Spherical coordinate example ~92.084823 17.047116 55.788200

; 4 Quadrants all on the equator, with increasing r
11d]

r d, 9d, lod, 37954 55.788200
t [!DP1/2d, 'DP1/2d, 'DP1/2d, 'DPI/2d] 047116 42.389403
P 0d, 'DPI/2d, !DPI , IDPI*1.5d] -421.11209 -313.65069
Brtp = (r, t, p) DOUBLE - Array[l, 3
PRINT, "Brip = ¢ DOUBLE = Arrayld, 3]
PRINT, Brtp DOUBLE = Array[4, 3]
; Same 4 positions but now in Cartesian
= [8d, od,-10d,
[od, 9d, od,-11d]
z-[od, od, od, odl
Bxyz = , ¥, 2
PRINT, "Bxyz =
PRINT, Bxyz
HELP, Brtp_scalar, Brtp, Bxyz
END
Python test code Python test Output
import numpy as np Brtp_scalar =
import jovian_jrm33_order13_internal_rtp as jrm33013_rtp [-79.8398262 399.48279169 -53.48232536
import jovian_jrm33_order13_internal_xyz as jrm33013_xyz Brtp =
[[-250.03964154 779.36280353 -48.0067748]
Spherical coordinate example for scalar at 10 Rj, Colatitude on equator [38.30789003 551.82684557 -92.08482301]
at East longitude of 38 degrees (converted to radians) [152.37953988 421.11209401 17.04711562]
Brtp_scalar = jrn33013_rtp.jovian_jrn33_order13_internal_rtp(10, np.pi/2, 38+np.pi/180); [-42.38940341 313.65069342 55.78819978]]
print('Brtp_scalar = ') Bxyz =
print(Brtp_scalar) [[-250.03964154 8.0067748 -779.36280353]
[92.0848230 .30789003 -551.82684557]
Spherical coordinate example. [-152.37953988 .04711562 -421.11209401]
Quadrants all on the equator, with increasing r [55.78819978 38940341 -313.65069342]]
Can be numpy arrays or not, if you use pi, should be Shape of Brtp scalar: (3,)
[8, 9, 10, 11] Shape of Brtp io(4, 3)
t = np.array([np.pi/2, np.pi/2, np.pi/2, np pi/2 1) Shape of Bxyz P4, 3)
p = np.array([0, np.pi/2, np.pi 1%1.5])
Brtp = jrm33013_rtp. jovian_jrm33_ oraert_internal. rtp(r, t, p
print('Brtp = ')
prlnt(Brtp)

Same 4 positions but now in Cartesian
Can be numpy arrays, but since just numbers here, does not have to be
[}

o, o, o, o]

= jrm33ol

("Bxyz =
print(Bxyz)
print(*Shape of Brtp_scalar: ', Brtp_scalar.shape)
print('Shape of Brtp : ', Brtp.shape)
print('Shape of Bxyz : ', Bxyz.shape)

Fig.2 Examples using the PSH codes and the output they give, from the three languages

time (i.e. scalar). The top panels show the speed tests when running the Spherical version of
the spherical harmonic codes, and the bottom panels the Cartesian versions. The left panels
show the speed when all positions were run once as a vector, and the right panels for each
position run separately in a ‘for’ loop. (C++ does not do vectorized math and thus is coded
to do one element at a time of an input 1D array, but for comparison with other languages
we will term this as vectorized.)

It is immediately clear that running once with vector inputs is much faster than running
separately for each position, and this use is encouraged where possible. However, for B-field
line tracing purposes, where you do not know your next position until you have calculated

@ Springer

Jovian Magnetic Field Community Codes Page 170f40 15

5 RTP Vector 5 RTP Scalar
10 10
——»—— PSH: IDL
@ 10 —o—Jupi«érr\:a;nPymon wrapper of C++ @ 10 :74::::
© 100 E— @ 100
F 10 F 107 T
102 1072
34 10 13 18 34 10 13 18
Order Order
5 xyz Vector 5 xyz Scalar
10 10
——»—— PSH: IDL
1 —— E:: :\:/IAJLAB 1 O 1 ///.
@ 10 —HJupll‘erl\:‘agD'nPy\hon wrapper of C++ @ :;741::
—+— libjupitermag: C++
2 10° e 2 10°
= 1o % SRl i e—
102 1072
34 10 13 18 34 10 13 18
Order Order

Fig. 3 Speed test of the different Spherical Harmonic codes over 75,641 positions. These were performed
on a 2019 Mac laptop with MATLAB version 2022a, IDL version 8.8, and Python 3 version 3.8.3. The top
half shows the spherical (RTP) co-ordinate code, and the bottom half the Cartesian (xyz) codes. The left side
shows the runs with all 75,641 records run once as vectors, and the right side shows the scalar version where
the code is run through all 75,641 positions one at a time, via a for-loop. The test was carried out on 5 models,
of order 3, 4, 10, 13 and 18 (06, VIP4, JRM09, JRM33 order 13 and order 18 respectively)

the field for the last, running in scalar mode is the only option. The spherical code should
run a little faster than the Cartesian code (as there are fewer equations to run as spherical
harmonics are natively in a spherical coordinate system), however, it is not a significant time
saver.

4 External Magnetic Field Models

4.1 Con2020: The Connerney et al. (1981, 2020) Current Sheet Model for Jupiter’s
External Magnetic Field

The magnetic field observed by a spacecraft in Jupiter’s magnetosphere is the sum of the
internal planetary field and the external field, which includes contributions from several
sources like the magnetodisc current sheet, a partial ring current, and magnetopause cur-
rents (e.g. Khurana et al. (2004)).The magnetodisc current flows in the azimuthal direction
and perturbs the poloidal magnetic field (see Fig. 1 of Connerney et al. (1981)), producing
the radially stretched field configuration that is observed in Jupiter’s middle and outer mag-
netosphere. We have developed code to implement one commonly used model for Jupiter’s
magnetodisc magnetic field, the Connerney et al. (2020) magnetodisc model, also known as
Con2020. It utilized Juno MAG data (Connerney et al. 2017) within 30 R; of Jupiter from
the first 24 Juno orbits, after removing a JRMO09Y internal field model, to fit the key parame-
ters of the Con2020 model. Only data in MAG instrument range 0 was used, downsampled
to a 10 minute cadence, which practically limited the observed dataset to be from distances
of 6 to 30 R; of inbound and outbound passes, within System III (1965) latitudes of —68 to
+40 degrees. No data close to Jupiter or over the poles was included.

@ Springer

15 Page 18 of 40

R.J. Wilson et al.

Table 2 Con2020 model code default parameters (true for all codes unless otherwise stated under variable

name)
Variable Name Description Default Value
(and Units)
mu_i_div2__current_parameter_nT 1olo/2, azimuthal current sheet field 139.6 nT
parameter
i_rho__radial_current_ MA I, radial current term from Connerney 16.7 MA
et al. (2020) (set this to zero to turn
radial currents off as in Connerney et al.
(1981)
r0__inner_rj Ry, inner edge of Con2020 current disk 7.8 Ry
rl__outer_rj R1, outer edge of Con2020 current disk 514 Ry
d__cs_half_thickness_tj D, current sheet half thickness 3.6 Ry
xt__cs_tilt_degs ¥ p, tilt angle of current sheet normal 9.3 degrees
xp__cs_rhs_azimuthal_angle_of_tilt_degs ¢p, azimuthal angle of the tilt of the 155.8 degrees
current sheet normal sheet tilt (right handed)
error_check 1 to check that inputs are valid (Default), 1
or set to 0 to skip input checks (faster)
not a Con2020 model parameter
Cartesianln Input is expected in Cartesian co-ords True
(Python only) if True, or Spherical co-ords if False.
CartesianOut Output B is given in Cartesian co-ords True
(Python only) if True, or Spherical co-ords if False.

The Con2020 current disc is described by seven key parameters that are defined by key-
words in the model code. These are the inner edge of the current sheet Ry, outer edge R;,
half-thickness D, the tilt and azimuthal angles of the surface normal of current sheet, and
azimuthal current parameter 11/ in units of nT. We note that the current density is given by
j=Uo/p0)d. Connerney et al. (2020) also includes a value for the radial current. Table 2
presents the variable names, description and default values for the seven Con2020 variables
as used in our models. The default values are taken from Table 1 of Connerney et al. (2020)
for all the constants, except for the radial current. We note that Table 2 of Connerney et al.
(2020) gives individual values for PJs 1-24 (excluding PJ 2) (PJ is an abbreviation for peri-
jove). We have used the approximate mean value from Table 2 column 5 to define the default
radial current as 16.7 MA. (Due to a typo in Connerney et al. (2020), the fifth column of
their Table 2 is erroneously labeled as 11, /27 .) In our codes each of the default keyword
parameters can be changed to, for example, reproduce the Voyager-era CAN disc model of
Connerney et al. (1981), or to fit individual Galileo or Juno orbits by changing the azimuthal
and/or radial current parameters (see orbit-by-orbit fit values in Vogt et al. (2017); Ridley
and Holme (2016); and Connerney et al. (2020)).

The Con2020 current disc and resulting radially stretched field lines are shown in Fig. 4,
which presents Jupiter’s magnetospheric field lines in a magnetic meridional plane where
the field lines correspond to the JRM33 dipole plus the Con2020 magnetodisc model. The
dipole is directed along the z axis and cylindrical radius p is the perpendicular distance from
the magnetic axis. The Connerney et al. (2020) model cylindrical magnetodisc occupies the
region within the dotted rectangle centered on the magnetic equator. The magnetodisc is
defined by the default parameters presented in Table 2, namely inner radius Ry = 7.8 Ry,
outer radius R; = 51.4 R,, half-thickness D = 3.6 R;, and current sheet field parameter
nolp/2 = 139.6 nT. The Connerney et al. (2020) tilt angle of the surface normal of the

@ Springer

Jovian Magnetic Field Community Codes Page 190f40 15

Fig.4 Illustration of current
sheet parameters in the peg-zes
plane showing the inner edge of
current sheet R, outer edge Ry,
half-thickness D, and azimuthal
current parameter 1olp. Also
shown (in green) are a selection
of orbit trajectories from Juno’s
prime mission, plotted
approximately every third orbit

current sheet to the Jovigraphic pole is ¥p = 9.3° and the azimuthal angle of the current
sheet surface normal tilt ¢, = 155.8°. Overlaid in green in Fig. 4 are a selection of Juno’s
trajectories from the prime mission where we show approximately every third orbit. We note
that for Fig. 4 we are assuming that both the tilt and azimuthal angle of current sheet surface
normal are identical to the tilt of the JRM33 dipole from the Jovigraphic pole, so that the
combined field is exactly axisymmetric.

4.2 Con2020 Equations

In this section we describe the equations used in our Con2020 model code. The CAN model
is described in the current sheet frame of reference, denoted by the subscript (). The cur-
rent sheet frame is similar to the magnetic coordinate systems that are defined by the tilt of
the dipole in various internal field models. In Con2020 the current sheet normal is tilted 9.3°
degrees away from the System III (1965) z-axis toward 155.8° longitude (Right-Handed),
whereas the JRM33 dipole is tiled by 10.25° from the System III (1965) rotation axis to-
wards 163° longitude (Right-handed).

Connerney et al. (1981) presents equations for the B, ; and B, components of the model
magnetic field in current sheet cylindrical coordinates (see their equations 14, 15, 17, 18).
B, and B, are calculated by taking the integral of the product of two Bessel functions,
using different equations for heights z. larger or smaller than the current sheet thickness D.
Connerney et al. (1981) also present analytic equations (see their eqs. Al, A2, A7, A8, and
A9) for B, and B, which approximate the full integral equations. However, the Conner-
ney et al. (1981) analytic equations are not divergence-free, which led Edwards et al. (2001)
to derive new analytic equations for the Connerney magnetodisc field (see their Egs. 9a, 9b,
13a, and 13b). Using the Edwards et al. (2001) analytic equations instead of the full integral
form introduces an error that is typically a few percent and is largest near the inner edge of
the disk (see Fig. 5 here, and Fig. 2 of Edwards et al. (2001)). The azimuthal component
of the magnetic field, By, , which is included only in the 2020 model, can be derived from
Ampere’s law, as we describe below.

In the community code we present three different equation options: the full ‘inte-
gral’ equations of Connerney et al. (1981), the ‘analytic’ equations of Edwards et al.
(2001), or a ‘hybrid’ option which uses the Edwards et al. (2001) analytic equations
everywhere except at locations close to the disc, defined in cylindrical coordinates as
((Izesll < 1.5D) AND (|| pes — Roll < 2R;)), where the code uses the Connerney et al.
(1981) integrals. In addition, if the ‘integral’ method is chosen (or ‘hybrid’ but the posi-
tion is in the integral method range), then for computational speed, our codes currently use
the integral equations only for the inner edge of the current disk, and the analytical equations
for the outer edge. This is a reasonable approximation since the outer edge is usually set to
> 50 R; and we recommend only using the Con2020 model at distances < 30 R;.

@ Springer

15 Page 20 of 40 R.J. Wilson et al.

Our model Con2020 code takes input positions and outputs field components in the Sys-
tem III (1965) coordinate system (right-handed). It then rotates the input positions into a cur-
rent sheet frame, calculates the Con2020 model field according to the equations described
in the following sections, then rotates the field back to System III (1965). We do not pro-
vide the equations needed to perform the coordinate transformations here, but an example
of the equations used to rotate from magnetic coordinates - or, in this case, current sheet
coordinates - to System III (1965) coordinates is given in equations A10-A12 of Vogt et al.
(2022).

4.2.1 Poloidal Field - Integral Solution

The integral equations for B, and B, , the radial and axial components of the magnetic
field in cylindrical coordinates, produced by a semi-infinite current disc starting at an inner
edge a and extending to infinity, with a half-thickness D, are given by Connerney et al.

(1981), equations 14, 15, 17, and 18 as follows.
For ||zl = D:

o dir
By, (Pess Zes) = (sgn(zes)) olo f Ji (Aoes) Jo (ha)sinh (A.D) ezl - ®)
0

*© i _idA
B, (Pes, Zes) = Holo / Jo(hpes) Jo(ra)sinh (A D) e M| - ©)
0

For ||z¢s|| < D:

* . _ipdX
Bpm- (10(757 ch) = MOI() Jl ()‘-pcs) JO (Aa)mnh(kzm)e T (10)
0

o0 D dxr
BZU (pcs, ch) = /LOIO JO ()"pm) JO ()\.Cl) (1 —e€ cosh ()"ch)) T (1 1)
0

where Jj and J; are Bessel functions of zeroth and first order, respectively.

All versions of the Con2020 community code use the same approach to the numeric inte-
gration, performing the integral using the trapezoid rule and evaluating the Bessel functions
using built-in functions or functions from standard libraries. We tested different values for
the integral step size d and the upper limit of integration A, and selected values that lead
to an efficient but accurate numerical integration. For example, we performed the numerical
integration at a wide range of input positions (o, z.s) and found that decreasing dX by a
factor of 10 changed the output of our numerical integral by no more than one tenth of a per-
cent. For calculating B, we set dA = 0.0001 and for calculating B, we set dA = 0.00005.
For both B, and B, the quantity to be integrated depends on the input position, as illus-
trated in Fig. 5, so A4, varies from 4 to 100 for B, and from 20 to 100 for B, depending
on the input z.;. Specifically, A,,,, is largest for input z., close to the current sheet half-
thickness D. For B, , Ay is smallest when z. is small (top left of Fig. 5), and for B, ,
Amax 18 smallest when z.; is larger than D (bottom right of Fig. 5).

4.2.2 Poloidal Field - Analytic Approximation

The analytic approximation for the B, and B, components of the magnetic field produced

by a semi-infinite current disc of inner edge a and half-thickness D are given by Edwards
et al. (2001) as follows (see their equations 9a, 9b, 13a, and 13b):

@ Springer

Jovian Magnetic Field Community Codes Page210f40 15

Z = 1R (inside current sheet) Z=3.55R(near D=3.6R)) Z=4R) (above current sheet)
10°F B 10° B
o 1 o p=5,7,7.8,10,20R; |
§ 10° 1 X 1
E 10° 4]
o qp® 4 4
10701 l R 1
10
0 20 40 60 80 100 60 80 100

B, Function

0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
A A A

Fig.5 Examples of the quantities to be numerically integrated by our Con2020 community code, plotted as a
function of the variable of integration A (see egs. (8) through (11)). Top: B, integral function as a function
of A for values of z.s inside the current sheet (left), near the current sheet edge at z¢; ~ D (middle), and
above the current sheet (right). Bottom: B, integral function as a function of X for values of z¢s inside the
current sheet (left), near the current sheet edge at z.s ~ D (middle), and above the current sheet (right). In all
panels, colored lines indicate different values of pcs

Small p approximation for p.; < Ry (CAN1), set a = Ry:

B CA ()0 z) ~ MOIO Pcs 1 1
Pcs N1 css Les) ™ T4 —_— -
2 |12 |[V@u-D+a@ s+ DP+a
p3 | (@®=2(zes = D)?) (a® = 2(zes + D)?) 12
16 5 H
16 (az + (ch _ D)2)2 (az + (ch + D)Z)z
__ kolo (2es + D) + v/ (zes + D)* + a2
BszANl (Dess Zes) = T log 5
(ch_D)+V(ch_D) +a?
? cs D cs T D
+% (zes + D) - (z) : a3
(zes + D)’ +3d%)? ((zes — D)* +a?)?
Large p approximation for p.; > Ry (CAN2), set a = Ry:
koo | 1 7. o 2.
BﬁcsCANZ (pcm ch) ~ T [E <\/(ch - D) + pcs - \/(ZCS + D) + pcs
N Pes’ 1 B 1
3 3
LG+ D H+02)7 (e =D 402’ (14)
D ,forz.g > D
tolo
+ X 1 Zes for ||zesll < D

Pes —-D ,forz, <—D

@ Springer

15 Page 22 of 40 R.J. Wilson et al.

(Zes + D) + v/ (zes + D)2 + o2 }
(ZCY_D)J’_V(ZCS_D) +/Ocs

2 —
+az [(zes + D) B (zes — D) . } } (15)
((ch + D)2 + pcsz) ((Zm - D)2 + pm2)2

B, is continuous between region 1 and region 2.

As a slight improvement on Edwards et al. (2001), the CAN poloidal component for both
region 1 and region 2 within the semi-infinite current disc can then be calculated as follows,
seta = Ry:

ol
B”LACANZ (pcuzcs) ~ % {10 |:

3
2

1 — tanh ("&ﬁ) 1 4 tanh ("&ﬁ)

B, ,can (Pcs» Zes) = Bp.cant — + B, canz — (16)
1 — tanh (—ﬂ g‘p;“) 1 4 tanh (—"&;’1)

B ;can (0cs» Zes) = Bz cant — s + B ,can2 —)

where Ap,; = 0.1 R; is the scale length used to smooth the transition between regions.
4.2.3 Accounting for the Finite Nature of the Current Sheet

The CAN current disc can be described as a finite current disc with inner edge R, and outer
edge R, but the equations listed in Sects. 4.2.1 and 4.2.2 give the field produced by a semi-
infinite current disc extending from p = a to p = co. One less than ideal approach is to
account for the finite nature of the current sheet by subtracting a constant value like - m "0210
from B, while leaving B, unchanged (see Fig. 4 of Connerney et al. (1981) and appendix
of Acuna et al. (1983)).

Another approach to terminating the current at the disc outer edge R;, which we employ
in the Con2020 community code, is to add a second disk of identical current parameter but
opposite sign stretching from R; to co. This gives zero current in total beyond R;. The total
CAN field is then the sum of the field of the semi-infinite current sheet starting at p = Ry
and the field of the reverse current starting at p = R, as follows:

For p < R;:

B, .can = B, can (@ = Ro) — B, ,cani (a = Ry) (18)
B can = B can (@ = Ryp) — B cani (@ = Ry) (19)

where B, can (Ro) and B can (Ro) are determined using equations 16 and 17, calculated
for a = Ro. B, ,cani (R1) and B;_cani (R) are the small p approximation for a = R;.
For p > Ry, the full reversed equations must be used:

Bj.,can = B, ,can (@ = Ro) — B ,can (@ = Ry) (20)
B. ,can = B can(a = Rg) — B can(a = Ry) 2D

In our community code we always use the analytic equations of Edwards et al. (2001)
to calculate the field due to the semi-infinite disk from R; to oo, even when the user spec-
ifies using the integral or hybrid mode to calculate the field due to the inner disk. For the
outer semi-infinite disc, the difference between the analytic and integral equations at radial
distances <~30 R;, where the CAN disc model is most valid, will be negligible.

@ Springer

Jovian Magnetic Field Community Codes Page230f40 15

4.2.4 Azimuthal Field

Finally, we derive the expression for the azimuthal field By, which was omitted from the
Voyager-era CAN disc model but introduced by Connerney et al. (2020) through the in-
clusion of a radial current term I, in the Con2020 model. It is worth emphasizing that the
radial current system producing By, is entirely separate from the disc carrying the azimuthal
current resulting in deflection in the B, and B, components. The radial current system
consists of equal and opposite currents flowing into the two poles along the polar axis (like
‘wires’) closed by cylindrical radial currents flowing uniformly in an equatorial disc which
here has been chosen to have a half-width D (but could have any value). The azimuthal field
resulting from 1,, is then calculated from Ampere’s law, which in SI units is:

- —
f B -dl = pol, 22)

Therefore, starting with B, in Teslas (T = Webers/m?), I, in Amps (A), p.s in meters
(m), replacing 1o (= 47 x 1077 H/m), where units are given in the square brackets, and
convert to units of nano-Tesla (nT), Mega-Amps (MA) and jovian planetary radii (R; =
7.1492 x 107 m), it follows that for an outward current:

By[T127 pes[m] = 47 x 10771 ,[A]
g 4m 5
= By[nT] x 107 = — x 10771, [A]/ pes [m]

= By[nT] =2 x 10° x I,[MA] x 10°/ (p;[R;] x 7.1492 x 107) ~ (23)

20
= By[nT] = 71492 x I,[MA]/pes[Ry]
= By[nT]~2.7975 x I,[MA]/p.s[R;] (24)

Equation (24) ends with an approximation for Jupiter’s azimuthal field, as it truncates
the numbers to five significant figures; this is the equation used in this release of codes.
Should one want to apply this equation to a different planet, use equation (23) and replace
7.1492x 107 m with the appropriate planetary radius.

Equations (23) and (24) both have a divide by p.; which would give infinity if p.; = 0. If
Pes = 0 then we assume By[nT] = 0 too. However, By, will still explode to very large values
as p.s approaches 0.

Considering how the azimuthal field changes inside the magnetodisc with half-thickness
D, it is thus assumed (where z.; and D are in the same units of R;):

~2.79752 (I,IMA1/pes [R)1) 7, if llzesll = D and pes > 0

lzes I

By[nT] = =2.79752 (1,[MA]/pes[R/]) &, if ||zl < D and peg > 0 (25)

0 ,if pes = 0.

Overall, the CAN current disc model does a good job of reproducing the external mag-
netic field in the inner and middle magnetosphere (inside of ~ 30 R;) and is relatively
straightforward to implement. However, it does not include any local time asymmetries,
which can be significant beyond ~ 20 — 30R; (e.g. Palmaerts et al. (2017), and references
therein) or include features like hinging that can be significant in the middle-to-outer mag-

@ Springer

15 Page 24 of 40 R.J. Wilson et al.

netosphere (Khurana 1992). The Connerney et al. (2020) parameters were fitted using data
at distances of 6 to 30 R, and the original Connerney et al. (1981) model also focused on
data inside of 30 R;. The model field also includes sharp gradients at the edge of the current
disc and, in the analytic equations, certain model parameters can produce a discontinuity
or other spurious results at large radial distances. Additionally, the finite nature of the cur-
rent sheet leads to a discontinuity at the outer edge of the disk R; (see Sect. 4.2.3) if the
analytical method was used; there is no discontinuity if the integral method was applied.

4.3 Con2020 Python and C++ Code: Con2020_Python, JupiterMag and
libjupitermag

There are currently two Python code versions for the Con2020 model: Con2020_Python
is a pure Python package, whereas JupiterMag is a Python wrapper for the 1ib-
jupitermag C++ source code.

Instructions and examples on how to use the Con2020_Python model can be found in
the GitHub repository (https://github.com/gabbyprovan/con2020). The easiest and quickest
way to install this Python package is to use Python’s PIP command:

S pip3 install --user con2020

or if you have previously installed using this method
$ pip3 install --upgrade --user con2020

Alternatively, the JupiterMag package also includes a Con2020 magnetic field model.
See the earlier sections on 1ibjupitermag (Sect. 3.3.1) and JupiterMag (Sect. 3.3.2)
for install instructions.

4.3.1 Examples

Here we show a brief example of how to use Con2020_Python module:
import con2020

initialize a Con2020 model object with default
parameters (inc. Cartesian in/out)
def model = con2020.Model ()

initialize a Con2020 model object which uses spherical polar
coordinates for input and output
sph _model = con2020.Model (CartesianIn=False,CartesianOut=False)

initialize a Con202 model object with custom parameters (longhand)
custom_model = con2020.Model (mu_i_div2_ current parameter nT=150.0,
r0_ inner rj=9.5,
d cs _half thickness rj=3.1)

Run a Con2020 model you've already initialized,

assuming you already have set up x, y and z as scalars or NumPy arrays
and x,y,z are System III (1965) right handed co-ordinates

in units of planetary radii

Bxyz = def model.Field(x,y, z)

The resultant output is a 2-dimensional array, Bxyz, of size n by 3, where n is the length
of the input 1D arrays of x, y and z.

If you wish to use the JupiterMag package, one can configure and use the Con2020
magnetodisc magnetic fields in the following manner (as described in the GitHub (https://
github.com/mattkjames7/JupiterMag)):

@ Springer

https://github.com/gabbyprovan/con2020
https://github.com/mattkjames7/JupiterMag
https://github.com/mattkjames7/JupiterMag

Jovian Magnetic Field Community Codes Page250f40 15

import JupiterMag as jm

initialize Con2020 model which uses Cartesian coordinates for
input and output, set other options here as you wish
jm.Con2020.Config(equation_ type='analytic', CartesianIn=True,CartesianOut=True)

Run Con2020 model

assuming you already have set up x, y and z as scalars or NumPy arrays
and x,y,z are System III (1965) right handed co-ordinates

in units of planetary radii

Bx, By, Bz = jm.Con2020.Field(x,y,2)

The resultant output is three 1 dimensional arrays, Bx, By and Bz, each the same size
as the input arrays. Note that the output is of a different format to the single 2 dimensional
array of Con2020_Python, but the values within are equivalent.

Below is an example of using the C++ code directly to obtain field vectors from the

con2020 model:
#include <stdio.h>

#include <jupitermag.h>

int main() {
/* create instance of the Con2020 class */
Con2020 model;

/* variables to store position and magnetic field #*/
double x = 20.0;

double y = 10.0;

double z = 5.0;

double Bx, By, Bz;

/* obtain the field vector at that position */
model.Field(x,vy, z, &Bx, &By, &Bz) ;

printf ("B=[%5.1f,%5.1f,%5.1f] at [%4.1f,%4.1f,%4.1f]\n",
Bx,By,Bz,X,Y,2Z);
}
which creates an instance of the Con2020 class with default model parameters (see
Table 2). This class object uses member functions similar to those used in the spherical
harmonic example in Sect. 3.3.3 to configure the model (see jupitermag.h for more
information) and to provide the B-field vectors.

Figure 6 is based on Fig. 2 of Connerney et al. (2020), illustrating a comparison of the
residual magnetic field (after removal of the internal field using the JRMO09 magnetic field
model) and the modeled magnetodisc field for PJ16 (r < 40R;). From the top to the bottom
we plot the azimuthal, theta and radial components of the field. The integral solution is
shown in red and the analytical solution in light blue. The shaded region represents a strong
field region (>1600 nT) dominated by the planetary field and excluded by Connerney et al.
(2020) from consideration.

4.4 Con2020 Codes

The Con2020 codes are available in both IDL and MATLAB versions, and their use is
described in the following sub-sections.

@ Springer

15 Page 26 of 40 R.J. Wilson et al.

Juno Perijove 16
20

15

10

ABy /nT
o

-20

-20

-40

ABg /nT

-60

-80

—100
100

75

50

25

ABr /nT

=25

-50

=75

_ R RN RN W Ly
100 301 302 303 304 305

Day of year (2018)

Fig.6 Comparing observed data (black) with the Con2020 model (after removing the JRMO9 internal field),
showing both the integral (red) and the analytical (light blue) Con2020 model solutions

4.4.1 Notes

The base Con2020 model is in Cartesian form, therefore the Cartesian code should be ever
so slightly faster to run than the Spherical code.

4.4.2 Install
For IDL or MATLAB, save both the Cartesian and Spherical codes to your local working
directory and use as normal. The Cartesian version is standalone code with no dependencies.

However, the Spherical code, at least in this initial release, calls the Cartesian code, so
requires both codes to be on your computer.

@ Springer

Jovian Magnetic Field Community Codes

Page 27 0f40 15

MATLAB test code

function Matlab_Con2020_test
%% Default Parameters

% Spherical coordinate example for Con2020 model, Integral method,

% for scalar at 10 Rj, Colatitude on equator at East longitude of
% 38 degrees (converted to radians)

Brtp_scalar = con2020_model_rtp('integral’, 10, pi/2, 38+pi/180);
Brtp_scalar % print to screen

% Use a different equation type (put in call later
eq_type = 'hybrid';

% Spherical coordinate example.
% 4 Quadrants all on the equator, with increasing r
;1

0n2020_model_xyz(eq_type,r, t, p);
Bxyz % print to screen

whos Brtp_scalar Brtp Bxyz
%% Now With User Edited Parameters

% Get structure of parameters, either of these two cmmnands
% params = con2020_model_rtp('default_values');

params = con2020_model_xyz('default_values');

params % print to screen

% Change a value, let's make i_rho_% = 100 (for fun)
params.i_rho__radial_current_MA = 100;
% Change others as you see fit

% Use new parameters
Brtp = con2020_model_rtp(eq_type,r, t, p, params);
Brtp % print to screen
% Or
Bxyz = con2020_model_xyz(eq_type,r, t, p, params);
Bxyz % print to screen

IDL test code

PRO IDL_Con2020_Test
;3 Default Parameters

; ‘Spherical coordinate example for Con2020 model, Integral method,
; for scalar at 10 Rj, Colatitude on equator at East longitude of

; 38 degrees (converted to radians)

Brtp_scalar = con2020_model_rtp('integral’, 1@d, !DPI/2d, 38d%!DPL/130d)

PRINT, "Brtp_scalar = " & PRINT, Brtp_scalar

eq_type = 'hybrid' ; Use a different equation type (put in call later)

Spherical coordinate example
4 Quadrants all on the equator, with increasing r
0d 11

[&, od, 1ed,
[lDPI/Zd, IDP1/2d, 1DPL/2d, 10PL/2d]

od, IDPL/2d, IDPT , 1DPI*1.5d4]
on2020_model _rtp(eq_type,r, t, p);
nmrr "Brtp = ' & PRINT, Brtp

; Same 4 positions but now in Cartesian

x=[8, od,-10d,

y-[@, od, od,-11d]

z=[od, ed, ed, od]
con2020_model_xyz(eq_type,r, t, p);

& PRINT, Bxyz

HELP, Brtp_scalar, Brip, Bxyz

;; Now With User Edited Parameters

; Get structure of parameters, either of these two (UWMUHU:
: params = con2020_model_rtp(’default_values');

params = con2020_model_xyz('default_values')

HELP, params ; print to screen

; Change a value, let's make i_rho__* = 100 (for fun)
parans . I_RHO_RADIAL_CURRENT_MA = 1
; Change others as you see fit

; Use new parameters
Brtp = con2020_model_rtp(eq_type,r, t, p, params)
PRINT, "Brtp = ' & PRINT, Brtp

; or

Bxyz = con2020_model xyz(eq_type,r, t, p, params)
PRINT, "Bxyz = ' & PRINT, Bxyz

END

MATLAB test Output

Brtp_scalar =
-17.3336 -93.023]

Brtp =
-32.0682 -129.085

0 14.4660

7 10.6036

-109.8230 15.5326
-86.4414 -7.7410
-78.2079 -10.
7.8351 125.7618
7.3293 106.0843
13.8752 7.1152 86.5174
37.3524 6.7266 75.0963
Name size Bytes Class Attributes
Brtp 4x3 96 double
Brtp_scalar 1x3 24 double
Bxyz 4x3 96 double

Returning structure of Default

terms used in code.

parans =
struct with fields:
mu_i_div2_ current_parameter

d_cs]

_rhs_azimuthal_angle of tilt_deg
_rho__radial_

-128.4396 20.2288
-110.4579 11.2822
-85.7953 -17.3662
-78.8427 -6.5600

124.9504
106.2888
87.4331
76.5297
IDL test Output
Brtp_scalar =
-17.333640
-93.023046
14.466042
Brtp =
-32.068179 14.799057 35.628013 -16.234303
-129.08574 -109.82303 -86.441446 -78.207874
10.603557 15.532628 -7.7409540 -10.810417
Bxyz =
-30.876548 -11.593885 13.875213 37.352446
7.8351101 7.3293068 7.1151951 6.7266175
125.76182 106.08433 86.517361 75.096299

BRTP_SCALAR DOUBLE = Array[1, 3]
BRTP DOUBLE = Array[4, 3]
BXYZ DOUBLE = Array[4, 3]

Returning structure of Default terms used in code.

*+ Structure <39d8268>, 8 tags, length=64, data length=57, refs=1:
MU_T_DIVZ__CURRENT_PARAMETER_NT

DOUBLE 139.60000
RO__INNER RJ DOUBLE 7.8000000
OUTER_R) DOUBLE 51.400000
S_HALF_ THICKNESS RJ
3.6000000
XT__CS_TILT_| nscs
9.3000000
XP__CS_RHS_ AZIMUTHAL ANGLE OF_TILT_DEGS
DOUBLE 155.80000
T_RHO__RADIAL_CURRENT_MA
DOUBLE 16.700000
ERROR_CHECK ~ BYTE
Brtp =
-32.068179 14.799057 35.628013 -16.234303
-128.43962 -110.45789 -85.795331 -78.842738
20.228763 11.282223 -17.366160 -6.5600129
Bxyz =
-32.528394 -11.236604 15.249938 39.200490
16.247895 5.0777283 -3.4681055 -10.515195
124.95037 106.28884 87.433127 76.529732

Fig.7 Examples using the Con2020 codes with the output they give, for IDL and MATLAB

4.4.3 Examples

Figure 7 shows screen shots from MATLAB and IDL for three quick tests then a change
of parameters (on the left) and their output (on the right). Aside from the difference in the
native number of printed decimal places of each language, the values are identical. As with
the spherical harmonic codes, there is row- vs. column-major differences in languages (e.g.
you’d have to transpose the IDL output to get it visually in the same form as the MAT-
LAB), however, the order of dimensions in the output array is the same in all languages, n

by 3.

@ Springer

15 Page 28 of 40 R.J. Wilson et al.

4.5 Computational Speed Tests

We calculated the times to run the different Con2020 model codes along one Juno orbit
(75,641 records, run through a for loop for the scalar runs). MATLAB is typically slowest
and Python is typically fastest. The code runs faster with Cartesian inputs/outputs than with
spherical inputs/outputs, and the run times are shown in Table 3.

The full integral version is significantly slower than using the analytic equations. In this
test hybrid run the positions were only briefly in the region where the code uses the integral
equations (~0.3%, see Table 3).

5 Examples of Using Both the Internal and Con2020 Models

To use both the internal field code plus the external Con2020 model, one simply sums the
two fields together to get a total magnetic field (Brorai = Binternai + Bexternat)- However,
ensure the outputs of the internal and external field codes are both in Cartesian or both in
Spherical formats.

For instance, in MATLAB or IDL, following on from examples given in Figs. 2 and 7,
the magnetic field summation of both the internal and external fields would be something
like this:

Brtp internal = jovian jrm33 orderl3_ internal rtp(r, t, p);
Brtp_ external con2020 model rtp(eq type, r, t, p);
B _Total = Brtp_internal + Brtp_external;

For IDL, the example is identical to the above, without the need to end with a semicolon,
but it does not matter if you do leave in this IDL comment marker.

For the Python JupiterMag code the method is similar. Following on from the earlier
Python examples, after first importing the packages and initializing the models, calculate

the internal and external fields and sum them:
import JupiterMag as jm

initialize the Internal field and Con2020 model first
(as per earlier examples)

Bx int,By int,Bz_int = jm.Internal.Field(x,y, z)
Bx ext,By ext,Bz ext = jm.Con2020.Field(x,y, z)

Bx Total = Bx int + Bx ext
By Total = By int + By ext
Bz Total = Bz_int + Bz_ext

where x, y and z may be either scalar or arrays of Cartesian System III (1965) position(s)
to evaluate the models at. Similarly, in C++:

#include <stdio.h>
#include <jupitermag.h>

int main() {
/* create both model instances #*/

InternalModel modelint;
Con2020 modelext ;

@ Springer

15

Page 29 of 40

Jovian Magnetic Field Community Codes

1215y AJUEOYIUSIS SUOISIOA Toje] oyeur d[oy [[ia ANUNUWOd At} 102dxX 9M ‘9 S[QE], UT UOAIS SUOISIOA OPOD WOIY AIE S [eITAIU] SAYLg

‘K1oyeredos spI0daI [H9°G/, AU} JO YIBD I9A0 9POJ 9y} uni 03 doo[-I0J & Sueaw Ie[eds,

S ¥181 S 681 S 6561 S Ceve S 696¢ 1¥9SL Te[ess &EMBE
S L¥81 S 9¢81 s9161 S €661 S 66LI1 1¥9SL POZLI0JOA &EmEE
S¢TLOT S86°CI $CT0C S LG0T S L8'0C 1cC Te[ess PUAAH
S G901 S 8€01 S6ETI SYPIl SyT 0l 1cC PIZLIOIOA PUAAH
$800°0 S ETY'C S 16¢E'8 S9€9°1 $698°0 0 Te[ess onAreuy
$ 6000 S010°0 SLI00 S €200 $$90°0 0 PIZLIOJORA onAreuy
(118 1910 doog
(BbewxsatdnlgrT 1¥9°G/ Jo o J0J = Ie[eds)
(++D) Surddeim uopid) (uop&d) (1ap (AVIILVIN) sunu esSajuy LA adky
pewxsqtdnlqrT pewzsatdnp uoyalkd 0z0zuod 0zZ0zZuop 0zZ0ozZuop Jo oquinN JO PIZLIOJIA uonenbg

€'8°¢ uoyAd pue 1°g°8 TAI ‘20T AV ILVIN WM ORI 6] B UO UNI AI9M SI[NSAI 9SAY) PI[[RISUT 9ABY NOA dIMIJOS PUE
suonesrjdde Jo suorsIoA YoIym pue ‘walsAs Sunerado ‘uryorwr 0K uo puadap [[IM sauwlr) [BNIOY A[UO UOTBIIPUI UR SB ‘sapod (,d11,) [eouoyds ()zozguoD Jo 1saf, paadS € 9|qel

pringer

N

15 Page 30 of 40 R.J. Wilson et al.

/* variables to store position and fields #*/
double x = 25.0;

double y = 0.0;
double z = 6.0;
double Bx int, By int, Bz_int;
double Bx_ext, By ext, Bz_ext;

double Bx Total, By Total, Bz Total;

/* evaluate each model at the given position */
modelint.Field(x,y,z,&Bx int, &By int,&Bz int);
modelext.Field(x,y, z, &Bx_ext, &By ext, &Bz_ext);

/* calculate the total field */

Bx Total = Bx_int + Bx_ext;

By Total = By int + By ext;

Bz Total = Bz_int + Bz _ext;

printf ("B = [%5.1f,%5.1f,%5.1f]\n",Bx Total,By Total,Bz Total) ;

}

which combines the InternalModel and Con2020 classes used in the previous C++
examples.

6 Field Line Tracing
6.1 libjupitermag and JupiterMag Codes

The 1ibjupitermag code (and the JupiterMag Python module by extension) is ca-
pable of field line tracing using any of the internal models, optionally combined with the
Con2020 external field model. Tracing is done using the JupiterMag.TraceField
object which is initialized by supplying the Cartesian System III (1965) starting coordi-
nates for each trace, optionally setting the internal field model and external model(s) to
use (using keyword arguments IntModel and ExtModel, respectively). At the time of
writing, only the Con2020 model has been included with JupiterMag. Other keyword
arguments control the maximum number of steps (MaxLen); the initial step size and lim-
its (InitStep, MinStep, MaxStep); the direction in which to trace (TraceDir); and
whether to output progress to the terminal (Verbose). The trace always continues until
either the current position reaches Jupiter or the number of steps reaches MaxLen.

After the tracing is complete, the TraceField object stores variables such as coordi-
nates along each field line and planetary footprint, see Table 4 for a list. The TraceField
object also contains some member functions which can be used for plotting the traces:

PlotRhoZ () plots the traces in the p-z plane (where p = /x2 + y2),

PlotXZ () plots the projection of the traces in the x-z plane,

PlotXY () plots the projection of the traces in the x-y plane,

PlotPigtail () shows the footprints of the traces on Jupiter’s surface for both hemi-
spheres.

The following example demonstrates how to trace and plot field lines(s) using
JupiterMag with JRM33 (order 13, the default),

import JupiterMag as jm
import numpy as np
import matplotlib.pyplot as plt

@ Springer

Jovian Magnetic Field Community Codes Page310f40 15

Table4 Variables stored within a TraceField object

Name Shape Description

X (n,MaxLen) x-coordinate along each trace

y (n,MaxLen) y-coordinate along each trace

z (n, MaxLen) z-coordinate along each trace

Bx (n, MaxLen) x-component of the magnetic field along the trace
By (n,MaxLen) y-component of the magnetic field along the trace
Bz (n,MaxLen) z-component of the magnetic field along the trace
s (n, MaxLen) Distance along the trace in Ry

R (n,MaxLen) Radial coordinate of each position along the trace
Rnorm (n, MaxLen) Normalized radial distance along each trace (Ruorm = R/Rmax)
nstep (n,) Total number of steps in each trace

LatN (n,) Latitudes of the northern hemisphere footprints
LonN (n,) Longitudes of the northern hemisphere footprints
Lats (n,) Latitudes of the southern hemisphere footprints
LonsS (n,) Longitudes of the southern hemisphere footprints
Rmax (n,) Farthest distance along each of the field traces
LonEq (n,) Longitudes of the furthest points along each trace
FlLen (n,) Length of the field line in R

get some starting coords

n =8

theta = (180.0 - np.linspace(22.5,35,n))*np.pi/180.0
r = np.ones(n)

= r*np.sin(theta)

np.zeros (n)

= r*np.cos (theta)

N X
I

configure the Con2020 field model
jm.Con2020.Config(equation_ type='analytic')

Create first TraceField object using JRM33, no external model
TO = jm.TraceField(x,y,z,Verbose=True, IntModel="jrm33"',ExtModel="none')

create second TraceField object using JRM33 and Con2020
Tl = jm.TraceField(x,y,z,Verbose=True, IntModel="jrm33"',ExtModel="'"Con2020")

plot them

ax = TO.PlotRhoZ(label='JRM33',color="'black")

ax = T1l.PlotRhoZ(fig=ax,label='JRM33 + Con2020',color='red"')
ax.set_x1lim(-2.0,25.0)

ax.set_ylim(-10.0,10.0)

plt.show ()

which would produce Fig. 8 showing a comparison between tracing using only JRM33
(black) and JRM33 combined with Con2020 (red). The same traces can also be performed
directly in C++:

#include <jupitermag.h>

#define USE MATH DEFINES

#include <math.h>

#include <vectors

@ Springer

15 Page 320f40 R.J. Wilson et al.

Fig.8 Comparison of JRM33 8
. — JRM33
order 13 field traces (black) with L RM33 + Con2020
traces of JRM33 and Con2020 61
(red)
4]

z

< 2

I

-4 T T T T T T T T

-2 0 2 4 6 8 10 12 14
Ps (Ry)

int main() {

/* set up the starting coordinates */

int n = 8;
double r = 1.0, x[n], yIn]l, z[nl], theta;
int i;

for (i=0;i<n;i++) {
theta = (180.0 - i*(35‘0—22.5)/(n—1))*M_PI/180.0;

x[i] = r*sin(theta);
yl[il = 0.0;
z[i] = r*cos(theta);

/* obtain the functions to include in the trace,
* adding their pointers to a vector */
std: :vector<FieldFuncPtr> Funcs;

/* internal model =*/
Funcs.push back (jrm09Field) ;

/* external model */
Funcs.push _back (Con2020Field) ;

/* initialise the trace object */
printf ("Create Trace object\n") ;
Trace T (Funcs) ;

/* add the starting positions for the traces */
printf ("Add starting position\n") ;
T.InputPos(n,x,Vy,z);

/* configure the trace parameters (defaults) =*/

printf ("Set the trace parameters \n");
T.SetTraceCFG() ;

@ Springer

Jovian Magnetic Field Community Codes Page330f40 15

/* set up the alpha calculation #*/
printf ("Initialize alphal\n");
T.SetAlpha (0,NULL) ;

/* Trace */
printf ("Trace\n") ;
T.TraceField() ;

/* trace distance, footprints, Rnorm */
printf ("Footprints etc...\n");
T.CalculateTraceDist () ;
T.CalculateTraceFP () ;
T.CalculateTraceRnorm() ;

printf ("Tracing Complete\n") ;

}

where arrays of trace positions and field vectors are stored in member variables of the
Trace object (x*x_, *xy , =%z _ for position and *xbx , x*by , =*%bz for
magnetic field). For more information, see jupitermag.h. In both languages, any num-
ber of external field models may be combined as long as they have been compiled into
libjupitermag. In Python, additional external field models can be included using the
ExtModel keyword, by providing a list of model names e.g. ExtModel=['model0"',
'modell’', 'model2"', ..].In C++ pointers to model wrapper functions are added to a
std: :vector (called Funcs in the example); the trace routine loops through each of the
models provided and combines their individual contributions together for each step.

7 Where to Locate Input Positions to Use in These Codes

Generally, data files already exist that contain the position information of the spacecraft.
SPICE (Acton 1996) can be used to retrieve these positions, and usually there are position
files (or data files with position information included) on NASA’s Planetary Data System
(PDS, at https://pds.nasa.gov/). Often these are in the System III (1965) values you want,
but you may have to tweak them slightly, for instance, converting km to planetary radii.

For example, the Juno MAG (Connerney et al. 2017) data planetocentric files (*_pc_*)
on the PDS (Connerney 2017) give System III (1965) Cartesian position in km, so divide
by 71492 to convert to jovian radii before using with the Cartesian version of these codes.
Whereas the Juno JADE (McComas et al. 2017) Level 3 version 4 data on the PDS (Allegrini
et al. 2019) give System III (1965) radial distance R, latitude and east-longitude in units of
R;, degrees and degrees respectively. Therefore use the spherical version of these codes,
with:

r[R;1= R[R,] (26)

O[rads] = (90 — {latitude[°]}) 17@ 27
Con T

¢[rads] = {East-Longitude[°]} 180 (28)

@ Springer

https://pds.nasa.gov/

15 Page 34 0f 40 R.J. Wilson et al.

8 Future Work and Future Differences

These are intended to be living community codes, we hope the community will expand upon
these by adding new internal field models, models for other planets/moons, other field-line
tracing routines, and find ways to make the code more efficient.

At the time of publication, the different versions of the spherical harmonic and Con2020
codes (see Table 6) all provide the same output for the same inputs to rounding error lev-
els, which in our testing showed that the different codes all gave the same outputs to within
less than 2x 107! nT. All the Con2020 codes use the inbuilt Bessel function commands
of their respective language, but speed improvements for running the Integral method of
Con2020 could be achieved by replacing the inbuilt Bessel functions with approximate
forms of Bessel functions. However, results will not exactly match the output of these early
codes. Likewise, if the code is updated for other planets and equation (24) is edited to use
20/7.1492 (for Jupiter) instead of the five significant digit value of 2.7975 currently in the
codes (as was in the original donated code), the outputs will not exactly match those of these
early codes, but the result will still be valid. i.e. we do not expect future/better versions of
these codes to precisely match the outputs of these initial codes, but they should be similar
to acceptable levels of rounding.

As this publication and release of initial code was being finalized, Khurana et al. (2022)
released their current sheet model, and made their Fortran code available (see Khurana
(2022)). We hope the community translates this (and other current sheet models, such as
Wang et al. (2022)) into other computer languages to share, but they were simply too late
for consideration for this study.

9 Conclusions and Summary

We report here on an international effort to provide high-quality and robust programming
code for the Magnetospheres of the Outer Planets community. The code we have presented
calculates internal and external magnetic fields of Jupiter, for use in both scientific analysis
and mission planning.

The community codes have been placed on GitHub, and also archived and given DOIs
via Zenodo (https://zenodo.org/), as given in Table 5. There are multiple DOIs per GitHub
Repository: an ‘All Versions’ DOI that will always take the user to the latest version, and a
DOI per each GitHub release. While it is possible the GitHub repositories may be renamed,
move or even be deleted over the years, the code will always be available via Zenodo (which
also links back to the GitHub repository used, if not deleted) and the DOIs. The current
release (and DOIs) of the codes at the time of paper acceptance are shown in Table 6 (Wilson
et al. 2022; James et al. 2022b,a; Vogt et al. 2023; Provan et al. 2023).

The spherical harmonic and Con2020 codes are provided in four programming languages
(C++, IDL, MATLAB and Python) and is freely available on GitHub. The different codes
(of Table 6) provide the same outputs for the same inputs (rounding errors aside, currently
under 2x 107'% nT), we recommend that the user uses the programming language that they
are most familiar with.

In the paper we have described how to install and use the models, and the common
pitfalls associated with using them. To briefly summarize, inputs to the model should be in
System III (1965) right-handed co-ordinates (with units of planetary radii and, if spherical
co-ordinates, radians), as can be provided by the SPICE kernels. To calculate the internal
magnetic field for Jupiter, at this time, we suggest using the JRM33 magnetic field model to

@ Springer

https://zenodo.org/

15

Page 35 of 40

Jovian Magnetic Field Community Codes

*SUOTIR[NO[ED ()Z(OZUOD pue druouLey [eouayds y1oq op [[im sdageyoed bewrsitdnp pue bewrs3TdnlqTT oYL,

Senrendngoaford /1o 1dAdy/:sdny

a3eyoeq 1612289 0POURZ/18ZS 01 Serendngy/ sawrebew/wodqnyis//:sdny pPewIelTdnp ++D Jo 1addeim uoyhg
ogexyoed S£090€L 0POUAZ/18ZS 01 Sewoydn(qry/zsswepewy/wod qnus//sdny (pewreatdnlqr ++D
020zuodv9load/3101dAd//:sdny
a3eyoeq 0LL6S69°0pouaz/1875°01 020zuod/ueaordLqqes wooqnuyiis,:sdny uoy3lkd 0z0zuoD uoykg
S9[I] duo[epuel§ S191869°0pOUdZ/18TS 01 0T0TU0d/90ALSSLIEW/WOd qupIs//:sdny 0Z0cguo) aVILVIN
S9[I] duo[epuel§ S191869°0POUSZ/18TS 01 0T0TU0d/90ALSSLIEW /WO qupIs//:sdny 0Z0ocguo) 1ar
adAL, (SUOISIAA [IV) (SUOISIOA [IV) QuwieN a8en3ue]
apoD 10 xopuy o5eyoed uoyLd 10 qnHIID apo) apoD
$9po) 0TOTU0)
Serendno9lod 310 1dAdy/:sdny
a3eyoeg 1612289°0POUZ/187S 01 Senrendng/, sowreew/woo qnipis//sdny ppenzsatdnp ++)) Jo 1addeim uoypAg
ageyorq G£090€L 0POUZ/[8TS 01 Sewondn(qry/zsaweynew/woo qnyis//sdny gPewraltdnlqry ++D
SO[L] duofepuelg 6011189°0POUIZ/18ZS 01 HSd/dSV T-uos[iamfi/wooquuyns;/:sdny HSd uoyéd
S9[I] duo[epuel§ 6011189°0pouaz/18¢S 01 HSd/dSV T-uosimf1/wod-quypis;/:sdny HSd dVI1LVIN
SI[L] duo[epuel§ 6011189°0poUdZ/[8CS 01 HSd/dSV T-uosim[1/wod-quypis;/:sdny HSd 1dil
adA, (SUOISIOA [IV) (SUOISIA [IV) QwieN a8enSue
opoD 10d xopuy aSexoed uoylLd 10 qnHID apoD apo)

sopo)) druouLeH [eorayds

SOPOD AJIUNWIWIOD ASAY) PUY O} AIYA, § d|qel

pringer

N

https://github.com/rjwilson-LASP/PSH
https://github.com/rjwilson-LASP/PSH
https://github.com/rjwilson-LASP/PSH
https://github.com/mattkjames7/libjupitermag
https://github.com/mattkjames7/JupiterMag
https://pypi.org/project/JupiterMag
https://github.com/marissav06/con2020
https://github.com/marissav06/con2020
https://github.com/gabbyprovan/con2020
https://pypi.org/project/con2020
https://github.com/mattkjames7/libjupitermag
https://github.com/mattkjames7/JupiterMag
https://pypi.org/project/JupiterMag

15 Page 36 of 40 R.J. Wilson et al.
Table 6 Release version (and DOIs) at time of paper publication

Spherical Harmonic Codes

Code Code GitHub DOI

Language Name Release (of GitHub release)

IDL2 PSH v1.0.0 10.5281/zenodo.7327992
MATLAB? PSH v1.0.0 10.5281/zenodo.7327992
Python? PSH v1.0.0 10.5281/zenodo.7327992
C++0 libjupitermag v1.0.2 10.5281/zenodo.7310141
Python wrapper of C++° JupiterMag v1.0.10 10.5281/zenodo.7374607
Con2020 Codes

Code Code GitHub DOI

Language Name Release (of GitHub release)

pLd Con2020 v1.0.0 10.5281/zenodo.7586161
MATLABY Con2020 v1.0.0 10.5281/zenodo.7586161
Python® Con2020_Python vl.2.1 10.5281/zenodo.7589982
C++P libjupitermag v1.0.2 10.5281/zenodo.7310141
Python wrapper of C++¢ JupiterMag v1.0.10 10.5281/zenodo.7374607

aWilson et al. (2022).

bJames et al. (2022b).
CJames et al. (2022a).

dVogt et al. (2023).
®Provan et al. (2023).

order 13. For the external magnetodisc magnetic field we recommend running the ‘hybrid’
version of the Con2020 model, which uses the analytical equations everywhere except at
locations close to the disc, defined in current sheet cylindrical coordinates in units of R; by
the pseudocode:

IF ((|zes|l < 1.5D) AND (J|pes — Roll < 2)) THEN ‘Integral’ ELSE ‘Analytic’.

The Con2020 model uses Bessel functions for the integral method (and sometimes dur-
ing the hybrid method) which are computationally slow, which can add hours on to the
processing times, and therefore the integral method is only applied to the inner edge of the
Con2020 current sheet (the outer edge uses the analytical method even when ‘integral’ or
‘hybrid’ methods are chosen). We hope a future technique will be found by the community
that will find an efficient way of implementing Bessel functions so that future Con2020 code
just uses the integral method all the time, for both the inner and outer edges of the Con2020
current disk, without the need for the hybrid or analytical options.

While these codes could provide output for any input position (although our code has
an upper limit of 200 R,, to error if someone tries to input position in km), they were
generally only created using data to several R; (see Table 1) so should not be trusted for
large distances when other external field sources may become significant. We recommend
the Con2020 model only be used out to about 30 R; unless you can justify its use for larger
distances. Thus we recommend that any field line tracing is only carried out within 30 R,
using these models. We note that Connerney et al. (2022) used JRM33 order 18 for their
field line tracings rather than JRM33 order 13.

@ Springer

Jovian Magnetic Field Community Codes Page370f40 15

We suggest that users double check their inputs are really in a System III (1965) co-
ordinate system (and with 1 R, = 71,492 km), and not an earlier System III, or with po-
sitions from files generated during 2000 to 2011 when it is possible that SPICE was using
different values for their IAU_Jupiter system (in which case, regenerate your positions with
the latest SPICE using your record’s time stamps).

Should you wish to see the g and 4 Schmidt coefficients used per internal field code,
they are in the comments of the PSH codes, and within the source *.dat files within the
JupiterMag package.

If using these codes, please cite this paper and please be specific on how you used the
codes. If using the internal field codes for published work, please cite also the version num-
ber and DOI of the software (see Tables 5 and 6), and note which code language was used,
which model and to how many orders, e.g. “The MATLAB community code (version 1.0.0,
{citation to DOI}) was used for the JRM33 order 13 interior field model”. Similarly, if us-
ing the Con2020 model, please quote the code language, whether ran in integral, hybrid or
analytic mode, and if you used the default settings, or if not, what was changed, e.g. “The
IDL community code (version 1.0.0, {citation to DOI}) was used for the Con2020 external
field, ran in hybrid mode with the default parameters.” (or “...with default parameters except
i_rho_radial_current_MA was set to 0 MA.”)

We note here that even though these codes are for the jovian system, the codes can
easily be modified for other planets, or indeed moons and exo-planets, by changing the
model parameters. Future version releases may include magnetic field models for other plan-
ets/moons, or newer magnetic field models that do not exist at this time.

Finally, initial feedback on this coding effort has been very positive. If colleagues con-
tinue to value this work, we recommend that the community begins a debate as to how such
high-quality code can be developed, maintained, stored and can be made readily available
to all.

Acknowledgements We are grateful to Masafumi Imai for sharing his own IDL JRMO09 codes with the Juno
community and to Krishan Khurana for sharing code years ago, which both formed the seed of the codes
presented in this work. We thank Jack Connerney for his insight and useful discussions in clarifying equations
and constants used throughout. We thank Fran Bagenal for encouraging and herding the original community
efforts here. This was a community effort to write and test the codes, mostly done in spare time, hence largely
unfunded. Writing this paper and setting up/documenting the GitHubs and Zenodo repositories was too big
for spare time alone, hence partially funded. RTW was supported at the University of Colorado as a part of
NASA’s Juno mission supported by NASA through contact 699050X with the Southwest Research Institute.
MFV was supported by NASA grant SONSSC20K0559 through the New Frontiers Data Analysis Program.
GP and MKJ were funded by STFC grant ST/W00089X/1. AK was supported by an STFC Studentship.
Authors’ contributions All authors contributed equally to this work.

Availability of data and materials Not applicable.

Code Availability All codes are publicly available, GitHub URLSs and Zenodo DOIs are listed in Table 5.

Declarations

Ethics approval Not applicable.

Consent to participate Not applicable.

Consent for publication All authors gave consent to publish.

Competing Interests The authors declare no competing interests.

@ Springer

15 Page 38 of 40 R.J. Wilson et al.

References

Acton CH (1996) Ancillary data services of NASA’s Navigation and Ancillary Information Facility. Planet
Space Sci 44(1):65-70. https://doi.org/10.1016/0032-0633(95)00107-7

Acuiia MH, Ness NF (1976) The main magnetic field of Jupiter.] Geophys Res 81(16):2917. https://doi.org/
10.1029/JA081i016p02917

Acufia MH, Behannon KW, Connerney JEP (1983) Jupiter’s magnetic field and magnetosphere. In: Dessler
Al (ed) Physics of the Jovian magnetosphere. Cambridge University Press, Cambridge, pp 1-50

Alexeev II, Belenkaya ES (2005) Modeling of the Jovian magnetosphere. Ann Geophys 23(3):809-826.
https://doi.org/10.5194/angeo-23-809-2005

Allegrini F, Wilson RJ, Ebert RW et al (2019) Juno J/SW Jovian Auroral Distribution Calibrated V1.0, INO-
J/SW-JAD-3-CALIBRATED-V1.0. https://doi.org/10.17189/1519715

Bloxham J, Moore KM, Kulowski L et al (2022) Differential rotation in Jupiter’s interior revealed by simul-
taneous inversion for the magnetic field and zonal flux velocity. J] Geophys Res, Planets 127(5):e07138.
https://doi.org/10.1029/2021JE007138

Caudal G (1986) A self-consistent model of Jupiter’s magnetodisc including the effects of centrifugal force
and pressure. J Geophys Res 91(A4):4201-4222. https://doi.org/10.1029/JA0911A04p04201

Connerney JEP (1992) Doing more with Jupiter’s magnetic field. In: Planetary radio emissions III, pp 13-33

Connerney JEP (1993) Magnetic fields of the outer planets. J Geophys Res 98(E10):18,659-18,680. https://
doi.org/10.1029/93JE00980

Connerney JEP (2007) Planetary magnetism. In: Schubert G (ed) Treatise on geophysics, vol 10. Elsevier,
Amsterdam, pp 243-280. https://doi.org/10.1016/B978-044452748-6.00159-0

Connerney JEP (2017) Juno Mag Calibrated Data J V1.0, JNO-J-3-FGM-CAL-V1.0. https://doi.org/10.
17189/1519711

Connerney JEP, Acuia MH, Ness NF (1981) Modeling the Jovian current sheet and inner magnetosphere. J
Geophys Res 86(A10):8370-8384. https://doi.org/10.1029/JA086iA 10p08370

Connerney JEP, Acufia MH, Ness NF (1982) Voyager 1 assessment of Jupiter’s planetary magnetic field. J
Geophys Res 87(A5):3623-3627. https://doi.org/10.1029/JA087iA05p03623

Connerney JEP, Acuiia MH, Ness NF et al (1998) New models of Jupiter’s magnetic field constrained by the
Io flux tube footprint. J Geophys Res 103(A6):11,929-11,940. https://doi.org/10.1029/97JA03726

Connerney JEP, Benn M, Bjarno JB et al (2017) The Juno magnetic field investigation. Space Sci Rev
213(1-4):39-138. https://doi.org/10.1007/s11214-017-0334-z

Connerney JEP, Kotsiaros S, Oliversen RJ et al (2018) A new model of Jupiter’s magnetic field from Juno’s
first nine orbits. Geophys Res Lett 45(6):2590-2596. https://doi.org/10.1002/2018GL077312

Connerney JEP, Timmins S, Herceg M et al (2020) A Jovian magnetodisc model for the Juno era. J Geophys
Res Space Phys 125(10):e28138. https://doi.org/10.1029/2020JA028138

Connerney JEP, Timmins S, Oliversen RJ et al (2022) A new model of Jupiter’s magnetic field at the
completion of Juno’s prime mission. J Geophys Res, Planets 127(2):e07055. https://doi.org/10.1029/
2021JE007055

Edwards TM, Bunce EJ, Cowley SWH (2001) A note on the vector potential of Connerney et al.’s model of
the equatorial current sheet in Jupiter’s magnetosphere. Planet Space Sci 49(10-11):1115-1123. https://
doi.org/10.1016/S0032-0633(00)00164-1

Gledhill JA (1967) Magnetosphere of Jupiter. Nature 214(5084):155-156. https://doi.org/10.1038/214155a0

Harris CR, Millman KJ, van der Walt SJ et al (2020) Array programming with NumPy. Nature
585(7825):357-362. https://doi.org/10.1038/s41586-020-2649-2

Hess SLG, Bonfond B, Zarka P et al (2011) Model of the Jovian magnetic field topology constrained by the Io
auroral emissions. J Geophys Res Space Phys 116(A5):A05217. https://doi.org/10.1029/2010JA016262

Hess SLG, Bonfond B, Bagenal F et al (2017) A model of the Jovian internal field derived from in-situ and
auroral constraints. In: Fischer G, Mann G, Panchenko M et al (eds) Planetary radio emissions VIII,
pp 157-167. https://doi.org/10.1553/PRE8s157

Imai M (2016) Characteristics of Jovian Low-Frequency Radio Emissions during the Cassini and Voyager
Flyby of Jupiter. PhD thesis. https://doi.org/10.14989/doctor.k19504

James MK, Wilson RJ, Vogt MF et al (2022a) Jupitermag. Zenodo. https://doi.org/10.5281/zenodo.7374607

James MK, Wilson RJ, Vogt MF et al (2022b) libjupitermag. Zenodo. https://doi.org/10.5281/zenodo.
7310141

Khurana KK (1992) A generalized hinged-magnetodisc model of Jupiter’s nightside current sheet. J Geophys
Res 97(A5):6269-6276. https://doi.org/10.1029/92JA00169

Khurana KK (1997) Euler potential models of Jupiter’s magnetospheric field. J Geophys Res
102(A6):11,295-11,306. https://doi.org/10.1029/97JA00563

Khurana KK (2022) Khurana Jupiter Current Sheet Structure Model 2022. https://doi.org/10.5281/zenodo.
6555235

@ Springer

https://doi.org/10.1016/0032-0633(95)00107-7
https://doi.org/10.1029/JA081i016p02917
https://doi.org/10.1029/JA081i016p02917
https://doi.org/10.5194/angeo-23-809-2005
https://doi.org/10.17189/1519715
https://doi.org/10.1029/2021JE007138
https://doi.org/10.1029/JA091iA04p04201
https://doi.org/10.1029/93JE00980
https://doi.org/10.1029/93JE00980
https://doi.org/10.1016/B978-044452748-6.00159-0
https://doi.org/10.17189/1519711
https://doi.org/10.17189/1519711
https://doi.org/10.1029/JA086iA10p08370
https://doi.org/10.1029/JA087iA05p03623
https://doi.org/10.1029/97JA03726
https://doi.org/10.1007/s11214-017-0334-z
https://doi.org/10.1002/2018GL077312
https://doi.org/10.1029/2020JA028138
https://doi.org/10.1029/2021JE007055
https://doi.org/10.1029/2021JE007055
https://doi.org/10.1016/S0032-0633(00)00164-1
https://doi.org/10.1016/S0032-0633(00)00164-1
https://doi.org/10.1038/214155a0
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1029/2010JA016262
https://doi.org/10.1553/PRE8s157
https://doi.org/10.14989/doctor.k19504
https://doi.org/10.5281/zenodo.7374607
https://doi.org/10.5281/zenodo.7310141
https://doi.org/10.5281/zenodo.7310141
https://doi.org/10.1029/92JA00169
https://doi.org/10.1029/97JA00563
https://doi.org/10.5281/zenodo.6555235
https://doi.org/10.5281/zenodo.6555235

Jovian Magnetic Field Community Codes Page390f40 15

Khurana KK, Schwarzl HK (2005) Global structure of Jupiter’s magnetospheric current sheet. J Geophys Res
Space Phys 110(A7):A07227. https://doi.org/10.1029/2004JA010757

Khurana KK, Kivelson MG, Vasyliunas VM et al (2004) The configuration of Jupiter’s magnetosphere. In:
Bagenal F, Dowling TE, McKinnon WB (eds) Jupiter. The planet, satellites and magnetosphere. Cam-
bridge planetary science, vol 1. Cambridge University Press, Cambridge, pp 593-616

Khurana KK, Leinweber HK, Hospodarsky GB et al (2022) Radial and local time variations in the thickness
of Jupiter’s magnetospheric current sheet. J Geophys Res Space Phys 127(10):e2022JA030664. https://
doi.org/10.1029/2022JA030664

McComas DJ, Alexander N, Allegrini F et al (2017) The Jovian auroral distributions experiment (JADE)
on the Juno mission to Jupiter. Space Sci Rev 213(1-4):547-643. https://doi.org/10.1007/s11214-013-
9990-9

Ness NF, Acuna MH, Lepping RP et al (1979) Jupiter’s magnetic tail. Nature 280(5725):799-802. https://
doi.org/10.1038/2807992a0

Palmaerts B, Vogt MF, Krupp N et al (2017) Dawn-dusk asymmetries in Jupiter’s magnetosphere. In: Haaland
S, Runov A, Forsyth C (eds) Dawn-dusk asymmetries in planetary plasma environments, pp 307-322.
https://doi.org/10.1002/9781119216346.ch24

Pensionerov IA, Alexeev II, Belenkaya ES et al (2019) Model of Jupiter’s current sheet with a piecewise
current density. J Geophys Res Space Phys 124(3):1843—1854. https://doi.org/10.1029/2018JA026321

Provan G, Wilson RJ, Vogt MF et al (2023) con2020. Zenodo. https://doi.org/10.5281/zenodo.7589982RL

Ridley VA, Holme R (2016) Modeling the Jovian magnetic field and its secular variation using all avail-
able magnetic field observations. J Geophys Res, Planets 121(3):309-337. https://doi.org/10.1002/
2015JE004951

Russell CT, Dougherty MK (2010) Magnetic fields of the outer planets. Space Sci Rev 152(1-4):251-269.
https://doi.org/10.1007/s11214-009-9621-7

Sharan S, Langlais B, Amit H et al (2022) The internal structure and dynamics of Jupiter unveiled by a high-
resolution magnetic field and secular variation model. Geophys Res Lett 49(15):¢98839. https://doi.org/
10.1029/2022GL098839

Smith EJ, Davis JL, Jones DE (1976) Jupiter’s magnetic field and magnetosphere. In: Gehrels T, Matthews
S (eds) TAU collog. 30: Jupiter: studies of the interior, atmosphere, magnetosphere and satellites,
pp 788-829

Vogt MF, Bunce EJ, Nichols JD et al (2017) Long-term variability of Jupiter’s magnetodisk and impli-
cations for the aurora. J Geophys Res Space Phys 122(12):12,090-12,110. https://doi.org/10.1002/
2017JA024066

Vogt MF, Bagenal F, Bolton SJ (2022) Magnetic field conditions upstream of Ganymede. J Geophys Res
Space Phys 127(12):e2022JA030497. https://doi.org/10.1029/2022JA030497

Vogt MF, Wilson RJ, Provan G et al (2023) Con2020 - Current Sheet Model Code. Zenodo. https://doi.org/
10.5281/zenodo.7586161

Wang Jz, Huo Zx, Zhang L (2021) A modular model of Jupiter’s magnetospheric magnetic field based on
Juno data. J Geophys Res Space Phys 126(5):29085. https://doi.org/10.1029/2020JA029085

Wang Jz, Huo Zx, Zhang L (2022) An empirical model of the current sheet in Jupiter’s magnetosphere. Planet
Space Sci 211:105395. https://doi.org/10.1016/j.pss.2021.105395

Wilson RJ, Vogt MF, Provan G et al (2022) PSH: Planetary spherical harmonics community code. Zenodo.
https://doi.org/10.5281/zenodo.7327992

Winch DE, Ivers DJ, Turner JPR et al (2005) Geomagnetism and Schmidt quasi-normalization. Geophys J
Int 160(2):487-504. https://doi.org/10.1111/j.1365-246X.2004.02472.x

Yu ZJ, Leinweber HK, Russell CT (2010) Galileo constraints on the secular variation of the Jovian magnetic
field. J Geophys Res, Planets 115(E3):E03002. https://doi.org/10.1029/2009JE003492

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Authors and Affiliations

R.J. Wilson'@® - M.F. Vogt?>@® - G. Provan3@®) - A. Kamran3(® - M.K. James3(®) -
M. Brennan*@) - S.W.H. Cowley?

B< R.J. Wilson
rob.wilson@lasp.colorado.edu

@ Springer

https://doi.org/10.1029/2004JA010757
https://doi.org/10.1029/2022JA030664
https://doi.org/10.1029/2022JA030664
https://doi.org/10.1007/s11214-013-9990-9
https://doi.org/10.1007/s11214-013-9990-9
https://doi.org/10.1038/280799a0
https://doi.org/10.1038/280799a0
https://doi.org/10.1002/9781119216346.ch24
https://doi.org/10.1029/2018JA026321
https://doi.org/10.5281/zenodo.7589982
https://doi.org/10.1002/2015JE004951
https://doi.org/10.1002/2015JE004951
https://doi.org/10.1007/s11214-009-9621-7
https://doi.org/10.1029/2022GL098839
https://doi.org/10.1029/2022GL098839
https://doi.org/10.1002/2017JA024066
https://doi.org/10.1002/2017JA024066
https://doi.org/10.1029/2022JA030497
https://doi.org/10.5281/zenodo.7586161
https://doi.org/10.5281/zenodo.7586161
https://doi.org/10.1029/2020JA029085
https://doi.org/10.1016/j.pss.2021.105395
https://doi.org/10.5281/zenodo.7327992
https://doi.org/10.1111/j.1365-246X.2004.02472.x
https://doi.org/10.1029/2009JE003492
http://orcid.org/0000-0001-9276-2368
http://orcid.org/0000-0003-4885-8615
http://orcid.org/0000-0001-7442-4154
http://orcid.org/0000-0003-3736-9680
http://orcid.org/0000-0002-5699-6121
http://orcid.org/0000-0003-0796-4251
http://orcid.org/0000-0002-4041-0034
mailto:rob.wilson@lasp.colorado.edu

15

Page 40 of 40 R.J. Wilson et al.

Laboratory for Atmospheric and Space Physics, University Of Colorado Boulder, Boulder, CO,
USA

Center for Space Physics, Boston University, Boston, MA, USA
School of Physics and Astronomy, University of Leicester, Leicester, UK

NASA Jet Propulsion Laboratory, Pasadena, CA, USA

@ Springer

	Internal and External Jovian Magnetic Fields: Community Code to Serve the Magnetospheres of the Outer Planets Community
	Abstract
	Introduction
	Standards
	Spherical Harmonic Internal Planetary B-Field
	Spherical Harmonics Basic Equations
	Pitfalls of Spherical Harmonic Models

	Jupiter Internal Magnetic Field Models
	O6
	VIP4 and VIT4
	VIPAL
	ISaAC
	JRM09
	JRM33
	Time-Dependent Models Excluded from Our Coding Work

	The JupiterMag and libjupitermag Packages for Spherical Harmonics
	Compiling and Installing libjupitermag
	Installing JupiterMag
	Examples

	The PSH Codes for Spherical Harmonics
	Notes
	Install
	Examples

	Computational Speed Tests

	External Magnetic Field Models
	Con2020: The Connerney et al. (1981, 2020) Current Sheet Model for Jupiter’s External Magnetic Field
	Con2020 Equations
	Poloidal Field - Integral Solution
	Poloidal Field - Analytic Approximation
	Accounting for the Finite Nature of the Current Sheet
	Azimuthal Field

	Con2020 Python and C++ Code: Con2020_Python, JupiterMag and libjupitermag
	Examples

	Con2020 Codes
	Notes
	Install
	Examples

	Computational Speed Tests

	Examples of Using Both the Internal and Con2020 Models
	Field Line Tracing
	libjupitermag and JupiterMag Codes

	Where to Locate Input Positions to Use in These Codes
	Future Work and Future Differences
	Conclusions and Summary
	Acknowledgements
	References
	Authors and Affiliations

