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Materials and Methods 
 
Alignment of datasets 

Human STG (H5), human IFG (H6), macaque (STG) and mouse (A2) SBEM datasets 
were aligned with Voxelytics (scalable minds, Postdam, Germany), which implements a least-
squares optimization of SIFT feature matches. It minimizes the match distances for neighboring 
tiles in the 3D tile grid in multiple steps, first using translation only, then one affine 
transformation per tile, and finally fine-grained mesh transforms. It also includes several 
heuristics to exclude false matches, including RANSAC optimization (88).  
 
Volumetric model of synapse and axon types 

The model used to obtain classification criteria for inhibitory vs. excitatory axons 
(Figures 4B-E) was defined as follows. To analyze synaptic inputs onto spiny and smooth 
dendrites (Fig. 4C-E, 5I-K), it was assumed that the cortical volume contains two distinct axon 
populations: excitatory axons and inhibitory axons. The two axon populations were assumed 
to differ in prevalence and potentially also in synapse densities. As a result, it was assumed that 
the fraction of excitatory synapses in the cortical neuropil was 𝑝!"#. 
Furthermore, it was assumed that excitatory and inhibitory axons differed in the fraction of 
synapses established onto spine heads (of spiny dendrites), onto shafts of spiny dendrites, and 
onto shafts of smooth dendrites. 

The probabilities of an inhibitory axon to innervate spine heads (𝑝$%&
'($%!), shafts of spiny 

dendrites (𝑝$%&
'($%)	'&+,-), or shafts of smooth dendrites (𝑝$%&

'.//-&	'&+,-) were assumed to be 
constant across interneurons and constant along individual interneuron axons. Additionally, the 
targets of synapses along inhibitory axons were assumed to be independent. Together, these 
assumptions allowed inhibitory axons to be modeled by a multinomial distribution. 

For excitatory axons, it was observed that the prevalence of postsynaptic target changes 
with distance to soma (Fig. 3H,I). To account for this, excitatory axons were modeled by a 
Dirichlet-multinomial distribution with parameters  𝛼!"# =
$𝛼!"#

'($%! , 𝛼!"#
'($%)	'&+,- , 𝛼!"#

'.//-&	'&+,-&. 

Data and parameter inference 
To analyze the neuropil composition, five types of measurements were taken: 

1. In boxes of cortical neuropil (average total volume per dataset: 375μm3 for mouse, 
1200μm3 for primate), the number of synapses onto spine heads and the number of 
synapses onto dendritic shafts were measured (average total number of synapses per 
dataset: 338 for mouse, 322.8 for primate). For macaque S1 and human STG, the shaft 
synapses were further subdivided into shaft synapses onto spiny dendrites and into shaft 
synapses onto smooth dendrites. 

2. Along distal segments of spiny dendrites (minimum distance from soma: 30μm for 
mouse, 45μm for macaque, 80μm for human), the number of synapses onto spine heads 
and the number of synapses onto dendritic shafts were measured (average number of 
dendrites and of synapses per dendrite: 9.2 and 23.3 per mouse dataset, 21.2 and 17.1 
per primate datasets). 

3. Random spine synapses onto distal pyramidal neuron dendrites were used as “seeds” 
for the local reconstruction of the presynaptic axon and its postsynaptic targets (average 
number of axons and of synapses per axon: 13.8 and 8.4 per mouse dataset, 21.8 and 
6.9 per primate dataset). 



4. As in 3, but with shaft synapses onto distal spiny dendrites as (average number of axons 
and of synapses per axon: 16.8 and 7.7 per mouse dataset, 34.8 and 8.9 per primate 
dataset). 

5. As in 3, but with shaft synapses onto distal dendrites of inhibitory interneurons 
(minimum distance from soma: 30 μm) as seeds (average number of axons and of 
synapses per axon: 47 and 8.1 per mouse dataset, 35 and 6.3 per primate dataset). 

Synapses onto other postsynaptic targets (e.g., spine necks) were ignored. From these data, the 
maximum likelihood estimates of the parameters 𝑝!"#, 𝛼!"#

'($%!, 𝛼!"#
'($%)	'&+,-, 𝛼!"#

'.//-&	'&+,-, 
𝑝$%&
'($%!, 𝑝$%&

'($%)	'&+,-, and 𝑝$%&
'.//-&	'&+,- were derived. The likelihood was given by: 

ℒ = ℒ0/1. × ℒ'(.		3!%3. × ℒ'($%!4'!!3!3	+". × ℒ'($%)	'&+,-4'!!3!3	+". × ℒ'.//-&	'&+,-4'!!3!3	+". 
 

ℒ0/1 = ) Binomial$𝑉5
'($%!	2𝑉5+11	, 𝑝0/1

'($%!&
6!"#$%

578

, 

where	𝑝0/1
'($%! = 𝑝!"#𝑝!"#

'($%! + (1 − 𝑝!"#)𝑝$%&
'($%! 	

and	𝑝!"#- = 𝛼!"#- /‖𝜶𝒆𝒙𝒄‖8 for all targets. 
 

ℒ'($%)	3!%3. = ) Binomial$𝐷3
'($%!	2𝐷3+11 , 𝑝'($%)	3!%3
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where	𝑝'($%)	3!%3
'($%! =

𝑝!"#𝑝!"#
'($%! + (1 − 𝑝!"#)𝑝$%&

'($%!

𝑝!"#$𝑝!"#
'($%! + 𝑝!"#

'($%)	'&+,-& + (1 − 𝑝!"#)$𝑝$%&
'($%! + 𝑝$%&

'($%)	'&+,-&
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'.//-&	'&+,-   

To compute the maximum likelihood parameter estimates, the fmincon function of MATLAB 
(R2017b) was used to minimize the negative log-likelihood. 𝑝$%&

'.//-&	'&+,- was defined as 1 −
𝑝$%&
'($%! − 𝑝$%&

'($%)	'&+,-. The parameters were constrained as follows: 0.5 < 𝑝!"# < 1, 0 <
𝑝$%&
'($%! < 0.5,	0 < 𝑝$%&

'($%)	'&+,- < 1, 𝑝$%&
'($%! + 𝑝$%&

'($%)	'&+,- < 1, 0 < 𝛼!"#-  for all targets, and 
𝛼!"#
'($%)	'&+,- + 𝛼!"#

'.//-&	'&+,- < 𝛼!"#
'($%!. The parameters were initialized to	𝑝!"# = 90%, 

𝑝$%&
'($%! = 20%, 𝑝$%&

'($%)	'&+,- = 40%, 𝛼!"#
'($%! = 9, 𝛼!"#

'($%)	'&+,- = 1.5,	𝛼!"#
'.//-&	'&+,- = 1.5.  

The expected fraction of synapses onto spiny dendrites that originate from inhibitory axons is 

𝐼 = 	
(1 − 𝑝!"#)(𝑝$%&

'($%! + 𝑝$%&
'($%)	'&+,-)

(1 − 𝑝!"#)$𝑝$%&
'($%! + 𝑝$%&

'($%)	'&+,-& + 𝑝!"#$𝑝!"#
'($%! + 𝑝!"#

'($%)	'&+,-&
. 

For the quantification of uncertainty and for statistical testing, bootstrap sampling was used 
(99): The measurements for each of the five types of input data were resampled with 
replacement while keeping the number of measurements unchanged. These data were then used 
for inference of maximum likelihood parameter estimates and of the expected inhibitory 
synaptic input fractions for spiny and smooth dendrites. This process was repeated n=1000 
times per dataset. 
To predict how a change in the proportion of excitatory and inhibitory neurons affects 𝐼, the 
following model was used: Let 𝑓$ denote the fraction of (inhibitory) interneurons. It follows 
that the expected synapse contribution of interneurons relative to excitatory neurons is 𝑐 =
[(1 − 𝑓$)𝐼]/[𝑓$(1 − 𝐼)]. Assuming that the neuronal synapse contributions remain constant, a 
change in the fraction of inhibitory neurons to 𝑓_$ results in a predicted inhibitory synaptic input 
fraction of 𝐼_ = 𝑐𝑓_$/`𝑐𝑓_$ + 1(1 − 𝑓_$)a. 
For statistical testing, 𝐼 was computed as the average inhibitory input synapse fraction of spiny 
dendrites across all mouse datasets. 𝑓$ and 𝑓_$ were obtained by bootstrap sampling the pooled 
excitatory neuron and interneuron counts across all mouse and human datasets, respectively. 𝐼_ 
was then compared against the average inhibitory input synapse fraction of spiny dendrites 
across all human datasets (𝐼&B.+%). To compute a p-value, this comparison was repeated across 
1000 bootstrap samples. Specifically, the p-value was calculated as the fraction of bootstrap 
samples in which 𝐼&B.+% ≥ 𝐼_.  
To validate the initial parameters of the likelihood maximization procedure, the following 
approach was used. Model parameters were randomly sampled: 𝑝!"# uniformly between 0 and 
1; 𝑝$%&

'($%!, 𝑝$%&
'($%)	'&+,-, and 𝑝$%&

'.//-&	'&+,- uniformly from the 2-simplex; 𝑝!"#
'($%!, 𝑝!"#

'($%)	'&+,-, 
and 𝑝!"#

'.//-&	'&+,- uniformly from the 2-simplex, and 𝛼!"#-/-+1 = 10C with 𝑧 uniformly between 
-1 and +2. 𝛼!"#

-+DE!- was set to 𝛼!"#-/-+1𝑝!"#
-+DE!- for all targets. For each dataset, 10,000 sets of 

random model parameters were generated this way and evaluated in terms of the likelihood of 
the model input data. The random model parameters with maximum likelihood were then used 
as initial parameter values for the likelihood maximization procedure (as above). For all nine 



datasets, the inhibitory synaptic input fractions for spiny and smooth dendrites inferred this 
way were identical (≥3 significant digits) to the values inferred using fixed initial model 
parameters. 
To account for the confusion of excitatory and inhibitory synapses in macaque and human, we 
considered the extreme case of true inhibitory synapses getting misclassified as excitatory. This 
would result in the strongest under-estimation of I/(I+E) in primates. Let X = I/(I+E) denote 
the true inhibitory synapse fraction. Assuming that a fraction C=8.4% of true inhibitory 
synapses gets misclassified as excitatory (see Fig. S2), the measured inhibitory synapse fraction 
is (1-C)×I / [(1-C)×I + (C×I + E)] = (1-C)×I/[I+E] = (1-C)×X. Thus, the upper bound on the 
true value of I/(I+E) is Y / (1-C). For statistical testing, the bootstrap samples of the inhibitory 
synapse fractions for macaque and human were corrected as above before comparison against 
the predictions from mouse. We found that even the upper bound on I/(I+E) for macaque and 
human was significantly lower than the prediction from mouse (15.0%±1.5% vs. 24.9%±3.2%; 
p<0.001). 
 
Connectivity estimates 

The connectivity within and across excitatory neuron (ExN) and inhibitory interneuron 
(IN) populations (Suppl. Fig. 2F) was computed as follows: 𝑝F"6→F"6 = 𝑝!"#$𝑝!"#

'($%! +
𝑝!"#
'($%)	'&+,-&, 𝑝F"6→H6 = 𝑝!"#𝑝!"#

'.//-&	'&+,-, 𝑝H6→F"6 = (1 − 𝑝!"#)$𝑝$%&
'($%! + 𝑝$%&

'($%)	'&+,-&, 
and 𝑝H6→H6 = (1 − 𝑝!"#)𝑝$%&

'.//-&	'&+,-. For the illustration of inhibitory connectivity in Figure 
6C, IN→ExN connections were established with probability 𝑘𝑝H6→F"6/[𝑓$(1 − 𝑓$)] and 
IN→IN connections with probability 𝑘𝑝H6→H6/𝑓$I, where 𝑓$ is the interneuron fraction and 𝑘 
is a constant, such that each IN innervates on average 30% of all other neurons. Notably, it was 
assumed that the average number of synapses in IN→ExN and IN→IN connections is equal. 
 
Dense reconstruction 

For the analyses reported in Figures 3D-F, 5G, the following methods were employed. 
3D EM Datasets were processed using voxelytics (Scalable minds, Potsdam, Germany, 
developed in collaboration with MPI Brain Research, Dept. of Connectomics).  Briefly, a 
convolutional neural network (CNN; modified from (54)) was used to infer voxel-wise 
affinities from which an initial volume segmentation was generated by seeded watershed 
transform. For the reconstruction of neurites, volume segments were grouped into agglomerates 
by median-affinity-based hierarchical agglomeration with additional constraints to reduce the 
rate of merge errors. These constraints include: i) neurite type-based restrictions to avoid merge 
errors between, for example, axons and dendrites; ii) a restriction to avoid merge errors 
between cells whose cell body is located within the image volume; and iii) agglomerate 
volume-based restrictions. Neurite types were inferred using a CNN for voxel-wise semantic 
segmentation of axons, dendrites, spine heads, astrocytes, myelin, and other objects. For 
connectome inference, a CNN for semantic segmentation of synapses, vesicle clouds, and 
mitochondria was used in combination with a decision tree forest that was trained to classify 
agglomerate-to-agglomerate contacts as synaptic or non-synaptic based on summary statistics 
of the CNN outputs. The CNNs and decision tree forests were trained on previously published 
training data from layer 4 of mouse S1 (49) and, optionally, on additional dataset-specific 
training data. 
 

To separate axonal, dendritic, and other (e.g., glial) agglomerates, the volume-weighted 
average of voxel-wise neurite type probabilities were computed. Agglomerates were classified 
as axonal or dendritic if they exceeded dataset-specific axon and dendrite probability thresholds 
(see below), respectively. Automatically detected synapses were classified into spine synapses, 



shaft synapses, and other synapses based on the average type probabilities at the postsynaptic 
site. Spine synapses were further sub-classified into spine synapses into singly vs. multiply 
innervated spine heads. For subsequent analyses, only spine synapses onto singly innervated 
spine heads and shaft synapses with presynaptic axon and postsynaptic dendrite agglomerates 
were considered. 
 
Estimation of error rates 

To estimate error rates of the automated reconstructions and to optimize analysis 
parameters, ground truth annotations were generated for each dataset. The ground truth 
consisted of synapse annotations in neuropil volumes of (5 μm)3 for mouse, (7 μm)3 for 
macaque, and (7 μm)3 for human. Synapses were classified into spine synapses, shaft synapses, 
and other synapses. The postsynaptic dendrites were classified as either spiny or smooth. For 
spine synapses, the corresponding dendrite was identified. 
The following parameters and error rates were estimated from these annotations: 

• Minimum axon probability for axon agglomerates (manually optimized for high recall 
based on the axon probability distribution across agglomerates presynaptic to ground 
truth synapse annotations) 

• Minimum dendrite probability for dendrite agglomerates (as for axons) 
• Average automated spine synapse fractions for dendrite agglomerates corresponding 

to spiny (𝑝'($%)
'($%!) and smooth dendrites (𝑝'.//-&

'($%! ), respectively 
• Precision and recall of automated spine synapse detection and confusion rate of true 

spine synapses as shaft synapses 
• Precision and recall of automated shaft synapse detection and confusion rate of true 

shaft synapses as spine synapses 

 
Inference of axonal spine targeting probability 

To classify axon agglomerates as excitatory or inhibitory, the model of excitatory and 
inhibitory axons derived from manual annotations was reused (see above). Specifically, each 
axon agglomerate was classified based on its spine targeting probability. First, the number of 
automatically detected spine (𝑁'($%!) and shaft synapses (𝑁'&+,-) was computed. To account 
for the error rates of automated synapse detection, the normalized likelihood ℒ+"/%

'($%!(𝑝'($%!) =
P(𝑁'($%! , 𝑁'&+,-|𝑝'($%!) was estimated was follows: 
For a given 𝑝'($%!, the effect of imperfect synapse detection was simulated by a forward model 
for all axon configurations 𝑛'($%! 	~	Binomial(𝑛-/-+1 , 𝑝'($%!) with 𝑛-/-+1 ∈ [0,100]. The un-
normalized likelihood of 𝑝'($%! was then approximated by the probability mass corresponding 
to the combination of 𝑁'($%! and 𝑁'&+,- after the forward model. The forward model was 
evaluated for 𝑝'($%! = 0%, 1%,… ,100%. For details, see MATLAB function 
+HNHP/+Auto/+inferSpineSynapseFraction.m. 

Given the likelihood P(𝑁'($%! , 𝑁'&+,-|𝑝'($%!) and the model of excitatory and 
inhibitory neurons, the posterior probability of being excitatory or inhibitory was computed for 
each axon agglomerate. For subsequent analyses, inhibitory axon agglomerates were defined 
as axon agglomerates with a posterior probability of being inhibitory above 50%. 
 
Inference of smooth dendrite targeting probability for inhibitory axons 

To compute the smooth dendrite targeting probability of inhibitory axons, spiny and 
smooth dendrites had to be separated. For a dendrite with 𝑁'($%! input synapses onto spine 



heads and 𝑁'&+,- input synapses onto the dendritic shaft, the probability of being a smooth 
dendrite was computed by: 
𝑝3!%3
'($%)

=
Binomial(𝑁'($%!|𝑁'($%! + 𝑁'&+,- , 𝑝'($%)

'($%!)

Binomial(𝑁'($%!|𝑁'($%! + 𝑁'&+,- , 𝑝'($%)
'($%!) +	Binomial(𝑁'($%!|𝑁'($%! + 𝑁'&+,- , 𝑝'.//-&

'($%! )
 

The smooth dendrite targeting probability of inhibitory axons was then computed by: 

𝑝+"/%'.//-& = 1 − arg	max
(-#"(
%&'()

l ℒ+"/%
'($%!$𝑝+"/%

'($%)𝑝+"/%
'($%!|'($%)& ) `�̂�+"/%

'($%)𝑝3!%3
'($%) + (1

(/'-')%+(-$#
3!%3D$-!'(-#"(

%&'($|%&'()

− �̂�+"/%
'($%))(1 − 𝑝3!%3

'($%))a 
where 𝑝+"/%

'($%) is the true probability of targeting spiny dendrites, 𝑝+"/%
'($%!|'($%) is the true spine 

synapse fraction among synapses onto spiny dendrites, and �̂�+"/%
'($%) is the expected probability 

of targeting spiny dendrites when accounting for the error rates of automated spine and shaft 
synapse detection. Notably, the transformation of the former two parameters into the latter is 
based on the assumption that smooth dendrites are devoid of spines. For details, see MATLAB 
script +HNHP/+Auto/runAnalysis.m. 
 
 
  



Supplementary Text 
 
Possible effect of temperature on stability of dendritic spines 
 

Reports about a temperature-dependent change in spine rates, shown for slices of 
mammalian hippocampus (73), could be of concern as a potential contributor to the observed 
low spine rates in human cortex (Fig. 2E). While our tissue was immersed in cooled liquid, this 
liquid was fixative in our case, which would quickly halt any additional modifications of the 
neuropil; in fact, we saw no evidence of ultrastructural change in macaque and H5 that has 
been described as a corollary of temperature-induced tissue alterations (73). Sample H6 showed 
occasional dendrites with swellings (beady morphology), which were excluded from analyses. 
Control experiments using cold fixative on mouse samples did not yield substantially altered 
spine rates (1.2±0.4 per µm dendrite in mouse data fixed at 4°C, n=4). Together, we have to 
conclude that our finding about the synaptic input to human cortical pyramidal cells should be 
taken to treat reports of extremely high spine rates in human (44,46) with caution (see also 29, 
74, 75, 76)), even if some of the differences are attributable to variations between cortical areas 
in human and primates (46, 75, 77), but similar variability was not reported in mouse (55). 
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 We thank T. Garbowski and D. Lechner at Zeiss team for help with setting up 
multiSEM; M. Fahland and N. Prager at Fraunhofer FEP, Dresden for collaboration on Kapton 
tape; R. Schalek and J. Lichtman at Harvard University for initial advice on setting up ATUM; 
G. Tushev for ATUM software; and A. Kotowicz and T. Zeller for initial setup of data transfer 
line from multiSEM. 
  



 
Fig. S1: Synaptic input to pyramidal cells at their soma, axon initial segment and 
proximal dendrites. (A) Example reconstructions of pyramidal cell bodies and axon initial 
segments (AIS) from mouse A2 and Human STG datasets. All input synapses to soma and AIS 
were manually annotated (green). Note sparsity of somatic input synapses in human. (B,C) 
Quantification of total input synapses onto soma and AIS per neuron in mouse, macaque and 
human. Note 2.9-fold drop of somatic input from mouse to macaque and human (104 ± 17 
input synapses, N=17 somata in mouse to 36 ± 9 input synapses, N=22 somata in macaque and 
human, mean ± s.d., p-value<0.001, Kolmogorov-Smirnov test, B), while input to AIS is only 
slightly enhanced (40% increase, 29 ± 6 input synapses, N=15 AIS in mouse vs. 42 ± 23 input 
synapses, N=29 AIS in macaque and human, mean ± s.d., p-value<0.01, Kolmogorov-Smirnov 
test, C). (D-F) Analysis of proximal dendritic input: definition of proximal dendrites as those 
with reduced input spine density. Input spine density increases to distal levels within about 
30µm in mouse and about 80µm in human (F), which were used as thresholds for definition of 
proximal dendrites in G,H. (G,H) Quantification of total inhibitory synaptic input to proximal 
dendrites using total dendritic path length per neuron of these compartments (123 ± 30 µm for 
proximal basal, N=10 cells and 40 ± 14 µm, N=7 cells for proximal apical in mouse and 395 ± 
60 µm, N=17 cells, and 121 ± 66 µm, N=21 cells in human, respectively, mean ± s.d) and shaft 
input synapse densities. In the proximal dendrite, 95% and 75% of shaft inputs were inhibitory 
in mouse and human, respectively. (I) Summary of inhibitory synaptic input to the non-distal 



input domains AIS, Soma, proximal dendrites. Note that total inhibitory input in these domains 
is largely constant from mouse to human, with a potential shift of synapses from soma to AIS 
and proximal dendrites. Notably, there was no sign of an increased inhibition in Human in these 
input compartments (excluding  compensation of the finding of largely similar distal i/(i+e) in 
mouse, macaque and human, Fig. 4E). All data based on expert reconstructions. 
 
  



 
 
Fig. S2: Validation of excitatory and inhibitory axon definition, and network expansion. 
(A) Example pyramidal neuron axon from human STG with excitatory output synapses onto 
dendritic spines of excitatory neurons (ExN) (magenta circles), onto dendritic shafts of 
excitatory neurons (black circles), and onto dendritic shafts of interneurons (IN) (black 



squares). Right: Simulation of local axon reconstruction seeded from a shaft synapse onto an 
IN dendrite (black square with outline). The local axon reconstruction spans the seed synapse 
and the nine synapses closest to it (2 onto dendritic spines, 7 onto dendritic shafts). The inferred 
probability of the local axon reconstruction being part of an excitatory axon is 99.4%. (B) 
Axonogram of axon in (A) with each output synapse colored by inferred excitatory probability 
of the corresponding simulated local reconstruction. Note that 99 out of the 101 excitatory 
synapses have an inferred excitatory probability >50%. (C) Example bipolar interneuron axon 
from human STG with inhibitory output synapses (symbols and scale bar as in (A)). (D) 
Axonogram of axon in (C). All 34 inhibitory synapses have an inferred excitatory probability 
<50%. (E) Histogram of inferred excitatory probability for synapses from ExN and IN axons 
from mouse, and macaque and human. In mouse, all 33 excitatory and 167 inhibitory synapses 
were correctly classified. In macaque and human, 93.1% of the 1,239 excitatory and 91.6% of 
the 356 inhibitory synapses were correctly classified. All data based on expert reconstructions. 
(F) Connectivity estimates from the model for mouse and macaque and human (see Suppl. 
Methods “Connectivity estimates”). ExN postsynaptically comprises shaft and spine targets. 
ExN shaft connectivity (gray shading) reported separately in rightmost column, this is part of 
the ExN column. Note 8.6-fold expansion of IN-to-IN connectivity, and 14.4-fold expansion 
of ExN connectivity at shaft synapses. 
 
  



Fig. S3: Spine-targeting interneurons. (A) Example reconstructions of bipolar interneurons 
with output synapses onto spines, which could resemble double bouquet INs (61-63). (B) 
Quantification of spine targeting by IN axons. Note spine targeting is almost exclusively onto 
spines that are doubly innervated, therefore not confounding the classification of axons based 
on single-spine innervation (cf. Fig. 4). All data based on expert reconstructions. 
 
  



Fig. S4: Dendritic path length estimates for human pyramidal cells. (A) Example 
reconstruction of a dendritic tree of a L3 pyramidal cell (PC) in Human STG dataset. Dendrites 
were traced either until the end of the dataset (EoDs) or until an actual ending (true). (B) 
Example quantification of measured dendrite path lengths from the L3 PC shown in (A) to their 



endings eods, true) and their branchpoints. Plotted separately for each compartment (apical, 
oblique, basal). Path lengths were either measured from the main bifurcation (apical), from the 
root of the apical trunk (oblique) or from the soma (basal). (C) Quantification of measured 
dendrite path lengths as shown as in (B) based on all PC reconstructions in Human STG 
datasets (H5, H5_ext). For the basal, oblique and apical tuft compartment N=226, 211, 167 
dendrites were analyzed, of which N=25, 28 and 32 dendrites with true endings were found 
(N=21 cells). No EoDS ending exceeded true ending path lengths, which minimized the chance 
of missing longer dendrites leaving the dataset. Note the early branching especially for the 
basal compartment. (D) Reconstructions of dendritic trees of L2/3 PCs in Human STG datasets 
(H5 and H5_ext) with either all compartments (first and second row, n=15) or only apical 
compartment (below, n=6). Note that due to the smaller depth in z for the H5 dataset the PC 
reconstructions appear sparser than in H5_ext. Scale bars 50 µm. All data based on expert 
reconstructions. 
 




