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SUMMARY

Associative memory formation and recall in the fruit fly Drosophila melanogaster is subserved by the mush-
room body (MB). Upon arrival in the MB, sensory information undergoes a profound transformation from
broadly tuned and stereotyped odorant responses in the olfactory projection neuron (PN) layer to narrowly
tuned and nonstereotyped responses in the Kenyon cells (KCs). Theory and experiment suggest that this
transformation is implemented by random connectivity between KCs and PNs. However, this hypothesis
has been challenging to test, given the difficulty of mapping synaptic connections between large numbers
of brain-spanning neurons. Here, we used a recent whole-brain electron microscopy volume of the adult fruit
fly to map PN-to-KC connectivity at synaptic resolution. The PN-KC connectome revealed unexpected struc-
ture, with preponderantly food-responsive PN types converging at above-chance levels on downstream KCs.
Axons of the overconvergent PN types tended to arborize near one another in the MB main calyx, making
local KC dendrites more likely to receive input from those types. Overconvergent PN types preferentially
co-arborize and connect with dendrites of «ff and o'f’ KC subtypes. Computational simulation of the
observed network showed degraded discrimination performance compared with a random network, except
when all signal flowed through the overconvergent, primarily food-responsive PN types. Additional theory
and experiment will be needed to fully characterize the impact of the observed non-random network structure
on associative memory formation and recall.

INTRODUCTION

The cellular basis for associative memory formation and recall re-
mains a central mystery of neurobiology. Connectomics, in which
synaptic connections are traced between large numbers of neu-
rons to map circuit wiring diagrams, ' offers anew method by which
to explore the topic. The adult fruit fly Drosophila melanogaster is
arguably an ideal model system for a connectomics-based inves-
tigation of the neuronal networks underpinning learning and mem-
ory. Its brain is small enough to have been completely imaged at
synaptic resolution by electron microscopy (EM);? it is behaviorally
sophisticated;*© and the stereotyped morphology and physiology
of its cell types allow ready integration of experimental results
across individuals.”'® Further, each cell type normally consists of
one or a handful of neurons,®™"" which may be individually ad-
dressed using genetic tools, allowing circuits to be functionally
imaged and perturbed in a highly specific fashion.'>®
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The exception to this norm is the mushroom body (MB; Fig-
ure 1A), a bilaterally symmetric structure for associative memory
formation and recall.’®'® The MB contains about 2,200
intrinsic neurons, called Kenyon cells (KCs), on each side of
the brain."®" Modification of synapses between KCs and their
targets, the MB output neurons (MBONSs) likely underlies olfac-
tory learning and memory.'®'%22 KCs can be divided into three
main subtypes, v, /', and «/.?>>° The axons of each KC sub-
type project anteriorly to the eponymous MB lobe, where they
provide input to 35 cell types comprising ~44 MBONs.??° Sen-
sory input to the MB is dominated by ~150 olfactory projection
neurons (PNs), which relay information from the 51 olfactory
glomeruli of the antennal lobe (AL).?%?"~2° Qlfactory PN type is
defined by which AL glomerulus the PN dendrites innervate;
PNs of the same type have stereotyped morphology and odorant
response profiles across individuals.”*° Olfactory PN axons
project posteriorly and collateralize in the MB main calyx, where
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Figure 1. Reconstruction of the PN-to-KC network

(A) Olfactory pathway schematic. Blue line, the frontal plane where KCs were randomly sampled for reconstruction (C and D).

(B) A representative EM-reconstructed KC. Each claw receives a variable number of synapses (numbers in white) from a single ensheathed PN bouton. Left,
skeletonized reconstructions. Right, volumetric segmentation of the same KC (purple) and ensheathed PN boutons (various colors).

(C) Subarea of a frontal section from the whole-brain EM volume, showing the cross-section through pedunculus (blue false color) used for random sampling (D).
(D) Randomly sampled KCs (magenta dots) in the pedunculus. A discrete region in the middle is devoid of magenta points, as it is occupied by other cell classes
such as APL and non-olfactory KCs from accessory calyces (i.e., KC-a/pp and KC-yd®).

(E) Number of PN types for each category of behavioral significance based on a literature review (Table S1).

(F) Distribution of number of claws per KC for all randomly sampled KCs (mean + SD, 5.2 + 1.6).

(G and H) The number of PN-KC connections per PN type is consistent between this study and the “hemibrain” dataset.'°

(G) Three or more synapses between each PN-KC pair is counted as a connection. The fraction of connections made by each PN type out of the total number of
connections in each dataset is shown.

(H) The fraction of output per PN type is highly correlated across the two datasets (r = 0.83; blue shade, 95% confidence interval). Bar labels (G) and points (H) are
colored according to behavioral category (E).

See also Table S1.
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they provide input to KC dendrites, before arborizing extensively
in lateral horn (LH), which mediates innate behavioral response
to odorants.?®®' KC dendrites terminate in specialized “claws,”
each of which ensheathes a single PN axonal bouton (Figure 1B).
Multiple KC claws commonly ensheath a given PN bouton, and
each KC samples input from an average of ~6-8 PNs.**° Mul-
tiple input PNs must be coactive in order to evoke an action po-
tential in a given KC,*® and widefield feedback inhibition is pre-
ponderant throughout the MB,*” resulting in KC activity that is
sparse and sharply tuned compared with that of the input PNs.*®

The PN-to-KC layer of MB connectivity therefore implements a
transformation of olfactory representation, from broad, stereo-
typed, and sustained olfactory responses, in a small population
of PNs, to sparse, variable, and transient responses, distributed
across a large population of KCs. This circuit architecture is an
example of a “Marr motif***°” after the theorist David Marr’s
foundational work on cerebellar function.*'+** This motif is found
in many brain regions and species, including cerebellum, hippo-
campus, and piriform cortex in vertebrates, and the vertical lobe
of the octopus.®¥*37 |n the fly, it is thought to permit efficient
representation of arbitrary combinations of odorants—which
may be thought of as points in a high-dimensional olfactory
space—for downstream use as a conditioned stimulus during
associative memory formation and recall.'”**“® Theoretical an-
alyses have argued that randomly mixed input channels, when
combined with a nonlinearity such as a spike threshold, in-
creases the dimensionality and, therefore, the linear separability
of activity patterns, making them easier to discriminate.*”~>°
Most models of the PN-to-KC network in the fly have therefore
assumed that in the Marr motif, input neurons (PNs) are sampled
at random by intrinsic neurons (KCs);*“%*1:52 put see Pehlevan
et al.,>® Koulakov et al.,** Li et al.,*® and Ryali et al.*®

Several efforts to test the hypothesis of random PN-to-KC
connectivity have been made, using light microscopy, electro-
physiology, and, most recently, EM. Single-cell retrograde label-
ing was used to identify the PN inputs to a single KC in each of
200 individual flies.*> About half the claws for each KC were suc-
cessfully labeled. No evidence of network structure was found,
although some PN types clearly had more downstream targets
than others. In another study, electrophysiological recordings
of 23 KCs across 27 adult fruit flies revealed highly diverse olfac-
tory responses, with only two KCs exhibiting an identical
response profile across individuals.”” These studies had rela-
tively small sample sizes and pooled data across individuals
and were sufficient to exclude highly structured and stereotyped
PN-to-KC connectivity. However, weaker biases in network
structure, or varied structure across individuals, could not be
excluded. In contrast, in the fruit fly larva, the complete PN-to-
KC connectome of a single individual was mapped using a
whole-CNS EM volume.®? No evidence of network structure
was found, although single claw KCs were found to occur
more frequently than a Gaussian distribution would predict.
However, the larval MB contains only about 100 KCs per hemi-
sphere, all of which are of a single class v.?° The question of
whether network structure might exist in the adult was left open.

Indeed, several studies have indicated that PN-to-KC network
structure may be non-random. Olfactory PN axonal arbors and
KC dendritic arbors are known to occupy stereotyped positions
within the MB calyx as a function of cellular subtype,?®°®*° and
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EM-based reconstructions showed that the axonal arbors of
many PN types occupy more constrained territories within an indi-
vidual than predicted by LM-based reconstructions pooled across
many individuals.? Physiologically, calcium imaging has revealed
that KC claws show more correlated responses than would be
predicted by chance, and simultaneous optogenetic stimulation
of three PN types (comprising ~13 PNs in total) also showed
greater-than-chance convergence.®® Arecent analysis of MB con-
nectivity in a partial (“hemibrain®) fly connectome’'® showed that
the PN-to-KC network exhibits spatial bias and specificity depen-
dent on PN and KC subtypes,®® confirming several findings pre-
sented here and in preprint form.?° To address this question
more thoroughly in the present work, we set out to reconstruct
and analyze a large number of PN-to-KC connections, using the
previously described female adult fly brain (‘FAFB”) EM volume.?

RESULTS

Reconstruction of the PN-to-KC network

To map the PN-to-KC network, KCs were randomly selected for
reconstruction from a cross-section of the MB pedunculus, a
tract where KC axons converge after their dendrites receive
input in the MB main calyx (Figures 1A-1D). The PN bouton
innervating each KC claw was then retrogradely traced to the
main PN axon trunk, and the PN type was identified, using pre-
viously published classifications of PNs in the FAFB dataset.”
The broad category of odorants to which each PN type responds
was determined through a literature review, blind to the results of
the analyses presented below (Figure 1E; Table S1). The intent
was to enable analysis of the relationship between the behavioral
role of each glomerulus and any observed PN-to-KC network
structure. More than half of categorized PN types were respon-
sive to food-related odorants.

Initial KC reconstructions were purely manual; later efforts
leveraged an automated segmentation of the full FAFB data-
set.®! In total, all olfactory PN inputs to 7,102 claws arising
from 1,356 KCs were mapped and identified (~62% of all claws
on the right side of the brain). All PN boutons and KC claws were
demarcated during reconstruction, allowing detailed null models
of random connectivity to be specified, as described below. In
the MB main calyx, all claws from each reconstructed KC were
identified, and all dendrites in calyx, including claws, were traced
to completion. In the MB lobes, KC axons were traced suffi-
ciently to classify KC subtype as v, o//p, or o/B. Each KC was
found to have 5.2 claws on average (Figure 1F), consistent with
previous studies.®**> The number of KCs postsynaptic to each
PN type was also in excellent agreement with counts obtained
from a recently released partial (“hemibrain”) connectome of
adult fly brain connectivity (Figures 1G and 1H).'® The consis-
tency of these metrics across datasets and methods indicates
that the PN-to-KC network reconstructed in the present study
is of high quality and therefore suitable for detailed analysis.

Non-uniformity of olfactory input to the mushroom body

To assess whether KCs sample PN input at random in the MB ca-
lyx, the number of axonal boutons from each PN type must first
be quantified. This is a function of the number of PNs per AL
glomerulus, and the number of axonal boutons per PN. At both
of these levels, different PN types made strikingly different
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Figure 2. Non-uniformity of olfactory input to the mushroom body
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See also Figure S1.

amounts of input to the MB calyx (Figures 2 and S1). For
example, glomeruli responsive to sex pheromone (DA1 and
VA1lv; Table S1), and the microbial odorant geosmin (DA2;
Table S1) had many more PNs per glomerulus than other types
(Figure 2A), but made relatively few boutons per PN (Figure 2B).
For DA1 and DA2, the large number of PNs was enough to offset
the low number of boutons per PN; this was not the case for VA1v
(Figure 2C). In other cases, such as the acid-sensing PN type
(DC4; Table S1), both PN number and boutons per PN were

low, resulting in small net input to the MB calyx. Food-responsive
PN types provided slightly more total boutons to the calyx,
although this effect was small and only reached statistical signif-
icance when uncategorized PN types were included (Figures 2C,
S1E, and S1F).

Non-random sampling of olfactory PN by KCs
The observed number of PN boutons arising from each glomer-
ulus (Figure 2C) was used to construct a null model for PN-to-KC

Current Biology 32, 3334-3349, August 8, 2022 3337
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Figure 3. Non-random sampling of olfactory PN input by KCs

number of claws per glomerulus

(A) Random bouton null model schematic. Each claw is reassigned to a bouton chosen randomly from all boutons in the MB calyx. This null model ignores the fact
that KC dendrites and PN arbors have restricted territories within the calyx but ensures that the number of claws assigned to a given PN type is proportional to the

number of boutons.
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connectivity, in which each KC claw is assigned a PN bouton at
random (Figure 3A). In this “random bouton” model, the proba-
bility a claw receives an input from a given PN type is propor-
tional to the number of boutons arising from each PN type. The
random bouton model was run 10,000 times to generate the
PN-to-KC connectivity that would be expected if PN boutons
were sampled at random by KC claws. A conditional input anal-
ysis was used to determine whether KCs were more or less likely
than expected to get input from a particular PN type (Figure S2A,
matrix columns), given input from another PN type (Figure S2A,
matrix rows). These pairwise conditional probabilities were
quantified as Z scores (i.e., the number of standard deviations
of the observed value from the mean of the distribution gener-
ated by the random bouton model; Figure S2B), and the order
of columns and rows in the resulting matrix was determined us-
ing unsupervised k-means clustering.

Conditional input analysis demonstrated that the observed
PN-to-KC network structure was qualitatively and quantitatively
different from that predicted by the random bouton model
(Figures 3B and S2C). Sensory input relayed by olfactory PNs
to the MB main calyx is not sampled at random by KCs. To
further describe the observed network structure, the most over-
convergent cluster (i.e., the one with the highest mean Z score)
was termed the “core community.” Less prominent “secondary”
and “underconvergent” communities were also delineated
based on each cluster’s mean Z score (Figures 3B and S2D).
Strikingly, nearly all PN types within the core community were
preferentially responsive to food-related odorants (Figure 3B).
This result was robust to the clustering method or parameters
used (Figures S2E-S2K and S3) and was the main focus of the
following analysis. The observed network structure was domi-
nated by overconvergence onto KCaf and KCa/f' subtypes,
with little or no apparent structure deriving from input to KCy
neurons (Figures S4A-S4C).

Preferential ensheathment of food PN boutons by KC
claws

How is the overconvergence of food-responsive PN types onto
KCs implemented anatomically? The number of claws down-
stream of core community PNs was far greater than predicted
by the random bouton model (Figure 3C) and also greater than
the number of claws downstream of other PN types in the
observed data (Figure 3D). Consistent with the preponderance
of food-responsive PN types in the core community, food-

¢? CellPress

responsive PN boutons were also ensheathed by more KC claws
(Figures 3E-3J and S2L). The bias toward more claws per
core community bouton was greatest for KCa,§ and KCo/f’ sub-
types, rather than y KCs (Figures S4D-S4l), consistent with
the elevated Z scores evident for af and o/ff' subtypes
(Figures S4A-S4C). Although some PN types were modestly
oversampled by y KCs (e.g., VL2a, D, VA5 in Figure S4H), y
KCs as a population received relatively weak overconvergent
input from PNs (Figure S4C). Underconvergent olfactory PN
types had fewer KC claws per bouton (Figure S4J); however,
they did not differ in the number of boutons per PN, and their
downstream KCs differed by less than a claw, on average, in to-
tal claw count (Figures S4K and S4L). Therefore, underconver-
gence is likely driven mostly by undersampling of those PN types
by KCs, rather than by a reduced number of claws in down-
stream KCs. The number of boutons per PN type was not signif-
icantly greater for core community types than other PN types
(core community versus others, mean = SD, 5.5 + 4.0 versus
4.0 = 2.3; K-S test, p = 0.5) but slightly elevated for all (core
and secondary) community types (all community versus others,
mean + SD, 10.8 = 2.5 versus 8.5 + 4.8; K-S test, p < 0.006).
Overconvergence could also be generated if core community
PN types tend to synapse onto KCs with an unusually large num-
ber of claws. KCs receiving two or more inputs from core com-
munity PNs did have an average of one more claw than other
KCs (Figure S4M); however, the core community was still evident
following random removal of claws from these downstream KCs
to equalize total claw numbers (Figure S4N). Therefore, the
observed network structure was not substantially driven by an
increased number of total claws in downstream KCs.

The above observations suggested that the observed non-
random sampling of sensory input was implemented predomi-
nantly by greater ensheathment of PN boutons by KC claws for
select PN types. To test this hypothesis, a second null model
was devised, incorporating the observed distribution of KC
claws ensheathing boutons of each PN type. This “random
claw” model (Figure 4A) is similar to the random bouton model,
except that the number of KC claws assigned to a given PN bou-
ton is held equal to the number of claws ensheathing that bouton
in the observed PN-to-KC network. Therefore, in this null model,
the number of claws receiving input from a given PN type (i.e.,
out-degree per PN type; Figure 3G) and the number of claws
each KC has (i.e., in-degree per KC) are maintained. Comparison
of observed PN-to-KC connectivity to this more realistic null

(B) Observed PN-to-KC connectivity compared with the random bouton model. Conditional input analysis was applied to 1,356 randomly sampled KCs. A group
of PN types (“community” PNs, dark and light green lines) provide above-chance levels of convergent input to downstream KCs. All PN types in the core com-
munity (dark green with overline), and most in the secondary community (light green), have been reported to primarily respond to food-related odorants (Table S1).
In this and subsequent Z score matrices, PN types are color-coded according to behavioral category as in Figure 1E, and core community PN types are decorated
with overlines.

(C) Kenyon cells over-sample inputs from core community PN types. The observed number of claws receiving input from core community PNs (1,916; red dot)
greatly exceeds the random bouton null model prediction (blue histogram; 10,000 random networks, mean + SD, 1,421.7 + 35.7; Z score, 13.8).

(D) Core community PNs have more claws per bouton than other PNs (mean + SD, 17.4 + 9.3 versus 11.5 + 7.4; K-Stest p < 1 x 1079).

(E and F) Core community PNs in the observed network are presynaptic to more KC claws than predicted by the random bouton model (error bars, SD of 10,000
random networks; chi-square test p < 1 x 107", Each bar in (E) and dot in (F) represents a PN. Bar labels (E) and points (H) are colored according to behavioral
category (Figure 1E).

(G and I) Number of claws per bouton (G) and number of claws (I) per PN type, in descending order.

(H and J) Food-responsive PNs provided output to more claws than non-food PNs on both a per bouton (H, mean + SD, 15.66 + 3.08 versus 10.53 + 7.3, K-S test
p < 1.3 x 107%) and per glomerulus (J, mean + SD, 162.95 + 60.74 versus 100.06 = 56.17, K-S test p < 2.5 x 107°) basis.

See also Figures S2-S4 and Tables S2-54.
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Figure 4. Preferential ensheathment of food-responsive PN boutons by KC claws

(A) Random claw null model schematic. The biased ensheathment of PN boutons by KCs according to PN subtype is maintained in this null model, whereas
territoriality in the distribution of boutons and claws within the MB calyx is ignored.

(B) Core community PNs types converge more frequently than predicted by the random claw model, suggesting that the preferential ensheathment of their

boutons is insufficient to explain the observed network structure.

(C) Conditional input analysis of a single representative network generated using the random claw model shows no clustered structure.
(D) Z scores for the random claw model (Figure 4B) vary less than for the random bouton model (Figure 3B; mean + SD, —0.044 + 2.11 versus —0.058 + 1.47; K-S
test p < 1 x 1079, indicating random claw model captures more of the observed network structure.

See also Figure S5.

model still revealed the core community of PN types (Figures 4B,
4C, and S5A), indicating that those PN types converge onto KCs
even more often than predicted by the observed oversampling of
their boutons by KC claws. However, much of the network struc-
ture was captured by the random claw model: first, the distribu-
tion of Z scores had lower variance than the random bouton
model (Figure 4D); second, conditional input analysis of PN con-
nections to each KC subtype revealed greatly diminished clus-
tering (Figures S5B-S5D; cf. Figures S4A-S4C); and third, the
secondary community (Figure 3B) is eliminated in the random
claw model (Figure 4B). In summary, the observed bias in PN-
KC network structure is generated by (1) localized overlap of
food-responsive PN axonal arbors and downstream off and
o/B’ KCs and (2) preferential ensheathment of food-responsive
PN boutons by «ff and o'p’ KC claws.

Comparison with other PN-to-KC datasets
Application of these analysis methods to PN-to-KC connectivity in
the “hemibrain” dataset'® also revealed a similar core community
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of mostly food-responsive PN types (Figures S5E and S5F), sug-
gesting that the presence of such a community may be common
across individuals. As with the FAFB dataset, the random claw
model more effectively described the observed network structure
than the random bouton model (Figures S5G-S5I). In contrast, re-
analysis of PN-to-KC connectivity reported an earlier study*® did
not reveal a community of food-responsive PNs (Figures S5J
and S5K), although the non-uniformity of KC sampling reported
in their work was detected (Figure S5J; cf. Figure S1 in Caron
et al.*%). Notably, many fewer PN-to-KC connections were map-
ped in that study (about half the claws in each of 200 KCs; 1 KC
mapped per fly). When connectivity data from the present study
were randomly sub-sampled to match this lower number, minimal
network structure was detected and the core community could
not be discerned (Figure S5L). The sample size of the earlier study
was therefore likely insufficient to detect the network structure
described here. Finally, an analysis of the 17 PN types preserved
between the larva and the adult revealed no overconvergence to y
KCs, the only KC class present in the larva (Figures S5M and S5N),
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Figure 5. Neurogeometry of PN and KC arbors best explains the observed network structure

(A) Local random null model schematic. Left: each dashed line circumscribes a claw and its five nearest PN boutons. Right: after randomization, each claw is
randomly assigned to one of the five nearest boutons.

(B) The local random model recapitulates the greater number of claws ensheathing core community PN boutons. The observed number of claws receiving inputs
from core community PNs (red dot; 1,916 claws) was nearly identical to the mean of the local random model (mean + SD, 1,890.6 + 22.5). By definition, all
networks created using the random claw model also have 1,916 claws.

(C) The local random model best recapitulates the number of claws per KC postsynaptic to core community PNs. Observed versus random bouton, chi-square
test p < 1 x 107'°; observed versus random claw, chi-square test p < 1 x 107'°; observed versus local random, chi-square test p < 0.028 (error bars, +SD).
(D) A single, representative network generated using the local random model recapitulates much of the core community of overconvergent PN types when
compared with the random bouton null model.

(E and F) Observed connectivity versus local random model. Core community PN types do not converge more often than predicted by the local random model,
indicating this more geometrically realistic null model captures much of the observed network structure. Z scores for the core community PNs (green overlines
and square) are not elevated compared with other PN types (columns and rows order: E, based on k-means clustering; F, ordered as in Figure 3B).
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Figure 6. Arbor overlap between core community PNs and KCs

(A and B) Olfactory PNs project from AL to two higher brain centers, MB and LH. Core community PNs (green) have regionalized projection patterns in MB and LH
compared with non-core community PNs (varying shades of purple). Scale bar in (B) applies also to (D-L).

(C) Core community PN boutons are closer to each other than to non-core community boutons. Each count represents the distance between a given bouton and
the nearest bouton of a PN of a different type (green: core community PN bouton pairs; blue: pairs consisting of a core community PN bouton and a non-core
community PN bouton; K-Stest p <1 x 107"% mean + SD, 10.9 + 6.8 versus 18.6 + 7.4).

(D) Core community PN axon territories (green) overlap with the dendritic arbors of the 6 KCs (red) receiving 6 or more bouton inputs from core community PNs
(same view as B).

(E and F) Dorsal (E) and posterior (F) views of MB calyx show the 46 KCs that receive 5 or more inputs from core community PNs. The dendrites, somata, and
axonal bundles (proximal pedunculus; see E, bottom) of the KCs, respectively, are segregated into 4 clusters (4 arbitrary colors) that may correspond to the 4 KC
neuroblasts in development.?%3

(legend continued on next page)
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consistent with the lack of network structure observed in the
larva.>?

Spatial structure of the PN-to-KC network

Both the random bouton and the random claw models assume
that the probability of a PN-to-KC connection is independent
of its location in the MB main calyx. However, both PN and KC
neuronal arbors are known to occupy stereotyped and circum-
scribed positions within the calyx as a function of cell
type.??%°8:°° This suggested that cell type-specific neurogeom-
etry might contribute to the observed non-random network
structure. Therefore a “local random” model was constructed,
in which each KC claw is randomly assigned to one of the five
nearest boutons to it within the MB main calyx (Figure 5A). This
model preserves the number of claws arising from each KC,
the number of boutons arising from each PN, and the localized
geometry of connectivity arising from PN axon and KC dendrite
arbor extents. Only the number of claws assigned to each PN
bouton is allowed to vary.

The local random model better fit the observed network than
the other null models, which lacked spatial constraints. In
contrast to the random bouton model, it recapitulated the greater
number of claws ensheathing core community PN boutons (Fig-
ure 5B). It also better recapitulated the overconvergence of core
community PNs onto KCs, in particular the number of KCs
receiving 4-7 claws of input from core community PNs (Fig-
ure 5C). Further, when individual networks generated by the local
random model were treated as “observed” networks and then
compared with the random bouton model, the overconvergent
PN core community was largely recapitulated (Figure 5D).
Conversely, when the observed PN-to-KC network was
compared with the local random model, the overconvergent
PN core community disappeared (Figures 5E and 5F), indicating
that this model largely captures the observed network structure.

The success of the local random model suggested that much
of the observed non-random network structure arises from the
specific neurogeometry of PNs and KCs.?°%:°? Direct visual ex-
amination of core community PN axonal arbors and postsyn-
aptic KC dendrites bore out this interpretation. Core community
PN axons were tightly clustered in peripheral regions of the MB
main calyx (Figures 6A and 6B). Quantification of pairwise in-
ter-bouton distances revealed that core community PN boutons
were significantly closer to one another than non-core-commu-
nity PNs (Figure 6C). KCs with the most core community input
also showed dendritic arbors localized to four clusters corre-
sponding to core community PN axonal territories (Figures 6D-
6F). These four clusters of KC dendrites are consistent with
four MB neuroblasts.?>%® The dendritic arbors of «ff and o'f’
(but not v) KC subtypes were largely constrained to the axonal
territories of core community PN types (Figures 6G-6l), consis-
tent with the observation that these subtypes receive more
convergent input (Figures S4A-S4l). Complete reconstruction
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of an arbitrarily selected bundle of KCs fasciculating tightly in
the MB pedunculus also showed regional bias toward the dorso-
lateral quadrant of the MB main calyx (Figures S6A-S6C), where
collaterals of core community PNs tended to ramify. Finally, clus-
tering of core community PNs was qualitatively evident upon in-
spection of their reconstructed axons (Figures 6J-6L). Consis-
tent with this, unsupervised clustering based on NBLAST
scores’ of PNs in both hemispheres of FAFB (left hemisphere
data from Bates et al.?%) and in the hemibrain®® showed co-
arborization of core community PNs within the MB calyx
(Figures S6D-S6F); the other clusters did not exhibit systematic
per-cluster overconvergence (Figure S6G). Thus, the core com-
munity of overconvergent PN types seems to be generated by
the overlap of the axonal and dendritic arbors of specific PN
and KC subtypes within the MB calyx.

Effect of network structure on a simulated
discrimination task

To assess the potential effects of non-random PN-to-KC
network structure on MB function, a simplified, feedforward
computational model of the PN-to-KC network was used in a
simulated discrimination task.**>? Previous studies using this
model have shown that discrimination performance is worse
for non-random networks than for random networks in which
each PN type (i.e., glomerulus) provides input with equal proba-
bility to each KC claw.?®“*° This connectivity scheme, which we
term the “random glomerulus” model, is clearly unrealistic, given
the nonuniform input of PN types to the MB (Figure 2); unsurpris-
ingly, comparison of the observed PN-to-KC network with
this null model strongly recapitulates the core community
(Figures S7A and S7B).

The deviation of the observed, structured network from a theo-
retically optimal, random network raises the question of how
discrimination performance in the computational model is
affected by the observed network structure. To address this,
PN-to-KC networks were generated using each of the null con-
nectivity models described above —random glomerulus, random
bouton, random claw, and local random—which increasingly
recapitulate both the observed network structure (Figures 7A
and S7C-S7F) and the observed fraction of convergent core
community inputs onto downstream KCs (Figure S7G). These
null model-generated PN-to-KC networks, as well as the
observed network itself, were then tested in the simulated
discrimination task. The fraction of PN input channeled through
core and secondary community PN types was also varied sys-
tematically. When error rates were compared across network
structures and activity patterns, the random glomerulus
model performed best, in agreement with previous studies®®“°
(Figures 7B-7G). For the other connectivity models, error rate
increased when PN activity was channeled outside community
PN types and recovered if signal was channeled exclusively
through the community PN types (Figures 7B-7F). Similarly,

(G-) In frontal view of MB calyx, dendritic arbors of KCa (G) and KCao/p’ (H) subtypes are more constrained than those of KCr (l) to territory innervated by core
community PN axons. To equalize the number of KC arbors plotted for each subtype, 246 of 478 a3 KCs and 246 of 575 y KCs, were randomly selected for

visualization to be consistent with 246 reconstructed o/’ KCs.

(J-L) Regionalized arbor distribution of core community PNs in three calyces: right side of FAFB (J), left side of FAFB (K), and hemibrain (L). The PNs are arbitrarily

colored by type; colors are consistent across datasets (gray, calyx surface).
See also Figure S6.
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Figure 7. Effect of the observed PN-to-KC network structure on a simulated discrimination task

(A) The Z scores of core community PN types compared with the random glomerulus (Figure S7A); random bouton (Figure 3B); random claw (Figure 4B); and local
random (Figure 5F) null models. The least realistic null model (random glomerulus) has the highest mean Z score, whereas the local random model has lowest,
indicating it best recapitulates the observed connectivity (horizontal lines: mean; vertical bars: SD).

(B-F) Activation of more community PNs (including core and secondary community) leads to rescue of performance in a simulated discrimination task, for all
connectivity models incorporating the observed non-uniformity of PN type input to MB calyx. A constant number of PN types (19; i.e., the number of core and
secondary PN types) is activated, whereas the fraction of community PN types activated ranges from 0% to 100%. Error bars: + SD.

(G) Overall discrimination performance worsens as with decreasing randomness and increasing connectivity model realism. All 51 PN types provide input to the

classifier. Error bars: + SD.
See also Figure S7.

discrimination performance recovered when activity was
channeled through food-responsive PN types, the core commu-
nity, and PNs known to respond to a natural fruit odor
(Figures S7H-S7J). Consistent with these results, when PN ac-
tivity was spread across all PN types, overall discrimination per-
formance was worse for more realistic connectivity models (Fig-
ure 7G). Thus, the observed network structure compromised
performance on the simulated discrimination task, unless all
the signal was channeled through the overconvergent PN types.
This suggests that the observed PN-to-KC network structure
may not be optimal for the simulated discrimination task.

DISCUSSION

The comprehensive EM-based mapping of PN-to-KC connectiv-
ity presented here revealed non-random network structure, in
which a community of predominantly food-responsive PN types
converge at above-chance levels onto downstream KCs (Fig-
ure 3B). The network structure is set up anatomically. The axonal
boutons of overconvergent PN types are ensheathed by more
KC dendrite claws of KCs (Figures 3C and 3D), and the axons
of overconvergent PN types and the dendrites of many
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postsynaptic KCs arborize in overlapping, restricted regions
within the MB main calyx (Figure 6). Available data suggest
that this PN community may be stereotyped across individuals:
first, the core community PN axonal arbor territories are similar
to those obtained in earlier studies based on light microscopy
data (cf. Figures 4C and 4D, cluster 1 in Jefferis et al.® and
Figures 2C and 2E, green cluster in Tanaka et al.”® and Seki
et al.%%), and second, reanalysis of the “hemibrain” dataset,
acquired from a separate female adult fruit fly,”® also
revealed a similar core community of overconvergent PN types
(Figures S5E-S5H). The developmental precision required to
achieve this network structure seems within reach of the fly ner-
vous system, given the highly reproducible geometries of most
cell types in the fly brain, including those innervating the MB
main calyx.”®?%%% Qur data showed that the overconvergent
input from core community PNs is specific to KCaff and KCo/ B’
subtypes (Figures S4A-S4l), consistent with the greater overlap
of dendritic arbors observed between these subtypes and the
axons of core community PNs (Figures 6G-6l). Within a given
KC subtype, birth order and neuroblast origin may contribute
additional specificity to KC arbor territories;*® future studies
will be required to address the extent to which these fine-scale
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developmental processes may contribute to the observed
network structure.

The extent of overconvergence, and the exact PN types
comprising the core community, likely vary to some extent be-
tween individuals. It will be of interest to learn whether the
observed network structure varies as a function of sex, genetic
background, neuronal activity levels, or environmental condi-
tions during development.®®” Even if the observed network
structure is conserved across individuals, it is likely that synaptic
output from food-responsive KCs is variable, given that MBON
odorant responses are highly variable across individuals.®® Addi-
tional datasets and alternative analysis methods®®~"" might also
reveal additional network structure.

Past efforts may have missed or deemphasized the observed
PN-to-KC network structure for a variety of reasons. Earlier work
based on light microscopy or electrophysiology likely lacked suf-
ficient statistical power to detect the PN community. Indeed, sub-
sampling to match the number of samples of the most thorough of
these efforts®° renders the community of food-responsive PNs un-
detectable in our own dataset (Figure S5). Following presentation
of these results in preprint form,®° non-random PN-to-KC network
structure was detected in an analysis of MB connectivity based on
the hemibrain dataset.’® There was substantial agreement be-
tween the two studies, particularly in the number of connections
made by each PN type in the MB calyx (Figures 1G and 1H); the
lack of network structure for the y KC subtype (Figure S4; cf.
Figures 13A and 14D in Li et al.?%) and the ability of a geometrically
constrained null model to recapitulate the observed network
structure (Figure 5; cf. Figure 14 in Li et al.?%). However, the non-
random network structure was described as relatively modest in
extent and effect, possibly because much of the PN-to-KC
network structure is generated by non-uniformity of output across
PN types (Figures 3G-3l); in Li et al., the initial comparison of
observed connectivity (Figure 13Ain Li et al.?®) was to a null model
that already incorporated this non-uniformity (similar to the
random claw model described here; Figure 4), reducing the extent
of apparent network structure.

Although the network structure we observe is statistically sig-
nificant, its effect on the operation of the MB remains unknown.
There are several reasons to think it may be important. First, the
overconvergent PN types were mostly food-responsive, sug-
gesting an ethological role. Second, the overconvergence was
detected in two different datasets, suggesting it may be general
across individuals. Third, the PN core community we observe in
MB calyx is nearly identical to an independently discovered
PN subnetwork formed by axo-axonic synapses in the LH (cf.
Figure 3F in Bates et al.?%). These axo-axonic synapses are
physiologically uncharacterized, but the existence of distinct
subnetworks of these PN types in both LH and MB suggests
that the information they relay is distinctive.

The effect of the observed non-random network structure on
associative memory formation and recall in the MB will require
additional experimental and theoretical work to determine.
Many challenges likely await. The observed network structure
is intermingled with extensive recurrent circuitry within the MB
calyx, involving both local and extrinsic neurons.***""27"% The
calyx also includes little understood and recently discovered
cell types® and many physiologically uncharacterized connec-
tions, including KC-KC synapses,®””>"” PN-PN synapses,~°
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and KC-to-PN synapses.” It is also unknown whether the cell
types involved fire exclusively in all-or-none fashion or whether
synaptic release can be evoked locally at the compartment or
even neurite level.”*®" This question becomes especially perti-
nent given that nearly all neurites in the fly brain (with the excep-
tion of the finest dendritic processes) have a mixture of both
input and output synapses (our unpublished observations; Bates
et al.,?° Meinertzhagen,®® Olsen and Wilson,®® and Takemura
et al.?%). The dynamics of MB as a whole during learning and
recall are also complex®’>#°~8” and may affect how local activity
within the calyx is read out. Better understanding of MB microcir-
cuitry, as well as richer models incorporating recurrent dy-
namics,® will likely be required to fully characterize the effect
of the observed network structure. Future studies could also
incorporate behavioral responses to field-collected odor sam-
ples®®“° potentially allowing exploration of the relationship be-
tween neuronal network structure and chemical ecology.

Despite these unknowns, some speculation may be offered.
Computational modeling showed that the discrimination perfor-
mance of the observed network was inferior to that of a random
network (Figure 7), as expected.***° However, performance was
rescued when simulated PN activity was channeled through
overconvergent, predominantly food-responsive PN types.
This suggests that the PN-to-KC network structure may be
balancing discrimination capacity with other imperatives, for
example, generalization.”’™*° The rescue of discrimination ca-
pacity when activity is channeled through food-responsive PN
types calls to mind the efficient coding hypothesis, which states
that neuronal resources are allocated to match the distribution of
natural stimuli and that more frequently encountered stimuli
(such as food odorants®) are sampled more densely.?>*° In
this regard, it is attractive to think of the observed network struc-
ture as a kind of “associational fovea,” in which combinations of
input from food-responsive PN types are sampled more densely
than combinations from other types.

The present work joins other studies in which quantitative
comparison of observed connectivity to null models of neuroge-
ometry has allowed unexpected structure to be detected in
neuronal networks.’”'%? A spectrum of null models was used,
ranging from the simplistic random glomerulus model to the
more sophisticated local random model. The latter incorporates
all known nonuniformities in sampling of PN inputs by KCs, as
well as the fine-scale territories of each cell type’s axonal and
dendritic arbors of each identified cell type. This class of high-
resolution model provides a baseline against which additional
connectivity datasets can be tested for unexpected network
structure. Although connectomics-style synaptic wiring dia-
grams are by themselves insufficient to explain neuronal circuit
function, ' they are a useful scaffolding for integrative analysis
of network function.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

The Full Adult Fly Brain (FAFB) ssTEM dataset Zheng et al.” https://temca2data.org/

FAFB manual neuronal reconstructions: Zheng et al.” https://fafb.catmaid.virtualflybrain.org/
right-side PNs

FAFB manual neuronal reconstructions: This paper https://fafb.catmaid.virtualflybrain.org/

KCs and others

FAFB manual neuronal reconstructions:

left-side PNs
Partial auto-segmentation of FAFB

Bates et al.?°

Li et al.®

https://fafb.catmaid.virtualflybrain.org/

http://fafb-ffn1.storage.googleapis.com/data.html

Hemibrain Scheffer et al.’® https://neuprint.janelia.org/

FlyWire Dorkenwald et al.’** https://flywire.ai/

Software and Algorithms

CATMAID Saalfeld et al.'”® and Schneider-Mizell  https://github.com/catmaid/CATMAID
etal.'®

NBLAST Costa et al.” https://github.com/jefferislab/nat.nblast

Pymaid Bates et al.° https://github.com/schlegelp/pymaid

Natverse Bates et al.’” http://natverse.org/

PN-KC model Litwin-Kumar et al.*® and Eichler Ik.zuckermaninstitute.columbia.edu/#code

et al.”?

RESOURCE AVAILABILITY

Lead contact
All queries and requests for resources should be directed to the lead contact, Davi D. Bock (dbock@uvm.edu).

Materials Availability
This study did not generate new unique reagents.

Data and code availability

® All neuron reconstructions described in this study will be uploaded to a public CATMAID instance hosted by Virtual Fly Brain
(https://fafb.catmaid.virtualflybrain.org/) following publication.

® The full source code is available at https://github.com/bocklab/pn_kc.

® Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

METHOD DETAILS

Neuron tracing

Neurons were reconstructed from the whole brain EM dataset of an adult fly.? Skeleton tracing of neuronal arbors and criteria of syn-
apse annotations are conducted as described previously” with the CATMAID tracing environment.'%>'%¢ To summarize, all the manu-
ally traced neurons were reconstructed with an iterative tracing method by at least two tracers, an initial tracer and a subsequent
proofreader. The initial tracer reconstructed arbors, followed by systematic review by a different proofreader. When either tracer
was not confident about the identifications of a neural process or synapses, they cooperatively examined the image data to reach
a consensus. All such sites were further reviewed and resolved by an expert tracer. A chemical synapse was identified if it met at
least three of the four following features, with the first as an absolute requirement: 1) an active zone with vesicles; 2) presynaptic spe-
cializations such as a ribbon or T-bar with or without a platform; 3) synaptic clefts; and 4) postsynaptic membrane specializations
such as postsynaptic densities (PSDs).
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Our tracing approach is biased to errors of omission rather than commission. This approach has been shown to have minimal
impact on network connectivity in the fly larva.’® In addition, the present study is focused on the connectivity between PNs and
KCs at a distinctive structure called the microglomerulus, which contains a multitude of synapses between a given PN bouton
and its postsynaptic KC claws.**=>* It is therefore unlikely that the loss of any particular synapse during reconstruction qualitatively
affected the analysis described here.

As in Zheng et al.? two reconstruction strategies were used: tracing to classification and tracing to completion. In tracing to clas-
sification, in general only backbones, and not twigs microtubule-containing, large diameter neurites, and microtubule-free, fine neu-
rites, respecitvely;'°° are reconstructed. Tracing is halted once the reconstructed neuronal morphology unambiguously recapitulates
that observed by LM or previous EM reconstruction studies for a given cell class. In tracing to completion, all of a given neurite is
reconstructed, along with all of its input and output synapses, unless ambiguities in the data make tracing impossible. In some cases,
tracing to completion is done only within a given brain compartment; in the present study, for example, manually reconstructed KCs
were traced to completion only within the MB main calyx (see below).

Random sampling of KCs

Kenyon cells were randomly sampled from within MB pedunculus ("Random Draw KCs") on the right side of the brain. The pe-
dunculus is a tract of fasciculated KC axons projecting from the posterior of the brain, where KC dendrites ramify in the MB
calyx, to the lobes of the MB at the anterior of the brain, where synapses are made between KCs, MBONs and DANs (Fig-
ure 1A).2" All neuronal processes in a frontal plane of pedunculus (section #4186 in the FAFB dataset; the "seed node plane")
were labelled with seed nodes (2740 in total; Figures 1C and 1D). Seed nodes were randomly selected for reconstruction, which
proceeded posteriorly (i.e. retrogradely, in the case of KCs) from the seed node plane. In addition to KCs, the anterior paired
lateral (APL) neuron a wide-field inhibitory neuron;”* and MB-CP1 an MBON;*® were known to have neurites in the pedunculus.?
Therefore tracing to classification was done to determine whether the neuron arising from a given seed node was a KC, using
the following morphological criteria. Kenyon cell somata are posterior and slightly dorsal to the MB calyx; each KC makes a
handful of dendritic specializations called “claws” within the calyx; and has a single axon projecting anteriorly, with few
branches, in the pedunculus.® The APL neuron (one within the MB on each side of the brain) has numerous, densely branching
and fine neurites ramifying throughout the entire MB. The MB-CP1 neuron similarly branches densely in the pedunculus and
calyx. Disambiguating between these neuron types was therefore relatively straightforward, and tracing was halted and dis-
carded from further analysis if the neuron arising from a seed node was determined not to be a KC. The Random Draw KCs
were reconstructed either manually (440 KCs) or by an automatic segmentation-assisted approach (916 KCs), described below.
The total sample size of 1,356 KCs was constrained by the time and resources available for the effort; the overall goal was to
obtain as large a sample as possible to maximize statistical power. The average number of claws per KC, 5.2 + 1.6 (mean + s.d.,
Figure 1F), was within a standard deviation of previously reported numbers: 1) 6.8 + 1.7 for all KCs;*® 2) 7.3 + 2.3 for v KCs,
5.8 + 1.8 for &’B’ KCs, and 5.5 + 1.9 for o’f’ KCs.*

In a total of 7,102 claws that are reconstructed, ~9% of claws receive inputs from one of the following categories: 1) multi-glomer-
ular PNs, often with inconclusive innervating glomeruli; 2) thermosensory or hygro-sensory PNs; 3) less than 3 synapses per claws
identified; and 4) Lateral Horn neurons (LHNSs), interneurons (e.g. APL), or MBONs (e.g. MB-CP1). Given each category of these
inputs represents a small fraction of the total input, our analysis is focused on 91% of the claws that receive input from uniglomerular
olfactory PNs (Table S4).

Sampling of a KC bundle in the pedunculus

To study the arbor pattern of fasciculating KCs (Figures S6A-S6C), a ‘bundle’ of KCs axons bounded by astrocytic processes in the
pendunculus of MB was selected. The calyceal dendrites and peduncular axons of all KCs in the bundle were manually reconstructed
(see Manual tracing of KCs). The KCs in the bundle mostly consist of the KCaf3 subtype.

Manual tracing of KCs

Each manually reconstructed KC was retrogradely traced to completion from at least section 4,186 (the seed node plane) of the FAFB
dataset to the posterior of the brain. This volume spans the posterior ~1/3 of pedunculus, and the entire MB calyx, where the den-
drites of the three main KC types (y, a8, and «’p’) and their claws ramify. In previous work,” the boutons of all PNs in calyx as well as
the glomerular types of all PNs were identified. Typically, each dendritic claw received input from a single bouton.**** To facilitate
downstream analysis (see below), “claw border” tags were applied to each KC at a node between the "arm" and distal fingers of each
KC claw. The “claw border” tags therefore delineated KC claws post-synaptic to distinct PN boutons. Similarly, "bouton border" tags
were applied to the PN arbors within MB main calyx.

The majority of reconstructed KCs received olfactory inputs from PNs within MB main calyx. There are 3 main KC classes, v,
o’/B’, a/B, named according to which of the eponymous lobes at the anterior MB the KC axon projects.®?*?° Two additional,
numerically fewer types of KC (o/Bp and +yd) receive non-olfactory inputs such as visual, gustatory, and temperature informa-
tion, via dendritic arbors within MB accessory calyces.'”® These were excluded from analysis. All Random Draw KCs were
traced to classification anterior to the seed node plane. Subtype was assigned depending on which MB lobe the KC axon rami-
fied within.

Current Biology 32, 3334-3349.e1-€6, August 8, 2022 e2




¢ CellPress Current Biology

Automated segmentation-assisted tracing of KCs

During the KC reconstruction effort, a segmentation of the FAFB dataset became available.®! A tracing workflow using this segmen-
tation was therefore adopted. Automated segmentation-derived skeleton fragments were manually concatenated, and the entire re-
sulting arbor was proofread as described above. While all claws from each KC were identified, KC claws were only partially recon-
structed, sufficient to define which PN bouton was contained and to identify and annotate at least 3 synapses from the bouton to the
claw. Control experiments in which one tracing team manually reconstructed KCs to completion and another independently used the
automated segmentation to map PN-to-KC connectivity demonstrated the consistency of results between both approaches in quan-
tifying PN bouton/KC claw connection counts (data not shown). Volume reconstruction of the KC and the PN boutons in Figure 1B
(right panel) are generated directly from another recently completed segmentation of the FAFB image data "FlyWire";'®* with minor
proofreading. The axonal branches of input PNs in this figure were removed for better visualization of boutons.

Connectivity matrix analysis
To determine whether input to KCs from PNs was independent or conditional on PN type, a new method was devised which we
termed "conditional input analysis" (Figure S2A). The result is a matrix that indicates whether, given input from the row PN type, a
given KC is more (or less) likely than chance to get input from the column PN type. Each observed PN bouton-KC claw connection
is treated as a single count. The observed number of counts for a given pair of PN types is compared to the distribution of counts
generated using a null model. Several null models were used in this study (described below). For each combination of PN types,
a z-score is computed, i.e., how many standard deviations from the mean of the null distribution the observed number of counts
is (Figure S2B). Unsupervised k-means clustering of the z-score matrix was used to group matrix entries.

A summary of the steps in conditional input analysis follows.

Projection neuron types are named after the glomerulus ('Glom’) in the antennal lobe that PN’s dendrites innervate. Consider types
Glom A, B, C, and so on. For a given connectivity matrix:

1. Select all KCs having at least one claw receiving input from a bouton of Glom A.

2. The number of inputs to these KCs from Glom B, C, D, and so on are counted. This provides a count of the number of inputs to
the KC cell population from Glom B-D, given input from Glom A.

3. Repeat (1,2) for Glom B, C, D, and so on.

4. For each null model (see below), repeat (1)-(3) above on 10,000 in silico randomizations of the observed PN-to-KC network.
This generates the null distributions from which a z-score can be generated for observed connectivity for each PN type
pair. All z-score matrices in the study use the same color scale as in Figure 3B.

5. Apply k-means clustering to the z-score matrix. The k-means algorithm'®® clustered PN types into groups such that within-
group z-score variance is minimized, and the cluster number of each PN type is used to re-order both the columns and
rows of the z-score matrix. All z-score matrices are ordered based on the k-means clustering procedure with two exceptions:
(1) Figure S2H (hierarchical clustering); (2) Figures 5F, S3E, S4A-S4C, S5B-S5E, S5G, S6G, and S7A (to facilitate comparison
with other z-score matrices).

K-means clustering of the z-score matrix groups glomeruli with similar z-scores together, and therefore reveals subsets of PNs that
as a group provide more (or less) convergent input onto KCs than predicted by a given null model. Overconvergence (red in our fig-
ures) is more strongly detected by this approach, since pairs of PN types with low probability of being selected during randomization
(e.g. small numbers of boutons in the random bouton model) can have minimal or zero convergence onto common KCs. This, in turn,
lowers the magnitude of negative z-scores (since the mean of the null model values is already low).

The key parameter in k-means clustering is the number of clusters (i.e. the parameter ’k’) sought in the data. Although objective
methods for determining k have been devised, the 'best’ value is largely subjective. The three most commonly used methods to
determine k are the average silhouette method;''® the elbow method;'"" and the gap statistic method."'? Silhouette coefficients
are a measure of how close each data point in one cluster is to points in neighboring clusters. The average silhouette method iden-
tifies the value of k that maximizes the average of silhouette coefficients. The elbow method computes the total within-cluster sum of
square (total WSS), a quantification of the compactness of the clustering, for a range of potential k values. The optimal k is that for
which WSS cannot be improved further by adding another cluster, often shown as an “elbow” point in the plot of WSS as a function of
k. The gap statistic method generates a uniform distribution of z-scores as a null model, and maximizes total intra-cluster variations
between observed values and the null model, for different values of k.

For the main z-score matrix (Figure 3B), objective methods yielded an optimal k value of 2-3 (Figures S2E-S2G); nonetheless, we
opted for k = 4, since four clusters better separated underconvergent PNs, and gave results more consistent with hierarchical clus-
tering (Figures S2H-S2K; Table S3). For consistency, a k=4 was used for all other z-score matrices (Figures 4B, 4C, 5D, 5E, S2C, S5F,
S5H-S5N, and S7B). For most matrices, clustering results did not differ qualitatively even when the objectively determined optimal k
value differed from 4 (data not shown). However, in four cases (Figures 4B, 5E, S5F, and S7B), the gap statistic method determined
that no cluster was present in the data (i.e. k=1), and the other objective methods returned k values of 2 or 3. In this situation, k=4 was
still used, to maintain consistency with the rest of the analyses.

To identify overconvergent and underconvergent PN "communities”, clusters were first ranked by the average z-score for each
k-means cluster. The PN types most frequently found in the most overconvergent cluster (highest average z-score) were defined
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as comprising a “core community” (Figure 3B, dark green area; Table S2), and types most frequently found in the second-highest
z-score cluster were defined as comprising a “secondary community” (Figure 3B, light green area). Similarly, PN types most
frequently appearing in the lowest z-score cluster were defined as the “underconvergent” set of PNs (Figure 3B, blue area;
Table S3). Note that the conclusion that most overconvergent PNs tend to respond to food odorants did not depend on membership
in “core” or “secondary” communities, nor on the parameter k for number of clusters (Figures S2I and S2J; Table S2).

Z-score matrix can also be clustered by hierarchical clustering algorithm (Figure S2H). This hierarchy of clusters is represented as a
dendrogram and the dendrogram and matrix are reordered such that the Euclidean distance (dendrogram height) between succes-
sive entries is minimal.’"®

Connectivity matrices can also be analyzed with principal component analysis (PCA).?®° The fraction of variance between the
observed network and a given null model explained by each component can then be visualized, allowing comparison of different
null models (Figures S7C-S7F). While useful and generally powerful, this approach does not allow easy attribution of effect to specific
glomeruli. In contrast, the conditional input analysis used here allows for visualization of overconvergence or underconvergence by
any given pair of glomeruli.

Connectivity matrices can also be analyzed using covariance analysis."'* Unlike covariance analysis, conditional input analysis
allows asymmetries in conditional input to be detected (the case where, e.g., KCs on average get more input from type B, given input
from type A; but less input from type A, given input from type B). The results, however, indicate that most overconvergent inputs are
symmetric (Figure 3B). Covariance analysis is therefore a reasonable alternative to the conditional input analysis described above.
For each pair of PN types, the covariance measured in the observed network was compared to the distribution of covariances gener-
ated from 1,000 runs of a given null model of connectivity (see below). The null hypothesis is the observed covariance is equal to or
less than 95% of the covariances in the null model distribution for that pair of PN types. When the observed covariance is larger than
95% of the null model distribution, the null hypothesis is rejected (i.e. p < 0.05), and we say there’s an above-chance correlation in the
output to common KCs for this pair of PN types.

A p value of less than 0.05 (significance level) implies the probability of obtaining such a covariance in a random network is low, and
the alternative hypothesis of seeing such an observed value in a null model is therefore rejected. The results are shown in a p-value
matrix (Figures S3A-S3D) in which each cell represents a p value for a given pair of glomeruli indicated in the corresponding row and
column labels.

The p-value matrix was re-ordered either using the Figure 3B clustering order (Figures S3A and S3C) or using order given by
k-means clustering (Figures S3B and S3D). To aid k-means clustering of very low p-values, the p-value matrix was binarized such
that all p values less than 0.05 were set to 1, and otherwise to 0.

For the analysis of synaptic connectivity (Figures S3C and S3D), covariance measures were directly calculated from synapse
counts, using only the manually reconstructed Random Draw KCs (whose dendritic arbors in MB calyx were reconstructed to
completion; see Manual Tracing of KCs, above). To generate the null model of synaptic connectivity, the bouton-claw binary network
is randomized and each bouton-claw connection is assigned a synapse count that was randomly drawn (with replacement) from the
distribution of number of synapses per claw.

Null models of PN-to-KC connectivity

Nonrandom PN-to-KC connectivity can in principle arise from various anatomical parameters, such as: variable numbers of PNs per
glomerulus; variable numbers of boutons per PN type; non-uniform sampling of PN boutons by KCs; and regionalized distribution of
PN boutons and KC claws. By testing observed connectivity against a range of null models, incorporating none, some, or all of the
observed values of these parameters, the relative contribution of each parameter to the observed network structure can be assessed.

In the random glomerulus model (Figures S7A and S7B), each claw of each KC is randomly assigned to a PN with equal probability
per PN type (i.e. glomerulus). The observed values of all the other parameters listed above are ignored. As a result, in this null model,
each PN type provides input to equal number of claws, on average.

In the random bouton model (Figure 3A), each KC claw is reassigned to a randomly selected PN bouton in the calyx. All boutons in the
calyx are available to be assigned to any given claw with equal probability per bouton. On average, the number of outputs provided by a
given PN type (i.e. out-degree per PN type) will be proportional to the number of boutons that belong to that type. Since the number of
boutons per PN type is the product of the number of PNs per glomerulus and the number of boutons per PN, the observed value of these
anatomical parameters is incorporated into the random bouton null model. The number of claws for each KC (i.e. in-degree per KC) is
also maintained. To apply conditional input analysis to the data of Caron et al.>* using this null model (Figures S5J and S5L), the bouton
counts per PN type obtained from our work were used, since bouton counts per PN type were not generated in that study. Similarly,
when the PN-to-KC network in Li et al.?® is analyzed using this null model (Figures S5E-S5H), values of bouton counts per PN type
from our dataset were used. A caveat of this approach is that bouton counts per PN type may not be consistent across animals. How-
ever, the broad consistency of outputs for PN types (Figure 1G) suggests the result may be robust to this parameter.

The random claw model (Figure 4A) is similar to the random bouton model, except that the number of KC claws assigned to a given
PN bouton is held equal to the number of claws ensheathing that bouton in the observed PN-to-KC network. Therefore, in this null
model, the number of claws receiving input from a given PN type (i.e. out-degree per PN type) and the number of claws each KC has
(i-e. in-degree per KC) are maintained.

In the local random model (Figure 5A), each claw of each KC is randomly assigned to one of the five nearest PN boutons (including
the one it ensheathed in the observed network). Distances were measured between claw and bouton centroids. The number of claws

Current Biology 32, 3334-3349.e1-€6, August 8, 2022 e4




¢? CellP’ress Current Biology

assigned to each bouton is allowed to deviate from the observed value (unlike the random claw model). Therefore in this model, both
KC in-degree and geometric constraints on connectivity are preserved, and out-degree per PN type is allowed to vary.

Morphological clustering of PNs using NBLAST

The complete set of reconstructed PNs and all reconstructed KCs used in the analysis of conditional input are on the right hemisphere
of the FAFB brain. On the right side, each PN type was classified and the subset of PN arbors contained in the MB calyx surface mesh
was extracted, as described in previous work.” The boundaries of MB calyx were generated from an nc82 (synapse)-stained template
brain aligned to the FAFB image volume as described in Zheng et al.? PNs on the left side of the FAFB brain were reconstructed in a
separate study.?® In the current work, the subset of PN arbors innervating the left-side MB main calyx were obtained through inter-
section with the left-side MB calyx surface mesh. The reconstructed PNs and calyx mesh of the hemibrain dataset'® were obtained
from the neuprint server (neuprint.janelia.org) using the neuprintr R package (github.com/natverse/neuprintr).?%'°” The recon-
structed skeletons were re-sampled evenly at 1 pm intervals to reduce the sensitivity of NBLAST to local differences between small
branches. For PNs in each of the three data sources (right-side FAFB, left-side FAFB, and hemibrain), hierarchical clustering was
performed based on Euclidean distance (dendrogram height) matrices of NBLAST scores,” using Ward’s algorithm."®

Comparison of postsynaptic KC counts between FAFB and hemibrain datasets

During preparation of this manuscript, a segmentation of a portion of a second adult fly brain was published (the ‘hemibrain’).'® In the
hemibrain dataset, all PNs and ~2,000 KCs on the right side of the brain were segmented as part of a large-scale proofreading effort
(50 person-years over ~2 calendar years).”° In this hemibrain connectome, we analyzed synaptic connections only at the cell level,
rather than individually demarcating PN boutons and KC claws as was done for the right-side of the brain in the FAFB dataset. We
used the hemibrainr package (github.com/natverse/hemibrainr)'®” to download the connectivity matrix between all PNs and KCs
(hemibrain v. 1.0.1, from https://neuprint.janelia.org). Comparison of PN-to-KC connectivity to the random bouton and random
claw null models (Figures S5E-S5H) was done by (1) assuming that all synapses between a given PN-KC pair were the result of a
single PN bouton-KC claw interaction (true for ~ 92% of connections in observed FAFB PN-KC pairs); and (2) using the number
of boutons per PN type as measured in the FAFB dataset in null models of connectivity in the hemibrain dataset. The hemibrain
PN-to-KC connectivity matrix was then binarized, such that each unique pair of PN and KC with 3 or more synapses is defined as
one connection and otherwise zero. For a given PN, the number of connections is therefore equivalent to the number of KCs post-
synaptic to the PN. Because the total number of reconstructed neurons is different between the FAFB and the hemibrain dataset, the
number of connections for each PN type is divided by the total number of connections in each dataset. This results in a normalized
percentage of connections for each PN type, enabling comparison between FAFB and hemibrain datasets (Figures 1G and 1H).

Modeling of a Discrimination Task

The PN-to-KC network computational model is based on earlier models used in the larval®® and adult fly with minimal modifications.*°
In these models, simulated activities across all PN types are created for each of ten stimulus odors. Each stimulus is randomly as-
signed one of two categories with equal probability. The PN activity (signal) is generated by drawing independently from a rectified
unit Gaussian distribution and then corrupted by Gaussian noise. The PN activity is simulated per PN type (i.e. glomerulus), such that
all PNs of the same type have identical activity. Here, the publicly available source code for these earlier models (lk.
zuckermaninstitute.columbia.edu/#code “°°?) was minimally modified to allow for channeling of PN activity through subsets of
different PN types. To probe the effect of the observed overconvergence of all community PN types (19 PN types, including core
and secondary community PN types; Figure 3B), for each stimulus, rectified Gaussian activity patterns were generated for 19 PN
types. The fraction of activated community PN types was varied between 0 (19 non-community PN types) and 1 (all 19 community
PN types), with intervening fractions of 4/19, 8/19, 12/19, and 16/19 (Figures 7B-7F). For fractional values less than 1, activated PNs
were randomly selected from the 19 community PN types and non-community PN types were randomly selected from the set of 35
non-community PN types. Gaussian noise with standard deviation 0.4 was then added to the activity levels of all PNs. Kenyon cell
activity was calculated by multiplying PN activity with the observed matrix of PN-to-KC synapse counts, without thresholding. In the
original model,*° simulated activities across all PN types were created for each stimulus odor, and the KC activity was thresholded
such that each KC is activated by 5% of odor stimuli, consistent with the general sparseness of KC activity."'® In the event that a given
KC does not exceed this threshold, its activity was set to zero. In the current work, the effect of PN noise on classification capability
was assessed by making all KC activity available to the classifier, including weak activity inherited from simulated noise of PN input.
This change did not qualitatively alter the results (data not shown). Kenyon cell activity patterns were used to train a maximum-margin
classifier to predict the pre-assigned category assigned to each PN activity pattern. In the testing phase, the PN activity patterns used
during training were corrupted with Gaussian noise, and the resulting KC activities were calculated and used as input to the trained
classifier.

The model requires synapse counts between each connected PN-KC cell pair. For each PN-to-KC network generated using one of
the null models, each connection is assigned number of synapses drawn from the observed dataset. All generated networks had
2,200 KCs. Since the observed network has only 1,356 KCs, each model of the observed network required an additional 844
KCs, with their number of input synapses, to be drawn from the manually traced KC population.

In Figures S7G-S7I, the same model is implemented except that 22 food PN types (Table S1), 10 core community PN types
(Table S2), 4 PN types that are activated by banana odors''” are chosen to be activated, respectively. In the null model distribution,
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for each simulation (one count in the histogram), a random set of the same number of PN types are drawn from the remaining PNs and
are picked to be activated.

In this class of discrimination task,’° the more PNs that are activated, the more information (signal) is available for the classifier to
solve the task. Since there are more food PN types (22 PN types) than core community PN types (10 PN types), simulating activity in all
food PNs results in lower error rates than core community PNs (Figure S7G versus Figure S7H).

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses were performed in Python using the scipy package (https://www.scipy.org).''® In each of all z-score matrices,
10,000 random networks were generated for a given null connectivity model (random glomerulus, random bouton, random claw, local
random). Z-score was defined as the number of standard deviations of the observed value from the mean of the distribution gener-
ated by the null model. For modeling of the PN-KC networks in Figures 7B-7G and S7H-S7J, error rates are first averaged over
random input patterns (10,000 trials) for an instance of a randomized network, then averaged over 100 instantiations of null-model
network architectures, as in Litwin-Kumar et al.“® The standard deviations of the mean across network architectures for the error
rates are used. The expected error rate for chance performance is 50%.
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