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Abstract—Hyperspectral imaging is an important sensing tech-
nology with broad applications and impact in areas including
environmental science, weather, and geo/space exploration. One
important task of hyperspectral image (HSI) processing is the
extraction of spectral-spatial features. Leveraging on the recent-
developed graph signal processing over multilayer networks (M-
GSP), this work proposes several approaches to HSI segmentation
based on M-GSP feature extraction. To capture joint spectral-
spatial information, we first customize a tensor-based multilayer
network (MLN) model for HSI, and define a MLN singular space
for feature extraction. We then develop an unsupervised HSI seg-
mentation method by utilizing MLN spectral clustering. Regroup-
ing HSI pixels via MLN-based clustering, we further propose
a semi-supervised HSI classification based on multi-resolution
fusions of superpixels. Our experimental results demonstrate
the strength of M-GSP in HSI processing and spectral-spatial
information extraction.

Index Terms—Hyperspectral image classification, feature ex-
traction, graph signal processing, spectral clustering.

I. INTRODUCTION

YPERSPECTRAL imaging is an analytical technique
operating on images at different wavelengths for given
geographical areas [1], [2], [3]. Exploiting a wealth of spectral-
spatial information, hyperspectral images (HSIs) have seen
broad applications in areas such as urban mapping, environ-
ment management, crop analysis and food safety inspection
[4], [5], [6]. Many such applications often require to label each
spatial position shown as an image pixel. Thus, hyperspectral
image segmentation has emerged as an important field in
HSI analysis [7]. Given the corresponding spectral feature
vectors for each position in HSI, HSI segmentation aims to
partition image pixels into different feature groups (or regions).
Typical types of HSI segmentation include: 1) supervised
(semi-supervised) classification given the labels of a training
sample set, and 2) unsupervised segmentation without prior
knowledge on the labels of pixels. In this work, we investigate
the application of multilayer network graph signal processing
(M-GSP) in both unsupervised clustering and semi-supervised
classification as conceptually illustrated in Fig. 1 and Fig. 3,
respectively.
Supervised HSI classification approaches form an important
category of HSI analysis in remote sensing and have shown
strong performance on standard datasets [8]. One typical
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approach is to first reduce the feature dimension before apply-
ing a classifier, such as support vector machines (SVM) for
segmentation [9], [10]. To remove redundancy and to reject
noise across the spectral bands, different feature selection
[11] and feature extraction [4] methods have shown successes.
Among them, we see familiar concepts that leverage princi-
pal component analysis (PCA) [12], [13], [14], [15], [16],
independent component analysis (ICA) [17], and manifold
learning [18], [19], among others. With the recent advances
in machine learning, newly proposals such as deep learning
[20], active learning [21], and tensor learning [22], have
also demonstrated robust performance of HSI classification.
Despite their successes, HSI classification algorithms require
a significant number of high quality samples for model opti-
mization and can be costly in many real-life scenarios [23].
On the other hand, unsupervised segmentation is also an
important task in HSI analysis and has attracted significant
coverage recently. Basic Centroid-based clustering methods,
such as k-means [24] and fuzzy c-means [25], aim to minimize
intra-cluster distance of samples within the clusters. Other
clustering methods, including density-based methods [26] and
biological clustering methods [27], have also been adopted for
unsupervised HSI segmentation.

In addition to the aforementioned approaches, graph-based
methods have been gaining popularity in both supervised
(semi-supervised) and unsupervised HSI segmentation, ow-
ing to their power in revealing underlying structures among
different pixels. Representing HSIs as graphs, spectral clus-
tering [28], [23] can be developed for the unsupervised HSI
segmentation. Compared to the centroid-based clustering and
density-based methods, graph-based spectral clustering can
provide a more general similarity model for pixels and per-
form well in unsupervised HSI segmentation. Similarly, graph
convolutional network (GCN) [29], [30], [31], [32] has also
demonstrated its strength in (semi-) supervised HSI segmen-
tation, especially under the condition of limited ground-truth
hyperspectral sets [33], by exploring the underlying structures
among the pixels.

Despite these reported successes, most of the graph-based
methods focus primarily on spatial geometry and consider
a rather stationary graph connections for all spectral bands.
Such limitation fails to explore different spectrum features of
each individual band. For example, Fig. 2 shows that different
bands may display different distributions of the pixel volumes,
which could mean different graph structures. To compensate,
some works would represent each band with an individual
graph while neglecting the inter-frame correlations [34]. For
these reasons, the unresolved challenge is to understand how
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Fig. 1. Scheme of MLN-based Unsupervised HSI Segmentation.
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Fig. 2. Examples of Volumes for Different Bands in the Indian Pines Dataset.

to capture such heterogeneous spectral-spatial structure in an
integrative manner jointly instead of individually.

In addition to the limitations of geometric models in general,
traditional graph-based methods may also suffer from the large
number of HSI pixels to process [23]. Generally, superpixels
are constructed to control complexity. However, to achieve
a better performance, one needs to determine the resolution
of superpixels in advance and also decide how to form
superpixels. In [16], different resolutions of superpixels are
combined after the individual processing for each of them,
which presents the ensuing challenges on the efficient fusion
of the segmented results from different resolutions.

In view of the aforementioned challenges, this work intro-
duces a new approach of graph signal processing over multi-
layer networks (M-GSP) to HSI processing. M-GSP [35], [36]
is a tensor-based framework that generalizes traditional graph
signal processing (GSP) [37] to process the heterogeneous
graph structures across different layers of graphs. Since the
spatial positions (pixels) are the same for all hyperspectral
bands, we can model HSI data as a multilayer network with the
same number of nodes in each layer (also known as multiplex
network). The superpixels serve as nodes and each spectrum
frame forms one layer as shown in Fig. 1. Next, we develop M-
GSP spectral analysis to extract features for HSI segmentation.
In this work, we investigate the applications of M-GSP in the
feature extraction for both unsupervised and (semi-) supervised
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HSI segmentation. We summarize our contributions in this
work as follows:

o We propose a multilayer network (MLN) model, together
with an alternative singular space for the HSI datasets.

o We develop an unsupervised HSI segmentation method
based on the M-GSP spectral clustering.

o We develop an MLN-based method for semi-supervised
HSI segmentation, which combines multi-resolution in-
formation.

o We further propose several novel schemes for decision
fusion of the results from different resolutions of super-
pixels.

We test all the algorithms in the standard Indian Pines dataset,
Pavia University dataset and Salinas dataset. The experimental
results demonstrate the strength of M-GSP in representing the
spectral-spatial structures in HSI, and the efficiency of the
proposed HSI segmentation algorithms.

We organize the rest of this manuscript as follows. Starting
with a brief introduction of M-GSP in Section II, we introduce
the multilayer network construction for HSI datasets together
with the introduction of unsupervised HSI segmentation based
on M-GSP spectral clustering in Section III. Next, we intro-
duce the M-GSP framework of semi-supervised HSI classifica-
tion in Section IV, where we also propose several methods for
the decision fusion of different resolutions. In Section V, we
present details on the experiments and results of the proposed
methods in several standard datasets. Finally, we summarize
our works in Section VI.

II. FUNDAMENTALS OF M-GSP

In this section, we briefly introduce the core concepts of
M-GSP used in this work.

A multilayer network M with M layers and N nodes in
each layer can be viewed as projecting /N virtual entities
(nodes) onto M layers. The resulting M layers form a mul-
tilayer “network” M that be represented by a fourth-order

adjacency tensor A € RM x RNV x RM x RV defined as
A = (Aaigj),

1<a,f<M1<ij<N, (D
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Fig. 3. Scheme of MLN-based Semi-supervised HSI Segmentation.

where each entry A,;3; of A indicates the edge (link) in-
tensity between entity j’s projection in layer § and entity i’s
projection in layer « [38]. Generally, we use bold uppercase
letters to denote tensors, i.e., A € Rt x...xRIe represents a
Qth-order tensor with Ij, being the dimension of the kth order.
Ay, ..o, denotes the entry of A in position (i1, 72, - - ,i¢g) with
1 <14y, < Ij. In addition to adjacency tensor, Laplacian tensor
can be also defined similar to that in normal graphs. Interested
reader could refer to [35] for more details.

Since we construct the superpixels from all spectrum images
in a HSI dataset, each superpixel can be viewed as an
entity to be projected into different spectrum bands. We can
then represent the spectral-spatial structure intuitively via the
adjacency tensor in Eq. (1). More details of the multilayer
construction will be discussed in Section III.

With the adjacency tensor A € RM xRN xRM xR¥, it can
be decomposed via higher-order singular value decomposition
(HOSVD) [39] as

A~Sx; U(l) X9 U(2) X3 U(S) X4 U(4), 2

where X, is the n-mode product [40] and um =
™ ur o u(I:)] is a unitary (I,, x I,,) matrix, with
IlzlgzMand12:I4:N.Sisa([1><12><I3><I4)-
tensor of which the subtensor S; obtained by freezing the
nth index to a:

e <8; —a,S;,—3 >= 0 where a # 3.
o [ISi,=1ll = [ISi,=2ll = -+ > [[Si,=1,I[ = 0.

(n

The Frobenius-norms o; ) = [1S;,=i|| is the n-mode singu-
lar value, with corresponding singular vectors in U(). Since
the representing tensor is partial symmetric in the undirected
MLN, there are two modes of singular spectrum, i.e., (Yo, fo)
for mode 1,3, and (o0, e;) for mode 2,4. More specifically,
UM = UG = (f,) characterizes the features of layers and
U® = UM® = (e;) characterizes the entities.

If the singular vectors are included in Fy = [f; -] €
RM x RM and E, = [e;---ey] € RY x RY, the MLN

Superpixel Regrouping

and Feature Fusion Regenerated
Features F

Superpixel Regrouping

and Feature Fusion et
Features F,

Superpixel Regrouping

and Feature Fusion T
Features F,

SVM
Segmentation §;

SVM
Result

Segmentation §; Fuli
usion

SVM
Segmentation S,

singular transform (M-GST) for a MLN signal s € RM*N
can be defined as

s, = FTsE, ¢ RM x RY, (3)

Here, we mainly focus on fundamentals of singular analysis
of the undirected multilayer networks. For more details on
other concepts, such as MLN Fourier transform, M-GSP filter
design, sampling theory and stationary process, readers are
referred to [35], [36].

III. UNSUPERVISED HSI SEGMENTATION BASED ON
M-GSP SPECTRAL CLUSTERING

In this section, we introduce the construction of MLN
models for HSI datasets, before proposing an unsupervised
segmentation approaches based on M-GSP spectral clustering.

A. Superpixel Segmentation for HSI

Before venturing into the M-GSP analysis, we first introduce
the superpixel segmentation for HSI. In traditional graph-
based HSI analysis, image pixels act as nodes and their pair-
wise distances are calculated to form a graph [23]. However,
given a large number of pixels, it becomes inefficient and
sometimes impossible to implement full graph-based analysis
for pixel-based HSIs. Practically, since pixels within a small
region may share similar features, grouping neighboring pixels
into superpixels could be a more practical way for graph
construction.

In general, a suitable superpixel segmentation algorithm
for HSI classification should exhibit low computation com-
plexity and accurate detection of the object boundaries [16].
One category of superpixel segmentation in HSI uses image
features such brightness, color and texture cues, to estimate
the location of segment boundaries. In [41], a superpixel
estimation is developed by adopting the ultrametric contour
map (UCM) approaches to the hyperspectral volumes. In [42],
the band smoothness is jointly considered with general features
to group pixels. Graph-based segmentation approaches are



also common in superpixel segmentation [43]. In [44], an
eigen-based solution to normalized cuts (NCuts) is used for
superpixel group. However, such eigen-based methods tend
to suffer from time-consuming graph construction and matrix
decomposition.

For more efficient superpixel segmentations, our work in
this manuscript considers the entropy rate superpixel segmen-
tation (ERS) suggested by, e.g., [16]. In ERS [45], a dataset
is modeled as a graph G = {V, £}, in which the pixels serve
as the nodes V and their pairwise similarities are represented
by edges £. Next, a subgraph A = {V, L} is formed by
choosing a subset of edges £ C &, such that .4 consists of
fewer connected components. To obtain such a subgraph, the
problem can be formulated as

L* =arg, maxTr{H (L) + oT(L)} 4)
st. LCE, )

in which entropy rate term H (L) favors more compact clus-
ters, and regularizing term 7'(L) punishes large cluster size.
Based on the objective function of Eq. (4), a greedy algorithm
can be implemented to solve the problem [46].

B. Multilayer Network Construction for HSI Datasets

With superpixel-represented HSI, we now begin multilayer
network construction. Consider Fig. 1. An HSI X € RE x
RY, containing K spectrum frames and N superpixels, can be
modeled by a multilayer network with M layers and N nodes
in each layer. Specifically, the MLN consists of the following
attributes

e Layers: To construct a MLN, we define layers based
on the spectrum bands. Since different spectrum frames
may share similar features, we first divide the bands into
M clusters, ie., X; € RE: xRN, 4 =1,---, M and
Zﬁl K; = K. Next, each cluster serves as one layer in
the multilayer network. Various clustering methods can
generate features X; for layer i. For example, one can
divide spectrum band based on a range of wavelength. To
capture correlation across different bands more efficiently,
the k-means clustering is applied for band division.

e Nodes: In M-GSP based HSI processing, the superpixels
act as virtual entities. By projecting N superpixels into
M layers, we form a multilayer network with M layers
and N nodes in each layer. We define MLN signals as
the divided attributes of each superpixel, i.e., X; ; € R¥
for the superpixel j’s projected node in layer 3.

o Interlayer connections: For interlayer connections, each
projected node is connected to its counterparts in other
layers, i.e., fully connected for all the projected nodes of
the same superpixel. As a result, we obtain corresponding
entries of the adjacency tensor A € RM xRN xRM x RY
for the superpixel ¢ defined as

L a#p;
Awipi = . (6)
0, otherwise,

where each entry indicates link presence.
e Intralayer connections: For the intralayer connections,
we calculate the weights between the projected nodes of

entities ¢ and j in layer o based on the localized Gaussian
distance as follows:

e -2 , dlSl(Xa,ivx(Xaj) <D
disz(p(a, 1), p(e, 7)) < g;

0, otherwise.

A(M'aj =

)

where o, p and ¢ are design parameters and p(c, ©) is the
position of the superpixel 7 in layer «.

Beyond the traditional Gaussian distance [47], our intralayer
connections consider two conditions for determining the pres-
ence of links: 1) features between two nodes should be similar;
and 2) two connected superpixels should be in a localized
region in the HSI. The first condition ensures the similarity
of connected nodes while the second condition emphasizes
geometric closeness in the HSI. For an initial setup of the
parameters, we define dis; using ¢o-norm, and define disy as
the Euclidean distance between the respective centroids of two
superpixels. In terms of design parameters, we set p as the
mean of all pairwise similarities and tune the parameters ¢, o
based on the specific dataset.

C. MLN-based Spectral Clustering for HSI Segmentation

Spectral clustering is an efficient method for unsupervised
HSI segmentation [23]. Modeling HSI by a normal graph
before spectral clustering, significant improvement is possible
owing to its power in capturing the underlying structures [48],
[49]. However, by representing HSI by a single-layer graph,
distinction of individual spectrum bands might be overlooked.
To capture the heterogeneous spectral-spatial structure in HSI,
we propose to segment the HSI based on the M-GSP spectral
clustering as follows.

Consider an HSI X € RX x RY with K spectrum frames
and N superpixels. To implement the M-GSP spectral cluster-
ing, we first construct an M -layer network the with adjacency
tensor A € RM x RN x RM x RV according to Egs. (6)-
(7). We then apply HOSVD to obtain the singular tensors
F,=[f - fi] e R x RM and E, = [e; ---en] € RY x
RY to characterize the bands and superpixels, respectively,
according to Eq. (2). Since we aim to segment superpixels
into meaningful clusters, we focus on the entity-wise spectrum
E,. Arranging e; in the descending order of its corresponding
singular value o3, i.e.,

o = |[Siy=ill, )

where S;,—; € RM x R x RM x R¥ is the subtensor of the
core tensor S in Eq. (2) by freezing the second order i = i, we
pick the first P singular vectors to preserve the most critical
information for HSI based on a largest gap among the singular
values. Clustering based on the P selected singular vectors
and labeling each pixel within the superpixel, we can obtain
a segmentation of the given HSI. The major process of MLN-
based unsupervised segmentation is provided in Algorithm 1.
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Algorithm 1 MLN-based Unsupervised HSI Segmentation
(MLN-SC)

1: Input: HSI I € RX x R” with K frames and T pixels,
and the number of clusters Q);

2: Construct N superpixels for HSI based on ERS algorithm
as X € RXK x RV,

3: Divide bands into M clusters based on k-means clustering;

4: Construct an M -layer network with adjacency tensor A €
RM x RN x RM x RV as Eq. (6) and Eq. (7);

5: Implement HOSVD on A to obtain the entity-wise singu-
lar tensors E, = [e; - - -ex] € RY xRY in the descending
order of the 2-mode singular values o; as Eq. (8);

6: Select the first P singular tensors as Py, = [e1,--- ,ep| €
RY x R” based on the largest singular gap;

7: Cluster the rows of Py into () groups based on k-means
clustering;

8: Cluster the superpixel ¢ into group j if the ¢-th row of Py
is in group j;

9: Label the pixels as the same cluster of its superpixel;

Output: Segmented HSI.

D. Discussion

Before we dive further to develop MLN-based semi-
supervised HSI segmentation, we provide a short conceptual
discussion on the M-GSP singular tensors. Within the context
of GSP, how to capture layer-wise and entity-wise information
efficiently has become a significant topic of research due to
growing interests in spatial-temporal datasets. The authors
of [48] have proposed a two-step graph Fourier transform
(GFT) to process spatial-temporal graphs, by applying GFT in
the spatial domain (intralayer) first and then in the temporal
domain (interlayer). However, this approach does not consider
the structural correlations between inter- and intra- layers.
The authors of [49] developed a joint time-vertex Fourier
transform (JFT) by implementing GFT and discrete Fourier
transform (DFT) consecutively. However, the DFT block limits
the structure of interlayer connections to a path graph. More
recently, the authors of [50] proposed a tensor-based multi-
way graph signal processing framework (MWGSP) on the
product graph. MWGSP constructs separate factor graphs
for each mode of a tensor-represented signals and defines
a joint spectrum that combines spectra of all factor graphs.
One limitation is that the combination process requires a
homogeneous structure for each graph layer and does not
accommodate potentially different band-wise features in HSI.

By contrast, since we apply HOSVD in M-GSP for achiev-
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Fig. 5. Distribution of Entity-wise Singular Values.

ing tensor-based representation, our M-GSP framework is able
to jointly process interlayer and intralayer connections of HSI.
Even when focusing on entity-wise singular tensors in the
clustering process, we are still able to incorporate layer-wise
information. To better understand the property of MLN-based
singular tensors, we graphically illustrate the distribution of
singular values compared to a graph-based model in Fig. 5.
As shown, the energy of MLN-based singular values are more
concentrated in the first few dominant singular vectors in low
frequency when compared against graph-based singular values.
This energy concentration indicates a more convenient and low
degradation implementation of spectral clustering within our
proposed M-GSP framework.

IV. SEMI-SUPERVISED HSI CLASSIFICATION BASED ON
M-GSP FEATURE EXTRACTION

In this section, we introduce the semi-supervised HSI seg-
mentation based on M-GSP feature extraction.

A. Single-Resolution of MLN-based HSI Segmentation

We start with the single-resolution of the superpixels. In the
superpixel-based classification, superpixel resolutions affect
the final performance: finer resolution could capture more
details whereas coarse resolution captures the global infor-
mation more efficiently. To benefit from both fine and coarse
resolutions, we introduce the MLN-based spectral clustering
on the fine resolution to regroup superpixels into a coarse
resolution (the number of regrouped superpixels should still be
larger than the number of classes) and use the regrouped fea-
tures as classifier inputs. Here, we apply SVM to classify the
regrouped superpixels. The concept of our single-resolution
HSI segmentation (MLN-SRC) is illustrated by Fig. 4, and
the major steps are described in Algorithm 2.



Algorithm 2 Single-Resolution HSI Segmentation (MLN-
SRC)

1: Input: HSI I € RE x RT with K frames and T pixels;

2: Construct N superpixels for HSI based on ERS algorithm
as X € RX x RYV;

3: Divide bands into M clusters based on k-means clustering;

4: Construct an M-layer network with adjacency tensor A €
RM x RN x RM x RN as Eq. (6) and Eq. (7);

5: Implement MLN-based spectral clustering to regroup the
superpixels into D clusters, and combine the features of
pixels within the same cluster as the regrouped features,
ie, Xp € RE xR,

6: Input Xy into SVM for the classification of regrouped
superpixels;

7: Label the pixels as the same class of its superpixel;

8: Output: Segmented HSI.

The benefits of the proposed MLN-SRC include:

o Against a singe resolution of coarse superpixels, the
MLN-SRC implements an analysis step over a fine res-
olution and is capable of capturing detailed features.
Against a single resolution of fine superpixels, the MLN-
SRC substantially reduces pixel number and enhances
robustness of the feature inputs to the classifier. Too many
superpixels may make the features less distinctive and
over-segment the regions, whereas too few superpixels
may lead to boundary ambiguity.

o Traditional graph-based superpixel segmentation only
captures a single-layer structure. MLN-GSP regrouping
could reveal additional feature information across the
heterogeneous multi-band structures.

« In traditional superpixel segmentation, the distinct regions
are usually labeled as different superpixels. However, in
MLN-SRC, superpixels from different regions may have
the same labels depending on clustering results. Thus,
regrouped features can involve similar pixels that cover
a large distance and potentially generate more features.

e MLN-SRC can be easily integrated with other feature
extraction or selection algorithms. Dimension reduction
techniques such as PCA and ICA can potentially improve
the performance when applied on features and feature
groups generated by MLN-SRC.

B. Multi-Resolution of MLN-based HSI Segmentation

1) Multi-Resolution Structure: Although MLN-based spec-
tral clustering can regroup small superpixels into larger ones
and to benefit from both fine and coarse resolutions in MLN-
SRC, the initial resolution setting of superpixels still affects
final performance. As Fig. 6 shows, different initial resolutions
can lead to different levels of accuracy. It is practically difficult
to determine the optimal initial number of superpixels.

Similar to [16], we consider a multi-resolution structure of
classification (MLN-MRC) shown as Fig. 3. In this framework,
we examine several different initial resolutions of superpixels.
MLN-SRC is applied to each initial resolution to regroup the
superpixels with a same reduction ratio in group numbers, i.e.,
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Algorithm 3 Multi-Resolution HSI Segmentation (MLN-
MRC)

1: Input: HSI I € RE x RT with K frames and T pixels;

2: Construct multiple resolutions of superpixels for HSI;

3: Construct different multilayer networks for each resolution
of HSI;

4: Implement MLN-SRC for each resolution to obtain the
sub-results;

5: Fuse all the sub-results for the final segmentation;

6: Output: Segmented HSI.

70% of initial superpixels. Applying SVM to classifying the
multiple regrouped superpixels, we fuse the results from dif-
ferent initial resolutions in final segmentation. The algorithm
is described in Algorithm 3.

Although the multi-resolution structures have been consid-
ered in literature, MLN-MRC exhibits two major distinctions.
First, we apply a novel MLN-based clustering algorithm to
regroup the superpixels and generate new features for clas-
sification. Second, we provide several novel decision fusion
strategies, based on both confidence score and graph structures
to be discussed below.

2) Decision Fusion: In [16], a decision fusion scheme
based on majority voting (MV) is proposed. In this method,
the label [ of a specific pixel is determined by

C
[ = argmax; ij -0(1y), )

j=1
where C' is the number of distinct resolutions, [; is the label
of the pixel in resolution j, w; is the voting strength, and
§(1;) = 1 if I; = 4; otherwise, d(I;) = 0. Note that a basic
majority voting based on equal strength w; = C~! applies



TABLE I
STATISTICS OF DIFFERENT HSI DATASETS

HSI Pixel Size | # of Spectrum Bands | # of Classes | # of Labeled Samples
IndianP 145x 145 200 16 10249

PaviaU 610x340 103 9 42776

Salinas 512x217 204 16 54129

SalinasA | 83x86 204 6 5348

(a) Indian Pines

(b) Pavia University

Fig. 7. Mean of HSI over Spectrum Dimension.

the same strength to different resolutions but would ignore the
difference of multiple resolutions. To improve decision fusion,
we introduce several novel strategies for the decision fusion.

e Validation Accuracy (VA): One intuitive way to design
decision strength is based on validation accuracy. Here,
we can apply the validation accuracy directly as the
weighting strength w; for resolution j to fuse the decision
according to Eq. (9).

e Decision Value (DV): As one alternative, the decision
probability for each class of pixels can be used as
the weight. In multi-class SVM, the predicted label is
determined according to the decision value p € RC,
where C' is the number of classes [53]. Let p;; be the
decision value of pixel ¢ in jth resolution. We set the
weight of [;; to

Unlike validation accuracy which is the same for all
pixels in each resolution, this weight based on decision
value may vary even for pixels at the same resolution.

o Graph Total Variation (TV): Graph-based metrics can
serve as weights. For a robust setup of superpixels, signals
should be smooth and exhibit stable underlying graph
structure. To this end, we introduce graph-based total
variation to measure smoothness. Given a superpixel seg-
mentation j of a HSI with IV superpixels and K spectrum
frames, we regenerate the features of each superpixel by
averaging all pixels within. We then construct a single-
layer graph based on Gaussian distance to measure simi-
larity between different superpixels. Defining a Laplacian
matrix by L = D — A where D is the degree matrix
and A is the adjacency matrix, the total variation of the
feature signal s, € R for the pth band frame over L is

1
TVP = ||SP - |>\ |LSP||§7
max

where Apax is the largest eigenvalue of L. Total variation
describes the propagation differences between two steps.

(1)

0 4 6 8 10 120 190 160 180 200

(c) Salinas

(d) SalinasA

A smaller total variation indicates a more smooth signal.
With K frames in total, final smoothness for resolution
j is defined as SM; = % >, TVp. Since we prefer a
larger weight for the smooth signal, the final weight of
the resolution j is defined as

SM; (12)

w; =¢€

e Von Neumann Entropy (VN): The stability of the underly-
ing graph structure can also indicate the confidence level
of a specific superpixel resolution. In quantum theory
[54], a pure state leads to a zero Von Neumann entropy.
The entropy is larger if there are more mixed states
in the system. Similarly, in our HSI analysis, since we
prefer a stable system or a pure state on the underlying
graph, the weight should be larger if the Von Neumann
entropy is smaller. Consider the Von Neumann entropy
introduced to evaluate the graph stability [54]. Similar
to total variation, a Laplacian matrix L can be defined
with adjacency matrix A = (a,,) for the jth resolution.
First, define ¢ = 1/(3_, , apq) and rescale the Laplacian

matrix
Lg=c-(D-A), (13)
We can define the weight for the jth resolution as
w; =e . (14)
based on the Von Neumann entropy
h; = —=Tr[L¢ log, L¢]. (15)

Note that, here we provided several possible alternatives
for the weights of decision fusion. The performances of the
various proposed fusion strategies will be presented in Section
V-C. We plan to investigate more M-GSP based approaches
to result fusion in future works.

V. EXPERIMENTAL RESULTS

We now test the performance of the proposed unsupervised
and semi-supervised segmentation approaches in several well-
known datasets to demonstrate the efficacy of M-GSP in
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Fig. 8. Ground Truth of Class Labels
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Fig. 9. Segmented Results of Indian Pines.

(a) K-means

(b) GSP

Fig. 10. Segmented Results of Pavia University.

HSI analysis. We also comparatively test the performance of
various different fusion decisions.

A. Dataset

We test the performances of the proposed methods based
on four public HSI datasets accessible from website . The
first HSI is Indian Pines (IndianP) scene originally gathered
by AVIRIS sensors over an agricultural field. The second HSI
dataset is the University of Pavia (PaviaU) acquired by ROSIS
sensor. Note that, some of the samples in PaviaU contain no
information and have to be discarded before analysis. Two
other HSIs used in the experiments are the Salinas Scene
(Salinas) and Salinas-A Scene (SalinasA) datasets, which
were collected by the 224-band AVIRIS sensor over Salinas
Valley, California, and exhibit high spatial resolution. For each
dataset, we have groundtruth classes for part of samples.

For these HSIs, Table I provides vital statistics and we
provide visual illustration of the geometric plots in Fig. 7
and Fig. 8. Note that, Fig. 8 treats the unlabeled groundtruth
samples as backgrounds with the same class label. Interested
readers can find more information on the HSI datasets at the
website!.

B. Unsupervised HSI Segmentation

In this part, we first test the performance of unsupervised
HSI segmentation. Although our proposed MLN-based method

Ihttp://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_
Scenes
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Fig. 11. Segmented Results of Salinas.

(a) K-means

(b) GSP

(c) M-GSP

Fig. 12. Segmented Results of Salinas A.

is amenable to various sophisticated clustering approaches,
we find it easier to demonstrate it by using a basic spectral
clustering scheme. In this section, we mainly use comparison
of basic methods, such as k-means clustering and GSP-based
spectral clustering [35], to demonstrate the power of M-GSP
in processing the HSI datasets. We will illustrate the benefits
of multilayer network models and M-GSP in comparison with
other more advanced methods in semi-supervised segmenta-
tion in Section V-C.

To validate the performance of different methods, we
consider two experimental setups. In the first scenario, we
carry out unsupervised segmentation on all data samples and
evaluate the overall visualization results of labeled samples.
In the second stage, we process all data samples but focus on
detecting boundaries (edges) of each cluster, in terms of both
visualization results and numerical accuracy.

For fair comparison, we segment the HSI into N super-
pixels first before applying respective clustering algorithms
thereupon. For the GSP-based method, we construct the graph
W € RV*N using Gaussian distance

_llsi—s;113 5
Wi.:{e A seslE<n g

0, otherwise,

where s; denotes the feature of ith superpixel. The threshold
T is set to the statistical mean of all pairwise distances among
superpixels, and o is tunable according to specific datasets. For
M-GSP based methods, we construct the multilayer network
with M = 10 layers, and calculate the distance based on
Eq. (6) and Eq. (7). The parameter p in Eq. (7) is also set to the
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Fig. 13. Boundaries in Indian Pines.
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Fig. 14. Boundaries in Pavia University.
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(a) Ground Truth (b) K-means

Fig. 15. Boundaries in Salinas.

statistical mean of all pairwise intralayer feature distances, and
g = 100 is used. We select the number of key spectra based on
the largest gap of singular values. We summarize the results
below.

1) Visualization of HSI Segmentation: By setting N = 500
for all tested HSIs, Fig. 9 - Fig. 12 present the visualization
results of the three HSI segmentations using different algo-
rithm in comparison to the groundtruth data. These results
show that, in general, the MLN-based spectral clustering (M-
GSP) displays more stable segmentations than the single layer
GSP-based spectral clustering (GSP) as well as the k-means
algorithm. Since it is harder to evaluate the details for too
many classes, we can focus more on the exemplary Salinas A
dataset. In particular, Fig. 8(d) shows six different groundtruch
classes. However, both k-means and GSP-based method failed
to detect the class No.6, marked by orange in Fig. 12(a) and
marked by yellow in Fig. 12(b), respectively. However, in Fig.
12(c), the MLN-GSP method successfully identified all six
classes and delivered results that are closer to groundtruth.
Recall that, from Fig. 5, the MLN-based singular values are
more concentrated, which provides the benefits of robustness
in spectral clustering. Results from “Indian Pines” and “Pavia
University” also show similarly stronger performance for M-
GSP. These results collectively demonstrate improved effi-

(c) GSP (d) M-GSP

10 10 20 20 30

(c) GSP (d) M-GSP

0 120 1

6 8 10 120 140 160 180 200

(c) GSP (d) M-GSP

TABLE 11
ACCURACY OF SEGMENTATION BOUNDARIES
Data K-means | GSP M-GSP
IndianP | 0.8257 0.8298 | 0.8441
Salinas 0.9208 0.9285 | 0.9409
PaviaU 0.9070 0.9088 | 0.9255

ciency of M-GSP in unsupervised HSI segmentation.

2) Boundary Segmentation: Although unsupervised meth-
ods may generate meaningful segmentation different from
groundtruth, we are still interested in how far the segmented
results are from the true labels. Since it is inefficient to match
all the clusters to the corresponding true labels, we focus on
the boundaries of the segmentation. In the boundary detection,
we set N = 100 and define the accuracy as

T

Ace =Y 1(L; = L;)/T,

i=1

amn

where T is the number of pixels in the HSI, L; is the true
labels of edges for the ith pixel, ﬁi is the estimated labels, and
1(-) denotes the indicator function. The boundary results are
visualized in Fig. 13 - Fig. 15. Since we consider the unlabeled
samples in the clustering process, there can be more details
for the HSIs than their corresponding groundtruth, especially



TABLE III
OVERALL ACCURACY OF DIFFERENT HSI SEGMENTATION
Data TS/C | Raw PCA ICA LPP NPE LPNPE | LDA LFDA SPCA MSPCA | MLN-SRC | MLN-MRC
5 0.4488 | 0.4637 | 0.4521 | 0.5358 | 0.5368 | 0.6725 0.5995 | 0.5962 | 0.7734 | 0.7868 0.7432 0.7936
IndianP | 10 0.5577 | 0.5572 | 0.5712 | 0.7041 | 0.7049 | 0.7645 0.6930 | 0.6491 | 0.8576 | 0.8712 0.8604 0.8773
20 0.6381 | 0.6297 | 0.6441 | 0.8026 | 0.7987 | 0.8351 0.7656 | 0.7401 | 0.9390 | 0.9569 0.9226 0.9545
5 0.6459 | 0.6526 | 0.6658 | 0.7086 | 0.6835 | 0.7612 0.7243 | 0.7467 | 0.7439 | 0.7849 0.7561 0.8236
PaviaU 10 0.7022 | 0.7015 | 0.7139 | 0.8129 | 0.8063 | 0.8255 0.8124 | 0.7895 | 0.8342 | 0.9167 0.8398 0.8896
20 0.7585 | 0.7591 | 0.7665 | 0.8600 | 0.8569 | 0.8856 0.8500 | 0.8698 | 0.8938 | 0.9537 0.8697 0.9432
5 0.8179 | 0.8187 | 0.8175 | 0.8523 | 0.8486 | 0.9209 0.8903 | 0.8883 | 0.9442 | 0.9500 0.9499 0.9588
Salinas 10 0.8524 | 0.8528 | 0.8574 | 0.8860 | 0.8899 | 0.9452 09146 | 0.8277 | 0.9678 | 0.9815 0.9614 0.9863
20 0.8785 | 0.8779 | 0.8808 | 0.9061 | 0.9069 | 0.9589 0.9372 | 0.9356 | 0.9837 | 0.9904 0.9840 0.9915
TABLE IV
PEFORMANCE UNDER THE SAME SETS OF SUPERPIXEL RESOLUTIONS
Data IndianP Salinas PaviaU
TS/C 5 10 20 5 10 20 5 10 20
MSPCA 0.6663 | 0.7476 | 0.9406 | 0.8521 | 0.9662 | 0.9934 | 0.7078 | 0.8447 | 0.9420
MLN-MRC | 0.7094 | 0.8062 | 0.9455 | 0.9365 | 0.9738 | 0.9931 | 0.8218 | 0.8590 | 0.9334
for Pavia University and Indian Pines. However, we can still TABLE V
derive some benefits of M-GSP in boundary detection. As Fig. PERFORMANCE OF DIFFERENT FUSION STRATEGIES
15 shows, M-GSP can generate clearer edges, obviously on [TSC[MV_[VA [DV_[VN [TV
the top half image, while GSP and K-means appear to over- Indian Pines
segment. We also present the accuracy defined in Eq. (17) as | MS- |5 0.0663 | 0.7241 | 0.7334 | 07263 | 0.7265
Table IL Th lts sh that M-GSP f better th PCA 10 0.7476 | 0.7778 | 0.7829 | 0.7661 | 0.7661
able 11. These results show that M- pertorms better than — yr-—3 0.7164 | 0.7338 | 0.7260 | 0.7271 | 0.7295
K-means and GSP. They demonstrate the efficiency of MLN MRC [ 10 0.8220 | 0.8253 | 0.8253 | 0.7886 | 0.7823
models in HSI analysis. Pavia University I
. MS- 5 0.7078 | 0.7440 | 0.7317 .77 0.7712
Itis important to note that PCA [10 | 0.8447 | 0.854T | 0.8553 | 0.8588 | 0.8500
¢ We do not claim M-GSP to be the best approaches for MLN- | 5 0.8162 | 0.8140 | 0.8240 | 0.7977 | 0.8085
all scenarios. Without impractically requiring hindsight | MRC | 10 0.8549 | 0.8586 | 0.8605 | 0.8459 | 0.8435
to fine-tune various parameters for each HSI dataset to Salinas
, K . MS- 5 0.8521 | 0.9256 | 0.9349 | 0.9655 | 0.9634
generate “the best results”, M-GSP delivers consistently PCA 0 0.9662 | 0.9774 | 0.9718 | 0.9789 | 0.9765
strong and stable segmentation results for various HSI MLN- | 5 0.9469 | 0.9456 | 0.9485 | 0.9844 | 0.9622
datasets by relying on some basic guidelines for selecting MRC | 10 09872 | 09874 | 0.9873 | 09857 | 0.9942

parameters.

e We present M-GSP as an alternative approach to HSI
segmentation. Its scalability and practical tuning allow
easier integration with other graph-based algorithms and
deep learning neural networks.

C. Semi-supervised HSI Segmentation

We next test M-GSP in (semi)-supervised HSI segmentation.

1) Overall Accuracy: Applying M-GSP based spectral clus-
tering as feature extraction of HSI, we compare the proposed
algorithms with several well known feature extraction algo-
rithms, including PCA [55], ICA [17], LPP [56], NPE [57],
LP-NPE [58], LDA [15], LFDA [59], SPCA [16] and MSPCA
[16]. Notably, MSPCA is also an algorithm integrating mul-
tiple resolutions of superpixels. For the proposed MLN-SRC
and MLN-MRC, we regroup the superpixels to 70% of the
original superpixel number, before extracting features based on
M-GSP. Here, we show the results of MLN-MRC according
to different decision values (fusion weights). More analysis of
different fusion strategies will be illustrated further in Section
V-C2.

The overall accuracy under different numbers of training
samples per class (TS/C) is shown in Table IIl. In this
experiment, parameters of multiple resolutions are tuned for

different HSIs. From the test results, the proposed MLN-MRC
exhibits a superior overall performance, especially for those
scenarios with fewer classes. MLN-SRC is marginally better
than the SPCA. Note that, since our MLN-based methods are
easily integrable with various dimension reduction algorithms,
we can combine MLN-SRC with SPCA to further improve the
performance. Because of page limitation, we leave the integra-
tion of MLN-based methods and other dimension reduction
algorithms in future studies.

In real/practical scenarios, tuning parameters is always im-
portant for performance improvement. Since the prior knowl-
edge of the optimal parameter choice is not always available,
we also test the performance of MSPCA and MLN-MRC
under the same set of input superpixel numbers to facilitate
fair comparison. In IV, we fuse the results from 9 resolu-
tions, i.e., N; € [25,35,50,70,100, 140,200, 280, 400], for
all comparative methods. From these numerical results, we
see that MLN-MRC provides an explicit improvement over
MSPCA given fewer numbers of training samples since MLLN-
based methods can better exploit the underlying correlation
among all pixels. When given enough TS/C, MSPCA exhibits
performance similar to that of MLN-MRC.
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TABLE VI
OVERALL ACCURACY IN NOISY ENVIRONMENT
(Uniform/Gaussian) Indian Pines Pavia University Salinas
TS/C [ Noise Level | MPCA [ MLN-MRC MSPCA [ MLN-MRC MSPCA [ MLN-MRC
Setup 1
5% 0.7140/0.7012 | 0.7377/0.7493 | 0.7219/0.7160 | 0.8230/0.8126 | 0.8592/0.8670 | 0.9231/0.9159
5 10% 0.7110/0.6702 | 0.7135/0.7276 | 0.7080/0.7031 | 0.8085/0.7873 | 0.8341/0.8421 | 0.8956/0.9023
15% 0.6868/0.6507 | 0.7133/0.7215 | 0.6831/0.6817 | 0.7932/0.7640 | 0.8107/0.8215 | 0.8815/0.8975
5% 0.7613/0.7753 | 0.8033/0.8056 | 0.8499/0.8374 | 0.8414/0.8475 | 0.9509/0.9647 | 0.9632/0.9684
10 10% 0.7522/0.7498 | 0.7788/0.7984 | 0.8481/0.8436 | 0.8597/0.8461 | 0.9408/0.9431 | 0.9445/0.9491
15% 0.7317/0.7382 | 0.7544/0.7845 | 0.8350/0.7848 | 0.8467/0.8333 | 0.9381/0.9368 | 0.9421/0.9317
Setup 2
5% 0.6839/0.6740 | 0.7023/0.6898 | 0.7328/0.7093 | 0.8422/0.8390 | 0.8591/0.8679 | 0.9240/0.9050
5 10% 0.6640/0.6501 | 0.6764/0.6647 | 0.7052/0.6972 | 0.8023/0.7837 | 0.8471/0.8512 | 0.9045/0.8878
15% 0.6413/0.6247 | 0.6687/0.6427 | 0.6754/0.6789 | 0.7635/0.7530 | 0.8317/0.8421 | 0.8915/0.8775
5% 0.7579/0.7408 | 0.8022/0.7810 | 0.8649/0.8437 | 0.8573/0.8632 | 0.9682/0.9621 | 0.9735/0.9633
10 10% 0.7409/0.7333 | 0.7800/0.7762 | 0.8442/0.8354 | 0.8469/0.8501 | 0.9521/0.9450 | 0.9547/0.9532
15% 0.7208/0.7235 | 0.7695/0.7584 | 0.8410/0.8309 | 0.8368/0.8258 | 0.9437/0.9416 | 0.9305/0.9241

2) Analysis of Different Fusion Strategies: Now, we an-
alyze the performance of different fusion strategies. Since
MSPCA [16] also fuses multiple resolutions of superpixels,
we investigate our proposed fusion methods in combination
with both MSPCA and MLN-MRC.

We follow the same setup of 9 resolution as Table IV.
The test accuracy is shown in Fig. 16. As shown, our pro-
posed weight approaches lead to significant improvement over
the basic majority voting (VT) for MSPCA. Compared to
SVM-based weights, these graph-based weights are better for
MSPCA since additional geometric information is considered.
For MLN-MRC, the proposed weights show a slight improve-
ment, which suggests that MLN-MRC is less sensitive to
different decision strengths. To better understand the effect
of different weights, we also present decision strengths over
different numbers of superpixels in Fig. 16. In Figs. 16(a)-

16(b), the graph-based weights favor low resolution to form
baselines and use high resolutions to interpolate details. Thus,
for HSIs with larger area of segmented groups, such as Sali-
nas, the graph-based weights generate superior performances.
Using SVM-based weights, we find no consistent trend among
different superpixels, and the results vary for different datasets.
Since the MLN-based methods have already incorporated
the underlying geometric structures, they continue to display
robust results even when using SVM-based weights.

3) Robustness in Noisy Datasets: We further evaluate the
robustness of proposed methods in noisy environment. More
specifically, we consider two types of noise models: 1) pixel-
dependent noise where pixel noise variance depending on
corresponding pixel data value; and 2) non-pixel dependent
noise where noise variance is defined by mean of all pixel
values. These two different noise models describe two different



practical sensing noises. We also test both uniform noise and
Gaussian noise. From the test performances shown in Table VI,
we find the newly proposed MLN methods to be less sensitive
to various types of sample noises.

4) Complexity: Since our proposed M-GSP processing can
be flexibly integrated with other dimension reduction methods
to reduce complexity, we find it unnecessary to provide evalua-
tion of computation complexity for various setups. In general,
the original MLN-MRC has a similar runtime as MSPCA.
For example, under the same settings of multi-resolutions as
Section V-C1 in Indian Pines HSI with tuning parameters
of SVM among 15 sets, the runtimes for MLN-MRC and
MSPCA are 28.21 seconds and 25.37 seconds, respectively.
These and other tests indicate similar computation complexity
for methods based on M-GSP and PCA.

VI. CONCLUSIONS

This work introduces the use of M-GSP in hyperspec-
tral imaging processing. To capture heterogeneous underly-
ing structures within different but highly correlated spectrum
frames in hyperspectral images (HSIs), we propose to repre-
sent HSIs via multilayer graph networks. Analyzing singular
spectra of adjacency tensor for the multilayer network, we
first develop a MLN-based spectral clustering for unsupervised
HSI segmentation. Extracting features based on MLN-GSP,
we then propose two algorithms for the semi-supervised HSI
segmentation. We also consider several novel decision fusion
strategies for multiple resolution superpixel analysis. Our
experimental results demonstrate the robustness and efficiency
of the proposed methods, successfully showcasing the power
of M-GSP in HSI analysis.

Since the proposed MLN-based methods is amenable to
integration with various dimension reduction and feature
extraction methods, future works may consider M-GSP in
connection with other advanced HSI processing approaches
for performance improvement and for robustness. Another
interesting future direction is to extract more valuable features
via MLN Fourier transform (M-GFT) beyond only spectrum
decomposition. Additionally, we also find the challenge of
processing unlabeled samples (background) an exciting future
research direction.
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