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AbstractÐRadio map describes network coverage and is a
practically important tool for network planning in modern
wireless systems. Generally, radio strength measurements are
collected to construct fine-resolution radio maps for analysis.
However, certain protected areas are not accessible for mea-
surement due to physical constraints and security considerations,
leading to blanked spaces on a radio map. Non-uniformly spaced
measurement and uneven observation resolution make it more
difficult for radio map estimation and spectrum planning in
protected areas. This work explores the distribution of radio
spectrum strengths and proposes an exemplar-based approach
to reconstruct missing areas on a radio map. Instead of taking
generic image processing approaches, we leverage radio propaga-
tion models to determine directions of region filling and develop
two different schemes to estimate the missing radio signal power.
Our test results based on high-fidelity simulation demonstrate
efficacy of the proposed methods for radio map reconstruction.

Index TermsÐRadio map, inpainting, dictionary learning
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Fig. 1. Examples of Radio Map: Figure (a) and (b) show the power
spectrum density and sensor (receiver) placement for general large-scale radio
map; Figure (c) and (d) show the spectrum distribution (Watts) and missing
observations for restricted areas (marked in yellow) of a small-scale radio map
(e.g. several street blocks), which only covers a small part of the large-scale
radio map. Note that, the coordinates here are the index of PSD conformed to
the grid. Usually, the small-scale radio map has higher resolution and smaller
area than the large-scale ones.

[5] proposes to utilize log-distance path loss model (LDPL)

for Wi-fi radio map reconstruction. In [4], another model-

based method introduces the use of thin-plate splines kernels.

Different from model-based approaches, model-free methods

do not rely on specific signal propagation models but favor

neighborhood information. Typical examples include inverse

distance weighted (IDW) interpolation [6], Kriging-based in-

terpolation [7] and Radial Basis Functions (RBF) interpolation

[8]. In addition, graph-based approaches, such as graph signal

processing [9] and label propagation [10], can also assist radio

map reconstruction. Beyond interpolation-based methods, ma-

chine learning has also attracted significant attention in radio

map reconstruction owing to its ability to utilize hidden data

features [11]±[13].

Presently, most existing approaches focus on constructing

radio maps from sparse observations, where sensors are spread

over a given region as shown in Fig. 1(b). However, in cases

involving inaccessible, restricted, or protected areas, radio

measurement is not available, leading to missing observations

of certain regions or blocks. The radio map construction

for such restricted areas is more challenging and does not

lend themselves to traditional radiomap construction methods.

I. INTRODUCTION

With increasingly expansion of sensor network and Internet 
of Things (IoT) deployment, allocation of radio spectrum 
is becoming more complex and dynamic, and poses further 
challenges in managing radio resources and enabling new 
applications [1]. To better capture spectrum usage pattern and 
improve efficiency o f r esource m anagement, r adio m aps can 
play more important roles in the modern wireless commu-

nication systems. A radio map is generally characterized by 
the power spectral density (PSD) over geographical locations, 
frequencies and time [2]. Providing rich and useful information 
regarding spectrum activities and propagation channels, radio 
maps can provide information on detailed PSD distribution and 
help develop spectrum management applications [3]. Usually, 
a high-resolution radio map should be constructed from sparser 
measurements [4]. One major challenge lies in reconstructing 
more complete radio maps from partial observations.

General construction of radio maps utilizes either model-

based methods or model-free methods [2]. Model-based meth-

ods assume certain signal propagation models to express the 
received PSD as a combination of transmitted PSD from 
active transmitters. For example, an interpolation method
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Fig. 2. Illustration of Objective Scenarios: the restricted/inaccessible area
Zp is marked in yellow with area size M × N in a small-scale radio map

U(Z) ∈ R
P×Q.

First, unlike large-scale radio map, missing observations of

power spectrum covering restricted areas occur in relatively

smaller regions, such as the example of Fig. 1(d). PSD

distribution in these small-scale regions tends not to follow

well known propagation models but is more sensitive to small

scale environmental features, which makes the implementa-

tion of model-based methods more difficult. Secondly, since

available measurement samples are uneven and observations

of some entire segments are missing, interpolation methods are

ineffective without accurate and reliable neighborhood infor-

mation, especially for restricted regions. Last but not least, for

practical reasons, observed data are usually limited, providing

insufficient training samples for learning-based approaches.

In this work, to capture the spectrum power distribu-

tion from limited and uneven observations, we propose an

exemplar-based approach using radio propagation priority to

reconstruct radio map in restricted or inaccessible areas. The

main contributions of our work are summarized as follows:

• Through exploring the pattern of spectrum power from

observed data and integrating radio propagation models,

we introduce propagation model-based priority to define

directions of data filling for missing regions.

• By analyzing correlations from observed signals, we

propose to estimate missing radio PSD values based on

exemplar copying and dictionary learning, respectively.

We compare our proposed methods with traditional radio map

constructions by testing over a Applied Physics Laboratory

(APL) dataset from Johns Hopkins University (JHU). Our test

results demonstrate the effectiveness of the proposed radio

map reconstruction method for restricted/inaccessible areas.

II. PROBLEM DESCRIPTION

Our model considers a wireless network coverage of a

rectangular area with one transmitter. All radio observations

are arranged on a regular grid and are located in the rectangular

area Z with size P ×Q within the network coverage, denoted

by U(Z) ∈ R
P×Q shown as Fig. 2. Here, P and Q are

the size of grid. Each observation in U(Z) is characterized

by a 2-dimensional (2D) coordinates Zi = (Xi, Yi) and

the corresponding radio spectrum power ei = U(Zi). The

restricted/inaccessible area Zp with size M × N is located

within Z, marked as yellow in Fig. 2, where M ≤ P,N ≤ Q.

No observation within Zp is available. Compared to tradi-

tional radio map reconstruction problems, the small-scale radio

map has higher resolution (e.g., accurate to 1 meter) and

Fig. 3. Scheme of Proposed Method
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Fig. 4. Illustration of Filling Process: a) Select a patch Ψq in the boundary

δΩ; b) Estimate the missing values in Ψq and regenerate Ψ̃q

smaller area, which make it more sensitive to the nearby

environment, such as buildings, trees and roads. Moreover,

we only have limited and unbalanced observations around

restricted/inaccessible areas. Our goal is to estimate U(Zp)
in the restricted/inaccessible area Zp from other observed

samples in area Z.

Although we only consider one transmitter here, our frame-

work can be directly extended to multiple transmitters by

combining all the transmitted PSD. For convenience, we will

focus on the one transmitter case in this work and leave more

detailed analysis in future works.

Note that, our objective here is similar to the image

inpainting [14] problem in computer vision. However, the

traditional image inpainting only concerns about pixel values

but not the wireless communication context. Hence, it is

ineffective for capturing spectrum power distribution in radio

scenarios. Besides observed values, we also consider the radio

propagation model to assist radio map reconstruction for

restricted/inaccessible areas. More analysis and comparison

will be discussed in Section IV.

III. EXEMPLAR-BASED RADIO MAP RECONSTRUCTION

In this section, we introduce an exemplar-based radio map

reconstruction using radio propagation priority.

A. Overview of the Proposed Method

To fill a region based on surrounding observations, one

intuitive way is to estimate the missing values patch (block)

by patch (block) from boundaries between observed and

target (restricted area) regions to the center of the re-

stricted/inaccessible area. In this work, we follow a similar

scheme to reconstruct the radio map from observations as

shown in Fig. 3. To estimate radio power in restricted areas, we

start from a small selected patch centered at the boundaries

shown as Fig. 4. Next, we estimate the missing values for

this selected patch and update the boundary. Through patch-

by-patch estimation of the missing values, we can obtain the



(a) Data term. (b) Radio term. (c) Block term.

Fig. 5. Illustration of Calculating Priority

reconstructed radio map for the whole restricted/inaccessible

area. The general steps are described as follows.

• Step 1: Extract the boundary δΩ between observed region

Φ and target region Ω (initialized as Zp) in Z;

• Step 2: Given a patch Ψp with size n×n centered at point

p located at boundaries, i.e., p ∈ δΩ, calculate the priority

of the patch as P (p) based on the texture properties of

observations and radio propagation features;

• Step 3: Order all patches Ψp centered at δΩ by P (p) and

select the one with highest priority as Ψq;

• Step 4: Select exemplars from observed region for Ψq

and estimate the missing values in Ψq;

• Step 5: Update Φ and Ω;

• Step 6: Update the confidence term in the priority;

• Step 7: Repeat Step 1-6 until all the missing values in

the restricted/inaccessible area Zp are estimated.

From the steps above, the key issues in the proposed method

are how to define priority P (p) to determine the filling direc-

tion, and how to estimate the missing values from exemplars.

We will discuss more details in Section III-B.

B. Details in the Proposed Method

This part introduces definition of priority based on radio

propagation and two approaches to estimate the missing radio

map values.

1) Definition of Priority: To find a suitable direction of

filling the missing region, we expect to propagate the key

information in texture and radio spectrum with larger certainty.

Thus, we define the priority of patch selection as follows:

P (p) = C(p) ·D(p) ·B(p) · L(p), (1)

where the confidence term C(p) together with data term D(p)
contain radio map pattern information (texture), whereas radio

propagation term L(p) together with block term B(p) describe

radio propagation properties. More specifically:

• C(p): The confidence term C(p) describes the confidence

level of the PSD within Ψp. If there are more points from

the observed region, the corresponding patch has a higher

confidence value. Suppose that there are n× n points in

Ψp. The confidence term is calculated as

C(p) =

∑

v∈(Ψp∩Φ) C(v)

n× n
, (2)

where C(v) is initialized as C(v) = 1 for v ∈ Φ;

otherwise, C(v) = 0. For each iteration, confidence term

C(u) for a newly-filled point u in Ψ̃q is updated by

C(u) = C(q) before the next iteration at Step 6.

• D(p): D(p) is the data term describing the gradients of

texture. Suppose that the normal of boundary at p is np,

and the orthogonal direction of the texture gradient at p

is sp = ∇T⊥
p where Tp is the power level around p, and

⊥ is the orthogonal operator. The data term is defined as

D(p) =
|sp · np|

α
, (3)

where · is the inner product, and α is a normalization

factor (e.g., α = 1 if np and sp are unit vectors). The

data term describes the intensity of radio map texture

hitting the boundaries.

• L(p): The radio propagation term describes the relation-

ship between the PSD at p and the transmitter at location

t. In model-based approaches, signal power is a function

of distance to the transmitter [5], [6]. Similarly, we embed

the power strength information in L(p) based on the

distance d(t, p) between t and p. Since radio propagation

property is similar to the texture change described in data

term D(p), we can also measure the certainty of radio

propagation based on its strengths hitting the boundary:

L(p) = |d(t, p)|−β |lp · np|, (4)

where β is the inverse distance parameter, np is the

normal of boundary at p and lp is the direction of radio

propagation from t to p, shown as Fig. 5(b).

• B(p): Since radio map around a restricted/inaccessible

area is small-scale and sensitive to the environment, we

could also embed information of propagation obstacles

in block term B(p). From additional resources, such as

satellite image and city map, we can segment buildings

(in yellow) and background (in blue) as shown in Fig.

5(c). Let lp be part of the line connecting t and p within

the whole region Z defined in Section II, i.e., red parts

in Fig. 5(c). Then we define B(p) as

B(p) = 1−
the length covering buildings in lp

the total length of lp
. (5)

If the radio propagates over more obstacles, Bp is smaller

and the priority would be reduced.

By selecting those patches with the largest P (p) to fill first, we

can determine the filling direction with larger confidence level

in both texture and radio propagation. Note that we provide the

priority based on single transmitter here. If there are multiple

transmitters, one can simply modify P (p) as

P (p) = C(p) ·D(p) · [
∑

i

Bi(p) · Li(p)], (6)

where Bi(p) and Li(p) are for the ith transmitter. We plan

to explore general representations for multiple transmitters in

future works.



(a) Mean Power (watt). (b) Satellite

Fig. 6. Illustration of APL dataset.

(a) (b) (c)

Fig. 7. Preprocessing of APL Dataset: a) Normalized radio map; b) Seg-
mented buildings; and c) Block term in priority.

2) Estimation of Missing Measurement: After selecting the

patch Ψq with highest priority, the next step is to estimate the

missing measurement values from identified regions. In this

part, we introduce two exemplar-based approaches as follows:

• Estimation based on exemplar copy (EPC): Copying

values from similar patches in the observed region at

the same indices is a widely-used approach to fill the

missing regions [16]. Here, we also consider exemplar-

based copying to reconstruct the radio map. Let Ψq be

the n × n patch selected by P (p). We first find the

most similar exemplar patch Ψs from the observed region

according to

Ψs = arg min
Ψw,w∈Φ

∑

i∈Φ

[(Ψw)i − (Ψq)i]
2, (7)

where (Ψ)i is the PSD value at position i within the patch

Ψ. We then fill the missing value as

(Ψ̃q)i =

{

(Ψq)i i ∈ Φ

(Ψs)i i ∈ Ω
. (8)

• Estimation based on dictionary learning (EPD): Gener-

ating a dictionary from observations, one can optimize a

sparse vector to combine the code-words in the dictionary

to estimate missing values in the patches [17]. After

selecting n × n patch Ψq , we can randomly pick W

patches from Φ and generate a dictionary A ∈ R
n2×K

containing K normalized code-words via K-SVD [18] or

matching pursuit [19]. Reshaping patch Ψq as a vector

xq , we formulate dictionary learning as follows:

β̃ = argmin
β

||(xq)Φ −AΦβ||
2
2 + λ||β||1, (9)

where β ∈ R
K×1 is a sparse vector and (xq)Φ is the

observed part in Ψq . From the optimal β, we reconstruct

the radio map as

(Ψ̃q)i =

{

(Ψq)i i ∈ Φ

(Aβ)i i ∈ Ω
. (10)

(a) (b)

Fig. 8. Selected Areas to Test Performance: a) Scenario with regular
neighborhood pattern; and b) Scenario with complex neighborhood pattern.
The restricted/inaccessible areas Zp with size 100×100 are marked in yellow.

In general, exemplar-based copying performs better when

the radio map has regular, continuous patterns, while the

dictionary learning performs better when the environment is

more complex. See more discussions in Section IV. Other

potential ways to estimate the missing values include subspace

learning [20] and graph learning [21].

IV. EXPERIMENT RESULTS

In this section, we present test results to demonstrate the

efficacy of the proposed methods.

A. Data Information and Preprocessing

Our test is based on the APL dataset which was generated

from Wireless inSite Software [15] with Light Detection and

Ranging (LIDAR) information of a select region in Atlanta,

Georgia, USA. The LIDAR data used for the simulation has

a 1-meter resolution. The APL dataset contains a transmitter

(Tx) and distributed single-antenna receivers in a 10-block

area. The TX antenna is a uniform square array of 16 × 16
elements, spaced at 0.5 wavelength. The TX is located at

latitude/longitude of 33.689/-84.390. The antenna height is 201

meters, and the frequency used is 2660 MHz. The receiver

antennas assumed a height of 2.01 meters and uniformly

spaced by 0.8 meters. The location of the observed area

is at 33.7283∼33.7327 in latitude and -84.3923∼-84.3854

in longitude. To generate the radio map from APL data,

we average antenna gains from TX for each data point and

conform it to a 604× 800 grid, i.e., U(Z) ∈ R
604×800, where

the grid resolution (each 1 × 1 block) is in 0.8 meters. Note

that some original points might be arranged to shared positions

in the grid during this process. For those data, the values are

further averaged in the shared locations. The mean power in

Z, together with its satellite image, are presented in Fig. 6.

For convenience, we linearly normalize the radio map between

0 ∼ 1. Note that the original radio map can be transformed

without loss from the normalized one, and their pattern are

exactly the same shown as Fig. 7(a). Based on the satellite

map, we segment the buildings against the background and

calculate the block term in the priority by Eq. (5), shown as

Fig. 7(b) and Fig. 7(c), respectively.

B. Performance in Selected Areas

To measure performance, we first consider two specific

scenarios, i.e., one with regular neighborhood pattern and one

with complex neighborhood pattern shown in Fig. 8. In both

scenarios, we considered a restricted/inaccessible areas Zp



(a)

(b)

Fig. 9. Visualized Results in Selected Areas: (a) and (b) describe the regular and complex area, respectively; the results in red blocks are zoom-in presentations.

TABLE I
NUMERICAL RESULTS IN SELECTED AREAS.

EI DL RBF MBI LP EBC EPC EPD

MSE in Scenario 1 0.0092 0.0152 0.0448 0.0271 0.0327 0.0088 0.0038 0.0096

MSE in Scenario 2 0.0258 0.0158 0.0217 0.0173 0.0306 0.0227 0.0152 0.0136

with area size 100 × 100 in grid. The PSD in the whole

restricted areas (marked as yellow in Fig 8) is unavailable,

which we reconstruct from other observed parts in Z.

We compare our methods with Model-based Interpolation

(MBI) [5], Radial Basis Function (RBF) Interpolation [8],

Label Propagation (LP) [10], Exemplar-based Inpainting (EI)

[16], and Dictionary Learning (DL) [17]. MBI and RBF

are interpolation methods based on distances. EI and DL

are image inpainting approaches without using radio prop-

agation knowledge. For LP, we incorporate satellite images

and information on distance to transmitter as features. For

our proposed method, we consider three setups: 1) texture

priority together with block term under exemplar-based copy

(EBC); 2) complete priority with all 4 terms under exemplar-

based copy (EPC); and 3) complete priority with all 4 terms

under exemplar-based dictionary learning (EPD). For image

inpainting methods and our proposed methods, we select patch

size of Ψp as 21×21 for fair comparison. For methods related

to dictionary learning, we set the number of code-words to

K = 500. We apply K-SVD [18] to generate the dictionary.

The visualization results are shown in Fig 9, and the

corresponding numerical results are shown as Table I. Here, we

define MSE = 1
m

∑m

i=1(xi− x̃i)
2, where x̃i, i = 1, · · · ,m are

the estimated radio map. Shown as Fig. 9, model-based MBI

fails to estimate the radio map in the restricted/inaccessible

area since the power spectrum in this dataset is over smaller

distance variation from the transmitter but is more sensitive

to the surrounding environment as seen from Fig. 6. The

RBF interpolation also fails to reconstruct missing segments

and fills missing radio map with similar values since the

observations are uneven, especially near the center of the

restricted/inaccessible areas. For learning-based LP, the results

display strong noises since the training samples from satellite

images are noisy. Compared to the image inpainting methods,

the proposed methods based on radio propagation priority

show superior performance, since propagation information

can enhance the features and textures. As shown in Fig.

7(c), propagation priority terms favor the vertical direction

to fill the region, which match the distribution of spectrum

pattern in Fig. 6(a). In our proposed methods, copy-based

estimations display sharper features while dictionary learning

based estimation provides more robust but blurred results. In

the first scenario with regular nearby patterns close to the main

road, EPC displays significant improvement since the vertical

patterns therein is clear and similar. In the second scenario

near buildings and trees, EPC sometimes over-estimates some

regions from neighborhoods while EPD displays more robust-

ness. The numerical results in Table I are consistent with the

visualization results. Thus, one can determine whether EPC

or EPD should be selected for estimation depending on the

variations of the nearby environment.

C. Overall Performance for Different Area Sizes

We further examine the overall radio map estimation per-

formance for different area sizes. In this test, we compare

different methods for restricted/inaccessible areas of various

area sizes, i.e., 30 × 30, 70 × 70, 100 × 100, 130 × 130,

and 160 × 160. For each size, we randomly generate 10

restricted/inaccessible areas as the target region within Fig.

6(a). We then calculate the mean error of different generated

areas to implement the comparison. In addition to MSE, we

define a normalized error (NE), i.e., NE =
∑

m
i=1

(xi−x̃i)
2

∑
m
i=1

x2

i

. The

results are shown in Fig. 10. Since MBI fails to capture the

spectrum patterns in small-scale areas, it displays steadily poor

result. For other methods, radio map error increases as the area

size grows. This is intuitive since neighborhood information

and observations become more limited and uneven for larger

restricted/inaccessible areas, especially near the center of the



(a) MSE. (b) NE

Fig. 10. Numerical Results in Different Area Sizes

TABLE II
MSE IN DIFFERENT PATCH SIZE

Patch Size 9 15 21 27 33

MSE for EPC 0.0177 0.0132 0.0152 0.0163 0.0205

MSE for EPD 0.0020 0.0018 0.0025 0.0027 0.0034

TABLE III
MSE FOR EPD WITH DIFFERENT DICTIONARY SIZE

K (Patch size=15) 500 1000 1500 2000

MSE 0.0026 0.0025 0.0020 0.0020

restricted/inaccessible area. Our proposed methods are better

than traditional inpainting and LP approaches, demonstrating

the important impact of the proposed radio propagation pri-

ority. EPC and EPD show similar MSE results while EPD

generate better NE than EPC. The results indicate that EPC

works better in some special scenarios whereas EPD is more

robust regardless of the power in the restricted/inaccessible

areas. The conclusions are similar to Section IV-B and further

demonstrate the benefits of the proposed method.

D. Guidelines of Parameter Selection

In this part, we consider the proposed methods under

different parameters to develop selection guidelines. We first

evaluate the impact of patch sizes in Ψp for EPC and EPD

in Table. II. For EPC, we test a randomly selected 100× 100
restricted/inaccessible area. For EPD, we set K = 1000 for the

dictionary and test a 40×40 restricted/inaccessible area. Patch

size selection is a trade-off between the global information and

local observations. For a larger patch size, uncertainty grows

with more global information considered. From the results, we

determine a suitable patch size around 15∼21. We also test

EPD with different dictionary sizes in Table III, which shows

that a larger K can achieve better performance.

V. CONCLUSION

In this work, we introduce an exemplar-based approach

to wireless radio map reconstruction in the cases of missing

measurement. More specifically, we proposed a propagation-

based priority to determine the filling direction based on

PSD pattern and radio properties. We then introduced two

new schemes for patch estimation. The experimental results

demonstrate the efficiency of the propagation-based priority

to capture the PSD patterns and the power of our proposed

method in radio map reconstruction for missing areas, which

make further spectrum access and management more reliable

for such restricted/inaccessible areas.
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