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Relation of Gravity, Winds, and the Moment of Inertia of Jupiter and Saturn

BURKHARD MILITZER"? AND WILLIAM B. HUBBARD®

1 Department of Earth and Planetary Science, University of California, Berkeley, CA, 94720, USA
2 Department of Astronomy, University of California, Berkeley, CA, 94720, USA
3 Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721, USA

ABSTRACT

We study the relationship of zonal gravity coefficients, Js,, zonal winds, and axial moment of inertia
(Mol) by constructing models for the interiors of giant planets. We employ the nonperturbative
concentric Maclaurin spheroid (CMS) method to construct both physical (realistic equation of state
and barotropes) and abstract (small number of constant-density spheroids) interior models. We find
that accurate gravity measurements of Jupiter’s and Saturn’s Js, Jy, and Jg by Juno and Cassini
spacecrafts do not uniquely determine the Mol of either planet but do constrain it to better than
1%. Zonal winds (or differential rotation, DR) then emerge as the leading source of uncertainty. For
Saturn, they are predicted to decrease the Mol by 0.4% because they reach a depth of ~9000 km
while on Jupiter, they appear to reach only ~3000 km. We thus predict DR to affect Jupiter’s Mol
by only 0.01%, too small by one order of magnitude to be detectable by the Juno spacecraft. We
find winds primarily affect the Mol indirectly via the gravity harmonic Jg while direct contributions
are much smaller because the effects of pro- and retrograde winds cancel. DR contributes +6% and
—0.8% to Saturn’s and Jupiter’s Jg value, respectively. This changes the Jg contribution that comes
from the uniformly rotating bulk of the planet that correlates most strongly with the predicted Mol.
With our physical models, we predict Jupiter’s Mol to be 0.26393+0.00001. For Saturn, we predict
0.218140.0002, assuming a rotation period of 10:33:34 h that matches the observed polar radius.

Keywords: giant planets, Jupiter, Saturn, interior models, gravity science

1. INTRODUCTION

The angular momentum of a giant planet must be accurately known to calculate the planet’s precession rate, which
is the crucial quantity to determine whether it is in a spin-orbit resonance. Such resonances have been invoked, along
with additional assumptions to explain the obliquities of Saturn, 27° (Saillenfest et al. 2021; Wisdom et al. 2022),
Jupiter, 3° (Ward & Canup 2006), and Uranus, 98° (Saillenfest et al. 2022). The planetary spin angular momentum
contributes 99% of the angular momenta of the Jovian or Saturnian systems, the rest coming from the most massive
satellites. To high order, the total angular momentum of a planetary system is conserved over billions of years while
the planet’s moment of inertia C' changes (Helled 2012; Nettelmann et al. 2012a) due to secular cooling and other
processes like helium rain (Wilson & Militzer 2012a) and core erosion (Wilson & Militzer 2012b), and satellite orbits
exchange angular momentum with the planet through tidal interactions (Fuller et al. 2016).

The space missions Juno (Bolton et al. 2017) and Cassini (Spilker 2019) have provided us with a wealth of new
data for Jupiter and Saturn. Multiple close flybys have mapped the gravity fields of these planets with a high level of
precision (Durante et al. 2020; Iess et al. 2019) that far exceeds the earlier measurements by the Pioneer and Voyager
missions (Campbell & Synnott 1985; Campbell & Anderson 1989). The new measurements have also led to a revision
of the assumptions that are employed when interior models are constructed. Traditionally, the interiors of Saturn and
Jupiter were represented by three layer models (Guillot et al. 2004; Saumon & Guillot 2004a; Nettelmann et al. 2012b;
Hubbard & Militzer 2016a) that start with an outer layer that is predominantly composed of molecular hydrogen, a
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2 MIiLITZER AND HUBBARD

deeper layer where hydrogen is metallic, and compact core that is composed of up to 100% of elements heavier than
helium. There was sufficient flexibility in choosing the layer thicknesses and the mass fractions of helium, Y, and
heavier elements, Z, to match the earlier spacecraft measurements.

Still, the predictions from various types of three layer models were not always found to be in perfect agreement
for two main reasons. Early interior models relied on the theory of figures (ToF) (Zharkov & Trubitsyn 1978), a
perturbative approach, to capture the gravitational and rotational effects in a planet’s interior. Most calculations
employed the third and fourth order version of the ToF but this technique has recently been extended to seventh
order (Nettelmann et al. 2021). With the development of the concentric Maclaurin spheroid method (CMS), it became
possible to construct giant planet interior models nonperturbatively (Hubbard 2013).

The second source of uncertainty is the equation of state (EOS) of hydrogen-helium mixtures at high pressure (Vor-
berger et al. 2007; Morales et al. 2010). While shock wave measurements (Zeldovich & Raizer 1968) now routinely
reach the relevant regime of megabar pressures (Da Silva et al. 1997; Collins et al. 1998; Knudson et al. 2001; Celliers
et al. 2010), the temperatures in these experiments are much higher than those in giant planet interiors (Militzer et al.
2016). For this reason, interior models invoke theoretical methods (Saumon et al. 1995a) and ab initio simulations
(Militzer et al. 2008; Nettelmann et al. 2008) to construct an EOS for hydrogen-helium mixtures and then add heavy
elements within the linear mixing approximation (Soubiran & Militzer 2015; Ni 2018). A direct experimental confir-
mation of the prediction from ab initio simulations of hydrogen-helium mixtures under giant planet interior conditions
would be highly valuable even though simulation results for other materials were found to be in good agreement with
shock experiments (French et al. 2009; Millot et al. 2020).

For Jupiter, the Juno spacecraft obtained smaller magnitudes for the harmonics J; and Jg than interior models had
predicted (Hubbard & Militzer 2016a). Matching and interpreting these measurements has led authors to introduce
a number of novel assumptions into interior models. One can adopt a 1-bar temperature that is higher (Wahl et al.
2017b; Miguel et al. 2022) than the Galileo value of 166.1 K or invoke a less-than-protosolar abundance of heavy Z
elements (Hubbard & Militzer 2016a; Nettelmann 2017; Wahl et al. 2017b). Both modifications reduce the density of
the molecular outer layer, which makes it easier to match Jy and Js. Wahl et al. (2017b) introduced the concept of a
dilute core, which partially addressed the Jy-Jg challenge. Debras & Chabrier (2019) adopted the dilute core concept
and then decreased the heavy Z element fraction at an intermediate layer. Most recently Militzer et al. (2022) matched
all observed J,, values exactly by simultaneously optimizing parameters of the dilute core and models for the zonal
winds.

The high-precision values from the Juno and Cassini missions for Jupiter’s and Saturn’s zonal gravitational har-
monics, J,, provide important constraints on the interior mass distributions and thereby also constrain the moment
of inertia as we will demonstrate in this article. A different constraint, the value of the spin angular momentum,
J, comes from measurement of forced precession of the planet’s rotation axis. As the precession periods are very
long, respectively ~0.5x10¢ years for Jupiter and ~2x10° years for Saturn (Ward & Canup 2006), high-precision
pole-position measurements over a long time baseline are necessary to measure J to better than 1%. In principle,
if the planet rotates uniformly and its spin rate, w, is known, one can obtain the axial moment of inertia, C, via
C = J /w, which would provide an independent constraint on the interior mass distribution.

For convenience, a planet’s momentum of inertia is typically reported in normalized form, Mol= C/M R?. While
we normalize by the planet’s mass, M, and the present-day equatorial radius, R, at a pressure of 1 bar, one should
note that other authors have used the volumetric radius (Ni 2018) or made the radius age-dependent (Helled 2012).
In this paper, we systematically investigate how much Mol can vary for models which have exact fixed values of w and
zonal gravitational harmonics J, up to some limiting degree n, and thus illustrate the role of Mol as an independent
constraint. Note that the approximate Radau-Darwin formula (e.g., Bourda & Capitaine (2004)), which posits a
unique relation between Jo, w, and Mol, is too inaccurate to be relevant to this investigation because Jupiter and
Saturn rotate rapidly and the density varies significantly throughout their interiors (Wahl et al. 2021). When we
construct models for giant planet interiors, we assume hydrostatic equilibrium and that the density increases with
pressure. Since this concentrates mass in the planet’s center, we expect the inferred Mol to be substantially less than
2/5, the value for a single constant-density Maclaurin spheroid independent of its rotation rate.

The article is organized as follows. In Sec. 2, we show how a planet’s moment of inertia and angular momentum
are calculated with the CMS method. We introduce physical and abstract models for giant planet interiors. We
also explain that differential rotation (DR) in a planet has direct and indirect effects. The direct effect is introduced
when the observed zonal winds, that move at different angular velocities, are projected into the interior and thereby
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GRAVITY, WINDS, MOMENT OF INERTIA 3

cause a planet’s angular momentum to deviate from the value of an object that rotates uniformly. However, the
zonal winds also make dynamical contributions to a planet’s gravitational harmonics. They thereby reduce the static
contributions slightly that come from the mass distribution in the planet’s interior when models are constructed to
match a spacecraft’s gravity measurements. This change in the mass distribution also affects the resulting moment of
inertia, which we call the indirect effect of DR.

In Sec. 3, we first discuss our predictions for Saturn’s momentum of inertia and illustrate how sensitively it depends
on the gravity harmonics Jy and Jg. We find that the dynamical contributions to Jg play a critical role. Then we derive
the angular momentum for arbitrary giant planets, for which the mass, equatorial radius, J2, and rotational period
have been measured. We present results from different models for Jupiter’s interior, which includes CMS calculations
that we performed for Jupiter models of other authors. Finally we compare our momentum of inertia values with
earlier predictions in the literature before we conclude in Sec. 4.

2. METHODS

The normalized moment of inertia of an axially symmetric body can be derived from this integral over all fluid
parcels as function of radius and p = cos(6) with € being the colatitude,

2w
Mol = =
© MR2 MER2

+1 R
dp / drr? 2 p(r, p) (1)
—1

where | = ry/1 — p? is the distance from the axis of rotation and R(p) marks the outer boundary of the planet. In
the CMS method, one represents the mass in the planet’s interior by a series of nested constant-density spheroids each
adding a small density contribution, §;, that lets the combined density increase with depth. After carrying out the
radius integration, the Mol can be written as a sum over spheroids,

TR 5MR225/W W [1- 1] | @

where r;(p) marks the outer boundary of the spheroid with index j. For a uniformly rotating (UR) body, the normalized
spin angular momentum is given by JUR = /G.o:C/M R? with g, being the dimensionless rotational parameter,

Ww?R3
Grot = GW’ (3)

that compares the magnitudes of the centrifugal and gravitational potentials. If the body is rotating differentially, one
needs to revert to the 2D integral,

+1  R(w)
27\ /Grot v(r, 1)
DR _ d d 2l2 ) 4
Tnorm MR J uo/ rre = p(r, p) 50 (4)

where v(r, ) is the fluid velocity and v is that of the uniformly rotating background, v = * w. For convenience, one
may choose to define an effective or average moment of inertia for a differentially rotating body,

C’DR/MRi = jrl?)ljm/\/ Grot ) (5)

and compare it with predictions of Eq. 2. We call this difference the direct effect of DR on the predicted Mol, to
be compared with the indirect effect that emerged because DR affects the interior density structure and thus the
calculated gravity harmonics, in particular Js. In Tab. 1, we quantify the indirect DR effect by comparing the Mol
values, C(P®) and C(VR) derived from Eq. 2 for a model that invokes DR effects and a model that does not when
they both match the observed J,,.

We find that the magnitude of the direct DR effect is much smaller than the indirect one (Tab. 1) because contri-
butions from pro- and retrograde jets to the direct effect partially cancel. Direct DR effects increase Jupiter’s Mol
by 0.0015% because the prograde winds in the equatorial region dominate. For Saturn, we find that the retrograde
winds at a latitude of ~35° dominate over the prograde equatorial jet, which implies that direct DR effects lower the
planet’s angular momentum by —0.13%.
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4 MIiLITZER AND HUBBARD

2.1. CMS Technique

The spheroid surfaces r;(1) are contours of constant pressure, temperature, composition, and potential. The po-
tential combines centrifugal and gravitational contributions, @ + V. According to Zharkov & Trubitsyn (1978), the
gravitational potential can be expanded in the following form,

GM

V(r,pu) = Y |} - Z (Re/r)zn Jon Pon (1) , (6)

where P, are the Legendre polynomials of order n and the J,, are the gravity harmonics given by

+1  R(p)

P / dr ™2 By (u) plr.p1) (7)

I =" 3Rn

1

(=)

According to Hubbard (2013), the gravitational potential V; of a point (r;,u) on spheroid j is decomposed into
contributions from interior spheroids (j =i... N — 1),

GTM NE_:l i Jjn (f)n P(p) (8)

j=1i n=0

Vi s ) = -
and exterior spheroids (j =0...7 — 1),

i—1 3 n+1
ex GM i 5
Vs ) = - Zlﬁ-io (&) + 2 () Pw
7 € n=0

j=0 ¢

Following the derivation in Hubbard (2013), we define the interior harmonics

1 2 +1 n+3
T r;

Jin = — —6; | du P, - 10
=gt [ o () (10)
21

and the exterior harmonics
1 2 +1 2—n
/ 0 T
L =———90; | du P, — 11
=g o [aur (5) (1)
-1
with a special case for n = 2,
+1
2 T
J . =——20; | duP,(n) 1 — 12
in =" / 11 P (1) Og(RJ (12)
Z1
and finally,
27d;a3
o= —on 13
2,0 3M ’ ( )

where M is the total mass of the planet. One should note that during the numerical evaluation of these expressions, it
is recommended to work with harmonics that have been renormalized by the powers of the equatorial spheroid radii,
Ai. These equatorial points (r; = Aj, u = 0) serve as anchors for all spheroid shapes. This is where the reference value
of the potential is computed that one uses to adjust the spheroid shape until a self-consistent solution emerges for
which all spheroids are equipotential surfaces.

It is important to choose the \; grid points wisely in order to minimize the discretization error that is in-
herent to the CMS approach. We recommended choosing them so that a logarithmic grid in density emerges,
p(Air1)/p(Ai)=constant (Militzer et al. 2019). This grid choice allows us to obtain converged results when we construct
our physical models with Ng = 2048 spheroids.

In addition to gravity, one needs to consider the centrifugal potential, which takes the following simple form for a

1

uniformly rotating body, Q(1) = 512w2. We employ this formula when we construct models for Jupiter’s interior and
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then introduce DR effects by solving the thermal wind equation (Kaspi et al. 2016) to derive the density perturbation,
" o 2w D
F it LU (14)
for a rotating, oblate planet (Cao & Stevenson 2017) in geostrophic balance. z is the vertical coordinate that is parallel
to the axis of rotation. p is static background density that we derive with the CMS method. wu is the differential flow
velocity with respect to the uniform rotation rate, w. g¢ is the acceleration that we derive from the gravitational-
centrifugal potential, V + @, in our CMS calculations. s is the distance from the equatorial plane along a path on an
equipotential. We represent the flow field u as a product of the surface winds, us, from Tollefson et al. (2017) and
a decay function of sin?(z) form from Militzer et al. (2019). This function facilitates a rather sharp drop similar to
functions employed in Galanti & Kaspi (2020) and Dietrich et al. (2021).
Since the winds on Saturn reach much deeper, we treat them nonperturbatively by introducing DR on cylinders
directly into the CMS calculations by modifying the centrifugal potential,

1
Q@zAﬂWMDQ (15)

Since we assume potential theory, a cylinder’s angular velocity, w(l), cannot decay with depth, which means we are
only able to include the prograde equatorial jet and first retrograde jet at ~35° that were characterized by tracking
the cloud motion in Saturn’s visible atmosphere (Sanchez-Lavega et al. 2000; Garcia-Melendo et al. 2011).

2.2. Physical Interior Models

In Fig. 1, we illustrate our physical interior models for Jupiter and Saturn. Since planets cool by convection, we
assume most layers in their interiors are isentropic and of constant composition. We represent their outer envelope
where hydrogen is molecular by the parameters (Spol, ?mol, Zmo1) for entropy, helium mass fraction and the fraction
of heavy elements. We define ¥ = Y/(X +Y) with X and Y being the mass fractions of hydrogen and helium so that
X +Y + Z = 1. We require Zno to be at least protosolar, Zps = 1.53% (Lodders 2010). The entropy is chosen to
match the temperature at 1 bar: 142.7 K for Saturn (Lindal et al. 1981) and 166.1 K for Jupiter (Seiff et al. 1997) that
was measured in situ by the Galileo entry probe. For Jupiter, we also consider an alternate, slightly higher temperature
of 170 K from a recent reassessment of the Voyager radio occultation measurements (Gupta et al. 2022).

To construct EOSs for models in this article, we start from the ab initio EOS that Militzer & Hubbard (2013)
computed for one hydrogen-helium mixing ratio. With these calculations, absolute entropies (Militzer 2013) were
derived that implicitly set the temperature profiles in our models. We use our helium EOS from Militzer (2006, 2009)
to perturb helium fraction in our H-He EOS as we detailed in Hubbard & Militzer (2016b). We also follow this article
when we introduce heavily elements into our models. Their detailed composition is not important as long as they are
substantially more dense than hydrogen and helium. Ice, rocky materials and iron are all sufficiently dense so that they
add mass but do not increase the volume of the mixture too much. At low pressure where the ab initio simulations do
not work, we revert back to the semi-analytical EOS by Saumon et al. (1995b).

When hydrogen assumes an atomic/metallic state at approximately 80-100 GPa (Morales et al. 2009), helium
remains an insulator and the two fluids are predicted to become immiscible (Stevenson & Salpeter 1977; Brygoo
et al. 2021). There is indeed good evidence that helium rain has occurred in Jupiter because the Galileo entry probe
measured a helium mass fraction of ¥ = 0.238 + 0.005 (von Zahn et al. 1998) that is well below the protosolar value
of 0.2777 (Lodders 2010). Furthermore, neon in Jupiter’s atmosphere was measured to be nine-fold depleted relative
to solar, and this can be attributed to efficient dissolution in helium droplets (Roulston & Stevenson 1995; Wilson &
Militzer 2010). So for our Jupiter models, we adopt the value from the Galileo entry probe for Yo and for Saturn, we
make it a free parameter but constrain it to be no higher than the protosolar value because we have no information
on how much helium rain has occurred in this planet.

For both planets, we chose values for the beginning and ending pressures of the helium rain layer that are compatible
with the immiscibility region that Morales et al. (2013) derived with ab initio computer simulations (see Militzer et al.
(2019) for details). Across this layer, we assume (S, Y,Z ) vary gradually with increasing pressure until they reach
the values of the metallic layer (Spet, ?met, Zmet) where they are again constant since we assume this layer to be
homogeneous and convective. Vet i8 adjusted iteratively so that the planet as a whole assumes a protosolar helium
abundance. This also assures ?met > Y/mo]- We prevent the heavy element abundance from decreasing with depth,
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Jupiter Saturn

R=0.96
_P=7GPa
T=3500K

Molecular hydrogen

_heprt = =P o Winds R=0.85
T=5000 K P-P=14GPa
R=0.70 T=3600K
P=450 GPa Hél‘i{l‘m ‘r~a NS \ R=069
T=8400 K s 00 Sadbaty ad P=80GPa
062 T=4300K
’ R=046
Dilute P=790 GPa P=320GPa
core T=1 0000 K T=7300 K

R=040
P=2100GPa
T=14000K

Compact
core

Figure 1. Models of Jupiter and Saturn based on CMS calculations that match the gravity measurements of both planets. The
zonal winds on Saturn are predicted to reach a depth of ~9000 km, involving ~7% of the planet’s mass. On Jupiter, they are
predicted to reach ~3000 km and thus involve only 1% of the planet’s mass. Because Jupiter is more massive, the pressure rises
more rapidly with depth. Therefore the helium rain layer, predicted to start approximately at 80-100 GPa, is located closer to
the surface. While the gravity measurements for Jupiter imply that the planet has a dilute core, the state of Saturn’s core is
less certain. Here we show a model with a compact core constructed to match the gravity measurements.

Zmet = Zmol- Every layer is either homogeneous and convective or Ledoux stable (Ledoux 1947). This sets our models
apart from those constructed by Debras et al. (2021) who introduced a layer where Z decreases with depth in order
to match Jupiter’s Jy. Instead our Jupiter models all have a dilute core with Z = 0.18 (see Fig. 1) because this key
restriction allows us to match the entire set of gravity measurements of the Juno spacecraft under one set of physical
assumptions (Militzer et al. 2022).

For our Monte Carlo calculations of Jupiter’s interior, we vary the beginning and end pressure of the helium rain
layer but apply constraints so that they remain compatible with H-He phase diagram as derived by Morales et al.
(2009). We also vary a parameter « that controls the shape of the helium profile in this layer, as we explain in Militzer
et al. (2022). During the Monte Carlo calculations, we also vary the beginning and end pressure of the core transition
layer, which we assume to be stably stratified since the abundance of heavy elements increases from Z,o t0 Zpet in
this layer. We also allow Z,,] and Zyet to vary as long as they meet the constraint we discussed in the previous
paragraph. More details of our Monte Carlo approach are given in Militzer et al. (2022).

For our Saturn models, we assume a traditional compact core that is composed up to 100% of heavy elements because
this assumption was sufficient to match the gravity measurements by the spacecraft (Iess et al. 2019), but there are
alternate core models constructed to match ring seismological data (Mankovich & Fuller 2021).

2.3. Abstract N Spheroid Models

In the previous section, we described physical interior models in hydrostatic equilibrium that rely on a realistic EOS
for H-He mixtures. To explore more general behavior, we now investigate simplified models with Ng spheroids. We
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Jupiter Saturn
GM [10'6 m3s™2] 12.668653417 3.7931208
Equatorial radius, Re, at 1 bar [km)] 71492 60268

Measured Ja x 10°
Measured Js x 10°
Measured Jg x 10°

14696.5063 £ 0.0006
~586.6085 + 0.0008"
34.2007 + 0.0022f

16324.108 + 0.028"
-939.169 + 0.037"
86.874 £ 0.087"

Period of rotation 9:55:29.711 h 10:33:34 h = 55 s
Inferred grot, Eq. (3) 0.08919543238 0.1576653506
Calculated ratio of volumetric and equatorial radii, Rym/Re  0.97764461 0.96500505

Calculated Mol, C/MRZ, Eq. (2)

Calculated angular momentum, Jnorm, Eq. (4)
Direct DR effect, (CP™ — C)/C, Egs. (2,5)

Indirect DR effect, (C(P®) — ¢(VR)) /cPR) Fq. (2)

0.26393 + 0.00001
0.078826 + 0.000003
+1.5x107°
~1x1074

0.2181 =+ 0.0002
0.08655 + 0.00008
~1.3x1073
—3x1073

Table 1. Parameters for Jupiter and Saturn that we used for this article. *Measurements from Iess et al. (2019) but converted
to our 1 bar radius. 'value and 1-¢ uncertainty from Durante et al. (2020).

still require each spheroid surface to be an equipotential but spheroid densities, p;, are arbitrary as long as the densities
monotonically increase toward the planet’s interior, p;11 > p;. We can set the density of the outermost spheroid to
zero, po = 0, because in realistic interior models, the density of the outermost layer is typically much lower than that
of deeper layers. (We also construct models in which pg is a free parameter, but they behave similarly, and in the limit
of large Ng, the difference becomes negligible.)

We initialize the equatorial radii of all spheroids, starting from ¢ = 0... Ng —1, to fall in a linear grid, \; = 1—14/Ng.
While we keep the outermost spheroid anchored at A\g = 1, we repeatedly scale all interior \;~o points uniformly to
obtain a model that matches the planet’s mass and Jy exactly. We add a penalty term to the Monte Carlo (MC) cost
function if A; > Ag.

Since matching M and Js requires two free parameters, we also scale all density values, p;, uniformly. So after
every update of the spheroid shapes, we employ a Newton-Raphson step to scale p; and \; grids simultaneously. We
also institute a maximum density of 10 PU (planetary unit of density, M/R2) to prevent pathological situations in
which the radius of the innermost spheroid becomes very small while its density becomes extremely large. Movshovitz
et al. (2020) and Neuenschwander et al. (2021) also introduced upper limits on density. We consider 10 PU to be a
reasonable choice because for Jupiter, it corresponds to a density of 52 gcm ™3, which exceeds the density of iron that
is ~27 gecm ™2 at Jupiter’s core conditions (Wilson & Militzer 2014). The described set of assumptions lead to a stable
procedure with Ng—1 free input parameters (p;~o) that is amendable for MC sampling.

Since we do not employ a physical EOS or make specific assumptions about the planet’s composition or temperature
profile, our abstract models share similarities with the empirical models by Helled et al. (2009) and Neuenschwander
et al. (2021) or the composition-free models by Movshovitz et al. (2020) who represented the Saturn interior density
profile by three quadratic functions before conducting MC calculations to match the Cassini gravity measurements.

3. RESULTS
3.1. Saturn

In Fig. 2, we show Mol values computed for the physical models of Saturn’s interior in Fig. 1, as well as for the
abstract Ng spheroid models. The dominant source of uncertainty in the computed Mol is the planet’s period of
rotation, which cannot be derived from the planet’s virtually axisymmetric magnetic field. This is not the case for
Jupiter, whose rotation period is known to a fraction of a second (see Tab. 1). Without any constraints on the rotation
period, the predictions for Saturn’s Mol vary by ~2%. Still all values predict that Saturn is not currently in a spin-orbit
resonance with Neptune today (Wisdom et al. 2022). For all rotation periods shown in Fig. 2, we can construct interior
models that match the entire set of gravity coefficients that the Cassini spacecraft measured during its ultimate set
of orbits (Iess et al. 2019), so gravity measurements alone are insufficient to constrain the rotation period. Only if
we match the planet’s polar radius as measured by the Voyager spacecraft using radio occultation, the now-preferred
period of 10:33:34 h + 55 s emerges (Militzer et al. 2019). This rotation period is in remarkably good agreement with
the value of 10:33:38 h™'§2% inferred from waves observed in Saturn’s rings (Mankovich et al. 2019).
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Figure 2. Mol of Saturn computed for different rotation periods that have been assumed in the literature. The physical model
with differential rotation (DR) matches the measured gravity harmonics Js-J12 while models without DR can only match values
up to Js. We prefer the period of 10:33:34 hr + 55 s because it allows models with DR to match the Voyager measurements
of the planet’s polar radius. Under these assumptions, we predict Saturn’s Mol = 0.2181+ 0.0002. With a low-order theory of
figures, Helled et al. (2009) predicted Saturn’s Mol to be 2% larger (yellow squares). The green band illustrates the range of
predictions with four-spheroid calculations that were reported by Wisdom et al. (2022).

Once a rotation period has been selected, the remaining uncertainty is dominated by effects of differential rotation
(DR), which amount to about 0.4%. Without DR effects, we are only able to match the gravity harmonics Jo—Jg,
and already matching Jg requires us to introduce one additional adjustable parameter, so we add an artificial density
jump (Iess et al. 2019). The comparison of predictions from model with and without DR in Fig. 4 illustrates that DR
effects are much more important for Saturn than for Jupiter. When we include DR effects in our Saturn models, we
are able to match the entire set of gravity harmonics Jy—Jy2 without an artificial density jump. We find that resulting
Mol drops 0.4% below predictions from models that match Jo—Jg without DR.

To better understand this drop, we constructed MC ensembles of abstract models of Saturn’s interior that match
Grot and Jy without invoking DR. In Fig. 3c, we plot the posterior distribution of the computed Mol in J4-Jg space.
We also show the Cassini measurements (Iess et al. 2019) and the model from Fig. 4 without DR nor artificial density
jump, matching the observed .J, and J;. We estimate DR effects increase Saturn’s .Jg from ~81 x 107 to the observed
value of 86.340 x1076. Fig. 3c shows that the Cassini measurements place Saturn in a regime where an increase in Jg
(or in Jy) leads to an increase in the Mol: g?ﬁgi > 0.

At the same time, models without DR in I?‘ig. 2 predict a larger Mol than models with DR. This lets us conclude
that when models with DR are constructed to match the Cassini measurements, DR effects reduce the contribution
to Jg that comes from the uniformly rotating bulk of the interior, Ji"*. So when models with and without DR are
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Figure 3. Posterior distributions of Monte Carlo ensembles of abstract models for Jupiter’s and Saturn’s interior without DR,
that match the observed values for ¢rot and J2. The blue symbols represent measurements of Juno and Cassini spacecraft while
the red symbols show predictions from models without DR effects. In panel (a), we compare ensembles of models with various
numbers of spheroids. Counterintuitively, models with fewer spheroids tend to show a wider range of Jy and Js values (see
text). In panels (b) and (c), the background color, the color bar and the contour lines represent the average Mol as function
of Js and Js. Ns = 20 spheroids were employed. DR effects alter Saturn’s Mol significantly while they are less important for
Jupiter. Jupiter’s Mol decreases with rising Js while it is almost independent of Js. Conversely, Saturn’s Mol strongly depends
on Jy but still increases with rising Js.
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Figure 4. The even gravitational moments J, of Jupiter and Saturn versus degree n. All moments have been scaled by
powers of the rotational parameter, g.o; , because the ratio J,/ qfo/t? is approximately constant according to the theory of figures
(ToF) (Zharkov & Trubitsyn 1978). The variation of the ratios with the order n is due to the contribution of higher-order
terms in the ToF, captured to high precision in the nonperturbative CMS method. The figure also illustrates that the effects
of differential rotation are much stronger for Saturn (blue shaded area) than for Jupiter because Saturn’s winds extend to a
greater depth of ~9000 km (Iess et al. 2018). Saturn models with differential rotation fit the observed moments up to Ji2 while
uniform rotation models can only fit coefficients up to Ju, or up to Js if a density jump is included. Here we compare the Juno
measurements with a uniform rotation model for Jupiter’s interior while the model with differential rotation in Militzer et al.
(2022) matches the entire set of gravity coefficients.

compared, both matching the spacecraft data, models with DR predict a smaller Mol because their Ji* is reduced by
contributions to Jg from DR. It is primarily this change to the Jg term that affects the Mol while the DR contributions
to Jy and Jy are too small to matter. On the other hand, DR effects dominate the higher order J, starting with Jg
(see Fig. 4) but their values are controlled by the outer layers of the planet (Guillot 2005; Nettelmann et al. 2013;
Fortney et al. 2016; Militzer et al. 2016) where the density is comparatively low, and therefore they do not contribute
much to the Mol. We conclude that DR effects couple to the Mol mostly via Jg.

While the models in Fig. 3 only match J5, we compare MC ensembles of Saturn models in Fig. 5 that either match
Jy and Jy or all three Jo—Jg. The posterior distribution of Mol value narrows substantially with every additional
constraint.

Abstract models that match Jo—Jg yield a Mol range from ~0.2180 until a sharp drop off at 0.2189. Our physical
models yield a Mol value of 0.2181 with a 1-o error bar of 0.0002. Broadly speaking the predictions from the two
ensembles are compatible. However, with increasing spheroid number, our abstract models cluster around the most
likely value of 0.2188, which is a bit higher than our physical models predict. This difference is a consequence of the
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Figure 5. Probability density distributions of Jupiter’s and Saturn’s Mol values. The top panel illustrates how the range of
likely Mol values shrinks as models with eight constant-density spheroids are required to first match only Jupiter’s J2 value,
then to match Jy and J4, then to reproduce the measured values for J; through Js. The second panel shows that the range
of likely Mol values shrinks further when this calculation is instead performed with 50 constant-density spheroids (see Fig. 3).
The third panel shows the same trend in four-spheroid models of Saturn. The lowest panel shows predictions from models that
match Saturn’s J2 through Js. As the number of spheroids is increased, models tend to cluster in a narrower Mol interval. With
50 spheroid models that match J» through Js, we obtained a range from 0.26393-0.26398 for Jupiter’s Mol. (Between 5 x 10°
and 6 x 107 models were constructed to compute every individual Mol histogram.)
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Figure 6. Panels a), b), and c) show the Mol of hypothetical planets with prescribed grot and J2 values. The solid lines
show the ensemble average of abstract models with 50 constant-density spheroids. The predictions from physical giant interior
models that match the spacecraft measurements of Jupiter and Saturn are shown for comparison. The dashed lines in panel
b) are the prediction from the Radau-Darwin Eq. 16 that becomes exact in the limit of small g0t and large Jo. In this limit,
the 50-spheroid models are forced to approach the uniform-density limit of MoI:%. One can also approach this limit with
two-spheroid calculations. So in panel d), we show how the volume fraction of the inner spheroid changes as a function of grot.
As the fraction approaches unity, the choices for grot and J2 imply a constant planet.

way the two ensembles are constructed. In one case, we apply a number of physical assumptions. In the other, we do
not and let the Monte Carlo procedure gravitate towards the most likely parameter space as long as the spacecraft
measurements are reproduced. So one may expect to see small deviations in the predictions of the two ensembles.

3.2. Giant planets in general

The results in Fig. 5 show that the Mol of a giant planet can already be constrained reasonably well even if only gpot
and Jy are known. We therefore derive the Mol for a set of hypothetical giant planets by performing MC calculations
with Ng = 50 spheroids on a grid of ¢,o¢ and Jy points, which will help us to understand why Jupiter’s and Saturn’s
Mol differ by ~20%.

The ensemble averages of the computed Mol are shown in Fig. 6. One finds in Fig. 6a that for a given ¢, the
Mol rises rapidly with increasing Jo. To first approximation, Jo is a measure of the planet’s oblateness. So if J; is
increased, while the equatorial radius and the rotation period are kept constant, more mass is moved towards the
equatorial region, increasing the Mol. In Fig. 6b, we also show the predictions of the Radau-Darwin approximation,

2 2 . Srot
Mol==-(1-- -1 th n=—"—"— 16
© 3 ( 5 77 ) W 77 3J2 + qrot ( )

While there exist slightly different formulations of this approximation (Zharkov & Trubitsyn 1978), they all become
exact in the limit of small g, and large Jo. In this limit, the planet’s density becomes more and more uniform
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throughout its interior. Eventually the Mol approaches %, the value for a uniform-density fluid planet (Maclaurin
spheroid) regardless of rotation rate. The % value cannot be exceeded unless one permits the density in the interior to
be less than that of the exterior, which we exclude from consideration.

The uniform-density limit is also approached by models that have just two spheroids. While we fix the parameters
of the outer spheroid, pg = 0 and Ay = 1, the two parameters of the inner spheroids, p; > 0 and \; < 1, are just
sufficient to match a pair of prescribed g,ot and Jo values. In Fig. 6d, we plot the volume fraction of the inner spheroid
as function of g.ot. When this fraction approaches 1 for small g, the density of the planet becomes uniform. For a
given J, this occurs at the same ¢,o¢ value that leads to a Mol value of % in Fig. 6b. The two-spheroid calculations in
Fig. 6d also confirm the trends that we see in the Ng spheroid calculations in the other figure panels: With increasing
Grot, more and more mass needs to be concentrated in the planet’s center to satisfy the Jy constraint. This leads to a
decrease in the Mol if ¢, is increased for a given Js, explaining the trends in Fig. 6b.

Finally we performed calculations for our two-spheroid models for Saturn’s and Jupiter’s .ot and Jo values. While
such models are crude, they show that the volume fraction of the inner spheroid is ~54% for Jupiter and only ~42%
for Saturn. This implies that a higher fraction of Saturn’s mass is concentrated near the the center, consistent with the
fact that typical Jupiter models have a dilute core, while Saturn models matching the gravity measurements typically
do not require one.

3.3. Jupiter

In Fig. 3a, we compare the posterior distributions of abstract Jupiter models with different numbers of spheroids.
All models were constructed to match Jupiter mass, equatorial radius, and J exactly. Models with fewer spheroids
tend to show a wider range of J; and Jg values, which is counterintuitive because, e.g., the entire space of 10 spheroid
models is included in that of the 20 spheroid models. (In an 20 spheroid model, one only needs to set p2; = pa;y1 to
obtain a valid 10 spheroid model.) However, the available space of 20 spheroid models is much bigger and in most
models, the magnitude of the density steps, p2; < po2;+1, is smaller than that between two densities in a 10 spheroid
model. In most 20 spheroid models, the density varies slightly more gradually than in the coarser 10 spheroid models.
As a result, a representative set of 20 spheroid models occupies a smaller area in Jy-Jg space than a set of 10 spheroid
models. Despite this reduction with increasing Ng, the range of every model ensemble includes the Jy and Jg values
from the Juno measurements (Durante et al. 2020) as well as the predictions from the static gravity terms (no DR)
according to the dilute core models from Militzer et al. (2022). We will refer to them as five layer models throughout
this article.

In Fig. 3b, we compare the average Mol as function of J; and Jg. In general, small Jg and Jy, that are less negative,
lead to larger Mol values. One also notices that as Jg is increased for a given Jy, the Mol goes through a maximum
and the Juno measurements place Jupiter in the regime where gl}/égg < 0 while the opposite is true for Saturn. From
the shape of contour lines, we can infer that Jupiter’s Mol is almost independent of Jy.

The five layer models from Militzer et al. (2022) predict DR contributions to Jupiter’s Jg to be negative: —0.27
x107% or —0.8%. They are much smaller in magnitude than for Saturn (it was +6%) and have the opposite sign.
However, since g T also has the opposite sign, we are again in a situation where models matching the gravity data
with DR effects predlct a smaller Mol than models without DR. The magnitude of the Mol difference between the two
types of models is, at —0.01%, much smaller for Jupiter while it was —0.4% for Saturn.

While a —0.01% correction was derived from our more recent five layer models (Militzer et al. 2022), one may also
ask whether the DR effect could make a larger contribution to Js. Our preliminary Jupiter model (Hubbard & Militzer
2016b), put together before Juno data became available, differs in Jg by —0.8 x10~% from the now-available gravity
data. Even if such a large discrepancy came from DR effects, the Mol would only decrease by —0.04%, still smaller
than the 0.1% precision that Juno is expected to ultimately achieve for the Mol measurements.

In Fig. 7, we compare the Mol of two and three layer models for Jupiter’s interior (Saumon & Guillot 2004b; Guillot
et al. 2004; Militzer et al. 2008) that are based on a physical EOS for the hydrogen-helium mixture but do not contain
sufficient flexibility to match all observations. The predicted Mol values range from 0.26385-0.26400. In panel 7b, the
temperature of Jupiter’s interior was increased by raising the 1 bar temperature step by step from the value of the
Galileo entry probe, 166.1 K, up to the extreme value of 185 K (Miguel et al. 2022). Raising 1 bar temperature lowers
the density of the hydrogen-helium mixture, which enables one to add more heavy elements and thereby produce
models that have at least a protosolar heavy element abundance, Zpg = 1.53%. An increase of 10 K allows one to
approximately add one Zpg worth of heavy elements to an existing model. Still most models require the transition
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Figure 7. Predictions from two and three layer models for Jupiter’s interior that were constructed under different assumptions
and match J2 exactly. Colors label models consistently across all panels but not all curves are shown in every panel for clarity.
The numbers specify the assumed transition pressure in GPa between molecular and metallic layers so that models can be traced
across different panels. Panel (b) compare the abundance of heavy elements in the outer molecular layer, Z1, with the value
of the protosolar nebula, 1.53% (Lodders 2010). No winds were included except for the last models shown in light blue color.
Only the brown curves refer to models with a compact core (6 Earth masses, rocky composition). The light green star shows
the preferred model from Hubbard & Militzer (2016b) while the pentagons and triangles indicate other compact core models
based on the EOSs by Militzer & Hubbard (2013) and Saumon et al. (1995a).

pressure to be 400 GPa or higher, which is not compatible with predictions for the metallization of hydrogen and for
the hydrogen-helium immiscibility. Both are assumed to occur at approximately 80-100 GPa (Morales et al. 2010).

Like the abstract models in Fig. 3, all physical models in Fig. 7 match J, exactly but the fact that the equation
of hydrostatic equilibrium is satisfied and that a physical EOS is employed means that J; and Jg are now much
more tightly correlated. While abstract models permitted a wide interval of Js values from 32.5-36.5x107% for
J4 = —587 x 1076, the more physical assumptions narrow this range to 34.2-34.5x1076 in Fig. 7a.

In Fig. 8, we compared the Mol from ensembles of interior+wind models that match the entire set of Juno’s even and
odd gravity coefficients up to Jip (Durante et al. 2020). The posterior distribution of our five-layer reference ensemble
is centered around the Mol value of 0.26393, which we consider to be our most plausible prediction for Jupiter’s Mol. If
we increased the 1 bar temperature to 170 K, the resulting ensemble of Mol shifted to higher Mol values by a modest
amount of ~ 7 x 1076, Slightly larger shifts were obtained when we changed the H-He EOS by reducing the density
by 3% over a selected pressure interval (Militzer et al. 2022). The largest positive shift was obtained for a density
reduction from 10-100 GPa and the largest negative was seen if the density was reduced from 50-100 GPa. Both Mol
shifts were on the order to 10~°, which is why we report 0.26393+0.00001 for Jupiter’s Mol.

In Fig. 9 we plot results from an ensemble of five layer models in order to show how the computed Mol correlates
with different gravity harmonics. The Mol correlates positively with Jo, negatively with Jy4, and not in a significant
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Figure 8. Probability density distributions of normalized moments of inertia derived from different ensembles of interior
models matching even and odd gravity harmonics up to Jig. All models include a dilute core and contributions from winds.
The red circles represent our reference models with five layers. When four layer models are constructed by removing either the
helium rain layer or the core transition layer, the Mol distribution hardly changes. If the 1-bar temperature is increased from
166.1 to 170 K, the Mol increases by only ~107°. Slightly larger changes are seen when the density of the hydrogen-helium
mixture is reduced over pressure intervals from 10-100 or from 50-500 GPa. In the caption, we specify the size of the ensemble
that was used for each histogram.

way with Jg. (The correlations differ from predictions of two and three layer models in Fig. 7 because they only match
the Jupiter’s mass and Jy.) While the sign and slopes of the correlation of the Mol with J; and Jy in Fig. 9 differ,
one needs to consider that the sign and the magnitude of J; and Jy differ as well (see Tab. 1). If one removes that
dependence by evaluating Jo 3(%‘2)1 =107 and Jy %\f{]‘il = 8 x 1078, one finds the correlations between the Mol and both
gravity coefficients are rather similar. The small magnitudes of ~10~7 illustrates that an individual gravity coefficient
would need to change a lot to alter the Mol significantly. Fig. 9 also shows that the posterior distributions of Js and
Jy are centered at the Juno gravity measurements as expected.

In Fig. 10, we demonstrate fairly good agreement between the density profiles of our abstract and physical models
for Jupiter’s interior. For a fractional radius of 0.2 and larger, the density of our physical five layer reference model
falls within one standard deviation from the mean of the abstract ensemble that matches the planet’s mass, equatorial
radius and the gravity coefficients J, and Jy. Both gravity coefficients do not constrain the core region very well and
the abstract models can thus yield larger density values there. As expected, models that are only constrained by J
show a wider range of density values for given radius. Larger density values favored for r < 0.3 and smaller values
for r > 0.4. Still for most radii, we find that the predictions from the J; and Jy constrained models fall within one
standard deviation of the J, constrained models.

In Tab. 2, we compare our result with different predictions for Jupiter’s Mol in the literature. Early determinations
based on Pioneer and Voyager measurements by Hubbard & Marley (1989) and Wisdom (1996), who assumed uniform
rotation, predicted Jupiter’s Mol to be 0.2640, which is very close to the 0.26393 4 0.00001 value that we derived when
we match the Juno measurements with models that included DR effects. This now preferred value is also included in
the ranges from earlier CMS calculations by Hubbard & Militzer (2016b) and Wahl et al. (2017a). With a low-order
ToF, Helled et al. (2011) predicted smaller Mol values. Nettelmann et al. (2012a) predicted a very wide range of
Mol values because not all models were constructed to match Jo, Jy, and Jg. Ni (2018) adopted the approach from
Anderson & Schubert (2007) when he adjusted coeflicients of a polynomial function for the density profile in Jupiter’s
interior in order to match the first gravity measurements of the Juno spacecraft. With the theory of figures, he obtained
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Figure 9. The two upper panels show posterior distributions of gravity harmonics J2 and J4 derived from an ensemble of five
layer models. The lower planels illustrate how the computed Mol correlates with J2, Js, and Js. The dashes lines indicate the
Juno gravity measurements from Durante et al. (2020) in Tab. 1.

Jupiter’s MoI=C/(M R?)

Method and assumptions

Reference

0.26401
0.2640

0.2513 — 0.2528%
0.25578 — 0.27160
0.26381 — 0.26399
0.26391 — 0.26403
0.2629 — 0.2641%
0.26341 — 0.26387

Third-order ToF, Pioneer and Voyager data

Consistent level curve method, Pioneer and Voyager data

ToF, Pioneer and Voyager data
ToF, three layer models, JUP230*

CMS, compact core models, DFT and SC EOS, JUP230*
CMS, dilute and compact core models, physical EOS, Juno data

ToF, empirical EOS, earliest Juno data

ToF, polytropic and polynomial EOS, Juno data

Hubbard & Marley (1989)
Wisdom (1996)

Helled et al. (2011)
Nettelmann et al. (2012a)
Hubbard & Militzer (2016b)
Wahl et al. (2017a)

Ni (2018)

Neuenschwander et al. (2021)

0.26027 — 0.26477
0.26385 — 0.26400
0.26387 — 0.26401
0.26393 — 0.26398
0.26393 £ 0.00001

Abstract models with 50 spheroids that match only Juno’s J

Physical two and three layer models, CMS, only match Juno’s Ja
Abstract models with 50 spheroids that match Juno’s J2 and Jy

Abstract models with 50 spheroids that match Juno’s Jo — Jg

Five layer model, physical EOS, CMS, match all Juno’s Jo — Jio

this work, Fig. 5
this work, Fig. 7
this work, Fig. 5
this work, Fig. 5
this work, Fig. 8

Table 2. Predictions for Jupiter’s Mol (R. = 71492 km) derived under different assumptions. *JUP230 refers to Jacobson
(2003). TConverted using mean radius of R, = 69911 km (private communication with author.) *Converted using R, =
69893.175 km (Helled 2012).
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Planet /reference Rotation period J» x 10° Ju x 108 Js x 108 C’/MR§
Jupiter 9:55:29.711 h
Our 5 layer model Militzer et al. (2022) 14696.5063 —586.6085 34.2007  0.26393
Three layer model with Thpar = 183 K Miguel et al. (2022) 14698 -586.6 34.11 0.26391
Two models from Nettelmann et al. (2021) 14719 —-587.7 34.30 0.26413
14723 -587.7 34.24 0.26419
Saturn
Our preferred model with DR from Militzer et al. (2019)" 10:33:34 h 16324.1078 -939.1687 86.8743  0.21814
Model from Nettelmann et al. (2021)7 10:33:34 h 16334.2 -940.149  84.208 0.21873
Two models from Mankovich & Fuller (2021) 10:33:38 h 16327.4 -939.507  84.686 0.21876
10:33:38 h 16332.1 -939.835  84.603 0.21879

Table 3. Comparison with Saturn and Jupiter models from other authors. With the CMS method, we calculated the J,, and
Mol values for models that were originally constructed with the theory of figures. 'The CMS calculations were performed with
R.=60367 km and an outer pressure level of 0.1 bar but the results were rescaled to R.=60268 km.

a range for Jupiter’s Mol that includes our most reliable value. In the lower part of the table, we show how the range
of predicted Mol shrinks when more and more of Juno’s gravity harmonics are reproduced.

In Tab. 3, we compare our predictions for Jupiter and Saturn with results from CMS calculations that we performed
for models that other authors had constructed with the theory of figures. The central quantity of this approach is the
volumetric radius, s, of different interior layers. When we read in the model files from other authors, we construct a
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density function, p(s), that we can interpolate. As our CMS calculation converges step by step towards a self-consistent
solution, we calculate volumetric radius of every spheroid and obtain the corresponding density values by interpolation.
We then update the density of every layer by averaging the density values of corresponding inner and outer spheroids.
After all layer densities have been updated, we scale all densities again to match the total planet mass exactly. We
increased the number of spheroids in our CMS calculation up to 65536 to obtain converged results. We found this to
be a robust approach to import model files from other authors.

The agreement among the resulting Mol values in Tab. 3 is very good even though some residual differences can be
expected because the theory of figures is a perturbative approach that neglects high order terms. Furthermore not
every model was constructed to match the measured gravity field with the same level of precision. Finally planetary
interior models are complex and authors invoke an array of not always compatible set of assumptions. For example,
while we invoke the concept of a dilute core and combine it with a model for the planet’s winds to match Juno’s Jy and
Js measurements, Miguel et al. (2022) succeeded in doing so by raising the 1 bar temperature from 166 to 183 K when
ensembles of traditional three layer models were constructed. Still the gravity coefficients and computed Mol are in
good agreement with those of our five layer model. The Mol values, that we computed for two models by Nettelmann
et al. (2021), were 2 x 10~* larger than our predictions. We attributed this difference to the fact that we obtained
with our CMS calculations a Jo value that was 2 x 1075 higher than the Juno measurements.

In Tab. 3, we also compare the predictions of four Saturn models that were constructed for a rotation period of
10:33:34 h that Militzer et al. (2019) derived by matching the planet’s polar radius or for a very similar period of
10:33:38 h that Mankovich et al. (2019) derived from ring-seismological calculations. The CMS calculations for models
by Mankovich & Fuller (2021) and Nettelmann et al. (2021) yielded Mol values that were ~ 6 x 10~4 larger than that
of our preferred Saturn model with DR. We primarily attribute this modest difference to the fact Mankovich & Fuller
(2021) and Nettelmann et al. (2021) do not have DR in their models and thus make no attempt to match the observed
Jg value. Overall the results in Tab. 3 confirm that a planet’s Mol is very well constrained by measurements of the
gravity coefficients Js, Jy, and Jg.

4. CONCLUSIONS

With nonperturbative concentric Maclaurin spheroid method, we construct models for the interiors of Jupiter and
Saturn under a number of different assumption. Our ensemble includes physical models based on a realistic EOS
for hydrogen and helium, and abstract models with a small number of constant density spheroids. For both sets
of assumptions we find that current spacecraft measurements of the Jupiter and Saturn gravity fields constrain the
planets’ moment of inertia (Mol) fairly tightly, but then zonal winds (or differential rotation, DR) emerge as the leading
source of Mol uncertainty, assuming the planets’ rotation rates have been constrained (by magnetic field measurements
for Jupiter or by observations of the polar radius for Saturn.)

If DR effects are excluded, the gravity coefficients Jo, Jy, and Jg one-by-one constrain the predicted Mol more and
more tightly. Already mass, equatorial radius and Jy alone constrain Saturn’s Mol by ~10% while Jupiter’s Mol is
constrained to a level of ~1%. If models are required to match also Jy, the range of Saturn’s and Jupiter’s Mol shrinks
to 3% and 0.05%. If models match also Jg, the allowed Mol range shrinks to 0.07% and 0.008%, respectively.

However, DR effects can make significant contributions to the gravity harmonics Jg and thereby alter the Jg term
that needs to come from the interior structure if interior+wind models are constructed to match specific spacecraft
measurements. We find that Saturn’s Mol drops by 0.4% when effects of DR are added to interior models that match
the gravity harmonics J,, Jy, and Jg. In principle, such a drop could be detected by a direct precise Mol measurement
by a spacecraft that orbits Saturn over a sufficiently long arc of Saturn’s precession.

This 0.4% drop of Saturn’s Mol is mainly caused by the way models match the gravity coefficient Jg. On Saturn
the zonal winds are predicted to reach a depth of ~9000 km (Tess et al. 2018) and involve 7% of the planet’s mass.
The DR contributions to Jg were thus found to be rather large, on the order of 6%. For Jupiter, the winds reach only
~3000 km deep (Kaspi et al. 2018) and involve only 1% of the planet’s mass. So we estimate the contributions from
DR to Jg to be only on the order of 0.8%. DR effects thus lower Jupiter’s Mol by only 0.01%, too small to be detected
by the Juno spacecraft.

Our models with DR predict Saturn’s Mol to be 0.218140.0002. This is 1% too small for Saturn to be in a spin-orbit
resonance with Neptune today but Wisdom et al. (2022) predicted the planet was in resonance in the past when it had
an additional moon that was tidally disrupted and formed the rings. With physical but simplified models for Jupiter’s
interior that match only J,, we obtain wide range from 0.26385-0.26400 for the planet’s Mol. For our abstract models
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with 50 spheroids for Jupiter’s interior that match the measured harmonics Js, Jy and Jg, we derived a narrower range
of possible Mol values from 0.26393-0.26398. Finally with our most plausible five layer models for Jupiter’s interior,
we predict the planet’s Mol to be 0.26393 4 0.00001, which is about ~10% above the critical value of C/M R? = 0.236
for the planet to be in spin-orbit resonance with Uranus today (Ward & Canup 2006).

Wisdom et al. (2022) argue that available high-precision measurements of Saturn’s zonal harmonics suffice to infer a
tight Mol range that rules out a current Saturn precession resonance with Neptune. By the same token, our predicted
range for Jupiter’s Mol needs to lie within the range constrained by Juno’s extended mission measurement of Mol.
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