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Collective modes in a plasma, like phonons in a solid, contribute to a material’s equation of state and
transport properties, but the long wavelengths of these modes are difficult to simulate with today’s finite-
size quantum simulation techniques. A simple Debye-type calculation of the specific heat of electron
plasma waves is presented, yielding up to 0.05k/e~ for warm dense matter (WDM), where thermal and
Fermi energies are near 1 Ry = 13.6 eV. This overlooked energy reservoir is sufficient to explain reported
compression differences between theoretical hydrogen models and shock experiments. Such an additional
specific heat contribution refines our understanding of systems passing through the WDM regime, such as
the convective threshold in low-mass main-sequence stars, white dwarf envelopes, and substellar objects;
WDM x-ray scattering experiments; and the compression of inertial confinement fusion fuels.
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Specific heat is a measure of the energy per unit of
substance required to produce a unit change of temper-
ature. Specific heat plays a central role in thermodynamics
and material properties such as compressibility, sound
speed, viscosity, thermal diffusivity, and convective trans-
port. In a microscopic picture, specific heat is related to
the number of degrees of freedom of the constituent
particles, and each available degree of freedom has a
nominal heat capacity of k/2, where the Boltzmann
constant k = 1.380649 x 1072* JK!.

Early work by Debye [1] produced a compelling
description of specific heat in solids through a quantum
statistical treatment of long-range correlations between the
ions, i.e., phonons. This model captures the essential
behavior of specific heat at low temperatures by integrating
the occupied density of phonon states and is still in wide
use a century later.

In fluids, long-range correlations play a diminished role,
so the phonon model is often dropped in favor of an
ideal-gas model plus virial and other modifications [2].
Collective behavior reemerges in plasmas due to long-
range electromagnetic interactions between the constituent
charged particles. However, in the ideal plasma limit, the
accessible collective modes with wavelengths shorter than
the screening length are severely restricted; instead, the
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ideal gas is modified by exchange interactions and static
local-field corrections [3]. Many-body contributions to the
specific heat have long been a challenge to calculate
accurately and offer particular challenges in the moderately
coupled, partially degenerate warm-dense-matter (WDM)
regime [4].

In this Letter, we present a simple model to identify the
conditions where collective plasma oscillations contribute
to the thermodynamics of the system. In particular, we
focus on hydrogen in the WDM regime, although the
results generalize to plasmas of any composition and
thermodynamic condition. In warm dense hydrogen,
several energy scales are simultaneously and approxi-
mately equal (Fig. 1), including (i) the hydrogen atom
binding energy 1 Ry = #%/(2m,a3) = 13.6 €V; (ii) the
electron Fermi energy Ep = [h*/(2m,)](37%n,)*>;
(iii) the Coulomb coupling energy E. = e?/(4negay),
where a, = (4zn,/3)”'/3 is the electron sphere radius;
(iv) the electron plasma oscillation energy hw, =
h[n,e*/(eym,)]'/?; and (v) the thermal energy kT.

Hydrogen has the simplest atomic structure and ionization
state histogram, making it an excellent system to evaluate the
contribution of plasma oscillations to the thermodynamic
state. These oscillations have been experimentally observed
in deuterium (*H) shocked to WDM states [7,8] as well as
other WDM systems [9—-11]. Furthermore, recent deuterium
shock experiments in the vicinity of kT = E = 1 Ry report
evidence for increased compression compared to all theo-
retical models [5], consistent with an overlooked energy
contribution.

Following the Debye model for phonons in a solid [1],
we compute the internal energy content of longitudinal
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FIG. 1. Hydrogen density-temperature diagram. High-pressure
shock experiments in deuterium [5] reach higher compression
than predicted by theoretical models (solid red line; also see
Fig. 4). This occurs in the warm-dense-matter regime where the
thermal energy kT is approximately and simultaneously equal to
(i) the isolated-atom binding energy (1 Ry = 13.6 eV), (ii) the
Fermi energy Er (assuming full ionization), (iii) the electron
plasmon energy fw,,, and (iv) the Coulomb coupling energy E.
Also shown are the standard solar model, a main-sequence star
with M = 0.12M, the pure-H Jupiter isentrope, and the dense
fuel trajectory in an ignited inertial confinement fusion (ICF)
implosion (experiment N210808 [6]).

electrostatic plasma oscillations (plasmons) as the integral (in
our case, over wave number ¢) of the wave energy €(q), the
density of states g(g), and the occupancy factor f(q):
E, = |- e(q)g(q)f(q)dq. The integral is cut off at some
maximum wave number ¢., above which the wavelength
becomes too short to support collective oscillations, directly
analogous to the Debye frequency for phonons in solids.

The density of states in a 3D volume V is approximated
as in the Debye method: g(q) = V¢*/(2x?%). For electro-
static plasma waves, we have only a longitudinal compo-
nent; the two transverse polarizations of phonons in solids
are not present, and so too the extra factor of 3 in the
density of states [1] is omitted.

We take the occupancy factor f to be the Bose-Einstein
distribution function and assume zero chemical potential
for the plasma waves: f(q) = (e"®«/¥T —1)~!, where we
have replaced the wave energy with a dispersion relation,
e(q) = hw,. Putting it all together, we get the plasma wave
contribution to the internal energy:

Vo [ q*dq
E, :2_”2[) oy i (1)
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FIG. 2. Forelectron density n, = 2.3 x 10* m™ (E = 1 Ry):
(a) dispersion relation (solid lines) and damping rate (dashed lines)
of electron plasma waves at kT = (0.2,1, and5) Ry = (32,
158,790) kK in blue, yellow, and red, respectively; (b) screening
cutoff wave number for { = 1 (solid curve), its approximation
using Eq. (3) (dash-dotted curve), and for { = 2*!/3 (shaded gray
region). Diamonds (open squares) show the screening (damping)
cutoff wave numbers for the three temperature cases. Also shown is
the Debye phonon model cutoff for solids (dotted black line).

We may separately evaluate the internal energy contri-
butions from the low-frequency ion-acoustic waves (IAWs)
and the high-frequency electron plasma waves (EPWs, also
known as Langmuir waves, plasmons). We will restrict our
consideration to the case of longitudinal oscillations in a
nonrelativistic (kT, Er < m,c?), unmagnetized (B — 0)
material. We allow arbitrary electron degeneracy and
neglect the radiation field. When ions and electrons are
in thermal equilibrium, as is expected in many astrophysical
objects and in shocks at high density, the IAWSs experience
critical damping on the ion thermal distribution for con-
ditions throughout the WDM regime; we thus consider only
the EPW modes for this analysis.

The EPW dispersion relation for full and arbitrary electron
degeneracy has been reported elsewhere [12—18]. Here, we
write the EPW dispersion relation as [see Fig. 2(a)]

wf = w3[1+ (q25)) + 12/ (4md).  (2)

where A is the effective electron screening length.

Detailed expressions for the electron screening length at
arbitrary electron degeneracy have been reported previ-
ously [16-18]. A convenient analytic approximation is
given by [16] [see Fig. 2(b)]

Ay = 31p[1+ (20/5)]'2, (3)

where A, = [egkT/(n,e*)]'/? is the Debye-Hiickel electron
screening length and ® = E;/(kT) is the quantum degen-
eracy parameter [19].

We now turn to the upper integration limit or cutoff wave
number ¢g.. In the Debye phonon model [1], the model is
normalized to reach the Dulong-Petit value of Cy, = 3k per
atom at high temperatures by introducing an ad hoc cutoff
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at a maximum wave number ¢, = (6z°n;)'/3. This Debye
cutoff is related to the Debye frequency or Debye temper-
ature through the sound speed c¢,;, namely, hc,qp =
hwp = kTp. A cubic volume corresponding to this
minimum wavelength, V = (2z/qp)?, contains 47/3 ~
4.19 atoms.

For plasmons, we expect an effective cutoff when either
(1) the wave number exceeds the inverse screening length or
(ii) the damping rate exceeds the oscillation frequency,
where the damping rate for EPWs with arbitrary degen-
eracy has been reported previously [e.g., Refs. [13,16-18];
see Fig. 2(a)]. We can map the critical damping condition
(ii) onto the critical screening condition (i) through the
dispersion relation of Eq. (2) and defining the cutoff wave
number as a scalar divided by the screening length:

Figure 2(b) shows that at Er =1 Ry these two cutoff
conditions are nearly coincident with { = 1. In the WDM
regime, this wave number cutoff is always smaller than the
Debye phonon cutoff; for example, at kT = Er = 1 Ry,
the cubic volume corresponding to the cutoff contains 62.2
electrons, about 15 times as many particles as the Debye
phonon cutoff of 4.19.

Integration of Eq. (1) with the EPW dispersion and
cutoff gives the internal energy of the electron plasma
waves E,. Isochoric heat capacity Cy = (0E,/0T),.
Figure 3 shows the results for { = 1 over a wide range
of density-temperature space, with lineouts along the
isochore corresponding to Ep = 1.0 Ry. The shaded
region corresponds to a range of { = 2*!/3, a factor of
2 in the cutoff screening volume. Detailed consideration
of additional effects that were neglected here, such as
subcritical damping, collisions, local field corrections,
partial ionization, and higher-order terms in the dispersion
relation, are not expected to extend beyond this range.

An approximate algebraic expression for the energy
integral can be obtained by assuming the EPW frequency
does not depend on the wave number. Defining Q =
(1+¢*)'2[hw,/(kT)], the EPW internal energy can be
approximated as [20]

E, ¢ Q
NKT ™ 6x’n, A3 e® — 1’

(5)

where N is the number of electrons. The corresponding
explicit form for the specific heat is [20]

Cy E, [ Q 3  (6/250?
~ o (6)
Nk NkT [I—e© 2" 1+ (4/25)0

This approximation tracks closely with the full integral for
both energy and specific heat (Fig. 3) and falls within the
¢ = 2*1/3 range. Integral and algebraic expressions for the

107 -
b i
0.04-( ) il
108 f
_
%105 \
- 0.02 ‘I
1
4 o
10 0.01  J i
4 |
d H
103 0.00 e
107 1 % 1
106 0.061
-
104 0.02 \|
0.00 1
103 -
1028 102° 1030 103! 1032 10* 105 10°

Ne [m~3] TIK]

FIG. 3. (a),(b) Internal energy and (c),(d) isochoric heat
capacity contributions of electron plasma waves. (a),(c) Contours
of Ep = kT and hw, = kT are shown as dotted and dashed-
dotted lines, respectively. The hydrogen shock Hugoniot starting
from cryogenic liquid is in solid red, with a red diamond for the
highest-pressure shock experiment that observed enhanced com-
pression compared to theory [5]. (b),(d) Temperature lineouts
(solid red line) are at n, = 2.2 x 10® m™3 (E; = 0.98 Ry),
corresponding to the density of these shock experiments. The
dashed black lines are the approximations of Egs. (5) and (6), and
the red shaded region shows cutoff wave numbers spanning { =
2+1/3 (see the text).

corresponding EPW pressure contribution can be found in
Supplemental Material [20].

A small peak in the EPW heat capacity up to about
0.05k/e™ is present for temperatures kT just below the
electron plasma wave energy fw,. At lower temperatures,
the thermal energy is insufficient to excite these oscillations.
At higher temperatures, the increasing Debye-Hiickel
screening length cuts off the shortest-wavelength modes
that contribute most to the energy integral, resulting in a
small negative heat capacity down to about —0.002k/e~ as
the energy remaining in these modes is released. The heat
capacity at a given electron degeneracy also diminishes with
increasing density, since Ey increases slightly faster with
density than the EPW energy (E « n*/?, hw, « n'/?). At
low temperature and density, hydrogen and many other
materials recombine into neutral species, extinguishing the
plasma oscillations.

Current hydrogen equation of state (EOS) models are
sometimes grouped into “‘chemical” models that minimize
the free energy of multiple chemical species (i.e., H,, Hj,
H;, e7) and “physical” models based on density functional
theory and molecular dynamics or quantum Monte Carlo
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(QMC) methods. Most wide-range theoretical EOS tables
stitch different methods together depending on the thermo-
dynamic conditions [28-33].

To make the difficult quantum calculations tractable in
the WDM regime, only a small number of particles is
included in the calculation and periodic boundary con-
ditions are imposed [4,29,30]. These calculations are then
naturally restricted to consideration of only short-wave-
length (or high wave number) structures, often not even
extending past the screening length 1, which is used here
as the basis for the cutoff of the EPW integral. For example,
a calculation with 64 atoms at a density corresponding to
Er = 1 Ry has a minimum wave number of 0.96 A~!, just
barely reaching the cutoff (maximum) wave number of the
plasmons at k7 = 1 Ry (Fig. 2).

Finite-size corrections, when they are included, are
commonly approximated using the static (zero frequency)
limit, and recent studies [34] of dynamic finite-size effects
have not evaluated the convergence to volumes larger than
the EPW cutoff wavelength at thermodynamic conditions
in the EPW active region predicted by this model.

Current hydrogen chemical EOS models and the analytic
fits to physical models do not explicitly include a plasmon
excitation term, and the finite-volume quantum calculations
all have used too few particles to adequately treat even the
shortest wavelength EPWs in the WDM regime [28-33].

A small missing energy term is consistent with recent
experimental evidence that suggests hydrogen has addi-
tional internal energy compared to theoretical predictions in
the WDM regime (Fig. 4). The highest-pressure deuterium
shock measurements of Fernandez-Panella et al. [5] above
300 GPa show additional compression (excess energy at the
same pressure) compared to all theoretical models [28-33].

Compression of a material across a shock front is directly
related to the change in internal energy through the
Rankine-Hugoniot energy relation [20]

E| —Ey=0.5(P, + Py)Vo(1 = 1/n), (7)

where subscripts 0 and 1 correspond to the initial con-
ditions and postshock state, respectively, and the compres-
sion ratio n = p;/py = Vo/V,. The reported compression
discrepancy corresponds to an internal energy bias of about
2% of (E; — E,) at the highest pressure (Fig. 4).

Shock compression of selected deuterium experiments
and models is shown in Fig. 4(a). To illustrate the effect of
additional plasmon internal energy contributions, Fig. 4(b)
shows the same data as in Fig. 4(a) mapped to internal
energy [20].

The magnitude and the trend of EPW internal energy,
when added to the theoretical models, is sufficient to
account for the additional internal energy observed in
the experiments. The magnitude of the offset suggests that
the cutoff wave number may be a bit higher than the inverse
screening length, i.e., { ~ 2+!/3. Assuming this value of ¢,
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FIG. 4. Comparison of selected deuterium experiments
[5,35,36] and theoretical EOS models [28-33] along the Hugo-
niot from a cryogenic liquid initial state. (a) Compression ratio.
(b) Difference in internal energy of the data and models relative to
Hu2011 [30]. The shaded band represents adjustment of the
Hu2011 model with the addition of EPW energy using a range of
cutoff multipliers ¢ = 2*!/3, Shocked deuterium is fully ionized
above 50 GPa.

this model predicts that EPW internal energy has the
maximum impact on shock compression of hydrogen near
700 GPa. Caution should be exercised when adding this
EPW energy to larger quantum molecular dynamics cal-
culations, so as not to double count energy contributions
when wave numbers overlap with the EPW integral.

Some promising recent developments using Green’s
functions (GF) for the uniform electron gas [37,38]
implicitly include EPW excitations. At conditions near
the highest-pressure deuterium shock experiment, the GF
method yields an energy 0.2 eV/e™ higher than a fit to
QMC [37,39]; this magnitude is close to that of the present
EPW model [Fig. 4(b)]. The GF method shows promise as
a complementary approach to QMC, but currently no wide-
range hydrogen EOS used for inertial fusion or astrophysi-
cal modeling deploys a GF calculation for the electron
component.

Hydrogen is the primary constituent of most astrophysi-
cal bodies, including many that have some or most of their
interiors in the WDM regime, such as low-mass main-
sequence stars [40,41], substellar objects such as brown
dwarfs and “hot” Jupiters [42], and the envelope of some
white dwarfs [43]. An overlooked contribution to the
specific heat will have implications for their structure
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and evolution, particularly for those bodies with isentropic
interiors that follow the EPW peak.

For example, specific heat is a key thermodynamic
property that modifies if and where convection occurs,
and a structural instability related to nonequilibrium *He
fusion as stars transition from partly to fully convective
interiors has been invoked to explain a spectral luminosity
gap in low-mass main-sequence stars near 0.35M  [44,45].
The equation of state in the interior has been identified as a
plausible cause of the small quantitative offset of the
simulated gap compared to observations [45], and the
interior of these 0.35M, objects is near the region where
EPW internal energy is at its peak.

The hydrogen equation of state is a critical input to inertial
confinement fusion ignition designs, where simulations
using different EOS models can change the fusion yield
by a factor of 2 and areal density by 50% [46]. Achieving
high performance and reliability of ignition designs becomes
more challenging if all current models are missing energy
terms in the region where the cold hydrogenic fuel is being
compressed (see Fig. 1). For current experiments right at the
threshold of ignition [6,47], even small improvements to
the precision of the design are amplified drastically in the
implosion performance and reliability.

The results reported here have focused on the case of
hydrogen, but this plasmon specific heat will emerge in
plasmas of any composition. The modes of a plasma are
like instruments in an orchestra, with tones of numerous
instruments based on atomic, thermal, degeneracy, plas-
mon, and Coulomb coupling energies. Although the ensu-
ing orchestra is not carried solely by the plasma notes,
plasma oscillations do contribute to and enrich the overall
symphony of substances in the warm-dense-matter regime.
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