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Abstract

We investigate the backreaction of nonlinear perturbations on the global evo-
lution of the Universe within the cosmic screening approach. To this end, we
have considered the second-order scalar perturbations. An analytical study of
these perturbations followed by a numerical evaluation shows that, first, the
corresponding average values have a negligible backreaction effect on the Fried-
mann equations and, second, the second-order correction to the gravitational
potential is much less than the first-order quantity. Consequently, the expan-
sion of perturbations into orders of smallness in the cosmic screening approach
is correct.
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1. Introduction

In accordance with the Cosmological Principle, there should not be selected
directions and positions in the Universe. That is, a sufficiently large volume, cho-
sen arbitrarily in the Universe, should contain approximately the same amount
of matter. From a physical point of view, this is a fairly reasonable assumption,
which, in general, is confirmed by observations. Although it should be noted
that the scale of homogeneity (also called the cell of uniformity) is the subject of
debate (see the corresponding references e.g. in [1], [2]). For example, analysis
of the quasar sample of the Sloan Digital Sky Survey indicates the scale of ho-
mogeneity of the order of 70÷ 90h−1 Mpc [3], while N-body simulations of the
ΛCDM model estimate this scale to be about 260h−1 ≈ 370 Mpc for h = 0.7 [4].
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Moreover, the observations indicate the existence of such super-large objects as
the Sloan Great Wall ∼ 420 Mpc [5], the Huge LQG ∼ 1.2 Gpc [6], the Giant
GRB ring ∼ 1.7 Gpc [7], and the Hercules-Corona Borealis Great Wall ∼ 2÷ 3
Gpc [8]. Recently, the Giant Arc ∼ 1 Gpc [9] was also found. Therefore, the
scale of homogeneity can be greatly increased. It is worth noting that the size
of the Hercules-Corona Borealis Great Wall is of the order of the characteristic
screening length λeff of the gravitational interaction in the Universe [10]. Ac-
cording to the cosmic screening approach [11, 12, 13, 14], the screening length
defines the upper bound for the dimensions of a solitary structure in the Uni-
verse. Therefore, structures larger than Hercules-Corona Borealis Great Wall
should not exist.

At scales larger than the scale of homogeneity, the averaged evolution of the
Universe is governed by the Friedmann-Lemâıtre-Robertson-Walker (FLRW)
metric

ds2 = a2(η)
[
dη2 − δαβdx

αdxβ
]
, (1)

where the scale factor a depends only on the conformal time η, and we consider
a spatially flat model. In the case of the ΛCDM model, the Friedmann equations
read

3H2

a2
= κε̄+ Λ (2)

and
2H′ +H2

a2
= Λ , (3)

where H ≡ a′/a ≡ (da/dη)/a and the average energy density of the nonrelativis-
tic pressureless (p = 0) matter ε̄ = ρ̄c2/a3, with ρ̄ being the average comoving
mass density. We also define κ ≡ 8πGN/c

4, where GN and c denote the gravi-
tational constant and the speed of light.

Small-scale inhomogeneities, e.g. galaxies and groups of galaxies, perturb
the averaged metric [15, 16, 17]:

ds2 = a2(η)
[(

1 + 2Φ + 2Φ(2)
)
dη2 −

(
1− 2Ψ− 2Ψ(2)

)
δαβdx

αdxβ
]
, (4)

where for the purpose of our paper we consider only scalar perturbations. Here,
Φ,Ψ and Φ(2),Ψ(2) are the scalar perturbations of the first and second order,
respectively. In the case of ΛCDM model, the first-order perturbations Φ and
Ψ are equal: Φ = Ψ, and their average values should be equal to zero: Φ = 0.

On the other hand, average values of the second-order perturbations Φ(2), Ψ(2),
and also such quantities as Φ2, ρΦ, etc. in general are not equal to zero and
have a backreaction effect on the global evolution of the Universe. This is the
backreaction problem (see, e.g., the reviews [18, 19, 20, 21, 22, 23, 24] and
references therein).

The purpose of this article is to investigate how strongly the perturbations
affect the averaged behavior of the Universe. If such an influence is significant,
then, firstly, the expansion of perturbations in terms of the degree of smallness,
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as done in (4), is not correct, and, secondly, the Friedmann equations, for in-
stance (2) and (3), must be modified. To address these questions, we consider
the relativistic theory of perturbations within the cosmic screening approach
[11, 12, 13, 14]. This approach got its name due to the fact that the gravita-
tional potential created by all inhomogeneities satisfies the Helmholtz equation,
and not the Poisson one. Therefore, individual inhomogeneities make contribu-
tions in the form of the Yukawa potential with the characteristic screening length
[10, 11]. In this approach, there is a clear division of perturbations according to
orders of smallness. The first-order quantities contribute to the sources of the
second-order ones. As a result, all equations are linear. This made it possible to
solve them analytically in the case of the ΛCDM model (see [10, 11] and [25, 26]
for the first and second orders, respectively). This is an important point, since
it allows us to study the backreaction problem also analytically. As we show
in our article, the velocity-independent nonlinear quantities of the form Φ2

0 and
ρΦ0/ρ do not have a significant backreaction effect on the Friedmann equation,

and the second-order value of Ψ
(2)
0 is much smaller than the first-order values.

The paper is structured as follows. In Section 2, we study the backreac-
tion effect of the second-order scalar perturbations on the Friedmann equations
within the cosmic screening approach. In Section 3, we demonstrate that the
second-order correction to the gravitational potential is much less than the first-
order quantity. The main results are summarized in concluding Section 4.

2. Backreaction in Friedmann equations

Within the cosmic screening approach, the perturbed Friedmann equations
can be obtained with the help of the Euclidean averaging [21] of the equations
(3.36) and (3.38) in [25]:

3H2

a2
− 6H

a2

[
HΦ(2) + (Ψ(2))′

]
− 3κεΨ(2) = κε̄+ Λ + κε(II) (5)

and

2H′ +H2

a2
− 2

a2

[
(Ψ(2))′′ + 2H(Ψ(2))′ +H(Φ(2))′ + (2H′ +H2)Φ(2)

]
= Λ− κp(II) , (6)

where, up to the fourth-order correction terms, the effective average energy
density ε(II)(η) and pressure p(II)(η) read (see Eqs. (4.5) and (4.6) in [25]):

κε(II) =
κc2

2a3
ρΦ0 −

15

a2
H2Φ2

0 =
κ

2
ε
ρΦ0

ρ
− 5 (κε+ Λ) Φ2

0 (7)

and

κp(II) =
κc2

6a3
ρΦ0 −

(
7κρc2

2a3
− 5

a2
H2

)
Φ2

0 =
κ

6
ε
ρΦ0

ρ
−
(

11

6
κε− 5

3
Λ

)
Φ2

0 . (8)
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Here, we consider only velocity-independent contributions in connection with a
toy model analyzed below. In particular, Φ0 is the velocity-independent part of
the first-order scalar perturbation Φ [11]:

Φ0 =
1

3
− κc2

8πa

∑
n

mn

|r− rn|
exp

(
−a|r− rn|

λ

)
. (9)

We consider a model where inhomogeneities are presented in the form of a sys-
tem of separate nonrelativistic point-like particles with masses mn and comoving
radius-vectors rn(η). The screening length λ is

λ =

√
2a3

3κρc2
. (10)

The average value of Φ0 is equal to zero as it should be for the first-order
perturbation.

Eqs. (5) and (6) demonstrate that the effective average energy density ε(II)

and pressure p(II), on the one hand, serve as sources of the second-order pertur-
bations and, on the other hand, they provide the backreaction to the background
Friedmann equations. This backreaction is significant if these quantities are of
the order of the background parameters ε and Λ. This will be the case if the
quantities ρΦ0/ρ,Φ2

0 ∼ o(1), as it follows from Eqs. (7) and (8). Thus, the task
is to estimate these quantities.

According to Eqs. (4.9) and (4.10) in [25],

ρΦ0 =
1

3
ρ− κc2

8πa

1

V
∑
n

∑
k 6=n

mnmk

|rk − rn|
exp

(
−a|rk − rn|

λ

)
(11)

and

Φ2
0 = −1

9
+

κc2

48πρλ

1

V
∑
n

∑
k

mnmk exp

(
−a|rk − rn|

λ

)
, (12)

where V is an averaging volume. In order to perform further evaluations, we
consider a toy model in which all particles (galaxies) have the same masses and
are located at the same distance l from each other (like a crystal lattice with a
period equal to the average distance between galaxies). Gravitational potentials
and forces within this model have been previously analyzed in [27, 28]. Let us
choose some particle as the origin of the reference frame rn = 0 and sum over
all other particles

∑
k

. It is clear that for each n-th particle we obtain the same

result. Then, we get

ρΦ0 =
1

3
ρ− κc2

8πa

1

V
Nm2

∑
k

1

rk
exp

(
−ark

λ

)
, rk 6= 0 , (13)

Φ2
0 = −1

9
+

κc2

48πρλ

1

V
Nm2

∑
k

exp
(
−ark

λ

)
, (14)
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where N is the number of particles in the volume V. Replacing
∑
k

by the triple

sum
+∞∑

k1=−∞

+∞∑
k2=−∞

+∞∑
k3=−∞

and rk by l
√
k2

1 + k2
2 + k2

3, and taking into account

that Nm/V = ρ and m = ρl3 (since, in the toy model under consideration,
there is one mass m in the comoving volume l3), instead of (13) and (14) we
get, respectively,

ρΦ0 =
1

3
ρ− κc2ρ2l2

8πa

+∞∑
k1=−∞

+∞∑
k2=−∞

+∞∑
k3=−∞

1√
k2

1 + k2
2 + k2

3

× exp

(
−al

√
k2

1 + k2
2 + k2

3

λ

)
, (15)

where k2
1 + k2

2 + k2
3 6= 0, and

Φ2
0 = −1

9
+
κc2ρl3

48πλ

+∞∑
k1=−∞

+∞∑
k2=−∞

+∞∑
k3=−∞

exp

(
−al

√
k2

1 + k2
2 + k2

3

λ

)
. (16)

Finally, introducing λ̃ ≡ λ/(al), we obtain

ρΦ0 =
1

3
ρ

[
1− 1

4πλ̃2

+∞∑
k1=−∞

+∞∑
k2=−∞

+∞∑
k3=−∞

1√
k2

1 + k2
2 + k2

3

× exp

(
−
√
k2

1 + k2
2 + k2

3

λ̃

)]
, (17)

where k2
1 + k2

2 + k2
3 6= 0, and

Φ2
0 = −1

9

[
1− 1

8πλ̃3

+∞∑
k1=−∞

+∞∑
k2=−∞

+∞∑
k3=−∞

exp

(
−
√
k2

1 + k2
2 + k2

3

λ̃

)]
. (18)

Now, having these formulas, we can estimate numerically the quantities
ρΦ0/ρ and Φ2

0. Figures 1 and 2 demonstrate behavior of these quantities as
functions of λ̃.

In the case of the ΛCDM model, the renormalized screening length can be
expressed as follows:

λ̃ =
λ

al
=

√
2c2

9H2
0 ΩM

1

a0l

1√
z + 1

≈ 3740 Mpc

a0l

1√
z + 1

, (19)

where a0 is the scale factor at the present time, z is the redshift parameter, and
for the illustrative purposes we took H0 = 67.4 km s−1Mpc−1 and ΩM = 0.315.
This formula shows that the more the present day average distance between
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Figure 1: Behavior of ρΦ0/ρ as a function of the renormalized screening length λ̃.

galaxies a0l and the redshift z, the less the value of the renormalized screening
length λ̃. Additionally, we see that both ρΦ0/ρ and Φ2

0 are decreasing functions
of λ̃. To get an idea of the numerical values of these quantities, we take for the
present day average distance between galaxies the value a0l = 20 Mpc and start
from the redshift z = 100. For these parameters we get λ̃ ≈ 18.6. Therefore,
as it follows from Figures 1 and 2, for z < 100 we obtain ρΦ0/ρ < 10−3 and

Φ2
0 < 10−6. For example, at the present time λ̃ ≈ 187, and these second-order

quantities are many orders of magnitude less than these upper limit values.
Hence, the effective average energy density ε(II)(η) and pressure p(II)(η) have a
negligible backreaction effect on the Friedmann equations.

3. Evaluation of Ψ
(2)
0

Now, we evaluate the value of Ψ
(2)
0 which is the velocity-independent part

of the second-order correction to the gravitational potential. According to
Eq. (3.10) in [26],

Ψ
(2)
0 = −3

4
Φ2

0 +
Φ0

6
− πρλ

a

(
κc2

8πa

)2∑
k

mk e
−a|r−rk|/λ

+
1

2

(
κc2

8πa

)2∑
k,k′

′

mkmk′
e−a|r−rk|/λ

|r− rk|
e−a|rk′−rk|/λ

|rk′ − rk|
, (20)

6



1 2 3 4 5 6 7
λ
˜

10-6

10-5

10-4

0.001

0.010

0.100

1
Φ0
2

Figure 2: Behavior of Φ2
0 as a function of the renormalized screening length λ̃.

where the prime denotes that rk′ 6= rk. Obviously, in the case of identical
particles of mass m located at the same comoving distances l from each other,
the second sum for each k-th particle is the same. So, we can rewrite Eq. (20)
as follows:

Ψ
(2)
0 = −3

4
Φ2

0 +
Φ0

6
− πρλ

a

(
κc2

8πa

)2

m
∑
k

e−a|r−rk|/λ

+
1

2

(
κc2

8πa

)2

m2
∑
k

e−a|r−rk|/λ

|r− rk|
∑
q

′ e−arq/λ

rq
, (21)

where rq = l
√
q2
1 + q2

2 + q2
3 6= 0. Introducing r̃ = r/l, r̃k = rk/l, λ̃ = λ/(al) and

taking into account that m = ρl3, we further derive

Ψ
(2)
0 = −3

4
Φ2 +

Φ

6
− πλ̃

(
κc2m

8πal

)2∑
k

e−|r̃−r̃k|/λ̃

+
1

2

(
κc2m

8πal

)2∑
k

e−|r̃−r̃k|/λ̃

|r̃− r̃k|
∑
q

′ e−r̃q/λ̃

r̃q
, (22)
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where r̃q =
√
q2
1 + q2

2 + q2
3 6= 0. In the case of our toy model, Eq. (9) reads

Φ0 =
1

3
− κc2m

8πal

∑
k

e−|r̃−r̃k|/λ̃

|r̃− r̃k|
, (23)

and from Eq. (10) we also get κc2m/(8πal) = a2l2/(12πλ2) = 1/(12πλ̃2).
Therefore, substituting (23) into (22), we get

Ψ
(2)
0 = −3

4
Φ2

0 +
Φ0

6
− πλ̃

(
1

12πλ̃2

)2∑
k

e−|r̃−r̃k|/λ̃

+
1

2

(
1

12πλ̃2

)(
1

3
− Φ0

)∑
q

′ e−r̃q/λ̃

r̃q
. (24)

According to the estimates in the previous section, the characteristic values
of λ̃ in our Universe for z ≤ 100 are much greater than 1. In this case, the sums
in Eq. (24) can be replaced by integrals:

∑
q

′ e−r̃q/λ̃

r̃q
⇒

+∞∫
0

dξ
e−ξ/λ̃

ξ
4πξ2 = 4πλ̃2 (25)

and ∑
k

e−|r̃−r̃k|/λ̃ ⇒
+∞∫
0

dξe−ξ/λ̃4πξ2 = 8πλ̃3 , (26)

then, finally

Ψ
(2)
0 ⇒ −3

4
Φ2

0 +
Φ0

6
− πλ̃

(
1

12πλ̃2

)2

8πλ̃3 +
1

2

(
1

12πλ̃2

)(
1

3
− Φ0

)
4πλ̃2

= −3

4
Φ2

0 . (27)

Since |Φ0| � 1, we obtain that |Ψ(2)
0 | � |Φ0|. Therefore, the second-order

correction Ψ
(2)
0 is much less than the first-order quantity Φ0 as it should be.

4. Conclusion

In the present paper we have investigated the backreaction of nonlinear per-
turbations on the global evolution of the Universe. To this end, we have consid-
ered the second-order velocity-independent scalar perturbations within the cos-
mic screening approach. A remarkable feature of this approach is that nonlinear
perturbations are presented in the analytical form. Thus, these perturbations
can be investigated by analytical methods. For this purpose, we have consid-
ered the toy model in which all inhomogeneities (e.g., galaxies) have the same
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masses and are located at the same distance from each other. This allowed us to
greatly simplify the original expressions. As a result, the numerical evaluation
of the final expressions showed that nonlinear perturbations have a negligible
backreaction effect on the Friedmann equations in agreement with the results
obtained in [29]. We have also demonstrated that the second-order correction
to the gravitational potential is much less than the corresponding first-order
quantity. Consequently, the expansion of perturbations into orders of smallness
in the cosmic screening approach is correct.
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