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Abstract

The Susceptible-Infectious-Recovered (SIR) equations and their extensions comprise
a commonly utilized set of models for understanding and predicting the course of an
epidemic. In practice, it is of substantial interest to estimate the model parameters
based on noisy observations early in the outbreak, well before the epidemic reaches
its peak. This allows prediction of the subsequent course of the epidemic and design of
appropriate interventions. However, accurately inferring SIR model parameters in such
scenarios is problematic. This article provides novel, theoretical insight on this issue of
practical identifiability of the SIR model. Our theory provides new understanding of the
inferential limits of routinely used epidemic models and provides a valuable addition to
current simulate-and-check methods. We illustrate some practical implications through
application to a real-world epidemic data set.

Keywords SIR model · Epidemic prediction · Parameter inference · Identifiability ·
Nonlinear dynamics · Hypothesis testing

Mathematics Subject Classification 92-10 · 92D25 · 62M20

1 Introduction

The Susceptible-Infectious-Recovered (SIR) model, first introduced in the early twen-
tieth century, is a mathematical model describing the spread of a novel pathogen
through a population (Kermack and Mckendrick 1927; Ross 1916; Ross and Hudson
1917a, b). This model is governed by the ordinary differential equations
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ds

dt
= −βis,

di

dt
= βis − γ i,

dr

dt
= γ i . (1)

According to this model, the population is divided into three groups or “compart-
ments,” each of which represents a proportion of the population. The susceptible

compartment, s, consists of the proportion of individuals who have never been infected
with the pathogen. The infected compartment, i , consists of the proportion of individu-
als who are currently infected. The removed compartment, r , consists of the proportion
of individuals who have either recovered from the pathogen and are immune or have
died, and are therefore removed from the population. Since the SIR model assumes
all recovered individuals are permanently immune to the pathogen, the value of r can
be obtained from s and i via the identity s + i + r = 1.

During the last century the SIR equations have been modified and extended to
model a diverse range of epidemics including Ebola, cholera, H1N1, tuberculosis,
HIV/AIDS, influenza, malaria, Dengue fever, Zika, and most recently SARS-CoV-2
(Brauer et al. 2019; Coburn et al. 2009; Eisenberg et al. 2013; Khaleque and Sen 2017;
Lee et al. 2020; Pasquali et al. 2021; Rachah and Torres 2015; Yang et al. 2020). In
many of these examples, additional terms are added to account for pathogen specific
characteristics of transmission. Additional compartments may also be added to model
different subpopulations. One such example is the SEIR model, which includes a
subpopulation of exposed (E) but non-infectious cases (Sauer et al. 2020). Collectively,
the SIR model and its extensions and variations provide epidemiologists with a vast
array of interpretable and highly expressive models to understand and predict the
behavior of outbreaks. However, incorporating too many features can have subtle but
important drawbacks including limited or unreliable inference of model parameters
early in an epidemic. The main contribution of this article is insight on the inferential
limits of epidemics (as captured by estimated parameters) which can be obtained from
noisy, real-time observations of an outbreak.

Our work is motivated by the application of SIR and related compartmental models
to real-time analysis of epidemics of human disease such as the 2014 Ebola outbreak
in West Africa and the ongoing SARS-CoV-2 (“coronavirus”) pandemic. In such
outbreaks, the initial aim of the public health response is to extinguish the epidemic
while the number of infected individuals is still small, or at least to significantly slow
the rate of infection to allow time for the pathogen to be better understood and effective
therapeutics or vaccines to be developed. The stay-at-home orders instituted by many
countries due to SARS-CoV-2 are one recent example which has had profound global
economic impacts. As such, mathematical models employed in the real-time analysis
of epidemics must provide accurate inferences about properties of the epidemic –
encapsulated by model parameters – early in the epidemic, when only a small fraction
of the population has been infected. Hereafter, we refer to estimation of unknown
model parameters from observations as the inverse problem.

As noted in a review by Hamelin et al, many disease models proposed in the lit-
erature follow a similar structure: (1) a model is proposed, (2) a subset of model
parameters are inferred from the literature, and (3) the remaining parameters are fit
from data using least squares or maximum likelihood estimation (Hamelin et al. 2020).
In order for these parameter estimates to be reliable the parameters must be statisti-
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cally identifiable, ruling out settings in which multiple parameter values are equally
consistent with observed data. Such issues were first considered in the context of
compartmental models by Bellman and Aström in 1970 (Bellman and Åström 1970).
Specific details relevant to the SIR model may be found in Hamelin et al. (2020). Here
we provide a brief overview of the well-posedness of the inverse problem.

A model is structurally identifiable when there is a single value of the parame-
ters consistent with noise-free data observations. A comprehensive review of analytic
methods for assessing structural identifiability is given in Chis et al. (2011); alter-
natively, software packages such as DAISY can be used (Bellu et al. 2007). There
are many examples in the literature (Brunel 2008; Chapman and Evans 2009; Daly
et al. 2018; Eisenberg et al. 2013; Piazzola et al. 2020; Tuncer et al. 2016; Tuncer and
Le 2018; Villaverde 2018). In particular, structural identifiability of the SIR parame-
ters, β and γ , is well understood with strong theoretical support. See Hamelin et al.
(2020) for specific cases based on different observations of the compartments. Similar
considerations arise in literature related to branching process models which are also
commonly used for modeling the dynamics of an outbreak. For example, Fok and Chou
establish theoretical guarantees on ascertaining the progeny and lifetime distributions
for Bellman-Harris processes when one knows the extinction time or population size
distributions (Fok and Chou 2013). In practical applications, much less is typically
known about the dynamics. Laredo et al. (2009) prove that when certain branching
processes are observed only up to their nth generation, one can infer that the true model
parameter belongs to a specific subset (which depends on n) of parameter space, but
it is impossible to infer the exact true parameter for any finite n.

In practice, data observed during an epidemic tend to be very noisy, so we are far
from the idealized noise-free case. Practical identifiability is the ability to discern
different parameter values based on noisy observations. Despite considerable recent
attention (Balsa-Canto et al. 2009, 2008; Chis et al. 2011; Srinath and Gunawan 2010),
far less is known about practical identifiability. Present theoretical methods rely on
sensitivity analysis and the computation of the Fisher information matrix, which is
analytically intractable in the SIR model and its extensions. Instead, it is common to
see Monte Carlo methods employed, wherein the model is simulated for a set value of
the parameters, noise is added to the simulated observations, and a fitting procedure
is conducted on the noisy data (Chis et al. 2011; Hamelin et al. 2020; Lee et al. 2020;
Tuncer and Le 2018). The fidelity of parameter estimates relative to the known values
is summarized using the average relative estimation error, which is then plotted as a
function of the noise intensity.

Interestingly, the lack of practical identifiability manifests in a remarkably sim-
ilar manner across multiple, different model formulations even in cases where the
parameters are known to be structurally identifiable. As the magnitude of the noise
is increased, Monte Carlo parameter estimates concentrate along a curve stretched
throughout parameter space indicating a functional relationship between model param-
eters (Browning et al. 2020; Eisenberg et al. 2013; Piazzola et al. 2020; Tuncer et al.
2016; Tuncer and Le 2018). Importantly, there are often great disparities in parameter
values along this curve and hence huge uncertainty in the parameters. See Fig. 1 for a
representative example in the specific case considered herein.
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Fig. 1 The trajectory of the SIR model used in the simulation (left). Plots of β̂ vs γ̂ from 1000 realizations
from the sampling distribution of their MLE (right)

The goal of this article is to provide theoretical tools for understanding practical
identifiability in the context of the SIR model. We propose a formulation based on
realistic observations early in an outbreak. Then, using linearizations similar to those
of Sauer et al. (2020), we construct analytically tractable approximations to the SIR
dynamics from which theoretical guarantees of the performance of the inverse problem
are developed. We begin by introducing the model under consideration, reemphasizing
ideas discussed previously to provide overt examples of the challenges of practical
identifiability.

2 Statistical model

The data available to infer the parameters of an SIR model are usually noisy, biased
measurements of the rate of change in the size of the susceptible compartment, dis-
cretized to unit time intervals �t = N (st−1 − st ). For simplicity, we take the time unit
to be one day. Here, N represents the total population size in the jurisdiction under
study and st is the size of the susceptible compartment at time t . The quantity �t is
the number of newly infected individuals between day t − 1 and day t . Data on daily
confirmed cases, hospitalizations, or deaths are all examples of observable data that
depend on the underlying value of �t . Specifically, all are discrete convolutions of �t

of the form p
∑t

s=0 �sπt−s , where p is the probability that an infected person goes
on to be diagnosed, hospitalized, or die, and πk is the conditional probability that a
person tests positive, is hospitalized, or dies k days after becoming infected given that
the corresponding outcome will eventually occur. It is likely that the parameters p

and, to a lesser extent, π change over the course of an epidemic. However, changing
values of these parameters can only make inference more difficult, and since our main
focus is on studying limitations of inference, as a starting point we assume that p and
π are fixed and known.

While the inverse problem with known initial conditions but unknown parameters
θ = (β, γ ) is well-posed when even a partial trajectory of �t is observed, in reality
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we observe �t corrupted with noise, and we always have to work with finitely many
discrete-time observations. In epidemic modeling, unlike some other inverse problems,
we do not even have control of the sampling rate and are generally stuck with at best
daily monitoring data. To simplify exposition, we focus on a simple but flexible noise
model in which the observed data Yt are realizations of a random variable satisfying
E[Yt ] = p�t for some known p ∈ (0, 1). In this case, π0 = 1 and πk = 0 for k > 0.
While our results apply to many noise models, to fix ideas we begin with Gaussian
noise

Yt = p�t + ξt , ξt ∼ N (0, σ 2
t ). (2)

In addition to simplifying exposition, our primary motivation for choosing Gaussian
noise is to illustrate that the SIR model can, as we see shortly and explain later,
be practically unidentifiable even for simple, idealized models like the one above.
A secondary reason is that, despite its simplicity, (2) is not entirely unrealistic. For
example, suppose any two people infected on day t have the same chance of eventually
testing positive, that the chance any one such person tests positive is independent of
whether any other such person does, and that the average number of people who
became infected on day t who go on to test positive is roughly p�t . Then in any
sufficiently large population the central limit theorem implies Yt , which in this case
is the number of people who become infected on day t and go on to get diagnosed,
is approximately normally distributed with mean p�t and some variance σt , i.e. Yt

satisfies (2).
Initially, suppose that the variances σ 2

t in (2) are known. A simple procedure for
solving the inverse problem from data Yt is maximum likelihood. The gradient of the
log-likelihood can be obtained by numerically solving an extended ODE system (Gron-
wall 1919) which allows for easy fitting via gradient-based optimization methods. It
can be shown that, even when the trajectory p�t is observed only at discrete time inter-
vals and the peak of infections has not yet occurred, the maximum likelihood estimator
(MLE) exists and is unique, and so the model is structurally identifiable (Hamelin et al.
2020). Problems become apparent however when one seeks to study uncertainty in
the estimated parameters. Figure 1 gives a stark indication of the challenges. We sim-
ulate data from an SIR model with parameters θ = (β, γ ) = (0.21, 0.07) and initial
conditions s0 = 1 − 1/N , i0 = 1/N for N = 107. These parameters were selected
to roughly approximate the dynamics of the coronavirus epidemic in New York City
prior to the lockdown of March 16, 2020. The trajectories st , it for 0 ≤ t ≤ 120 are
shown in the left panel. By t = 80, about 1 percent of the population has been infected,
and the peak size of the infected compartment occurs around t = 120. The right panel
of Fig. 1 is obtained by repeatedly simulating data from (2) using the trajectory in
the left panel, with p = 1 and σ 2

t = 100N chosen for illustrative purposes. Other
potentially more realistic values of p and σt are considered later in the text; see for
example Table 3 in Sect. 3.4 and Cases 1 and 2 in Sect. 3.2. For each replicate simula-
tion, the model is fit by maximum likelihood. The resulting estimates of θ̂ are shown
in Fig. 1, which plots β̂ against γ̂ . These are samples from the sampling distribution
of the maximum likelihood estimator for these parameters. The estimates exhibit very
tight concentration along a line of slope 1. The variation in R̂0 = β̂/γ̂ observed for
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these values is large, ranging from 1.88 to 5.01. This high degree of uncertainty occurs
despite the fact that we have observed data up through the time when over half the
population has been infected.

The linear shape of the plot in Fig. 1 suggests a practical identifiability problem
in this model. That is, while the MLE exists and is unique, the curvature of the log-
likelihood in the neighborhood of the MLE is very small in the direction where β̂, γ̂

lie along a line. We are not the first to notice this phenomenon. Previous works include
(Chis et al. 2011; Hamelin et al. 2020; Lee et al. 2020; Tuncer and Le 2018), which
experience qualitatively similar issues despite notable differences in the formulation
of the likelihood in those settings.

While various empirical studies exist, our main contribution is a theoretical analysis
of this phenomenon and the resulting limitations for solving the inverse problem from
noisy observations. We take a two-step approach to the analysis. First, we character-
ize sensitivity of trajectories �t to perturbations of the parameters θ , and show that
perturbations of θ in the directions π/4 and 5π/4 (equivalently, along the line of slope
1 through θ ), closely approximate the smallest variation in the trajectory st among all
perturbations for which ‖θε − θ‖ = ε. We then give a computable approximate lower
bound on infθε :‖θ−θε‖=ε |st (θε) − st (θ)| for times t prior to the peak infection time.
Taken together, these results provide an explanation for the phenomenon in Fig. 1.

In the second part of the analysis, we relate the problem of uncertainty quantification
to hypothesis tests of the form

H0 : θ = θ0 vs. H1 : θ = θε

for ‖θε − θ0‖ = ε. We use the result of the first part of our analysis to approximate
the type II error of the test, which in turn allows for both theoretical and empirical
analysis of the limits of epidemic prediction using SIR models.

3 Results

3.1 Perturbation bound for SIR trajectories

Informally, the phenomenon in Fig. 1 is a manifestation of the fact that very different
values of θ can lead to SIR model trajectories that are very close. To formalize this,
let ϕt (x0, θ) be the (s, i)-trajectory of the SIR model starting from x0 = (s0, i0)

with parameters θ = (β, γ ). To aid the reader, all relevant notation is summarized
in Table 1. We also remark that the analysis in this subsection and its associated
appendices, “Appendices A and B”, applies directly to the deterministic SIR system
(1). In particular, it is independent of our choice of statistical model, which will not
become relevant until our discussion of hypothesis testing in Sect. 3.2.

For ε > 0, let Sε(θ) denote the circle of radius ε about θ . That is,

Sε(θ) = {θε(ω) : ω ∈ [0, 2π)}

123



Limits of epidemic prediction using SIR models Page 7 of 29 36

Table 1 Summary of notation used throughout this article

Notation Description

x0 = (s0, i0) Shorthand for initial conditions with s0 + i0 = 1

θ = (β, γ ) Shorthand for the parameters of the SIR model

R0 = β/γ The reproductive number

δ = β − γ An important combination of the model parameters appearing in
later analysis

θε Perturbation of θ such that ‖θε − θ‖ = ε

θε(ω) Perturbation of θ in the direction ω ∈ [0, 2π) such that
‖θε(ω) − θ‖ = ε

ϕt (x0, θ) = (st (x0, θ), it (x0, θ)) Solution of the SIR equation with initial condition x0 and
parameter θ

Y1:T Observed data on days 1 through T

L(Y1:T |θ) Likelihood of θ given observed data

where θε(ω) = θ + ε(cos(ω), sin(ω)). We set δ = β − γ and assume throughout that
δ > 0; if not, then the reproductive number R0 = β/γ is at most 1 and the epidemic
does not grow even at time 0. Similarly, we assume ε < δ. This ensures R0 values
of the perturbed parameters θε(ω) = (β + ε cos(ω), γ + ε sin(ω)) are also strictly
greater than 1

β + ε cos(ω) − γ − ε sin(ω) = δ + ε(cos(ω) − sin(ω)) ≥ δ − ε > 0

and so R0(ε, ω) = (β + ε cos(ω))/(γ + ε sin(ω)) > 1 for every ω. Finally, for any
fixed initial condition x0 and parameter θ we define the peak time, denoted t∗, to be the
deterministic time at which the number of infected individuals it (x0, θ) is greatest; that
is, t∗ = argmax{it (x0, θ) : t ≥ 0}. Since di/dt = 0 if and only if i = 0 or s = 1/R0,
it is follows that t∗ exists and is unique whenever R0 > 1. With this notation, the main
result of this subsection is the following proposition.

Approximation 1 Let ‖·‖ denote the Euclidean norm on R
2 and let t∗ be the time of

peak infection corresponding to θ . Then for all t ∈ [0, 0.8t∗),

ε

δ
√

2

(
eδt − 1

)
i0 ≈ inf

ω∈[0,2π)

∥∥ϕt

(
x0, θε(ω)

)
− ϕt (x0, θ)

∥∥. (3)

Furthermore the infimum is approximately achieved when ω = π/4 or 5π/4.

The derivation of (3) is in “Appendix A”. Approximation 1 says for any pertur-
bation θε(ω) of θ , the distance between the perturbed trajectory ϕt (x0, θε(ω)) and
true trajectory ϕt (x0, θ) is approximately bounded below by the left side of (3) for all
times t up to roughly 80% of t∗. The “≈" in (3) indicates the bound is subject to error.
Specifically, our derivation of Approximation 1 involves two approximations: First,
we approximate the SIR model by a differential Eq. (A1) whose solution ϕ̃t is given by
(A2). Second, we use first-order Taylor expansions to approximate perturbations of ϕ̃t
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resulting from perturbations in parameter space. Despite these approximations, numer-
ical analysis of the error given in “Appendix B” indicates (3) holds for a wide range
of parameter values and population sizes; see Fig. 2 below and Fig. 10 in “Appendix
B”. This numerical analysis also motivates our choice of 80% of the peak time as a
cutoff, though this cutoff can be extended to 85% or even 90% for larger populations
and certain parameter values; see Table 5. To complement the numerical results of
“Appendix B”, we give a theoretical upper bound on the error in “Appendix C”. The
theoretical result is more mathematically rigorous than the numerical one; however,
it is significantly less precise than the control on error obtained in “Appendix B”. We
therefore use results derived from the numerical analysis, e.g. the 80% threshold, of
“Appendix B” rather than the theoretical analysis of “Appendix C” for the remainder
of this paper.

Approximation 1 successfully predicts the directions in parameter space, namely
ω = π/4 and 5π/4 (equivalently, along the line of slope 1 through θ ), corresponding
to the most uncertainty about parameters even when data are observed up to the peak
time, as in Fig. 1. In other words, the inverse problem of determining θ from data is
least practically identifiable when distinguishing between θ and parameter values lying
approximately on the line of slope 1 through θ . Furthermore, the approximate lower
bound (3) quantifies the extent to which the inverse problem will not be practically
identifiable which, as we discuss in the next subsection, is necessary for meaningful
hypothesis testing. Finally, we find that the lower bound in (3) approximately holds
for the s trajectory alone. That is, if st (x0, θε(ω)) and st (x0, θ) are the s trajectories
corresponding to θε(ω) and θ , respectively, then

ε

δ
√

2

(
eδt − 1

)
i0 ≈ inf

ω∈[0,2π)

∣∣st

(
x0, θε(ω)

)
− st (x0, θ)

∣∣, (4)

and the infimum is again achieved when ω = π/4 and 5π/4. The intuition behind
(4) is that the s compartment is substantially larger than the i compartment early in
an epidemic and therefore contributes significantly more to ‖ϕε

t − ϕt‖ than i . This
observation will be used for the hypothesis testing in Sect. 3.2 since our statistical
model depends crucially on �t = N (st−1 − st ), which in turn depends only on s

rather than on s and i together. The approximation error implicit in the ≈ symbol in
(3) and (4) is the one quantity we do not have rigorous control over; see “Appendix
B” for details.

3.2 Hypothesis testing for the inverse problem

In this subsection we revisit the inverse problem in light of the perturbation bounds
(3) and (4). To give context and motivate the main result of this subsection, namely
Approximation 2 and its subsequent discussion, we first give a brief overview of simple
hypothesis testing and the Neyman-Pearson Lemma.

Suppose we observe data Y taking values in a space Y and that these data are
drawn from an unknown probability distribution belonging to a parametrized family
of probability distributions {Pθ }. Given two parameters θ0 and θ1, a natural question
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Fig. 2 Distance between perturbed and true trajectories for different parameter values and population sizes.
In each graph the horizontal axis is the number of days since the start of the epidemic and the vertical axis
is the distance ‖ϕt (x, θε(ω)) − ϕt (x, θ)‖ between a perturbed trajectory and the true trajectory at time t .
The gray, green, and black curves correspond to 90 perturbed trajectories, one for each of 90 equally spaced
angles ω in [0, 2π). The black curves correspond to the angles π/4 and 5π/4. The green curves correspond
to the remaining angles in the intervals [π/4 − π/12, π/4 + π/12) and [5π/4 − π/12, 5π/4 + π/12),
i.e. in intervals of width π/6 centered at π/4 and 5π/4, respectively. The gray curves correspond to those
angles in [0, 2π) outside these two intervals. Note the distances corresponding to angles close to π/4 and
5π/4 (the green and black curves) are smaller than those distances corresponding to angles farther away
from π/4 and 5π/4 (the gray curves), which supports the claim that the inverse problem is least practically
identifiable for parameter perturbations approximately along a line of slope 1. The approximate lower bound
of Approximation 1 is in red. The peak time of the trajectory corresponding to θ is indicated by the vertical
blue line, and 80% of it by the vertical orange line. The first through fourth columns have population sizes
104, 105, 106, and 107, respectively, with only one initial infection in each case. The perturbation sizes for
the first through fourth rows are ε = .03, .03, .06, and .1, respectively. The SIR paramaters for the first
through fourth rows are (β, γ ) = (.21, .14), (.21, .07), (.42, .07), and (1.68, .14), which give respective
R0 values of 1.5, 3, 6, and 12. Note the approximate lower bound holds roughly up to 80% of the peak
time in all cases despite the wide range of parameters. Finally, we remark that the two seemingly “distinct"
classes of gray curves in each plot correspond to different subsets of the 90 distinct angles. This as well as
the multimodality of certain curves (which becomes more apparent when our graphs are extended further
beyond the peak time) are consequences of the nonlinearity of the SIR model and are not directly relevant
to our analysis
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Fig. 3 Logarithm of distance between perturbed and true trajectories for different parameter values and
population sizes. Everything is the same as in Fig. 2 except now we plot log‖ϕt (x, θε(ω)) − ϕt (x, θ)‖
instead of ‖ϕt (x, θε(ω)) − ϕt (x, θ)‖. This gives a better view of the approximate lower bound early in the
epidemic. Note the vertical axis is now a log scale

is whether the observed data came from Pθ0 or Pθ1 . This is a simple hypothesis test,
denoted by

H0 : θ = θ0 vs. H1 : θ = θ1, (5)

where H0 and H1 are the null and alternative hypotheses, respectively. Simple here
refers to the fact that both H0 and H1 correspond to single θ values which completely
determine the distributions Pθ0 and Pθ1 . The aim is to decide whether to reject H0 in
favor of H1, which is done by choosing a subset R of Y called the rejection region.
This choice of R completely determines the test: If Y ∈ R, then reject H0 in favor
of H1; if Y /∈ R, then do not reject H0. Type I error occurs when H0 is true but is
rejected, and type II error occurs when H0 is false but not rejected; see Table 2. This
is quantified1 as

E1(R) = T ype I error rate = Pθ0(Y ∈ R) = Pθ0(Reject H0),

E2(R) = T ype I I error rate = Pθ1(Y /∈ R) = Pθ1(Do not reject H0).

1 Type I and II error rates are commonly denoted by α and β, but since β is already used as an SIR parameter
we adopt the unconventional notation E1 and E2.
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Table 2 Simple hypothesis test
H0 : θ = θ0 H1 : θ = θε

Reject H0 Type I error Success

Do not reject H0 Success Type II error

Ideally one would find a rejection region R that simultaneously minimizes type I
and type II error rates, but this is generally impossible. Instead, a common statistical
paradigm is to fix a significance level α > 0 and minimize E2(R) subject to the
constraint E1(R) = α. For such an α, a region R is called a most powerful level-α
rejection region if E1(R) = α and E2(R) ≤ E2(R

′) for all R′ satisfying E2(R
′) = α.

That is, R minimizes type II error over all rejection regions with type I error equal to
α. The Neyman-Pearson Lemma gives the most powerful rejection region in the case
of a simple hypothesis test.

Lemma 1 (Neyman-Pearson) Let L(Y |θ) denote the likelihood function for data Y

and a parameter θ , and fix α > 0. Then there exists an η ∈ R such that

RL R =
{

Y : L(Y |θ1)

L(Y |θ0)
≥ η

}
(6)

is a most powerful level-α rejection region for the hypothesis test (5).

L(Y |θ1)/L(Y |θ0) is called the likelihood ratio and the decision to reject or not reject
H0 based on the rejection region RL R is called the likelihood ratio test. Since the
Neyman-Pearson Lemma guarantees the likelihood ratio test is most powerful in our
setting, we henceforth consider only the rejection region RL R and set E1 = E1(RL R)

and E2 = E2(RL R).
Returning now to the SIR model, our hypothesis test of interest is

H0 : θ = θ0 vs. H1 : θ = θε(ω) (7)

where, as before, θε(ω) is a perturbation of θ of size ε in the direction ω. The observed
data are Y1:T = (Y1, . . . , YT ) for any time T before the time of peak infection, with
each Yt = p�t + ξt as in (2). For the rest of this paper E2(ω) will denote the type II
error rate of (7) for the likelihood ratio test with angle ω. As such, the likelihood ratio
test (6) minimizes E2(ω) thereby providing the most powerful technique for detecting
differences of order ε in the SIR model parameters. We also set �ε

t (ω) = �t (θε(ω))

where, recall, �t (θ) = N (st−1(θ) − st (θ)), and let � denote the standard normal
cumulative distribution function. With this notation we now present the main result of
this subsection.

Approximation 2 For any ε > 0, ω ∈ [0, 2π), and significance level α > 0,

E2(ω) ≈ 1 − �

⎛
⎝�−1(α) + pNi0

√√√√
T∑

t=1

e2δt

σ 2
t

[
βε

(
e−δε − 1

−δε

)
eεt f (ω) − β

(
e−δ − 1

−δ

)]2
⎞
⎠

(8)
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≈ 1 − �

⎛
⎝�−1(α) + pNi0

√√√√
T∑

t=1

e2δt

σ 2
t

[
(β + ε cos ω)eεt f (ω) − β

]2

⎞
⎠ , (9)

where f (ω) = cos(ω) − sin(ω), βε = β + ε cos ω, and δε = δ + ε f (ω). Moreover,

E2(π/4) ≈ E2(5π/4) ≈ sup
ω∈[0,2π)

E2(ω).

The derivation of Approximation 2 is in the “Appendix”. The first and second
approximations of E2(ω) correspond to the red and black curves in Fig. 4, respectively.
Comparing these to the empirical type II error rates (the blue, green, and purple curves)
we see these approximations are sound. In particular, the last part of Approximation
2 indicates the angles π/4 and 5π/4 give rise to the largest type II error rate for the
hypothesis test (7) with perturbation size ε and significance level α. To quantify the

Fig. 4 Type II error as a function of perturbation size and noise level. The left panel shows the empirical
and theoretical type II errors for the angles ω = 0, π/4, and π as a function of perturbation size ε with
fixed noise level σ = 0.3. The right panel shows the empirical and theoretical type II errors for the same
angles as a function of noise level σ with fixed perturbation size ε = .03. In each case the SIR parameters
are those from Sect. 2, namely (β, γ ) = (.21, .07), N = 107, and initial condition i0 = 1/N . The time
horizon T is 60 days into the epidemic, which in this case is 60 days prior to the peak time. The significance
level is α = .05. Here, theoretical refers to the first (red) and second (black) approximations of type II
error E2(ω) in Approximation 2, i.e. Eqs. (8) and (9), respectively. Empirical refers to the type II error
obtained by performing 1000 simulations of the noisy SIR model (2) followed by a likelihood ratio test of
the hypothesis in (7) for each set of parameters. More specifically, the red and black curves lying over the
blue line are the type II error approximations (8) and (9) when ω = π/4, those lying over the purple line are
when ω = π , and those lying over the green line are when ω = 0, with the blue, green, and purple curves
corresponding to the empirically computed type II error rates when ω = π/4, 0, and π , respectively. In
each case both theoretical results closely align with the empirical ones, with the first approximation being
slightly better than the second as expected. Also as predicted, the empirical type II errors all approach
1 − α = .95 both as perturbation size goes to 0 and as the noise level gets large, and this approach is most
rapid when ω = π/4. In each case the noise model is Case 2, σt = Nσ it . For the simulated blue, green,
and purple curves, we used a numerical integrator to obtain the it values, while for the red and black curves

we used the pre-peak approximation it ≈ eδt i0
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magnitude of type II error in these cases, we substitute into the second approximation
to get

E2(
π
4 ) ≈ E2(

5π
4 ) ≈ 1 − �

⎛
⎝�−1(α) + pNi0ε√

2

√√√√
T∑

t=1

e2δt

σ 2
t

⎞
⎠ . (10)

Note that as the noise level σ 2
t goes to 0, the sum under the square root goes to infinity

and the entire expression goes to 1 − �(∞) = 0. That is, if there is no noise then
the type II error rate of the likelihood ratio test will vanish. If there is any noise at all
however, the sum is finite and (10) becomes arbitrarily close to 1−�(�−1(α)) = 1−α

as either p, the probability of detecting an infected individual, or ε, the perturbation
size, go to 0. For example, if we set the type I error rate to α = 0.1 then as either p or
ε go to 0, the probability of making a type II error will approach 0.9. Similarly, type
II error will go to 1 −α as σ 2

t goes to infinity. This limit is unrealistic though since σ 2
t

is the variance of observed data and as such should be less than the population size.
This leads us to consider two cases for noise.

Case 1. Noise proportional to population size, i.e. σt = Nσ for σ in (0, 1).
Case 2. Noise proportional to number of infections, i.e. σt = Nσ it for σ > 0.

In both cases σ is constant and independent of t . Case 2 involves it which is not
expressible in closed-form. However, we can use Approximation 1 and its derivation,
specifically the approximate solution (A2), to circumvent this issue by replacing it

with eδt i0. As discussed in Sect. 3.1, this approximation is appropriate early in the
epidemic. In Case 1, Eq. (10) becomes

E2 ≈ 1 − �

⎛
⎝�−1(α) + pi0ε

σ
√

2

√√√√
T∑

t=1

e2δt

⎞
⎠ .

In addition to the aforementioned limits, we see in this case that the expression, and
hence the type II error, approaches 1 − α as the population N goes to infinity (so that
i0 = 1/N goes to 0). In Case 2, Eq. (10) becomes

E2(
π
4 ) ≈ E2(

5π
4 ) ≈ 1 − �

(
�−1(α) + pε

√
T

σ
√

2

)
. (11)

The above expression does not depend on population size, N , nor on the SIR parameters
β and γ , while the asymptotic results for p, ε, and σ still apply. Since Case 1 has
noise proportional only to N , it implicitly assumes relative noise is larger earlier in
the outbreak which may not be realistic. Case 2 avoids this since relative noise will
be small whenever the reported number of infected individuals is small, e.g. early in
an epidemic. For this reason and its invariance under different model parameters and
population sizes, we consider only Case 2 moving forward.
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Fig. 5 Consequences of type II error. The top panels show the total number of infections 10 days past the
time of peak infection as a percentage of the total population. The bottom panels show the duration of the
epidemic, which is defined to be the first day past the peak when less than 10 individuals are infectious.
The left panels correspond to the parameter θ0 = (0.21, 0.14) and the right panels to θ0 = (.21, .07). The
red lines give the total percent infected or duration of the epidemic for the true parameter θ0 in each of their
respective plots, while the blue and green curves give these values for θε(π/4) and θε(5π/4) over a range
of ε values, respectively. In all cases N = 107

3.3 Simple illustration: implications of Approximation 2

Approximation 2 says that given an SIR parameter θ0, the probability of failing to
reject the hypothesis H0 : θ = θ0 when the alternative H1 : θ = θε is true can be very
high, especially when the angle of perturbation is π/4 or 5π/4. In this subsection we
take a closer look at what this means for epidemic prediction.

Consider for concreteness the familiar setting θ0 = (.21, .07), N = 107, and
i0 = 1/N . Figure 5 shows the total number of infections 10 days past the peak time
as well as the duration2 of the epidemic for θ0, θε(π/4), and θε(5π/4) and varying
perturbation sizes ε.

Setting ω = π/4 or 5π/4 and letting noise be as in Case 2, the first approximation
in Approximation 2 can be rearranged to obtain

ε ≈
[
�−1(1 − E2) − �−1(α)

]
σδeδ

√
2

(eδ − 1)p
√

T
.

2 We define the duration of the epidemic to be first day after the peak time such that less than 10 individuals
are infected.
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Fig. 6 Practical identifiability of δ. The left and center panels use the first type II error approximation in
Approximation 2 to graph type II error as a function of perturbation size, ε, and noise level, σ , respectively.
Each of the rainbow colored curves in both panels correspond to one of 150 different values of ω spread
uniformly across [0, 2π). The color chart in the right panel indicates the colors corresponding to different
angles ω: The light red curves correspond to the ω closest to π/4 and 5π/4, the yellow are those a bit
farther away, the blue still farther, and the purple are those farthest from π/4 and 5π/4, i.e. closest to
3π/4 and 7π/4. Finally, the dark red curve in each of the two panels corresponds to ω = π/4 and 5π/4,
which have the same type II error. Note the rapid fall off in type II error as angles get farther from π/4 and
5π/4, especially as a function of ε. This agrees with the empirical observation in Fig. 1 that MLE favors
parameters lying along a line of slope 1. In particular, the inverse problem for δ is practically identifiable

From this we can compute the consequences of type II error. For example, suppose
we are 60 days into an epidemic (T = 60) and wish to test the hypothesis θ0 =
(0.21, 0.07) versus θε(5π/4) as above. Moreover, suppose p = 1 (perfect diagnostics),
σ = 0.2 (infection standard deviation of ±20% of new cases), and we set α = .05 and
E2 = 0.5. Then the above equation gives ε ≈ .064. Thus, reading off the right panels
in Fig. 5, we see that under these fairly generous conditions a type II error—which
has a 50% chance of occurring—will result in underestimating the total number of
infections of an epidemic by over 5% of the total population and the duration of an
epidemic by over 20% of the predicted duration. For π/4 a type II error in this setting
will result in overestimating the total infections by nearly 10% of the total population
and the duration by approximately 10% of the predicted one. A similar computation
shows ε ≈ .062 when θ0 = (0.21, 0.14) with all other parameters the same, and again
from the left panels in Fig. 5 we observe significantly different predicted outcomes
depending on whether or not the null hypothesis H0 : θ = θ0 is rejected.

While our empirical and theoretical results indicate the inverse problem of finding
θ = (β, γ ) is prone to error, they also show inference of δ is robust and reliable (see
for instance Figs. 1 and 6). In particular, since θ = (β, γ ) is completely determined
by3 γ and δ, knowledge of δ reduces the inverse problem to finding γ , the reciprocal of
the average number of days an individual is infectious. In this case our new hypothesis
test becomes

H0 : γ = γ0 vs. H1 : γ = γ0 + ε̂. (12)

3 We choose to focus on γ because, unlike β which depends on the average number of people an infectious
person will come in contact with, γ depends only on the pathogen, not on human social behavior, and
therefore tends to be more stable and better approximated in practice.
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Fig. 7 Going from hypothesis
test (12) to (7)

for some real number ε̂. Furthermore, knowing δ implies θ lies on the line of slope 1
with vertical intercept −δ. So by a simple geometric argument (see Fig. 7), the above
hypothesis test is equivalent to the hypothesis test (7) with ε = |ε̂|

√
2 and angle π/4

if ε̂ > 0 or 5π/4 if ε̂ < 0. So by (11) the type II error of (12) is

E2 = 1 − �

(
�−1(α) + pε

√
T

σ
√

2

)
= 1 − �

(
�−1(α) + p|ε̂|

√
T

σ

)
.

Thus rather than consider the original hypothesis test, one can first infer δ, then consider
the hypothesis test (12) with type II error rate as above.

3.4 Empirical analysis: NYC Covid cases, March 2020

In this section we discuss the extension of the theoretical results on parametric non-
identifiability to a real world dataset. Consider the Spring 2020 COVID-19 outbreak in
New York City. The New York City Health Department keeps a repository of all public
COVID-19 data online [32]. Using their daily case data as a proxy for new infections,
we directly apply Eq. (2) to the noisy data. To focus on estimation early in the pandemic,
we focus on reported daily cases from February 29, 2020 through March 14, 2020,
which approximately represent the first two weeks of the pandemic in New York City.
This period precedes the statewide lockdown including the closing of schools on March
15th. However, the increasing awareness of COVID-19 and increased testing capacity
strongly suggest that the contact rate β and reporting rate p were likely non-constant
during this time. These parameters are also not jointly identifiable. Thus, we make the
simplifying assumption that they are constant. Below, we show estimates of β, γ , and
σ for fixed values of p ranging from 0.01 to 0.25 consistent with the current literature
on the underreporting rates of COVID-19 infection (de Oliveira et al. 2020; Richterich
2020; Lau et al. 2021).

To connect with the earlier analysis, we are following Case 2 as discussed in Sect.
3.2, in which the noise is proportional to number of infections, i.e. σt = Nσ it for
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Fig. 8 New York City public testing results for COVID-19 from the first known case on February 29, 2020
to March 15, 2020. We have used maximum likelihood estimation to generate an SIR trajectory through
the noisy data for each reporting rate

some σ > 0 which is also inferred via maximum likelihood. We thus model daily
infections by

yt = pN (st−1 − st ) +
√

Nitεt , εt ∼ N (0, σ 2)

from which we obtain the log-likelihood function

�(yt |β, γ, σ ) ≈ −1

2

t∑

k=1

(yk − pN (sk−1 − sk))
2

Nitσ 2 .

For a fixed value of p = 0.05, maximizing the above likelihood gives estimates

(β̂, γ̂ , σ̂ ) = (4.82, 4.22, 1.37)

and a corresponding estimate of R̂0 = 1.14. The SIR curve generated by the maximum
likelihood estimates of β and γ is shown in Fig. 8 with corresponding 95% confidence
regions based on the maximum likelihood estimate of σ. Additional results for p =
0.01, 0.02, and 0.1 are also shown in the figure.

Returning to the testing framework, Fig. 9 provides type II error estimates based
on the approximation of Eq. (11) with significance level α = 0.1, reporting rates
p = 0.01, 0.02, 0.05, and 0.1, and T = 14 days of new infection counts. For all
values of p considered herein, the MLE of σ̂ is greater than 0.75 and corresponds with
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Fig. 9 Type II error rate as a function of ε and σ at significance level α = 0.1, reporting rate p = 0.15, and
T = 14 days of new infection observations

Type II error greater than 80% for all values of ε such that θ̂ε(π/4) or θ̂ε(5π/4) with
corresponding R0 > 1.

Thus, while there may be a large disparity between the true SIR parameters and our
maximum likelihood estimates—hence large differences in the estimate of R0—the
hypothesis testing framework has very low power to detect such differences. This result
is based on the most difficult to detect perturbations in θ . However, it provides pes-
simistic but important lower bounds on the extent to which one can rely on parameter
estimates from noisy, early pandemic data.

One final note on the preceding example. The MLEs of β and γ in the previ-
ous analysis are quite sensitive to the reporting rate. For reference, Table 3 provides
corresponding MLE estimates for β, γ , and σ as a function of p.

However, the type II error plot in Fig. 9 is largely unchanged for the range of p in
the preceding table. Since σ is fairly robust to different choices of p, our conclusion
about the limited power of testing holds true for the range of p considered. Therefore,
one has limited statistical power to detect large differences in SIR model parameters in
the worst case scenario, regardless of the choice of reporting rate. As such, we believe
this article serves as a cautionary tale to those fitting SIR-type models in the early days
of an epidemic.

There is an important distinction to make. Having low power to detect a difference
is not equivalent to being unable to tell that there is a difference. Certain parameter
values are essentially impossible given natural assumptions about the dynamics of a
pandemic. For example, 1/γ is the average time an infected individual can spread the
disease before they are either recovered or removed from the population by quarantine.
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Table 3 Maximum likelihood
estimates of β, γ , and σ are
shown for different choices of
reporting rate p

p β̂ γ̂ σ̂ R̂0

0.01 19.69 19.03 0.83 1.03

0.02 15.59 14.99 1.29 1.04

0.03 9.54 8.95 1.38 1.07

0.04 6.43 5.82 1.38 1.10

0.05 4.82 4.22 1.37 1.14

0.1 2.20 1.58 1.36 1.39

0.15 1.44 0.82 1.35 1.7

0.2 1.07 0.46 1.35 2.35

0.25 0.86 0.24 1.36 3.58

The corresponding estimates of R0 using the MLEs is also provided

Extremely large values of γ and hence small values of 1/γ , such as those attained
in Table 3, are likely unrealistic. Thus, the inclusion of side or prior information
on γ and/or β akin to the analysis in Sect. 3.3 can greatly improve one’s ability to
disambiguate different SIR parameters.

4 Discussion

The preceding analysis was based on a simple implementation of the SIR model.
Practitioners studying future outbreaks may consider a multitude of modifications to
our model construction which result in different likelihood functions. Thus, we have
decided to conclude this article with a short discussion of how one may adapt our tech-
niques to these different settings to better understand issues of practical identifiability
with noisy or sparse observations.

To construct an analytically tractable approximation to the type II error, we assumed
the proportion of susceptible individuals remains essentially 1 and thus obtained a
linear system, namely (A1), that approximates the SIR equations. Such approximations
are suitable locally in time and are therefore appropriate when one is focused on the
early stages of an outbreak. Importantly, a similar approach can be used to construct
analytic approximations to the dynamics of any epidemic model. Such expressions will
depend on unknown SIR parameters, fixed parameters such as population size, and
other parameters such as reporting rate or behavioral factors, as in Cori et al. (2020).
For example, Britton and Scalia Tomba (2019) assume the proportion of susceptible
individuals remains 1 early in an epidemic to study the problem of inferring infection
rate from observations of generation and serial times, which are often available via
contact tracing. In all cases one can investigate the use of this and other realistic
simplifications of the dynamics to approximate type II error and better understand
potential limitations of their particular model. We believe this approach remains an
interesting, potentially fruitful avenue toward understanding identifiability in a wide
array of epidemic models.
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On the theoretical side, the upper bound for the error term in Proposition 1 of
“Appendix C” gives some rigorous justification for the approximate dynamics used
throughout this work. However, the numerical results of the main text and “Appendix
B” indicate the approximation is more accurate than the theoretical bound suggests. It
is therefore an open question whether our theoretical bound on the approximation error
can be improved upon, perhaps via other approximate solutions of the SIR model found
in, for example, (Turkyilmazoglu 2021; Barlow and Weinstein 2020; Schlickeiser and
Kröger 2021) and references therein. Finally, since the approximation of s by 1 is used
in other models and to investigate other questions about epidemics (Sauer et al. 2020;
Britton and Scalia Tomba 2019), it is also of interest whether estimates of the error in
our setting can be used to control error for similar approximations in related settings.
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Appendix A: Derivation of Approximation 1

The main observation leading to (3) is that s remains close to 1 early in the epidemic.
Motivated by this, we replace s with 1 in the SIR model to obtain

ds

dt
= −βi,

di

dt
= (β − γ )i = δi . (A1)

The corresponding solution starting from x0 = (s0, i0) is

ϕ̃t (x0, θ) =
(

s0 − β

δ

(
eδt − 1

)
i0, eδt i0

)
. (A2)

Fix ω ∈ [0, 2π) and set ϕt = ϕt (x0, θ), ϕε
t = ϕt (x0, θε(ω)), ϕ̃t = ϕ̃t (x0, θ), and

ϕ̃ε
t = ϕ̃t (x0, θε(ω)). The expression of interest, ‖ϕε

t − ϕt‖, can be written

‖ϕε
t − ϕt‖ = ‖ϕ̃ε

t − ϕ̃t‖ + Eε
t (A3)

where Eε
t is the error incurred from approximating ‖ϕε

t − ϕt‖ by ‖ϕ̃ε
t − ϕ̃t‖. As

mentioned in the main text, we do not have explicit analytic control over Eε
t but the

numerical analysis in “Appendix B” indicates it is negligible compared to ‖ϕ̃ε
t − ϕ̃t‖

early in the epidemic. In particular, the approximation

‖ϕ̃ε
t − ϕ̃t‖ ≈ ‖ϕε

t − ϕt‖ (A4)
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is valid up to roughly 80% of the time of peak infection. Thus we turn attention to
ϕ̃ε

t − ϕ̃t . Fixing t and Taylor expanding ϕ̃t to first order in η = (β, δ) gives

ϕ̃ε
t − ϕ̃t = Dηϕ̃t (x, η)

(
ηε(ω) − η

)
+ o

(
‖η‖2)

≈ ε

⎛
⎝− 1

δ

(
eδt − 1

)
i0 −β

δ

(
teδt − 1

δ

(
eδt − 1

))
i0

0 teδt i0

⎞
⎠

(
cos(ω)

cos(ω) − sin(ω)

)

≈ εi0

(
−t −βt2

0 teδt

)(
cos(ω)

cos(ω) − sin(ω)

)

where Dη is the derivative in η and ηε(ω) = η + ε(cos(ω) − sin(ω)). The first
approximation is a result of simply dropping the o(‖η‖2) term and the second is
obtained by substituting the first order Taylor approximation exp(δt)−1 = δt +o(δ2)

about δ = 0 into the expression above it. We see from the latter expression that
any vector (x1, x2) in R

2 with x2 �= 0 will grow exponentially in time under the
above matrix due to the teδt term in the bottom right. On the other hand, the first
component x1 will only grow linearly in time provided x2 = 0. So the magnitude
of growth is minimized for vectors of the form (x1, 0). This implies that, under the
above approximations which come at a cost of o(‖η‖2) and o(δ2), respectively, the
difference ϕ̃ε

t − ϕ̃t will grow the least when (cos(ω), cos(ω) − sin(ω)) = ±(1, 0).
Therefore the perturbations ηε(ω) that yield the smallest separation between ϕ̃ε

t and ϕ̃t

are those corresponding to the directions ±(1, 0) or, equivalently, the angles ω = π/4
and 5π/4. Now

ϕ̃ε
t (x0, θε(ω)) − ϕ̃t (x0, θ) =

(
βε

δε
− β

δ
+

(β
δ

− βε

δε
eεt(cos ω−sin ω)

)
eδt

(
eεt(cos ω−sin ω) − 1

)
eδt

)
i0 (A5)

where βε = β + ε cos ω and δε = δ + ε(cos ω − sin ω). Plugging in π/4 gives

ϕ̃ε
t (x0, θε(ω1)) − ϕ̃t (x0, θ) =

(
1 − eδt

0

)
εi0

δ
√

2
(A6)

and similarly for 5π/4, only negative. Thus, in combination with (A4),

ε

δ
√

2

(
eδt − 1

)
i0 � ‖ϕ̃ε

t − ϕ̃t‖ ≈ ‖ϕε
t − ϕt‖

for all ω, which is precisely (3).

Appendix B: Numerical analysis of error

In this section we revisit the expression

‖ϕ − ϕt‖ = ‖ϕ̃ε
t − ϕ̃t‖ + Eε

t
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which is (A3) in “Appendix A”; see the sentences preceding (A3) for notation. A
key requirement in the derivation of Approximation 1 is that ‖ϕε

t − ϕt‖ is well-
approximated by ‖ϕ̃ε

t − ϕ̃t‖. By (A3) this is the case whenever

|Eε
t |

‖ϕε
t − ϕt‖

< τ (B7)

for some prescribed tolerance τ , which we take to be 1 both for simplicity and because
it agrees with the numerical observations from Figs. 2, 3. As mentioned before, we
do not have sufficient control to verify (B7) analytically. However, we can verify (B7)
numerically – in our case with the odeint function from the scipy.integrate package
in Python. Specifically, we numerically solve both the SIR and approximate SIR
equations and compute

log|Eε
t | − log‖ϕε

t − ϕt‖ (B8)

for 25 evenly spaced angles ω in the interval [π/4 −π/12, π/4 +π/12) and 25 more
such angles in [5π/4 − π/12, 5π/4 + π/12). We restrict attention to these intervals
because, as observed in Figs. 2, 3, these are the angles for which the inverse problem
is least practically identifiable. The results, plotted in Fig. 10, indicate (B8) grows
approximately linearly in time. For each of the 16 subplots in Fig. 10 (which correspond
to 16 different β, γ, ε, and N combinations) we average the linear approximations for
each of the 50 curves to obtain a single “average" linear approximation indicated by
the red line in each subplot. Table 4 gives the equations for each of these averaged
lines. So, for example, when (β, γ ) = (.21, .07), ε = .03, and N = 106 the table
gives

log|Eε
t | − log‖ϕε

t − ϕt‖ ≈ 0.15t − 13.3.

Setting this expression equal to 0 (which corresponds to τ = 1) and solving for t

gives t = 13.3/0.15 ≈ 89 days, i.e. the error becomes intolerable at roughly 89 days.
We can then divide 89 by the peak time to estimate the percentage of the peak time
at which the error becomes sufficiently large that the approximation, and hence the
lower bound from Approximation 1, no longer holds. The resulting percentages are
given in Table 5 and motivate our choice of 80% in Approximation 1.

Appendix C: Theoretical analysis of error

In this section we again revisit (A3) and prove the following.

Proposition 1 For every initial condition x0 = (s0, i0), parameter pair (β, γ ), ε > 0,

ω in [0, 2π), and t ≥ 0,
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Fig. 10 Error analysis corresponding to Figs. 2, 3. As in Figs. 2, 3, the horizontal axis in each graph is the
number of days since the start of the epidemic, the vertical blue line is the peak time, and the orange line
is 80% of the peak time. The vertical axis is the logarithm of the relative error, log|Eε

t | − log‖ϕε
t − ϕt ‖,

at time t . There are 50 green curves in each plot which are the relative errors corresponding to 50 angles
in the intervals [π/4 − π/12, π/4 + π/12) and [5π/4 − π/12, 5π/4 + π/12). The red line in each plot
is the average linear approximation of the 50 green curves. Also as in Figs. 2, 3, the first through fourth
columns have population sizes 104, 105, 106, and 107, respectively with one initial infection in each case,
and the first through fourth rows have parameters (β, γ, ε) = (.21, .14, .03), (.21, .07, .03), (.42, .07, .06),
and (1.68, .14, .1) which give R0 values of 1.5, 3, 6, and 12. The main point is that for every combination
of parameters the relative error is exponentially small until about 80% of the peak time at which point it
becomes O(1) and subsequently blows up exponentially

|Eε
t | ≤

(√
2β2

ε + γ 2
ε

δε

(
eδε t − 1

)
+

√
2β2 + γ 2

δ

(
eδt − 1

)
)

i0, (C9)

where, as before, δ = β −γ , βε = β +ε cos(ω), γε = γ +ε sin(ω), and δε = βε −γε .

Proof By (A3), the reverse triangle inequality, and the triangle inequality,

|Eε
t | =

∣∣‖ϕε
t − ϕt‖ − ‖ϕ̃ε

t − ϕ̃t‖
∣∣ ≤ ‖ϕε

t − ϕt − ϕ̃ε
t − ϕ̃t‖

≤ ‖ϕ̃ε
t − ϕε

t ‖ + ‖ϕ̃t − ϕt‖.
(C10)
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Table 4 Linear approximations of log relative error

(β, γ, ε) N = 104 N = 105 N = 106 N = 107

(.21, .14, .03) .08t − 7.7 .08t − 9.8 .08t − 11.9 .07t − 14.1

(.21, .07, .03) .16t − 8.9 .15t − 11.1 .15t − 13.3 .15t − 15.4

(.42, .07, .06) .39t − 9.4 .38t − 11.5 .38t − 13.8 .37t − 15.9

(1.68, .14, .1) 1.7t − 9.5 1.68t − 11.8 1.65t − 14 1.63t − 16.1

Equations for the average linear approximations to the log relative error log|Eε
t |−log‖ϕε

t −ϕt ‖ as functions
of time for each combination of parameter values appearing in Figs. 2, 3 and 10

Table 5 Percent of peak time at which error becomes intolerable

(β, γ, ε) N = 104 N = 105 N = 106 N = 107

(.21, .14, .03) 83% 86% 88% 90%

(.21, .07, .03) 80% 83% 85% 87%

(.42, .07, .06) 77% 80% 83% 84%

(1.68, .14, .1) 80% 78% 85% 83%

Approximate percent of peak time when the log relative error log|Eε
t |− log‖ϕε

t −ϕt ‖ becomes intolerable,
i.e. O(1)

Next, note that ϕ̃t − ϕt =
∫ t

0
d

dτ
(ϕ̃τ − ϕτ )dτ and hence

‖ϕ̃t − ϕt‖ ≤
∫ t

0

∥∥ d
dτ

(ϕ̃τ − ϕτ )
∥∥ dτ

=
∫ t

0
‖(−β(̃ιτ − iτ sτ ), β(̃ιτ − iτ sτ ) − γ (̃ιτ − iτ ))‖ dτ

=
∫ t

0

√
2β2(̃ιτ − iτ sτ )2 − 2βγ (̃ιτ − iτ sτ )(̃ιτ − iτ) + γ 2(̃ιτ − iτ )2dτ

≤
∫ t

0
ι̃τ

√
2β2 + γ 2dτ =

√
2β2 + γ 2

δ

(
eδt − 1

)
i0.

The first equality holds because ϕ̃ and ϕ are solutions of (A1) and (1), respectively,
and the second inequality holds because ι̃t ≥ it ≥ it st for all t ≥ 0 and hence

2β2(̃ιτ − iτ sτ )
2 − 2βγ (̃ιτ − iτ sτ )(̃ιτ − iτ) + γ 2(̃ιτ − iτ )

2 ≤ (2β2 + γ 2)̃ι2τ

(C11)

for every τ ≥ 0. Finally, the last equality follows from ι̃τ = eδτ i0. Since the above
holds for arbitrary β and γ , we also have

‖ϕ̃ε
t − ϕε

t ‖ ≤
√

2β2
ε + γ 2

ε

δε

(
eδε t − 1

)
i0.
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Combining with (C10) therefore gives

|Eε
t | ≤

(√
2β2

ε + γ 2
ε

δε

(
eδε t − 1

)
+

√
2β2 + γ 2

δ

(
eδt − 1

)
)

i0,

as claimed. 
�

A few remarks are in order. First, if i0 = c/N for some constant c, then i0, and hence
Eε

t for any finite t , go to 0 as the population size N goes to infinity. Thus Approximation
1 improves with increasing N , which agrees with the numerical results of the last
section. Second, the bound (C9) is not sharp. This is due to the use of the triangle
and reverse triangle inequalities, as well as the other inequalities implemented in the
above proof. In particular, inequality (C11) is quite coarse because we have essentially
thrown away all iτ and sτ terms. This is rather necessary since the SIR model has no
known exact analytic solution, so gaining explicit control over terms involving iτ and
sτ is, to the best of our knowledge, largely intractable (Barlow and Weinstein 2020).
Finally, the upper bound (C9) grows exponentially in time. This is a byproduct of the
fact that the proportion of infected individuals ι̃ in the approximate dynamics (A1)
grows exponentially without bound. On the other hand, growth of the i compartment in
the true SIR dynamics (1) is offset by the decreasing number of susceptible individuals
as the epidemic progresses, i.e. fewer susceptible individuals means there are fewer
people to infect. This is the primary reason why the approximate dynamics are only
valid early in the epidemic, and certainly do not hold beyond the time of peak infection.

Appendix D: Derivation of Approximation 2

Fix ω ∈ [0, 2π) and set θε = θε(ω), �ε
t = �t (θε), and �0

t = �t (θ0). The likelihood
for observed data Y1:T is

L(Y1:T |θ0) =
T∏

t=1

1√
2πσ 2

t

exp

(
− 1

2σ 2
t

(
Yt − p�0

t

)2
)

and similarly for L(Y1:T |θε). So the log-likelihood ratio between θε and θ0 is

log

(
L(Y1:T |θε)

L(Y1:T |θ0)

)
=

T∑

t=1

1

2σ 2
t

[(
Yt − p�0

t

)2 −
(
Yt − p�ε

t

)2
]

=
T∑

t=1

1

2σ 2
t

[
2pYt

(
�ε

t − �0
t

)
− p2((�ε

t )
2 − (�0

t )
2)
]
.

If the Yt satisfy (2) with parameter θε , i.e. Yt = p�ε
t + ξt , then

2pYt

(
�ε

t − �0
t

)
− p2((�ε

t )
2 − (�0

t )
2) = p2(�ε

t − �0
t

)2 + 2p
(
�ε

t − �0
t

)
ξt .
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So, letting η be the value in (6) for the likelihood ratio test,

E2(ω) = Pθε

(
L(Y1:T |θε)

L(Y1:T |θ0)
< η

)
= Pθε

(
log

(
L(Y1:T |θε)

L(Y1:T |θ0)

)
< log η

)

= Pθε

( T∑

t=1

1

2σ 2
t

[
p2(�ε

t − �0
t

)2 + 2p
(
�ε

t − �0
t

)
ξt

]
< log η

)

= Pθε

( T∑

t=1

p

σ 2
t

(
�ε

t − �0
t

)
ξt < log η − 1

2
V ε

T (ω)

)
.

where

V ε
T (ω) =

T∑

t=1

p2

σ 2
t

(�ε
t − �0

t )
2. (D12)

Now ξt ∼ N (0, σ 2
t ) implies

∑T
t=1(p/σ 2

t )(�ε
t − �0

t )ξt ∼ N (0, V ε
T ) and hence

1√
V ε

T (ω)

T∑

t=1

p

σ 2
t

(�ε
t − �0

t )ξt ∼ N (0, 1).

So, letting Z denote a standard normal random variable,

E2(ω) = Pθε

(
Z <

log η√
V ε

T (ω)
− 1

2

√
V ε

T (ω)

)
= �

(
log η√
V ε

T (ω)
− 1

2

√
V ε

T (ω)

)
.

By an entirely similar computation (note the symmetry between θε and θ0),

α = Pθ0

(
L(Y1:T |θε)

L(Y1:T |θ0)
≥ η

)
= �

(
− log η√

V ε
T (ω)

− 1

2

√
V ε

T (ω)

)

and so log η√
V ε

T (ω)
= −�−1(α) − 1

2

√
V ε

T (ω). Therefore, since �(−x) = 1 − �(x),

E2(ω) = �

(
− �−1(α) −

√
V ε

T (ω)

)
= 1 − �

(
�−1(α) +

√
V ε

T (ω)

)
. (D13)

To obtain the approximations, first note that from (A2) we have

�ε
t (ω) − �0

t ≈
[
βε

(
e−δε − 1

−δε

)
eε(cos ω−sin ω)t − β

(
e−δ − 1

−δ

)]
Ni0eδt , (D14)
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where βε = β + ε cos ω and δε = δ + ε(cos ω − sin ω). This can be further simplified
by using the Taylor approximation (ex − 1)/x ≈ 1 to obtain

�ε
t (ω) − �0

t ≈
[
βεeε(cos ω−sin ω)t − β

]
Ni0eδt . (D15)

Plugging (D14) and subsequently (D15) into (D13) then gives

E2(ω) ≈ 1 − �

⎛
⎝�−1(α) + pNi0

√√√√
T∑

t=1

e2δt

σ 2
t

[
βε

(
e−δε − 1

−δε

)
eε(cos ω−sin ω)t − β

(
e−δ − 1

−δ

)]2
⎞
⎠

≈ 1 − �

⎛
⎝�−1(α) + pNi0

√√√√
T∑

t=1

e2δt

σ 2
t

[
(β + ε cos ω)eε(cos ω−sin ω)t − β

]2

⎞
⎠ ,

as claimed. Finally, from Approximation 1 we know the directions of least separation
between the trajectories corresponding to θ0 and θε(ω) are approximately ω = π/4
and 5π/4. This suggests it will be most difficult to distinguish the null and alternative
hypotheses of (7) when ω = π/4 or 5π/4. So when constrained to a significance level
α, one of these two angles will approximately maximize the type II error rate E2(ω)

over all ω ∈ [0, 2π).
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