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Principled nonparametric tests for regression curvature in R? are often statistically and computationally challeng-
ing. This paper introduces the stratified incomplete local simplex (SILS) tests for joint concavity of nonparametric
multiple regression. The SILS tests with suitable bootstrap calibration are shown to achieve simultaneous guar-
antees on dimension-free computational complexity, polynomial decay of the uniform error-in-size, and power
consistency for general (global and local) alternatives. To establish these results, we develop a general theory for
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1. Introduction

This paper concerns the hypothesis testing problem for curvature (i.e., concavity, convexity, or linear-
ity) of a nonparametric multiple regression function. Testing the validity of such geometric hypothe-
sis is important for performing high-quality subsequent shape-constrained statistical analysis. For in-
stance, there has been considerable effort in nonparametric estimation of a convex (concave) regression
function, partly because estimation under convexity constraint requires no tuning parameter as opposed
to e.g. standard kernel estimation whose performance depends critically on a user-chosen bandwidth
parameter [35, 34, 44, 27, 50, 43, 10, 9, 28, 14, 11, 32, 40]. In empirical studies such as economics
and finance, convex (concave) regressions have wide applications in modeling the relationship between
wages and education [47], between firm value and product price [5], and between mutual fund return
and multiple risk factors [21, 1].
Consider the nonparametric multiple regression model

Y =f(V)+e, (1)

where Y is a scalar response variable, V' is a d-dimensional covariate vector, € is a random error term
such that E[¢|V] = 0 and Var(e) > 0, and f : R? — R is the conditional mean (i.e., regression) function.
Let P be the joint distribution of X = (V}Y) € R and X; := Vi, Y),ie[n]:={1,...,n} be a
sample of independent random vectors with common distribution P. For a given convex, compact
subset V C RY, based on the observations {X;}1{, we aim to test the following hypothesis:

Hy : f is concave on V, (2)
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against some (globally or locally) non-concave alternatives. In this work, we directly leverage the
simplex characterization of concave functions, i.e., f is concave on V if and only if

arf(v1) + -+ age1f(vgy1) < flarvr + -+ + ag41v441), 3

for any v1,...,v441 € V and nonnegative reals a1, ...,aq41 such thataj +--- +ag41 = 1. Working
with this definition allows us to circumvent the need to estimate the regression function f, and thus
the resulting tests would be robust to model misspecification. Further, the concavity hypothesis can be
quantitatively evaluated on the observed data, which is the idea behind the simplex statistic in [1].

Specifically, d + 1 covariate vectors in R? form a simplex. Consider r := d + 2 data points
x1:= (v1,Y1)s-- s Ty = (Up,yr) € R4+ generated from the model (1). If for all j € [7], vj is not
in the simplex spanned by {v; : i # j}, for example the vectors {v1,v2, v3,vs5} in Figure 1, then we set
w(x1,...,2r) = 0. Otherwise, there exists a unique j such that v; can be written as a convex combi-
nation of other covariate vectors, i.e., v; = Z#j a;v; for some a; > 0, Z#j a; = 1; in this case, we
compare the response y; with the same combination of others, {y; : i # j}, i.e., setting

w(zy,...,Tp) = Zaiyi — Y-
i#]
For example, in Figure 1, v4 is in the simplex spanned by {v1, v2, v3}. We note that the index j and the
coefficients {a; : ¢ # j} are functions of {v; : i € [r]}, and defer the precise definitions to Section 3.
If f is indeed concave (i.e., in Hy) and ¢ is symmetric about zero, then E [sign(w (X7, ..., X;)] <0
due to (3), where sign(¢) := 1(¢ > 0) — 1(¢ < 0) is the sign function. Thus [1] proposes to use the
following global U-statistic of all r-tuples from { X; : ¢ € [n]} and reject the null if the statistic is large:

|70 Y sign (w(X,)), with X, = (X;,,..., X;,),
LEIn,r

where I, == {t = (i1,...,%r) : 1 <i1 <...<ir <n}, and | - | denotes the set cardinality.

1.1. Local simplex statistics

Since the above “global" U-statistic is not consistent against general alternatives, e.g., when f is only
non-concave in a small region, [1] also proposes the localized simplex statistics. Specifically, let L :
R% — R be a function such that L(z) = 0if ||| := max;eq [2;| >1/2, and L(-) := b—4L(-/b) for
b> 0. For z; := (v;,y;) € RItL e [r], and a bandwidth parameter b,, > 0, define

IS
. d
BE (@1, yar) = sign (W@, .. o2) b [ Loy (v —vg), vEV. “)
k=1

Thus for each v € V, only nearby data points are utilized in constructing a local statistic. Note that h;®
depends on b,,, which we omit in most places for simplicity of notations.
Given a finite collection of query (or design) points #;, C V, [1] proposes to reject the null if

sup Up (B3F) is large, where Uy (R3F) := I, 7" Z R (X,). ®)
VEYn ey,
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Figure 1: (i). Each circle represents a two-dimensional feature vector (i.e., d = 2). For each query point
v €V, a sampling plan is a collection of Bernoulli random variables {Z,(v) : v € I, ;- }, one for each
subset of 7 = d + 2 data points. If Z,(v) = 1, then h; (X,) contributes to the average in (5). (ii). The
space V is stratified into disjoint regions (e.g., 1-by-1 squares above). The query points in each region

share the same sampling plan (e.g. {ZLm } for the dotted region Vp,), while different regions have
independent sampling plans. For example, the indicator for ¢ = (v1,v2,v3,v4) may be one for Vpy,, but
zero for the dashed region. (iii). Due to the localizing kernel (4), for each query point v € V, it suffices
to consider data points that are within b/2 distance to v in each coordinate. Thus for V,, above, e.g.,
it suffices to consider data points within the dotted square (b = 8). The key idea is that query points
in a small region share similar nearby data points, and the region-specific sampling plan allows us to
allocate the “limited resources" only in “important areas".

In [1], it requires the query points in ¥, to be well separately, i.e., ||v — v'||oc > by, for each pair of
distinct v, v’ € ¥;,, which is restrictive when d > 2 and b,, cannot be too small. Such a requirement is
imposed since [1] uses extreme value theory to obtain the asymptotic distribution of the supremum, for
which the convergence of approximation error is known to be logarithmically slow [31].

In [13], a valid jackknife multiplier bootstrap (JMB) is proposed to calibrate the distribution of
the supremum of the (local) U-process, sup,cy Un (hsy ). Even though JMB tailored to the concavity
test problem is statistically consistent, it requires tremendous, if not prohibitive, resources to compute
SUP,cy Upn(hef), as well as calibrating its distribution via bootstrap, for d > 2. For instance, suppose
that V' has a Lebesgue density that is bounded away from zero on V. Then the number of data points
within the b,,-neighbourhood of v € V is on average O(nb%). Thus to compute Uy, (hy) for a fixed
v € V, the required number of evaluations of w(-) is on average O((nbZ)"), which is computationally
intensive, if d > 2 (thus r = 4), and the bandwidth b,, is not too small. In fact, in the numerical study
(Section 5), we estimate that for d = 3,n = 1000, by, = 0.6 (b, /2 is the half width), it would take more
than 7 days to use bootstrap for calibration even with 40 computer cores.



It is tempting to break the computational bottleneck by using the incomplete version of the U-process
{Up(h3) : v € V}, which has been studied for high-dimensional U-statistics [12, 53]. Specifically, we
may associate each subset of r data points, ¢ € I, », with an independent Bernoulli random variable
Z,, and only include hf)g(X ,) in the average in (5) if Z, = 1. Note that this is a “centralized" sampling
plan, in the sense that {Z, : ¢ € I, ;- } is shared by each v € V. Here, we explain intuitively why such a
plan does not solve the computational challenge, and postpone the detailed discussion until Section 4.
First, for each ¢ = (i1, ..., 4r) € In, if ||v;; — i loo > by, for some j, k € [r] (e.g., v5, ve in Figure 1),
then hyt (X,) = 0 for each v € V. As a result, with a very high probability, a randomly selected r-tuples
X, is “wasted". Second, if two query points v, v are not close, in the sense that ||v — v'||oc > by, (e.g.
vs, vg in Figure 1 if they are used as query points), then they share no nearby data points as defined by
the localizing kernel in (4), which is a property ignored by the centralized sampling.

1.2. Our contributions

In this paper, we introduce the stratified incomplete local simplex (SILS) statistics for testing the con-
cavity assumption in nonparametric multiple regression. We show that SILS tests have simultaneous
guarantees on dimension-free computational complexity, polynomial decay of the uniform error-in-
size, and power consistency against general alternatives. We elaborate below our contributions, and
also refer readers to Figure 1 for a pictorial illustration of key ideas.

Computational contributions. The SILS test is proposed to address the computational issue with
the test statistic (5), as well as calibrating its distribution. Specifically, we first partition the space V
into disjoint regions {V,,, : m € [M]} for some integer M > 1. Let N := n"b;;%" be a computational

parameter for some x > 0, and for each m € [M], let {ZL(m) :1 € I} be a collection of independent
Bernoulli random variables with success probability p, := N/|I, |, which is called a sampling plan.
For different regions, the sampling plans are independent. Then we consider the stratified, incomplete
version of (5) as our statistic for testing the hypothesis (2):

sup  sup (ZLeIn ) me)hzg(XL)> / <ZLEIn ) Zb(m)> .

me[M] vEVim

Similar idea is applied to bootstrap calibration (see Subsection 2.2), which involves another com-
putational parameter Np := n”/bg dr for some k' > 0. Due to the localization by the kernel (4)
and the stratification (see Figure 1), we show in Section 4.2 that the overall computational cost is
O(Mn*log(n) + Mn'*t5'b-d1og(n) + BMn), where B is the number of bootstrap iterations. Our
theory allows &, ' to be arbitrarily small, but due to power analysis, we recommend x = ' = 1. In
addition, M is usually chosen so that M = O(b;;?), and to ensure a non-vanishing number of local
data points, we must have b,, d— O(n); thus the cost is independent of the dimension d.

Further, to alleviate the burden of selecting a single bandwidth, we propose to use the supremum of
the statistics associated with multiple by, (Subsection 3.3). Finally, we conduct extensive simulations to
demonstrate the computational feasibility of the proposed method, and to corroborate our theory.!

Statistical contributions. In addition to the function class 7€ := {hy’ }, which uses the sign of sim-
plex statistics, we also consider another class of functions H9 := {hi9}, where hid uses w(-) instead of

IThe implementation can be found on the github (https://github.com/ysong44/
Stratified-incomplete-local-simplex-tests).
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its sign (see (14)); note that hf is unbounded unless ¢ has bounded support. On one hand, % requires
the observation noise ¢ to be conditionally symmetric about zero [1], but otherwise is robust to heavy
tailed . On the other hand, H'¢ requires ¢ to have a light tail, but otherwise imposes no restrictions
[13]. For both classes of functions, we establish the size validity, as well as power consistency against
general alternatives, for the proposed procedure, under no smoothness assumption on the regression
function.

In fact, under fairly general moment assumptions, we derive a unified Gaussian approximation and
bootstrap theory for stratified, incomplete U-processes (Section 2 and 6), associated with a general
function class H, where the SILS test for regression concavity is an application of the general results.

Technical contributions. The analysis of the stratified, incomplete U-processes requires a strategy dif-
ferent from the coupling approach used for complete U-processes [13]: (i) we establish corresponding
results for high dimensional stratified, incomplete U-statistics (Section B of the Supplement Material
[52]); (i1) we show that the supremum of the process is well approximated by the supremum over a
finite, but diverging, collection of v € V. The main novelty are local and non-local maximal inequal-
ities to bound the supremum difference between a complete U-process and its stratified, incomplete
version (Section A.1 of the Supplement Material [52]), which can also be useful for other applications
involving sampling, such as estimating the density of functions of several random variables [25].

We note that the developed maximal inequalities are novel compared to [13] and [12]. First, [13]
studies complete U-processes, and neither stratification nor sampling is involved. Second, [12] estab-
lishes inequalities for incomplete high dimensional U-vectors, whose proofs are fundamentally differ-
ent from those for processes, and which does not have the stratification component. See also Remark
3.3 for technical challenges associated with local U-processes.

1.3. Related work

Regression under concave/convex restrictions has a long and rich history dating back to [35]. Tradi-
tionally, the literature focused on the univariate (d = 1) case [34, 44, 27, 9, 28, 14], but there is a
significant recent theoretical progress in the multivariate case [50, 43, 32, 40]; see also [45, 39, 33, 46].
We refer readers to [16, 29] for a review on estimation and inference under shape constraints including
concave/convexity constraints.

The literature on testing the hypotheses of regression concavity is relatively scarce, especially for
multiple regression, i.e., d > 2. Simplex statistic and its local version are introduced in [1], and the
bootstrap calibration (without computational concerns) is investigated in [13]. Several testing proce-
dures based on splines [18, 55, 38] have been proposed, which, however, are only proven to work for the
univariate case since they are essentially second-derivative tests at the spline knots. Thus such methods
can only test marginal concavity in the presence of multiple covariates, and multi-dimensional spline
interpolation is much less understood in the nonparametric regression setting. Further, in the univariate
case with a white-noise model, multi-scale testing for qualitative hypotheses is considered in [19], and
minimax risks for estimating the L? distance (1 < ¢ < o0) between an unknown signal and the cones
of positive/monotone/convex functions are established in [37].

A very recent work by [22] proposes a projection framework for testing shape restrictions including
concavity, which we call “FS" test. Specifically, the FS test [22] first estimates the regression function
f using unconstrained, nonparametric methods (e.g. by sieved splines), and then evaluate and calibrate
the L? distance between the estimator and the space of concave functions. As discussed in Section
E.4 of the Supplement Material [52], the FS test is expected to achieve descent power, but fails to
control the size properly when f is not smooth; this is because if f is not smooth enough, there is no
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choice of tuning parameter (e.g., the number of terms in sieved B-splines) that can meet its two re-
quirements simultaneously: under-smoothing and strong approximation. In simulation studies (Section
5), we observe that the FS test rejects Hy with a very large probability when f is concave, piecewise
affine. In contrast, for our procedure, the probability of rejecting the null attains the maximum when f
is an affine function, as the equality in (3) is achieved if and only if f is affine; thus, the size validity re-
quires no additional assumption on f. Finally, we show in Section 5 that the proposed method achieves
a comparable power to the FS test.

We postpone the discussion of related work on the distribution approximation and bootstrap for
U -processes until Subsection 6.3.

1.4. Organization of the paper

In Section 2, we introduce stratified, incomplete U-processes, as well as bootstrap calibration, for a
general function class #. In Section 3, we apply the general theory to the concavity test application, and
establish its size validity and power consistency. In Section 4, we discuss the computational complexity
of the proposed procedure as well as its implementation. In Section 5, we present simulation results for
d = 2, with the cases of d = 3, 4 presented in the Supplement Material [52]. In Section 6, we establish
the validity of Gaussian approximation and bootstrap for stratified, incomplete U-processes.

1.5. Notation

We denote X, ... X, by Xii/ for i <. For any integer n, we denote by [n] the set {1,2,...,n}. For
a,b € R, let |a] denote the largest integer that does not exceed a, a V b = max{a,b} and a A b =
min{a, b}. For a € R% and q € [1,00), denote [lal|, = ( d |ai\’1)1/q, and [|afl o = max;e (g |ail.
For a,b € Rd, we write a < b if aj < bj for 1 < j < d, and write [a,b] for the hyperrectangle
H;«lzl[aj,bj] if a < b. For 3 >0, let 1g : [0,00) — R be a function defined by ¥5(z) = e’ —1,
and for any real-valued random variable ¢, define [|¢[|, = inf{C > 0: E[5(|¢|/C)] < 1}. Denote by
Inyi={v="_i1,...,3r) : 1 < i1 <...<ip < n} the set of all ordered r-tuples of [n] and denote by
| - | the set cardinality.

For a nonempty set 7', denote £°°(T") the Banach space of real-valued functions f : 7' — R equipped
with the sup norm || f||7 := sup;cr|f(t)|. For a semi-metric space (7', d), denote by N(T'd,e)
its e-covering number, i.e., the minimum number of closed d-balls with radius e that cover T'; see
[54, Section 2.1]. For a probability space (7,7 ,Q) and a measurable function f :7T — R, denote
Qf = [ fdQ whenever it is well defined. For ¢ € [1,00], denote by | - ||, 4 the LI(Q)-seminorm, i.e.,
Ifllgq= (Q|f|q)1/q for ¢ < oo and || f||,oc for the essential supremum.

For k=0,1,...,r and a measurable function f : (S",S") — (R, B(R)), let P"~* f denote the func-
tion on S¥ such that P" =% f(x1,...,23) = Elf(z1,..., 2k, Xg+1,---,Xr)],, whenever it is well
defined. For a generic random variable Y, let |y-(-) and Ey[-] denote the conditional probability and
expectation given Y, respectively. Throughout the paper, we assume that

r>2 n=4, N>24, pp:=N/|I,|<1/2, N>n/r>1.

Also, we assume the probability space is rich enough in the sense that there exists a random variable
that has the uniform distribution on (0, 1) and is independent of all other random variables.
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2. Stratified incomplete U-processes

In this section, we introduce stratified, incomplete U-processes, as well as bootstrap calibration, for a
general function class . For intuitions, it may help to think H as the collection of functions At in (4)
indexed by v € V, and refer to Figure 1.

Thus, let X7* := {X1,..., X, } be independent and identically distributed (i.i.d.) random variables
taking value in a measurable space (S,S) with common distribution P. Fix r > 2, and let H be a
collection of symmetric, measurable functions h : (S™,S8") — (R, B(R)). Define the U-process and its
standardized version as follows: for h € H,

Un(h):=Ins| ™" D~ WXL, Un(h) = v/n (Un(h) = E[Un(h)]),

el

where recall that X, = (X;,,...,X;, ) if ¢ = (i1,...,4) € I;, . The summation in the above complete
U-process involves ~ n' terms, and thus is computationally expensive even for a moderate r (say > 3),
which motivates its stratified incomplete version.

2.1. Test statistics

Let {H, : m € [M]} be a partition of H, i.e., Hm, NHm, = 0 for my # mo, and UM_, H,,, = H. The
partition, and thus M, may depend on the sample size n. Given a positive integer N, which represents
a computational parameter, define

i.4.d

{ZLW ‘me[M], te Iw} & Bernoulli(py),  with pp = N/|In.rl,
which are independent of the data X[*. For m € [M], denote by N(m) .= Dol Zb(m) the total
number of sampled r-tuples for the subclass H,,. Further, define a function o : H — {1,..., M} that

maps h € H to the index of the partition to which h belongs, i.e., c(h) =m < h € H,,. Finally, we
define the stratified, incomplete U-process and its standardized version: for h € H, if o(h) = m,

U ()= (80) S0 200, U ()= Vi (U n () - E [0, v ()]) . ©

LEI'IL,T

An important goal of the paper is to develop bootstrap methods to calibrate the distribution of the
supremum of the stratified incomplete U-process, i.e., My, := suppcy U’n N(h).

Statistical tests. We will use /nsuppey U/, 5 (h) as the test statistic, which can be evaluated given
the data X" and sampling plans {ZL(m) }. If under the null, P"h < 0 for each h € H, then

Vnsup U, n(h) < sup U, y(h) = My,.
heH heH

Thus a test based on the a-th upper quantile of M, controls the size below «. If, in addition, un-
der certain configuration in the null, P"h = 0 for each h € H, then the test is non-conservative, i.e.,
controlling the size at «.

Remark 2.1. A stratification of H = {hif : v € V} is equivalent to partitioning V' into sub-regions
{Vm :m € [M]} and letting Hy, = {hy} : v € Vi } (see Figure 1). Query points in Vy, share the
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same sampling plan {Zb(m) 11 € Iny}. As we shall see in Section 4, it is computationally important to
partition the function class H so that each partition has its individual sampling plan. Our analysis is
non-asymptotic, so no stratification (M = 1) is also allowed.

2.2. Bootstrap calibration

To operationalize the above test, we use multiplier bootstrap to calibrate the distribution of M,,. To
gain intuition, assume for a moment P"h = 0 for h € H, and observe that

(NOOI NI, n(h) = Un(h) +an2N"Y2 57 (2070 —p, ) (), (M)

n?
LGIn,'r

where «y, := n/N. The first term on the right is a complete U-statistic, and thus is approximated
by its Hdjek projection rn—1/2 Eke[n] P"~1h(X},). The second term is due to stratified sampling:
conditional on data X7, it is a sum of independent centered Bernoulli random variables, with variance
approximately given by anUn(h2). We will handle these two sources of variation.

The Hajek projection part requires additional notations. Let Dy, := X{'U {ZL(m) 1€ Iny,me [M]}
be the data involved in the definition of U;z,  in (6). For each k € [n], denote by

I =Gy iee1) 1< < <ipo1 S, ij £k forl <j<r—1},

the collection of all ordered r — 1 tuples in the set {1,...,n} \ {k}. Let Ny be another computational
budget, and define

n—1,r—1

j.4.d. .
{ZL(k’m) cken],me[M], € Jas) } " Bernoulli(gn), qn:=N2/|L—1,-1],

that are independent of D,,. For example, if # = {hy’ : v € V'}, each pair of data point X}, and region

k)

Vi is associated with an independent sampling plan {Zb(k’m) el ( }; see Figure 1.

n—1,r—1
For k € [n] and m € [M], define Nék’m) = ZLEI(k> ka’m), the number of selected » — 1
n—1,r—1
tuples from [n] \ {k} for X}, and H,,. Further, for h € H with o(h) =m,
() —1 k _ L
W)= (M) S 2 w), =T S EWm),  ®)
ser® k=1

n—1,r—1

where (%) := {k} U . Here, G®) (R) is intended as an estimator for the k%" term in the Hajek projec-
tion, since by definition E [A(X,x)) | X)] = P"~ h(X}).

Multiplier bootstrap. Now let {§k7 Q(m) s ken),me[M],e In’T} iid N(0,1) be independent

standard Gaussian multipliers, independent from the data X{* and the sampling plans, i.e.,

D), =D U{Z"™ ke [n), me (M), ce I, ). )

n
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Define for h € H with o(h) =m,

Uf p(h)==n"/? ifk (W) -Bm),
k=1

U L (h) == (N<m))_1/2 3 ey ztm (h(XL)fUAN(h)),

bl
el

(10)

where 0/0 is interpreted as 0. Note that the multipliers {£;} are shared across regions, while
{&(m)} are region-specific. Further, conditional on D}, Uﬁ 4 and Uf’ p are centered Gaussian pro-
cesses with covariance functions 34 (%, ') :=n~* S-10_ (G¥)(h) — G(h))(G¥) (1) — G(I')) and
Fp(h, 1) = (N1 o 2 (0(X,) U2,y () (W (X,) ~ Ul (W) 1o (h) = o(1)}

for any h, h’ € H. In view of (7), we combine these two processes and define

U#’*(h) = TU#A(h)—Fa}/zU#B(h) forheH, M7 := sup U#,*(h). (11)

' ' heH
Finally, we estimate the conditional (given D)) distribution of M# by bootstrap, i.e., by repeatedly
generating independent realizations of the multipliers {&j, L(m)} with the data X{* and the sampling

plans {Z L(m), Zb(k’m)} fixed, and obtain the critical value for the previous test statistic from the condi-
tional distribution of M# .

2.3. A simplified version of approximation results

To justify the bootstrap procedure, we need to show that conditional on DY,, the distribution of M# is
close to that of M, which is the main result in Section 6. Here we state a simplified version of the
approximation results for a uniformly bounded function class H. Note that the bound on H is allowed
to vary with n.

Definition 2.2 (VC type function class [13, 15]). A collection, H, of functions on S™ with a measur-
able envelope function H (i.e. H > supycy |h| pointwise) is said to be VC type with characteristics
(A,v) if supg N(H, || - .2, €l Hllg,2) < (A/€)” for any € € (0,1), where supg, is taken over all
finitely discrete probability measures on S".

We work with the following assumptions.
(PM). H is pointwise measurable in the sense that for any n € N, there exists a countable sub-
set M}, C H such that, almost surely, for every h € H, there exists a sequence {hy,} C H,, with
(VC). H is VC type with envelope H and characteristics A > eV (e2("=1) /16) and v > 1.

(MB). For some absolute constant Cy > 0, log(M) < Cglog(n).
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(MT-00). There exist absolute constants ¢ > 0, ¢g € (0,1), and a sequence of reals D, > 1 such that
foreach0</<rand1<s<4,
Var (P’"_lh(Xl)) >02,  Var(M(XD)) > oD 2,

2r(s—1)4+20—s—2¢/7
9

I[P 41l pe g < Dn for g€ {234}, he?,

||PT_EHS||P2@ < D%r(s—l)+2£—s—(2€—2)/z7

for g€ {2,00},  [[(P""*H)O?| pa o < Dy,
where for a function f : $2 — R, define fO2(xy,29) := [ f(z1,2) f(z2,z)dP(z).

Theorem 2.3. Assume the conditions (PM), (VC), (MB) and (MT-cc). Then there exists a constant C,
depending only on constants r,a, co, Co, such that with probability at least 1 — C g},

sup [P(My, < 1) — Py (M <8)| < Cl,

teR
’ D27‘K7 1/8 D2K7 1/8 D3K4 2/7
where g, := ( Nn/\N;> + (%) + (%) and Ky, :=vlog(AVn).
Proof. It follows from Theorem 6.1 and Theorem 6.2. Specifically, (MT-co) verifies (MT) with ¢ = oo
and B, = D, . Further, we may without loss of generality assume that 177(3), 77,(12) and py,, in Theorem
6.1 and 6.2, are bounded by 1, and then it is clear that 777(11) + 177(3) +pn<C ggl. |

Remark 2.4. The condition (MB) requires log(M) < Cylog(n), and the impact of M has been ab-
sorbed into K, since Ky, > log(n).

The condition (MT-00) are motivated by the application of testing the concavity of a regression
function in Section 3. It holds if we use (i). the sign kernel {hy’ : v € V} in (4) or (ii). the identity
kernel {hf,g :v € V} in (14) under the additional assumption that the observation noise € in (1) is
bounded; the more general results in Section 6 are required to remove this assumption.

3. Stratified incomplete local simplex tests: statistical guarantees

In this section, we apply the general theory in Section 2 to the concavity test of a regression func-
tion, i.e., Hy in (2), formally introduce stratified incomplete local simplex tests, and establish the size
validity and power consistency. Finally, we propose tests that combine multiple bandwidths.

We first recall the simplex statistics proposed in [1]. For v1,...,v441 € R<, denote by
d+1 d+1
Ao(vl,...,vd+1) = { Zaivi : Zai =1, a;>0forie[d+ 1}}
=1 =1

the interior of the simplex spanned by v1,...,v441, and define S := U§:1 S, where 1 :=d + 2 and

dxr VLo Uj—1,Uj 41, ..., Up are affinely independent
Sj:{(vl,...,UT)GR : . }
and vj € A®(v1,...,0j—1,Vj41,...,0r)

Clearly, S1,...,S, are disjoint. To illustrate, in Figure 1, (v1,v2,v3,v4) € Sy, but (vy,v2,v3,v5) € S.
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For j € [r], there exists a unique collection of functions {Ti(j ). S; —(0,1):i€[r]\ {j}} such that
for any v} := (v1,...,v,) €S,

vi= ) Ti(j)(vqf)% > Ti(j)(”{)zl' (12)
ie[r]\{5} i€[r]\{s}

Now define w : R(ATD)XT 5 R as follows: for z; := (v5,y;) € R 4 e [r],

w(xl,...,zr):zz Z Tz‘(j)(vf)yi—yj H{U{GSJ}' (13)

=1 \ielh\{s)

It is clear that S is permutation invariant for v1,...,v,, and that w(-) is symmetric in its arguments.
Key observations are that if the regression function f is concave (i.e. Hq holds), then P"w < 0, and
that if f is an affine function, P"w = 0, where recall that P is the distribution of X := (V,Y).

Let L(-) be a kernel function and b, > 0 a bandwidth parameter. Recall that Ly(-) := b=%L(-/b) for
b> 0, and define H19 := {hid : v € V}, where for each z; = (v, ;) € R4 i e [r],

.
P (xy,. . ) = w(xl,...,mr)bg/Q H Ly, (v—vg), veV. (14)
k=1

Now consider a partition of V, {V,, : m € [M]}, which induces a partition of H'9, i.e., Hi¢ := {nid:
v € VY },m € [M]; see Figure 1.

Finally, recall the definitions of U;L N (+) in (6), D}, in (9), and M# in (11). Given a nominal level
a € (0,1), we propose to reject the null in (2) if and only if

sup v/, y(hi) > qff | (15)
veY

where ¢7f is the (1 — a)-th quantile of M conditional on D;,.

Sign function. We also consider the function class H% := {hi,g :v € V}, where hi% is defined in (4).
As we shall see, {hy : v € V} has the advantage of being bounded, but it requires that the conditional
distribution of & given V' is symmetric about zero. On the other hand, {19 : v € V} imposes no assump-
tion on the shape of the conditional distribution, but requires ¢ to have a light tail; in this Section, we
assume ¢ to be bounded for {4 : v € V} so that we can apply Theorem 2.3, and relax this assumption
in the Supplement Material [52].

3.1. Assumptions for concavity tests

We assume the distribution of (V,¢) in (1) to be fixed, but allow f to depend on the sample size n,
which permits the study of local alternatives. We make the following assumptions: for some absolute
constant Cg > 1,

(C1). The kernel L : R — R is continuous, of bounded variation, and has support [—1/2,1/2]¢. Or
L(-) is the uniform kernel on [—1/2,1/2]%, i.e., L(v) = 1{v € (—1/2,1/2)%} for v € RY.
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(C2). The number of partitions, M, grows at most polynomially in 7, i.e., log(M) < Cylog(n).
(C3). The bandwidth b,, does not vanish too fast in n, i.e., 1 < b;gdﬂ < C’onl_l/CO.

(C4). V has a Lebesgue density p such that Co_l < p(v) < Cg forv € V2bn | where V0 := {v' e R%:
inf ey [[v) — v"||oo < b} is the b-enlargement of V.

(C5). Assume for * = id or sg and n > Cy, inf ey Var (P77 11} (X)) > CU_I.
(C6-id’) Assume that sup, <y, | f(v)| < Cp and that ¢ is bounded by Cy almost surely.

(C6-sg’) Assume that sup,cyu, |f(v)| < Cp, and that ¢ is independent of V', symmetric about zero,
ie,P(e>t)=P(e < —t)forany ¢t >0, and P (¢ > 2Cp) > 0.

Some comments are in order. (C1) is a standard assumption on the kernel L, which is satisfied
by many commonly used kernels. Recall that V' is compact, so (C2) is satisfied if we partition each
coordinate into segments of length nb,, for some small 5 € (0,1). (C3) imposes the same condition on
the bandwidth b,, as for the procedure using the complete U-process [13, (T5) in Section 4], which
holds as long as n~2/(3d)+n < by, for arbitrarily small 5 € (0,1); in comparison, [1] has a (slightly)
milder condition on the bandwidth, n—1/d+n < by, for the discretized U-statistics. (C4) is necessary
that for each v € V, there are enough data points in the b, -neighbourhood of v. The condition (C6-id”)
is assumed for the class H9, while (C6-sg”) for €.

Now we focus on (C5) with the function class Hid_ as the discussion for 7€ is similar. For simplicity,

assume ¢ and V in (1) are independent. By a change-of-variable and due to the fact that TZ-(] ) in (12) is

()

invariant under affine transformations (in particular 7;”/ (v — bpu1, ..., v — bpuy) = Ti(] ) (u1, ..., ur)),

E [Var (Pr_lhig(Vl,Yl)Wl)} = Var(e1) /p(u - bnul)LQ(ul)ﬂ?(ul)dul, where

Toun) = [ 1t esip - 3o wha(u €83 ) T wipto = buwi)dus,
j=2 i=2

The key observation is that Var(P"~1h%(X1)) does not vanish as b, — 0. Then we can find more
primitive conditions for (C5). For example, (C5) holds if L(-) = 1{- € (—1/2,1/2)?}, p is continuous
on V, and lim,, o0 by, = 0.

Remark 3.1. In the Supplement Material [52], in Section E.I, we relax the condition (C6-id’), re-

quiring € to have a light tail, instead of being bounded. Further, in Section E.2, we relax the condition
(C6-sg’), allowing € and V' to be dependent.

3.2. Size validity and power consistency

The following is the master theorem for the statistical guarantees for the stratified incomplete local
simplex tests.
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Theorem 3.2. Consider thg function class H4 or H3S. Assume that (C1)-(C5) hold and that (C6-id’)
(resp. (C6-sg°)) holds for H? (resp. H*8). Further, for some r, ' > 0,

N =n"b 9 Ny:=ntb9". (16)

Then there exists a constant C, depending only on Cy,d,k, ', such that with probability at least
1—Cn /€,

sup [P(Mp, <t) —Pp, (M <t)| < cn~VC.
teR "

Proof. In Section E.1 and E.2 of the Supplement Material [52], we show that (PM) and (VC) is implied
by (C1), where the latter is due to [26, Proposition 3.6.12]. (MB) is the same as (C2). Further, we verify
that (MT-c0) holds with Dy, = Cb,, 4/ % Then the proof is complete by Theorem 2.3 and due to the
requirement on the bandwidth, i.e., (C3). |

Remark 3.3. The main challenge in working with {hy : v € V} (and also with H) is that the size
of the projections of the kernels, {PT*z|hf)g| :4=0,1,...,r} has different orders of magnitude due to
localization. The same is true for the absolute moments of {|hy’|°} for s > 1. Specifically, in Section
E.2 of the Supplement Material [52], we verify (MT-c0) holds for any q > 1. Thus for a fixed s, pro-

Jjections onto consecutive levels differ by a factor of by, d(1-1/ q). On the other hand, for a fixed ¢, the

second moment (s = 2) is greater than the first moment (s = 1) by a factor b;d(r_lﬂ).

The next Corollary establishes the size validity of the proposed procedure. Among all concave func-
tions, affine functions have the (asymptotically) largest rejection probabilities, which attain the nominal
levels uniformly over (0, 1) for large n.

Corollary 3.4 (Size validity). Consider the procedure (15) for testing the hypothesis (2) with H* for

x = id or sg. Assume the conditions in Theorem 3.2 hold. If the regression function f is concave, i.e.,
Hy holds, then for some constant C, depending only on Cy,d, K, K,

P (sup VU, N (RS > qf) <a+Cn YC forany a € (0,1).
veV ’
Further, if f is an affine function, then

sup < Ccn~ /0.

ae(0,1)

P (sup VU], N (BS) > qﬁ) -«
veVY ’

Proof. If f is concave, then P"h}; < 0 for v € V. Further, if f is affine, then P"h} =0 for v € V. Then
the results follow from Theorem 3.2. |

The next Corollaries concern the power of the proposed procedure. The proofs can be found in
Section E.3 of the Supplement Material [52].

Corollary 3.5 (Power). Consider the setup as in Corollary 3.4. If in addition

VnP"hy > (C’O)*ln“", for some vy, €V, K" >max{(1 - k)/2,0}, (17)
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. ron
then for some constant C, depending only on Cy,d, k, k', k",

P (sup VnU!, N (RE) > qf) >1-Cn Y% forany a e (0,1).
veY ’

Remark 3.6.  The condition (17) ensures that the bias \/nP"hy; is significantly larger than the stan-
dard deviation of My,. If k > 1, then k" in (17) can be arbitrarily small. Note that due to (C2), the
impact of M is absorbed into the constant C.

Next we provide examples for which (17) holds, and focus on the class 4. The discussion for ¢
is similar.

Corollary 3.7 (Power - smooth f). Consider the setup as in Corollary 3.4. Assume that f is fixed
and twice continuously differentiable at some vy € V with a positive definite Hessian matrix at vg,

and that limy, ;o0 by, = 0. Then liminfy, oo PRI / (b?fd/z) > 0. Thus ifb;(d+4) < Con 2" for

some k" > max{(1 — k)/2,0}, then for any « € (0, 1), the power converges to one as n — oo.

Remark 3.8. Note that Theorem 7 in [1] establishes the consistency of their test using H*8 (discrete,
complete version) under the condition that nbfll+4 /log(n) — oo, which is in the same spirit as the
requirement on by, in Corollary 3.7.

Corollary 3.9 (Power - piecewise affine f). Consider the setup as in Corollary 3.4. For j € {1,2},
let Oy ; € R? and wn,j € R such that 0,, 1 # 0y, 2. Let

f() = fr(v) := max {fnjl(v), fnjg(v)} , where [y j(v):= 977;]-1) +wpj forj=1,2.

If there exists vp, € V such that fy, 1(vn) = fn2(vn) for each n, then

timinf PAE/ (b %)10n,1  On,2]l2) > 0.

Thus ifb,:(d—ﬂ) < Cont=2+" (10,1 — On 2|13 for some K" > max{(1—k)/2,0}, then for any o € (0,1),
the power converges to one as n — <.

Remark 3.10.  If f does not depend on n, in particular 0y, ; = 0; for each n, then the requirement on

— 2 _ L. . .
bn, becomes by, (d+2) < Cont 26" \which is weaker than that for smooth functions f in Corollary 3.7.
On the other, if we choose by, = b > 0 for each n, then to achieve power consistency, we require
— " . . .
0n,1 — On2ll2 = C Ln=1/2+5"  Observe that fn is convex if Oy, 1 # Op, o, and affine if 0, 1 = 0, 2.

Thus this allows “local alternatives" that approach the null at the rate of n~1/2+R",

3.2.1. Discussions

The stratified incomplete local simplex test (SILS) is a least favorable configuration test, with affine
functions being (asymptotically) least favorable. This type of test was first proposed for testing the
monotonicity of a (univariate) regression function by [24], and then extended to test the (multivariate,
coordinate-wise) stochastic monotonicity by [41], and to test the (multivariate) convexity by [1]. See
also [13] for the distribution approximation of these test statistics. It is not clear how to extend this idea
to test other shape constraints, such as quasi-convexity [38], because it seems difficult to identify the
least favourable configuration, or to compute the expectation of test statistics under it.
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From Corollary 3.4, the SILS test is asymptotically non-conservative; however, it is non-similar [42],
in the sense that for strictly concave functions, the probability of rejection is strictly less than the nom-
inal level «v. Being non-similar alone is not evidence again the SILS test (e.g., Z-test for normal means
is optimal despite being non-similar), but a least favorable configuration test may be less powerful than
alternative tests. The condition (17) requires “local convex curvature”" of f for the test to be power
consistent; see Corollary 3.7 and 3.9 for examples. The question of how (17) is related to the global Lo
separation rate (see discussions below) is left for future research.

In Section E.4 of the Supplement Material [52], we discuss the Lo minimax separation rate for
concavity test, and an alternative test (“FS" test) [22], which (almost) achieves the minimax rate for
smooth functions for d = 1 and may do so for d > 2; thus the FS test is expected to have decent power.
We note that the validity of our SILS test does not require f being smooth, and that in simulation
studies (Section 5) it achieves comparable power to the FS test. In contrast, the FS test fails to control
the size properly when f is not smooth (e.g., piecewise affine); this is observed in Section 5, and we
also provide a detailed explanation in the Supplement Material [52] (e.g., if d = 2, it requires f to be
Holder continuous with smoothness parameter s > 4).

3.3. Combining multiple bandwidths

The theory in Subsection 3.2 does not suggest a particular choice for the bandwidth b,,. Since the size
validity holds for a wide range of by, its selection depends on the targeted alternatives. If the targets
are “globally" convex, then b, should be large in order for the bias, {y/nP"h} : v € V}, to be large.
On the other hand, if the targets are only convex in a small region, then b, should be able to localize
those convex regions. See Subsection 5.4 for concrete examples.

One possible remedy is to use multiple bandwidths. Let 13,, C (0, c0) be a finite collection of band-
widths. For each b € B,,, we denote the function hig in (14) (resp. hyt in (4)) by hivd’ p (resp. hi;g,b) to
emphasize the dependence on the bandwidth, and Hj = {h , : v € V} for x = id or sg. Further, for
each b € By, let N}, and Ng 3, be two computational parametefs, and consider two independent collec-
tions of Bernoulli random variables

Spi= {Zb(m’b) :me[M], L€ In,r} “ag- Bernoulli(py, ),

S} = {ka’m’b) L keln), me M), ce1®

n—1,r—1

} b Bernoulli(g, 3),

where py, , := Ny/|Inr|, @np := Nop/|In—1,—1|, and they are independent of XT'. In other words,
the sampling plan is independent for each b € 5,,.

Then for each b € B,,, we denote UT’I’ n (h) in (6) by Uf% Mb(h) with the sampling plan given by Sp.
Similarly, we denote G(¥) (h) and G (h) in (8) by G*:?) () and c® (h) respectively with the sampling
plan given by S;.

Now let D;, := X' U{S},,S; : b € By}, and denote Gaussian multipliers by

-
(€ ken]}, { mb) . m e [M], LEInm,beBn} RN (0, 1),
independent of D;L. Define for b € By, and v € Vp,,

U7, () s=rUT 4 (R )+ (n/Np)Y2UT (),
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* — n * (b *
where U% , | (%) =012 S0, & (GED (12 ) ~ G (h7 ), and

~1/2
u#

Tesiy) =1 > z{m?) > ez o p(X0) = Up v p(hiy b))

LEIn,T Leln,r

Finally, for each o € (0,1), denote by qﬁ the (1 — ) quantile of SUPpeB,, eV Uf* p (o )
conditional on DJ,. Then we propose to reject the null in (2) if and only if

sup \/ﬁUAMb(h;b) > . (18)
beBn,veV
Remark 3.11. It is possible to allow By, to be uncountable, for example, By, := [(y,, un], which cor-

responds to the uniform in bandwidth results [20, 13]. However, we choose to present the results for a
finite By, for simplicity, since otherwise we need to also stratify By,. This approach has a similar spirit
to the multi-scale testing of qualitative hypotheses [19].

To establish the size validity and analyze the power of the test (18), we need a more general theory
than those in Section 2 for a function class {h, :v € V,b € By}, where V is an index set. The key
difference is that for each b € By, the computational parameters Ny, and Noy, may be of a different
order (see, e.g., (16)). The rigorous statements for {h, : v € V,b € By}, which follow from similar
arguments as those in Section 6, are not included for simplicity of the presentation. In Subsection 5.4,
we conduct a simulation study to investigate the empirical performance of the SILS test with multiple
bandwidths.

4. Stratified incomplete local simplex tests: computation

In this section, we discuss the computational complexity and implementation for the stratified incom-
plete local simplex tests. We focus on ¢ in our discussion and omit the superscript for simplicity.
Assume that (C1)-(C6-id’) hold, and that the computational parameters N, No are given in (16). Fur-
ther, as )V is compact, we assume ) C [0, l]d without loss of generality.

For some small n € (0,1/2), lett:= |1/(nby,) ], and 7; = inby, fori =0,1,...,t and 7:11 = 1. Now
we partition each coordinate into segments of length nb;, (except for the rightmost one), i.e., each Vy,
is determined by an ordered list (j1,...,jq) such that 0 < j, <t for k € [d] and V), = {v €V : 7, <
vy, < Tj,+1 for k € [d]}. Then the number of partitions M < (1 + n oy 1),

For any v € R% and A ¢ R?, we denote the bn-neighbourhood by

N(@,by) = {0 €R: o —v'[l oo <bn/2},  N(A,bn) := | J N(v,bn).

vEA

Denote by ND(v, by,) := {i € [n] : V; € N'(v,b,)} and ND(A, by,) := | J,,c g ND(v, by,) the indices for
data points within by, -neighbourhood of v and A respectively.

As an illustration, in Figure 1 (where b = 8 n = 1/8), V is partitioned into small squares of
size 1. For the dotted region Vp,, N (Vm,by) is area encompassed by the big dotted square, so
vg € N(Vimn,by), but vs € N'(Vp,, by). Further, ND(Vy,, by,) are indices for data points within the
dotted square.



Testing for regression curvature 17
4.1. Stratified sampling

For m € [M], let A(Vy,) := {v=(i1,...,ir) € Iny : ij € ND(Vp,by) for j € [r]} be the collec-
tion of r-tuples whose members are all within by,-neighbourhood of V,,. For example, in Figure 1,
(v1,v2,v3,04) € A(Vin), but (v1,v9,v3,v5) € A(Vy,). Due to the localization by L(-) (cf. (C1)),

hy(z,) =0, for any v € Vyy, and ¢ € |1 | \ A(Vim).

As a result, the individual values of {ZL(m) it € |Iny| \ A(Vm)} are irrelevant, except for their sum,
which is a part of N("™). Thus, we generate a Binomial(|I, » \ A(Vin)|,pn) random variable, that

accounts for 3, ci7 1\ A(v,) ZL(m).
On the other hand, the number of selected r-tuples in A(V;y,) is on average

did kp—dr
E Z Zb(m) < n(1+n) by \ n"by, < (1 + 77)drnm7
r [, r|
LE.A(Vm) ’
since the || - ||co-diameter of Vy, is nby,, and the density of V' is bounded (see (C4)). Thus to compute

supyey,, VU], n(hy), the number of evaluations of w(-) is on average < n"*, and the computational
complexity can be made independent of the dimension d (as 7 can be chosen to be small).

Remark 4.1. Above calculation of complexity does not include the cost of maximizing over Vy,. In
practice, we select a finite number of query points as in Subsection 4.2. The discussion for the bootstrap

part is similar, and we analyze below the complexity of its actual implementation.

Why stratification? Without stratifying V, each v € V share the same sampling plan {Z, : v € I, - }.

However, we cannot afford to generate all {Z, : v € I, ;- }, as on average there are N = n' bdr non-zero
terms. We may attempt to use the above short-cut. For vy, v2 € V, to compute Ur’h N(hvi) (fori=1,2),
we only generate {Z, : ¢ € A({v;})}, and the individual values of {Z, : v € I, » \ A({v;})} are not
explicitly generated.

However, the issue is to ensure consistency. (i) In computing Uf% N (hwy ), although the individual
values of {Z, : v € I, \ A({v1})} are irrelevant, we still need to generate a Binomial random vari-
able to account for their sum. However, (I, \ A({v1})) N A({v2}) in many cases is non-empty,

and thus >, 7\ A({or }) me) and {Z, : + € A({v2})} are not independent. (ii) In many cases,

A({v1}) N A({v2}) is non-empty, so we cannot independently generate {Z, : . € A({v1})} and
{Z,:1€ A({va})}. Note also that the calculation is needed for multiple v € V instead of only vy, va.

Remark 4.2. In Section E.5 of the Supplement Material [52], we present an algorithm without strati-
fication that addresses the above consistency issue. Its computational complexity is < ZdTn“bg & eyal-
uations of w(-). If d is fixed, it only loses a bgdfactor in theory, but 2% can be very large in practice,
and thus it is not computationally feasible (e.g., 29" = 32768 if d = 3).

4.2. Implementation of SILS

In practice, instead of taking the supremum over V), we choose a (finite) collection of query points,
¥, one from each partition {V,, : m € [M]}, and approximate the supremum over ) by that over ¥;,.
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As a result, each v € ¥, has its individual sampling plan ({ZL(m) S Imr} if v € V), which can be
generated independently for different query points. Further, the test still takes the form of (15) with a
finite function class H = {h, :v € ¥} .

Remark 4.3. It is without loss of generality to pick one query point from each region, since we could
always decrease 0, i.e., making each region smaller. Further, unlike [ 1], we do not require query points
10 be well separately, that is, for small 1, there are pairs fo queries points v,v' € ¥y, such that ||v —
v'||co < bn. Finally, since only one element is picked, if v € Vy,, instead of considering ND(Vy,, by),
we can focus on ND({v},by,).

Remark 4.4.  In establishing the bootstrap validity for stratified, incomplete U-processes, we first con-
sider the corresponding results for high-dimensional U -statistics, and then approximate the supremum
of a U-process by that of its discretized version. Thus the above procedure, which can be viewed as a
practical implementation of approximating the supremum of a process, can also be directly justified by
Theorems in Section B of the Supplement Material [52].

Computing the test statistic. In Algorithm 1, we show the pseudo-code to compute, for each v € 77,

the statistic U, 7’17 ~ (hw), and at the same time the conditional (given D;,) variance 7 (hy) of Ut ghw)
in (10); note that we write Yg(hy) for g (hy, by ), which is defined following (10). It is well known
that sampling 7' items without replacement from S elements (S >> T') can be done in O(T log(T))
time [30]. Then based on the discussions in the previous subsection, the computational complexity for
Algorithm 1 is O(Mn" log(n)).

Bootstrap. For a fixed k € [n], notice that {G¥) (h,) : v € ¥} in (8) takes the same form of stratified,
incomplete U-processes as the test statistics, and thus we can apply Algorithm 1, with appropriate
inputs, to compute it. Since we need to compute G*) for each k € [n], the complexity is

log(n) < Mnl"_”,b;d log(n).

nx M x ((n — 1)bg) nt b

r—1 |In—1,r—1|
Further, as we pick one element from each V,,, given D}, {Uf B(hv) = “//n} are conditionally
independent, with variances {yg(hy) : v € ¥, } already computed in Algorithm 1, and we no longer
need to generate Gaussian multipliers {¢ L(m } for each summand indexed by ¢ in (10).

Finally, for independent standard Gaussian multipliers {g, & (m) . ke [n],m € [M]}, we compute
for each v € ¥;,,

2= 36 (61 () = B(hy) + 670D TR,
k=1

Since {G*) : k € [n]} and {35 (hy) : v € ¥,} have already been computed, the complexity is
O(BMmn), where B is the number of bootstrap iterations. Hence the overall computational cost is
O(Mn*log(n) + Mn % b-d1og(n) + BMn).

Remark 4.5.  The computational bottleneck is in computing {G¥) : k € [n]}, which, however; is out-
side the bootstrap iterations. Thus we can afford large B in the bootstrap calibration. The above algo-
rithms can be implemented in a parallel manner using clusters; in particular, G®*) can be computed
separately for each k € [n]. As a result, the efficiency scales linearly in the number of computing cores.
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Input: Observations {X; = (V;,Y;) € RAT1 .4 € [n]}, budget N, kernel L(-), bandwidth by, query points ¥, (size
M).
Output: U 7'1 N 7B two vectors of length M
1 Initialization: p, = N/ (TTL), U;l NﬁB both set zero ;
2 for m < 1to M do

3 v=Yplml;

4 Cienerate T ~Binom((‘ND(g’b")‘), pn), To ~Binom((7rl) — (‘ND(Z’b")l), pn)s
5 N Ty + Tv;

6 Sample without replacement T terms, {¢p : 1 < £ < T}, from A({v});

7 for /< 1toT7 do

8 U;L’N[m}eU;L’N[m]—&-hU(X%);

9 Aplm] < Aplm] + (hv(X,))?;

1o end

| UL ylm] e U [ml/R, Aplm] « plml/N - (U, ylm))?

12 end

Algorithm 1: compute U, 7’1 n and yp over 7, for the concavity test.

5. Simulation results

In the simulation studies, we consider setups where the regression function f in (1) is defined on
(0,1)%, and the covariates V = (Vi,...,Vy) have a uniform distribution on (0,1)%, for d = 2,3,4. In
this section, the error term ¢ in (1) has a Gaussian distribution with zero mean and variance o2

Remark 5.1. The results for d = 3 and 4 are qualitatively similar, and presented mostly in Section
D of the Supplement Material [52], where we also study asymmetric or heavy tailed distributions for
the noise € (Section D.3).

We compare our proposed procedure with the method in [22], denoted by “FS".

Proposed procedure. We use the uniform localization kernel L(-) = 1{- € (—1/2,1/2)%}. The query
points are %, := {0.3,0.4,0.5,0.6,0.7}2 for d = 2, and ¥, := {0.3,0.5,0.7}¢ for d = 3,4. For pa-
rameters related to the computational budget, we set N = 10 x 25 x n x b,, AXT for d = 2,3,4,
Ny =10% x b;%%" for d = 2,3 and Ny = 2 x 10* x b, ¥" for d = 4, and the Bootstrap iterations
B =1500. The N is selected so that oy, := n/N is very small, and further increasing it will not
improve the power of the test. The estimation of {G(¥)(h) : k € [n],v € #,} is the computational
bottleneck, and empirically we find that further increasing the selected value for No does not improve
the accuracy in terms of the size of the proposed procedure. We consider two types of kernels, /!4 and
‘H*2, and use below “ID" for the former and “SG" for later. For each parameter configuration below,
we independently generate (at least) 1,000 datasets, apply our procedure, and estimate the rejection
probability.

FS method [22]. We use the implementation provided by the authors?, where either quadratic or cube
splines with j knots in each coordinate are used in constructing an initial estimator for the regres-
sion function; we denote the former by FS-Qj and later by FS-Cj. We set the tuning parameter
~Yn = 0.01/log(n) and the Bootstrap iteration B = 200 as recommended by [22]. Below, the rejec-
tion probabilities are estimated based on 1,500 independently generated datasets.

2¢code for [22]: https://www.dropbox.com/s/jmjshxznu3ltnn2/ShapeCode.zip?d1=0.
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5.1. Running times

The computational savings compared to using the complete U-process, p, := N/ (:f) and ¢, =

Ny/ (f:%), are listed in Table 2 for several typical configurations. It is clear that for a moderate size
dataset (say n ~ 1000), using the complete U-process has a very high, if not prohibitive, computa-
tional cost (see Table 1 for the running time using the stratified, incomplete U-process). For example,
for d = 3,n = 1000, b, = 0.6, it takes on average 5.26 minutes to run our procedure with 40 cores,
which implies that with the complete version it would take at least 7.2 days (= 5.26 mins/qy, ).

In contrast, the FS method [22] has a much shorter running time. For example, with d = 2,n = 1000,
it takes less than 20 seconds with 4 cores (see Table E4 in [22]). For d > 3, it could be challenging to
apply the FS method due to the accuracy of estimating the regression function, the projection onto a
function space, and the numerical integration needed to compute the distance etc.

d=2,bp =05 d=3,bn =0.6,|%n| =27 d=4,bp =0.7
n=1000,|%,|=25 n=500 n=1000 n=1500 n=-2000,|%| =81

5.06 mins 1.31 mins  5.26 mins  9.12 mins 33.4 mins

Table 1. Running time of the proposed procedure in minutes using 40 computer cores, where N and No are
described in the introduction of Section 5.

Pn an
n=500 n=1000 n=1500 n=500 n=1000 n=1500
d=2,bp=0.5 1.2E-2 1.5E-3 4.5E-4 1.2E-1 1.5E-2 4.6E-3
d=3,bn =0.6 1.0e-3 6.4E-5 1.3E-5 8.3E-3 5.1E-4 1.0E-4

Table 2. Computational efficiency for typical configurations, where N and N9 are described in the introduction
of Section 5. For d = 4, by, = 0.7, n = 2000, we have pn, =5.9E-8, qn = 3.9E-7. Here, sE-t = s x IO_tA

5.2. Size validity
We start with our proposed procedure, and consider concave functions given by
f)=v+...+0v)°, forv:=(vi,...,v49) € (0, 1), (19)

for 0 < kg < 1. Here, we consider the rejection probabilities for kg = 1; that is, f is affine and thus the
(asymptotically) least favourable configuration in the null. In Section D.2 of the Supplement Material
[52], we present results for strictly concave function with 0 < kg < 1.

For each query point, the average number of data points within its b,, neighbourhood is n x b,; 4,
Since a decent size of local points is necessary for the validity of Gaussian approximation, we select
by, so that locally there are at least 150 data points. As we shall see in Subsection 5.3, smaller b,, has a
better localization power, while larger b,, is suitable if the targeted alternatives are globally convex.

In Table 3, we list the size for different bandwidth b,, and error variance a2 at levels 5% and 10%
for f in (19) with kg = 1. From the Table 3, it is clear that the proposed procedure is consistently on
the conservative side. We note that the conservativeness is not due to the stratified sampling. For d =1,
we were able to implement the complete version, and observed a similar phenomenon. Further, [13]
uses complete U-processes to test regression monotonicity, which are also conservative (see Table 1
therein).
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FS method [22]. In Table E2 of [22], we can observe the slight inflation of the empirical size of the
FS method when the function is linear. Here, we consider the following concave, piecewise affine
regression function:

f(v1,v2) = —|vg — 0.8 — |ug — 0.8|, forvy,ve € (0,1). (20)

The rejection probabilities of the FS method [22] at the nominal level 5% are listed in Table 4. Recall
that FS-Qj (resp. FS-Cj) is for using quadratic (resp. cubic) splines with j knots in each coordinate
as the initial estimator for the regression function. Except for the global test FS-QO, which places
no interior knots, these probabilities far exceed the nominal level. We provide explanations for the
significant size inflation of the FS method [22] in Section E.4 of the Supplement Material [52].

n =500 n = 1000

d =2, Level =5% bp =06 bp=0.55 by=0.5 bpn =05 bp=045 by =04
ID,oc =0.1 3.1 29 2.8 4.1 2.6 3.4
SG,0=0.1 3.1 4.1 2.8 3.0 3.8 2.7
ID, o0 =0.2 32 3.7 3.0 29 3.1 2.4
SG,0=0.2 3.6 33 2.9 3.6 3.1 25

d=2,Level=10% bp =06 bnp =055 bp=0.5 bp =05 bp=045 bp=04
ID,oc =0.1 8.3 6.8 6.7 8.1 7.5 7.7
SG,0=0.1 7.4 8.0 6.6 8.1 7.7 6.1
ID,c=0.2 7.8 8.0 6.2 7.6 7.8 6.0
SG,0=0.2 8.7 7.1 7.0 8.6 7.0 6.7

Table 3. Size validity of the proposed procedure for d = 2. The probabilities of rejection under affine regression
functions, are in the unit of percentage.

Knots j 0 1 2 3 4 5 6 7 8 9

FS-Qj 0 99.5 465 92 236 339 160 160 231 203
Fs-C; 971 507 153 328 239 136 177 210 199 222

Table 4. The rejection probabilities (in percentage) for FS-Q7 and FS-Cj [22] at level 5% for the concave (i.e.
Hj holds) function in (20), where n = 1000 and o = 0.1.

5.3. Power comparison

We study two types of alternatives for the regression function.
Polynomial functions. In the first, we consider f in (19) for kg € {1.2,1.5}.
Locally convex functions. For the second, we consider regression functions that are mostly concave

over (0,1)%, but convex in a small region. Specifically, let p(v) := exp (—lv|[?/2) forv € R?, which is
concave on the region {v € RY : lv]|oo < 1}. Then for ¢1,co, w1, we >0 and uy, uo € R?, we consider

fw)=c1o((v— p1)/wi) — cap (v — p2) Jwa) , for v € (0,1)%, 1)
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Weletcyp =1,w; =1.5,and uy = (0.75, ..., 0.75) so that without the second term, f would be concave
in the entire region (0, 1)d. We let puo = (0.25,...,0.25), and set co and wo to be small so that f is
mostly concave and locally convex in a small neighbourhood of p2. In Section D.1 of the Supplement
Material [52], we plot the regression function f together with one realization of dataset.

In Table 5 (a) and (b), for the two types of alternatives, we list the power of H with different
bandwidth parameters b;,, and the FS method [22] using either quadratic (Q) or cubic (C) splines with
j=0,1,2,5 knots in each coordinate®. For our proposed method, if f is a polynomial function (19),
the power increases as b, increases, as f is globally convex. However, for the locally convex function
f (21), the power initially increases as by, increases, but later drops significantly, as f is only locally
convex, but “globally concave". Thus the choice of bandwidth depends on the targeted alternatives.
Similar statements can be made about the FS method [22]. Adding knots decreases its power for (19),
while a “global" test such as FS-QO has little power against (21).

In summary, the proposed procedure has a comparable power to the FS method [22], which however
fails to control the size in general. Further, we show next that the issue with selecting b,, can be partly
solved by combining multiple bandwidths.

14 with single by, FS method [22]
Level 5%  bp =0.6 bp =08 bp=1 Q@ Q Q@ Q5 <€ c1_ C2 G5
Rej. Prob. 25.6 69.1 96.6 938 816 577 377 856 605 50.7 36.3

(a) Polynomial f (19) with kg = 1.5

Hi4 with single by, FS method [22]
Level 10% ~bp =05 bp =006 by =0.7 Q Q Q2 Q <0 c1 C2 G5
Rej. Prob. 20.3 40.3 15.8 7.1 497 285 304 443 265 277 294

(b) Locally convex f (21) with wg = 0.15,¢c9 = 0.3

Poly f (19) with kg = 1.5 at 5% Locally convex f (21) with wg = 0.15,¢c9 = 0.3 at 10%

Rej. Prob. 71.7 39.8

(c) Multiple bandwidths {ng :b€{0.6,0.8,1}}

Table 5. The rejection probabilities (in percentage) of the proposed method Hid, the FS method [22], and the
proposed method with multiple bandwidth {’H})d :6€{0.6,0.8,1}} ford =2, n=1000, o = 0.5.

5.4. Combining multiple bandwidths

We consider the procedure (18) in Subsection 3.3 that combines multiple bandwidths, {”H})d :be By}
with By, = {0.6,0.8,1}. For f in (19) with kg = 1 (i.e. affine functions), the probability of rejection is
8.4% when the nominal level is 10%; for strictly concave functions with k¢ < 1, the probabilities of
rejection are listed in Section D.2 of the Supplement Material [52]. In Table 5 (c), we present its power
against the two alternatives.

35 =0,1is used in [22]
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With a range of bandwidths, {’H,})d : b € By} achieves a reasonable power, and is adaptive to the
properties of the regression function f, with its computational cost linear in |5, |. As expected, it is not
as powerful as the best performance achievable by /H’ib(i with a single bandwidth b,,, which, however,
is unknown in practice.

Thus, we would recommend the procedure (18) with multiple bandwidths 1,,. In choosing B;,, one
approach is to first decide reasonable lower and upper bounds, by, and bpax, for the bandwidth, and
then based on available computational resource, select a few bandwidths in [byin, bmax] (say equally
spaced) to form 3;,. As a rule of thumb, one may choose by, so that there are enough data points in
the by, neighbourhood of each query point (say > 120). On the other, bpax could be decided based on
the diameter of the region of interest, V.

6. Gaussian approximation and bootstrap for stratified, incomplete
U-processes

In this section, we consider a general function class H, and establish Gaussian approximation and boot-
strap results for its associated stratified, incomplete U-processes in Section 2, under the more general
moment assumptions (MT) instead of (MT-00). In particular, the condition (MT) does not require the
envelope function H in (VC) to be bounded.

(MT). There exist absolute constants o > 0, ¢g € (0,1), ¢ € [4,00], and By, = Dy, > 1 such that

Var (P’”_lh(Xl )) > o2 forh e, (MT-0)

2+k
supE‘Pr_lh(Xl)—Prh < Dffor k=1,2, ||[P"" H|py < Dn, (MT-1)

heH
|PT=CH | pe g < BRT2DRHTS for €2 2,5 =1,2,3,4,

HPT_ZHSHPZ,(] < BTle—QDfL@fZ/‘I)JrQ/Q*S’ for 0 =1,2, s =2,3,4, HPT_QHHPQ,q < D;r";fQ/q7

|P7 =1l prp < B2 2DIS, for €=0,1,2, s € [4] with £+ 5> 2, heH,

(MT-2)
|Hllprq < Br 2Dy ||H|pr2 < B, (MT-3)
coB2D72 < Var(h(XT)) < min{ D"V, B2D=2}, forh e A, (MT-4)
sup [P~ 2hlpz g < DR, (P72 H) O3 pa gy < Dy, (MT-5)

where 1/q = 0 if ¢ = oo, and recall that for a measurable function f : .S 2 4 R, define fO2tobea
function on S2 such that fO2(z1,x9) := [ f(x1,)f (2, 2)dP(z).

6.1. Gaussian approximation

We first approximate the supremum of the stratified, incomplete U-process (6) by that of an appro-
priate Gaussian process. Specifically, denote by P!/ the function on S such that P*~! f(z1) :=
E[h(z1,X2,...,X;)], and (£>°(H),] - |loo) the space of bounded functions indexed by H equipped
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with the supremum norm. Assume there exists a tight Gaussian random variable Wp in ¢°°(#) with
zero mean and covariance function v, (h, b') := Cov (Wp(h), Wp(h')) = r?ya(h, k') + anyp(h, k')
for h,h' € H where ap :=n/N, y4(h,h) := Cov (P""1h(Xy), P"~'H(X1)), and yp(h, 1') :=
Cov (h(XT), W (XT)) 1{o(h) = o(h')}. Note that yg(h,h') = 0 if o(h) # o(h’), which is due to
the stratification. The existence of Wp is implied by (VC) and (MT) (see [15][Lemma 2.1]). Further,
denote M, := supp, ey Wp(h). We bound the Kolmogorov distance between the two suprema.

Theorem 6.1. Assume the conditions (PM), (VC), (MB), and (MT-0)-(MT-4). Then there exists a
constant C, depending only on r,q, g, cy, Cy, such that

sup [P(Ml, < t) — P(My < t)‘ < e ronl), with
teR

© D%KZL 1/8+ D%Kfl 1/4+ Dg;Q/qu/Q 1/2
L - nl—2/q nl-1/g ’

1/4 1/4
@) _ (BRKIN'®, (nir/aKiBi D) / L (Mo /
i N N N1-2/q ’

where 1/q =0 if ¢ = co.

Proof. The proof can be found in Section C.2 of the Supplement Material [52]. The strategy is to first
establish Gaussian approximation results for a finite, yet “dense", subset H' of H (Section B), and
then approximate the supremum over H by that over H’, which requires the local maximal inequalities
developed in Section A.1. ]

6.2. Bootstrap validity

The next Theorem shows that conditional on D;L, the maximum of the bootstrap process, I\\/JI# in (11),
is well approximated by the maximum of Wp, M,,, in distribution.

Theorem 6.2. Assume the conditions (PM), (VC), (MB), and (MT-0)-(MT-5). Let

1/4
(aap2MapWag\Yt s g\ 18
o= (N A No)l—2/a N ANy

_ 1/14 _ 2/7
D2EINYE  /DREANYA (piags\ Y pi2ga\”
n nl_z/q n3_4/q nl_l/q '

There exists a constant C, depending only on r,q, g, co, Co, such that with probability at least 1 — C oy,

sup [Py, (MEf <)~ P(M, <1)| < Con.
teR "
Proof. The proof can be found in Section C.4 of the Supplement Material [52]. The key steps are to
show that given D), the conditional covariance functions 74 (-, -) and Yz (-, ), for Uf 4 and Uf pin
(10), are good estimators for y4(+,-) and y5(-,-). |
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6.3. Related work

U-processes offer a general framework for many statistical applications such as testing for qualitative
features (e.g., monotonicity, curvature) of regression functions [24, 7, 1], testing for stochastic mono-
tonicity [41], nonparametric density estimation [48, 23, 25], and establishing limiting distributions of
M-estimators [2, 51]. When indexing function classes are fixed, it is known that the Uniform Central
Limit Theorems (UCLTs) [49, 2, 17, 6], as well as limit theorems for bootstrap [3, 56], hold for U-
processes under metric (or bracketing) entropy conditions. These references [49, 2, 17, 6, 3, 56] cover
both non-degenerate and degenerate U-processes where limiting processes of the latter are Gaussian
chaoses rather than Gaussian processes. When the UCLTs do not hold for a possibly changing (in
n) indexing function class (i.e., the function class cannot be embedded in any fixed Donsker class),
[13] develops a general non-asymptotic theory for approximating the suprema of U-processes, ex-
tending the earlier work by [15] on empirical processes. Incomplete U-statistics for a fixed dimension
are first considered in [4], and the asymptotic distributions are studied in [8, 36]. In high dimensions,
non-asymptotic Gaussian approximation and bootstrap results for randomized incomplete U-statistics
are established in [12] for a fixed order and in [53] for diverging orders. The current work considers
randomized incomplete (local) U-processes with stratification.
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Supplementary Material

Supplement to ‘““Stratified incomplete local simplex tests for curvature of nonparametric multiple
regression''

This Supplement Material [52] contains additional simulation results, proofs and discussions. The im-
plementation code for our proposed procedures is included.

References

[1] ABREVAYA, J. and JIANG, W. (2005). A nonparametric approach to measuring and testing cur-
vature. Journal of Business & Economic Statistics 23 1-19.

[2] ARCONES, M. A. and GINE, E. (1993). Limit theorems for U-processes. The Annals of Proba-
bility 1494-1542.

[3] ARCONES, M. A. and GINE, E. (1994). U-processes indexed by Vapnik-éervonenkis classes of
functions with applications to asymptotics and bootstrap of U-statistics with estimated parame-
ters. Stochastic Processes and their Applications 52 17-38.

[4] BLOM, G. (1976). Some properties of incomplete U-statistics. Biometrika 63 573-580.


www.computecanada.ca

26

[5] BORENSTEIN, S. and FARRELL, J. (2007). Do investors forecast fat firms? Evidence from the
gold-mining industry. RAND Journal of Economics 38 626-647.

[6] BOROVSKIKH, Y. V. (1996). U-Statistics in Banach Spaces. V.S.P. Intl Science.

[71 BOWMAN, A., JONES, M. and GUBELS, I. (1998). Testing monotonicity of regression. Journal
of computational and Graphical Statistics T 489-500.

[8] BROWN, B. M. and KILDEA, D. G. (1978). Reduced U-statistics and the Hodges-Lehmann
estimator. Annals of Statistics 6 828-835.

[9] CA1, T. T. and Low, M. G. (2015). A FRAMEWORK FOR ESTIMATION OF CONVEX
FUNCTIONS. Statistica Sinica 25 423-456.

[10] CHATTERJEE, S. (2014). A new perspective on least squares under convex constraint. Ann.
Statist. 42 2340-2381.

[11] CHATTERIJEE, S. (2016). An improved global risk bound in concave regression. Electron. J.
Statist. 10 1608-1629.

[12] CHEN, X. and KATO, K. (2019). Randomized incomplete U -statistics in high dimensions. The
Annals of Statistics 47 3127-3156.

[13] CHEN, X. and KATO, K. (2020). Jackknife multiplier bootstrap: finite sample approximations
to the U-process supremum with applications. Probability Theory and Related Fields 176 1097-
1163.

[14] CHEN, Y. and WELLNER, J. A. (2016). On convex least squares estimation when the truth is
linear. Electron. J. Statist. 10 171-209.

[15] CHERNOZHUKOV, V., CHETVERIKOV, D., KATO, K. et al. (2014). Gaussian approximation of
suprema of empirical processes. The Annals of Statistics 42 1564—-1597.

[16] CHETVERIKOV, D., SANTOS, A. and SHAIKH, A. M. (2018). The econometrics of shape re-
strictions. Annual Review of Economics 10 31-63.

[17] DE LA PENA, V. and GINE, E. (2012). Decoupling: from dependence to independence. Springer
Science & Business Media.

[18] DIACK, C. A. and THOMAS-AGNAN, C. (1998). A nonparametric test of the non-convexity of
regression. Journal of Nonparametric Statistics 9 335-362.

[19] DUMBGEN, L. and SPOKOINY, V. G. (2001). Multiscale testing of qualitative hypotheses. Annals
of Statistics 124—152.

[20] EINMAHL, U., MASON, D. M. et al. (2005). Uniform in bandwidth consistency of kernel-type
function estimators. The Annals of Statistics 33 1380—1403.

[21] FAMA, E. F. and FRENCH, K. R. (1993). Common risk factors in the returns on stocks and bonds.
Journal of Financial Economics 33 3 - 56.

[22] FANG, Z. and SEO, J. (2021). A Projection Framework for Testing Shape Restrictions That Form
Convex Cones. Econometrica, forthcoming (arXiv:1910.07689).

[23] FREES, E. W. (1994). Estimating densities of functions of observations. Journal of American
Statistical Association 89 517-525.

[24] GHOSAL, S., SEN, A. and VAN DER VAART, A. W. (2000). Testing monotonicity of regression.
Ann. Statist. 28 1054-1082.

[25] GINE, E., MASON, D. M. et al. (2007). On local U-statistic processes and the estimation of
densities of functions of several sample variables. The Annals of Statistics 35 1105-1145.

[26] GINE, E. and NICKL, R. (2016). Mathematical foundations of infinite-dimensional statistical
models 40. Cambridge University Press.

[27] GROENEBOOM, P., JONGBLOED, G. and WELLNER, J. A. (2001). Estimation of a Convex Func-
tion: Characterizations and Asymptotic Theory. Ann. Statist. 29 1653—-1698.

[28] GUNTUBOYINA, A. and SEN, B. (2015). Global risk bounds and adaptation in univariate convex
regression. Probab. Theory Related Fields 163 379-411.



Testing for regression curvature 27

[29] GUNTUBOYINA, A. and SEN, B. (2018). Nonparametric shape-restricted regression. Statistical
Science 33 568-594.

[30] GUPTA, P. and BHATTACHARIEE, G. (1984). An efficient algorithm for random sampling with-
out replacement. In International Conference on Foundations of Software Technology and Theo-
retical Computer Science 435-442. Springer.

[31] HALL, P. (1991). On convergence rates of suprema. Probability Theory and Related Fields 89
447-455.

[32] HAN, Q. and WELLNER, J. A. (2016). Multivariate convex regression: global risk bounds and
adaptation. arXiv preprint arXiv:1601.06844.

[33] HANNAH, L. A. and DUNSON, D. B. (2013). Multivariate convex regression with adaptive par-
titioning. The Journal of Machine Learning Research 14 3261-3294.

[34] HANSON, D. L. and PLEDGER, G. (1976). Consistency in Concave Regression. Ann. Statist. 4
1038-1050.

[35] HILDRETH, C. (1954). Point estimates of ordinates of concave functions. Journal of the American
Statistical Association 49 598-619.

[36] JANSON, S. (1984). The asymptotic distributions of incomplete U-statistics. Z, Wahrschein-
lichkeitstheorie verw. Gebiete 66 495-505.

[37] JuDITSKY, A. and NEMIROVSKI, A. (2002). On nonparametric tests of positiv-
ity/monotonicity/convexity. Ann. Statist. 30 498-527.

[38] KoMAROVA, T. and HIDALGO, J. (2019). Testing nonparametric shape restrictions. arXiv
preprint arXiv:1909.01675.

[39] KuosMANEN, T. (2008). Representation theorem for convex nonparametric least squares. The
Econometrics Journal 11 308-325.

[40] KUR, G., DAGAN, Y. and RAKHLIN, A. (2019). Optimality of Maximum Likelihood for Log-
Concave Density Estimation and Bounded Convex Regression. arXiv preprint arXiv:1903.05315.

[41] LEE, S., LINTON, O. and WHANG, Y.-J. (2009). Testing for stochastic monotonicity. Econo-
metrica 77 585-602.

[42] LEHMANN, E. L. and ROMANO, J. P. (20006). Testing statistical hypotheses. Springer Science &
Business Media.

[43] LiMm, E. and GLYNN, P. W. (2012). Consistency of multidimensional convex regression. Opera-
tions Research 60 196-208.

[44] MAMMEN, E. (1991). Nonparametric Regression Under Qualitative Smoothness Assumptions.
Ann. Statist. 19 741-759.

[45] MATZKIN, R. (1991). Semiparametric estimation of monotone and concave utility functions for
polychotomous choice models. Econometrica 59 1315-1327.

[46] MAZUMDER, R., CHOUDHURY, A., [YENGAR, G. and SEN, B. (2019). A Computational Frame-
work for Multivariate Convex Regression and Its Variants. Journal of the American Statistical
Association 114 318-331.

[47] MuURrpPHY, K. M. and WELCH, F. (1990). Empirical Age-Earnings Profiles. Journal of Labor
Economics 8 202-229.

[48] NOLAN, D. and POLLARD, D. (1987). U-processes: rates of convergence. The Annals of Statis-
tics 780-799.

[49] NOLAN, D. and POLLARD, D. (1988). Functional limit theorems for U-processes. The Annals
of Probability 16 1291-1298.

[50] SEwO, E., SEN, B. etal. (2011). Nonparametric least squares estimation of a multivariate convex
regression function. The Annals of Statistics 39 1633-1657.

[51] SHERMAN, R. P. (1994). Maximal inequalities for degenerate U-processes with applications to
optimization estimators. The Annals of Statistics 439-459.



28

[52] SoNgG, Y., CHEN, X. and KATO, K. Supplement to “Stratified incomplete local simplex tests for
curvature of nonparametric multiple regression”. DOI: 10.1214/[provided by typesetter].

[53] SONG, Y., CHEN, X. and KATO, K. (2019). Approximating high-dimensional infinite-order U-
statistics: statistical and computational guarantees. Electronic Journal of Statistics 13 4794-4848.

[54] VAN DER VAART, A. W. and WELLNER, J. A. (1996). Weak Convergence and Empirical Pro-
cesses With Applications to Statistics. Springer-Verlag New York.

[55] WANG, J. C. and MEYER, M. C. (2011). Testing the monotonicity or convexity of a function
using regression splines. Canadian Journal of Statistics 39 89—107.

[56] ZHANG, D. (2001). Bayesian bootstraps for U-processes, hypothesis tests and convergence of
Dirichlet U-processes. Statistica Sinica 463—478.



	Introduction
	Local simplex statistics
	Our contributions
	Related work
	Organization of the paper
	Notation

	Stratified incomplete U-processes
	Test statistics
	Bootstrap calibration
	A simplified version of approximation results

	Stratified incomplete local simplex tests: statistical guarantees
	Assumptions for concavity tests
	Size validity and power consistency
	Discussions

	Combining multiple bandwidths

	Stratified incomplete local simplex tests: computation
	Stratified sampling
	Implementation of SILS

	Simulation results
	Running times
	Size validity
	Power comparison
	Combining multiple bandwidths

	Gaussian approximation and bootstrap for stratified, incomplete U-processes
	Gaussian approximation
	Bootstrap validity
	Related work

	Acknowledgements
	Supplementary Material
	References

