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ABSTRACT

The Golden-Thompson trace inequality, which states that Tr "X < Tr e X, has proved to be very useful in quantum statistical mechanics.

Golden used it to show that the classical free energy is less than the quantum one. Here, we make this G-T inequality more explicit by proving
that for some operators, notably the operators of interest in quantum mechanics, H = A or H = —/—A + m and K = potential, Tr e/ *(17K g4k
is a monotone increasing function of the parameter u for 0 < u < 1. Our proof utilizes an inequality of Ando, Hiai, and Okubo (AHO):
Tr X'Y'X'Y'™" < Tr XY for positive operators X, Y and for 1 <, t <1, and s+t < 2. The obvious conjecture that this inequality should
hold up to s + ¢ < 1 was proved false by Plevnik [Indian J. Pure Appl. Math. 47, 491-500 (2016)]. We give a different proof of AHO and also
give more counterexamples in the 2, I range. More importantly, we show that the inequality conjectured in AHO does indeed hold in the full
range if X, Y have a certain positivity property—one that does hold for quantum mechanical operators, thus enabling us to prove our G-T
monotonicity theorem.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0091111

I. INTRODUCTION

In 2000, Ando, Hiai, and Okubo’ (AHO) considered several inequalities for traces of products of two positive semidefinite matrices
X and Y, of which the two simplest were

[Tr[X° Y X' Y]] < Tr[XY] (1.1)

and
Te[X 22X Y ) < T XY X Y (1.2)

with1/2<s<land1/2<t<1.

Note that the absolute value, or at least a real part, is necessary for either (1.1) or (1.2) to make sense; Tr[X°Y' X' Y'~'] may be a complex
number.

Ando, Hiai, and Okubo succeeded in proving both inequalities when X and Y were 2 x 2 matrices or, more generally, when both X and
Y have at most two distinct eigenvalues (Ref. 2, Corollary 4.3). They also proved (1.1) when s + t < 3/2 but could only prove (1.2) when either
s=1/2 or t = 1/2. They raised the question as to whether the inequalities (1.1) and (1.2) hold over the entire range 1 < s + ¢ < 2. In addition
to proving the positive results mentioned above (and some generalizations discussed below), they remarked that the behavior of the function
(s,t) = |Tr[X°Y' X' Y'"']| on the whole interval [1/2,1] x [1/2,1] “is rather complicated for general n x n positive semidefinite matrices.”
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The question they raised attracted the attention of other researchers. In particular, Bottazzi et al.” gave another proof, for the case s = t,
that (1.1) is valid for s + t < 3/2. Instead of the majorization techniques used in Ref. 2, they used the Lieb-Thirring inequality and the Holder
inequality for matrix trace norms. Using these tools, they showed thatforz = 1/4+iyorz=3/4+iy,y € R,

[Te[ X Y°X' 7Y 7%]| < Tr[XY] (1.3)

and then used the maximum modulus principle to conclude that (1.1) is valid for s = ¢, 1/4 < t < 3/4. Moreover, they proved that unless
A and B commute, this inequality is strict, and thus, for any given X and Y, the inequality extends to a wider interval depending on X and Y.
However, 16 years after the original work of Ando, Hiai, and Okubo, Plevnik’ finally found a counterexample to the conjectured inequality
(1.1) in the missing range 3/2 < s + t < 2, as well as a counterexample to (1.2). )

We, unaware of these developments, attempted to show a monotonicity property for the Golden-Thompson inequality””'' and were
led to exactly the same inequality that Ando et al.” had discussed 22 years earlier. Our proof for the 1 < s+ t < 3/2 range is a little different,
and we shall give that proof here. We also identify interesting conditions on X and Y under which (1.1) and (1.2) do hold forall 0 <s,t <1
and apply this to prove our conjecture on the Golden-Thompson inequality in these cases. We shall also give a systematic construction of
counterexamples for the 3/2 < s + ¢ < 2 range that complement the example in Ref. 9 and show that not only is (1.2) false, but also it is even
possible for Tr[X*Y'X'*Y'™"] to be negative when X and Y are real positive semidefinite matrices.

1. CONDITIONS FOR VALIDITY OF THE AHO INEQUALITIES

We recall the Lieb-Thirring inequality,” which says that for all » > 1 and any positive semidefinite n x n matrices,
Tr[(B~2AB*)") < Tr[A'B]. 2.1)

Later, Araki’ proved that the inequality reverses for 0 < r < 1. It was shown by Friedland and So® that for r > 1, the inequality is strict unless
A and B commute.

In the following and in the whole of this paper, X and Y are positive semidefinite matrices. We will use (2.1) to estimate | X7 Y"?|| p for
various values of p > 1. Since

HXI/P yl/e ”§ _ Tr[(Yl/PXZ/P yl/e )P/Z]’

we may apply (2.1) to get an upper bound on | X7 Y|, taking r = p/2, provided p/2 > 1 or, equivalently, 1/p < 1/2. [Otherwise, by Araki’s
complement to (2.1), we would get a lower bound.] In summary,

|X"2Y' PP < Te[XY] forall 0<1/p<1/2. 2.2)

As in Ref. 5, we shall use the generalized Holder inequality for trace norms (see, e.g., Simon’s book'"). For any 3 n x n matrices A, B, and
Candanyp,q,r>1with1/p+1/q+1/r=1,

[Tr[ABC]| < [ABCl < A, Bl4| €] (23)

(This generalizes in the obvious way to products of arbitrarily many matrices.)
The next theorem is a small generalization of the result in Ref. 2 in that we consider four positive semidefinite matrices instead of only
two.

Theorem 2.1. Let X, Y, Z, and W be positive semidefinite, and let 1/2 < s,t, t + s < 3/2. Then,
[Tr[X Y°Z' ™ W] < (Te[XY D)™ (Te[YZ2]) '~ (Tr([WX]))' (2.4)
In particular, taking Z = X and W = Y, we obtain (1.1) under these conditions on s and t.
Proof. Sinces,t>1/2,t>1—-s. Writet = (1-s) + (¢t +s— 1), and both summands are non-negative. By cyclicity of the trace,
Te[X' Y Z W) = T X Y 2 W X
S T (XYY (Y 2 (W),
Definery:=t+s—1,r,:=1—t,and r3 := 1 — s. Then, we have
Tr[X Y Z W] = Te[(X YT (YR 2R (WRXP)].
By what was noted above, r1, 12,73 > 0, and of course, 7| + r2 + r3 = 1. Thus, by Holder’s inequality,

[Te[X Y Z W < XY g Y227 g, WP X e 2.5)
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We may now apply (2.2), provided r1, r2, and r3 are all no greater than 1/2. Since s, t > 1/2, it is always the case that 2,73 < 1/2, while r; <1/2
ifand onlyif t +s < % Hence, under this condition, (2.4) is proved. m}

Remark 2.2. The assumption that the two powers of X sum to 1 is not a real restriction. Given two arbitrary positive powers a, b, we may
rename X**? to be X and define s := max{a, b}/(a + b) and similarly for Y.

Remark 2.3. In Ref. 2, Theorem 2.1 was generalized to n X’s and n Y’s, and our method of Proof of Theorem 2.1 using the Lieb-Thirring
inequality likewise generalizes. This theorem will not be needed in the rest of this paper, and we do not discuss this here.

Remark 2.4. The fact that this method of proof cannot yield the inequality for all s, ¢, even in cases such as those described below for
which the inequality is true for all s, £, has nothing to do with what is given up in the application of the Lieb-Thirring inequality: Consider the
cases =t,Z =Xand W = Y. Then, (2.5) becomes

[Te[X Y XY ] < XY T e 1Y T X T oo 1Y X T Ty aos. (2.6)
Hence, for X, Y > 0,
. 24-1 1,261 1=t g1t 1=t 1
ltlTI}lHX Y e 1Y X Ty acn IV X T yamn = XY

and in general, [| XY, > Tr[XY].
We now present several results that provide conditions on X and Y under which (1.1) and (1.2) are valid for all 5, € [1/2,1] x [1/2,1].
We will use the following lemma:
Lemma 2.5. Suppose that X and s are such that in a basis in which Y is diagonal,
(X)) (X"7)i20 forall  ij 2.7)

Then, forallt € [1/2,1],
TrX2 Y X2y ) < T XY XY )| < Te[X Y (2.8)

Remark 2.6. The matrix M;; = (X*); ,j(Xl's)j,i is the Hadamard product of two positive matrices, namely, X* and the transpose of
X', and as such, it is positive semidefinite. However, the off-diagonal entries need not be positive or even real.

Proof. Assume first that Y > 0. Computing in any basis that diagonalizes Y, with the jth diagonal entry of Y denoted by y;,

F(0) =T XY XY ] = () (X)0) yiyt

ij

where now it is convenient to let ¢ range over [0,1]. Under hypothesis (2.7), f(¢) is symmetric and convex in ¢. Hence, its maximum
occurs at t =0 and ¢ = 1, and its minimum occurs at t = 1/2. Since Y > 0, lim; TrX*Y' XY™ = TrX*YX"™ = Tr XY. This proves that
TrX°Y'X' 7 Y'™" is real and satisfies

TeXY2X' Y] <[ XY X YY) < Te[XY).

Since (Y'/?) i ( Y'/%) i = \Yi{]./ ?|?, we may now apply what was proved above with the roles of X and Y interchanged to conclude that
Tr[Xl/Z yl2x1/2 Yl/z] <Te[X* YI/ZXHYI/Z].

Finally, we obtain the same result assuming only Y > 0 using the obvious limiting argument. m]

Our first application of Lemma 2.5 is to pairs of operators of a sort that arise frequently in mathematical physics. For X > 0, define
H = —log(X) so that X = e, Suppose that in a basis in which Y is diagonal, all off-diagonal entries of H are non-positive, i.e.,

H;j<0 forall i#j (2.9)

For example, this is the case if H is the graph Laplacian on an unoriented graph (with the graph theorist’s sign convention that the graph
Laplacian is non-negative); see Example 3.3.
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It is well-known that under these conditions, as a consequence of the Beurling-Deny Theorem (Ref. 4, Theorem 5), the semigroup ¢~

is positivity preserving, and so, in particular, (¢™7);; > 0 for all s and all 4,j. For the reader’s convenience, we recall the relevant part of
their proof adapted to our setting: Take A > 0 sufficiently small that I + AH is invertible. Then, for any vector f, (1 + AH)™" f is the unique
minimizer of

F(u) == Mu, Hu) + |lu— f|*.

The uniqueness follows from the strict convexity of F for sufficiently small A > 0. Under condition (2.9), when f = |f], F(|u|) < F(u). Hence,
(1 +AH)™" f maps the positive cone into itself, and all entries of this matrix are non-negative. The same is evidently true of (1 + AH) ™" f for
all . Taking A = s/n and 1 — oo, the same is true of ™ for all s > 0.

Theorem 2.7. Suppose that H = —log X satisfies (2.9) in a basis in which Y is diagonal. Then, (1.1) and (1.2) are valid for all s,t € [1/2,1]

x [1/2,1].
Proof. By the Beurling-Deny theorem as explained above, for all s > 0,
(Xij = (e 2 0.

It follows that (2.7) is satisfied for all s, and now the conclusion follows from Lemma 2.5. m}
One may also use Lemma 2.5 to show that both (1.1) and (1.2) are valid for 2 x 2 matrices, as was already shown in Ref. 2: Write

X = [f Z] Then, by the usual integral representation formula for X*,0 <s < 1,
z

o sin(mar) [ 1
(X)l,szz( p /[; A(a+/1)(h+/1)*|z|2d/1))

showing that for all 0 < a < 1, (Y%)1, is a positive multiple of —z, and hence, (2.7) is always true.
Our next theorem provides another class of examples of positive matrices X and Y for which (1.1) is true for all 1/2 < 5,¢ < 1. A related
theorem, for a version of (1.1) with the operator norm in place of the trace, has recently been proved in Ref. 1 by quite different means.

Theorem 2.8. Let H and K be arbitrary self-adjoint n x n matrices. Then, there exists an ag > 0 depending on H and K so that for all
a<ag, withX = e and Y := ™, (1.1) isvalid all 1/2 < s,t < 1.

Proof. If H and K commute, then it is obvious that (1.1) is valid all 1/2 <'s,¢ < 1, no matter what « > 0 may be. Hence, we may assume
without loss of generality that [H, K] # 0. In addition, without loss of generality, we may suppose that H and K are both contractions and
0 < & < 1. Then, by the spectral theorem,

<e —

2
M (I+ aH + %HZ)

and likewise for K, Thus,

Jpd-aulluo LT €02290/GLLEISIL/L L L LE00 G/E90L 01/10p/Ppd-ajoie/dwil/die/Bio-die'sqnd//:dpy wouy papeojumoq

DCZ 0(2 (X3
e (1+atH+ ZH |[1+aK+ =K || <= (2.10)
2 2 2
Note that
2 2
(1 +aH + “—Hz)(l +akK + “—Kz)
2 2
0(2 0(2
:I+a(H+K)+7(H+K)2+?[H,K]JrR, (2.11)
where |R|| < 3a’.
Now, writing X = eHand Y = K,
Tr[X' Y7 X°Y'] = Tr[XYZ], where  Z(s,t) = Y 'XY'X ™",
Using (2.10) and (2.11), we obtain
|Z(s, t) - (I + &*st[H,K])| < Ca® (2.12)
J. Math. Phys. 63, 062203 (2022); doi: 10.1063/5.0091111 63, 062203-4
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for some constant C that can be easily estimated. Note that for all s,¢, Z(0,t) = Z(s,0) = I. For this reason, there cannot be any terms
proportional to s> or £* in the second order expansion.
Altogether we have

Tr[X' 'Y XY = Tr [(1 +(K+H)+ %(K +H)? + %[H,K])(I +st[H, k])] +Ry
= Tr[XY]
lxz 2 062
+ stTr[(I+ a(K+H) + 7(K+ H)" + 7[H,K])[H,K]] +Rs,
where || R, |, | Rs|| < Ca for some constant C. Evidently, Tr[[H, K]] = Tr[[H[H, K]] = Tr[K[H,K]] = Tr[[H*[H,K]] = Tr[K*[H,K]] = 0. A
simple computation shows that
Tr[(HK + KH)(HK - KH)] = 0.

Therefore,
Te[X' Y XY ] - Te[XY] + st Tr[H, K]* + Tr[R4],

where |Rs| < Ca®, and hence, Tr[R4] < nCa’. Evidently, since by hypothesis [H, K] # 0, Tr[H, K]* < 0. Thus, for all « sufficiently small,
Tr XY XY - Tr[XY] < 0 forall (s,£) € [1/2,1] x [1/2,1]. o

Of course, replacing t by 1 — t and s by 1 — s, the same proof shows, with the same ag that when & < ao,
Te[X' 'Y X Y] = Te[XY] + sta’ Tr[H, K] + Ca’.

Replacing s by is and ¢ by if yields o
Te[X P Y XEY"] = Te[XY] - (st)Tr[H, K]* + O(8%),

and hence, [X, Y] # 0, and « sufficiently small, S
Te[X 7Y TEX Y] > Te[XY).

Thus, the three lines argument in Ref. 5 cannot hold for s, ¢ sufficiently close to 1 or 0.

11l. THE MONOTONICITY OF THE GOLDEN-THOMPSON INEQUALITY

Let H and K be self-adjoint n x n matrices. For 0 < u < 1, define
frx (1) = Tr[eT 70Kk, (3.1)
Then, £(0) = Tr["™*] and f(1) = Tr[e"eX], and by the Golden-Thompson inequality,
Tr[e"™ ] < Tr[e"e ], (3.2)

fux(0) < fux(1). In this section, we ask the following: When is fi x (#) monotone increasing in 4? We shall prove that this is the case for an
interesting class of pairs (H, K) of self-adjoint matrices, and we shall show that it is not true in general.

Remark 3.1. Observe that if one replaces H by H + al and K by K + bI,

Frtvarxeor () = € frux (u), (3.3)

and hence, whether or not fy, .1 k447 (%) is monotone increasing is independent of a and b.

Theorem 3.2. Suppose that K is diagonal and that all off-diagonal entries of H are non-negative. Then, fux(u) is monotone increasing.

Proof. By Remark 3.1, we may assume that K > 0. It will be convenient to define H, = H + (1 — u)K. Then,
1
f'(u) = Tr[e™Ke*™ ] - f Tr[e M Kt dt
0

m
!

el 1
3 —(Tr[eH“Km“]— / Tr[e(l_')H“KetH“K'"]dt). (3.4)
0

J. Math. Phys. 63, 062203 (2022); doi: 10.1063/5.0091111 63, 062203-5
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Now define X = ¢, and for each m, Y = K™ and s = (m + 1), With these definitions,
Tr[e K™ - fo P[00 kel k™| dt = Te[BA] - fo “Te[BIA'B AN dt,
Since Y is diagonal, for each u, —log H, has non-positive off-diagonal entries. By Theorem 2.7,
Tr[BA] - [0 lTr[BHASB‘AH]dt >0.
Then, by (3.4), f'(u) > 0. o

Example 3.3. Let G be a graph with a finite set of vertices V. Let the edge set be &; this is a subset of V x V. Suppose that G is a simple
graph, meaning that (x,x) ¢ € for all x € Vand that (x,y) € £if and only if (y,x) € & Then, the graph Laplacian, Ag, is defined by

Aof ()= X (fG)=F)-

{r: (xy)ec}

In the natural basis, all off diagonal elements of the matrix representing Ag are non-positive. Define Hy = Ag to obtain a non-negative “free
Hamiltonian” as in the usual mathematical physics convention. Let V be a self-adjoint multiplication operator on L*(V, ), where y is the
uniform probability measure on V. In the natural basis, V is diagonal.

Then, by Theorem 3.2,

f(u) - Tr[e—(Hu+(l—u)V) e—uV]

is strictly monotone increasing in u.

Example 3.4. Although we have given proofs in the context of matrices, it is easy to see that the proofs extend to cover interesting
infinite dimensional cases. Let X = eﬁA, where A is the Laplacian on R% and B> 0.Let V be a real valued function on Rd, and let V also denote
multiplication by V acting on L*(R?), which is, in general, unbounded. Let Y = ¢ V. Then, since X' has a positive kernel and Y acts by
multiplication on L?(R?), the Proof of Theorem 3.2 is easily adapted to show that

f(u) . Tr[efﬁ(AJr(lfu) V) e*ﬁu\/]

1/2

is monotone increasing in u. The same applies with —A replaced by (-A) "%, another case that arises in physical applications.

IV. COUNTEREXAMPLES

This section presents the construction of counterexamples, showing that inequalities (1.1) and (1.2) cannot hold in general, even in
the 3 x 3 case and showing the monotonicity property established in Theorem 3.2 under specified conditions cannot hold in general. While
counterexamples for (1.1) and (1.2) were found by Plevnik,” our goal is to provide a systematic approach to their construction. Plevnik
provided two completely separate and purely numerical counterexamples to (1.1) and (1.2). We provide a method for constructing a family
of counterexamples that goes further in significant ways. For example, while Plevnik showed in Ref. 9 (Example 2.5) that (1.2) can be violated,
his example does not show that it is possible for Tr[X Y’ X'*Y'~] to be negative. We show that this is the case. Moreover, our construction
shows that the failure of inequalities (1.1) and (1.2) as well as the failure, in general, of the monotonicity of the Golden-Thompson inequality
described in Theorem 3.2 are all closely connected. Essentially, one example undoes all three would-be conjectures.

We have seen in Lemma 2.5 that that if all of the entries of M;; := (X*);; (XH)J-,,' are non-negative, then (1.1) and (1.2) both hold. In
constructing our counterexamples, we shall take X to be real, and hence, the entries of M will be real for each s.

Lemma 4.1. Let y := (y1,...yn) be any vector in R", Let X be any positive semidefinite n x n matrix matrix, and let 0 < t < 1. Let M(s)
denote the matrix Mij(s) := (X*)ij(X'™*)j;. Then, forall 0 <s < 1,

> My 20 (41)
i, j=

Proof. We may assume that the entries of y are positive since the left-hand side of (4.1) does not change when we add to y any multiple
of the vector each of whose entries is 1.

J. Math. Phys. 63, 062203 (2022); doi: 10.1063/5.0091111 63, 062203-6
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By Lemma 2.5, we know that for X and any matrix Y > 0 (we replace Y by Y in Lemma 2.5 for convenience),
Te[X'YX'Y] < Tr[XY?] = Te[Y?X].

Letting Y be the diagonal matrix whose jth diagonal entry is y;, this becomes

Tr(X 7YXV = 3 yiMij(s)y = 3 yiMig(s)yi< 3 yiMig(s) = 3 Mij(s)y).

i, j=1 i, j=1 i, j=1 i, j=1

]

We now claim that if X > 0 is a real 3 x 3 matrix, for any 0 < s < 1, M(s) has at most one entry above the diagonal that is negative.
[By Remark 2.6, all diagonal entries are non-negative, and M(s) is symmetric, so the same is true below the diagonal.] To see this, take the
vector y to be of the form (0,1,1), (1,0,1) of (1,1,0). Then, for these choices, (4.1) becomes

2(M1,2(S) + M1‘3 (S)) >0, 2(M1,2(s) + M2,3(S)) >0, and 2(M1)3(S) + M2)3(S)) >0. (42)

Thus, each pair of entries above the diagonal must have a non-negative sum, and hence, no two can be negative.
One might hope that one could construct counterexamples to (1.1) and (1.2) by constructing matrices X > 0 for which M;;(t) < 0 for all
t€(0,1/2) U (1/2,1). This is easy to do, but this alone does not yield counterexamples.

2 V2 o
For example, define X'/? = [ﬁ 2 \/E] This matrix is easily diagonalized; the eigenvalues are 4, 2, and 0. Since Xl1 {32 = 0, one might
0o V2 2
expect that X ; changes sign at s = 1/2, and only there so that M1 3(s) < 0 forall 0 < s < 1. Indeed, doing the computations, one finds
47 2 . 47 . 2
Mi;(s) = —7(4 -2) <0, while My(s) = Mss(s) = 7(4 +2)". (4.3)
a 0 0
Now take Y :=|o o o] witha,b> 0 and distinct. Then,
0 0 b
Te[X' Y XY ] = My (s)a + Mas(s)b + Mis(s)(a' "' +a'b' ™). (4.4)
For fixed s ¢ {0,1/2,1}, this is strictly concave in ¢ and symmetric about t = 1/2, so the maximum occurs only at ¢ = 1/2 and the minimum
1o o
only at ¢ € {0, 1}. However, since lim; oY’ = P := |:0 0 0] # I, we do not have lim; o Tr[X" Y X°Y'] = Tr[XY], which would provide a
0 0 1

counterexample to (1.1) but instead lim; ;o Tr[X' Y 'X*Y'] = Tr[X'YX*P]. As we have just seen, this is less than Tr[X'~Y"?X*Y'?], and
by Lemma 2.5, this, in turn, is less than Tr[XY]. In fact, defining h(t) := 47 + 427 we can rewrite (4.3) as

Mi3(s)=2-h(s) and Myi(s) = Ms3(s) =2+ h(s). (4.5)

Then, from (4.4),
Te[X' Y ' XY ] = 2(a+ b+a'b" ™ +a" ') + h(s)(a+ b-a'b' T - '), (4.6)

By the arithmetic-geometric mean inequality, a + b — a'b'™ - a'~'b* > 0 for all 0 < ¢ < 1. Since h(s) is evidently convex and symmetric about
s =1/2, for each fixed t € (0,1), Tr[X'Y''X*Y"] is a strictly convex function of s, symmetric about s = 1/2. Therefore, this function is
minimized only for s = 1/2 and maximized only for s € {0, 1}, and hence, for any ¢,

Tr[X'Y XY > Te XY XYY,
and the right side is independent of ¢ since Xl1 ,/32 = 0. Hence, (1.2) is satisfied for all choices of 4, b > 0. Likewise, by what was proved above, for
all s, t, with Q := lim,0X*, which is an orthogonal projection,

Tr[X Y XY < Te XY A YY) < Tr[QY2X YY) < Tr[ XY,

and hence, (1.1) is satisfied for all choices of a, b > 0.

This shows that the construction of counterexamples is more subtle than simply producing negative entries in M(s). It appears that the
key to the construction of counterexamples for 3 x 3 matrices is to choose X so that one of the inequalities in (4.1) to is nearly saturated, with
one of the summands negative for most values of s. Furthermore, it is natural to choose X and Y to be perturbations of positive semidefinite

Jpd-aulluo LT €02290/GLLEISIL/L L L LE00 G/E90L 01/10p/Ppd-ajoie/dwil/die/Bio-die'sqnd//:dpy wouy papeojumoq

J. Math. Phys. 63, 062203 (2022); doi: 10.1063/5.0091111 63, 062203-7
Published under an exclusive license by AIP Publishing



Journal of
Mathematical Physics ARTICLE scitation.orgfjournalljmp

matrices Xo and Yo such that Tr[ XY 'X3Y4] = 0 for all 0 < s, < 1. Of course, this is satisfied if Xo and Yy are orthogonal projections with
mutually orthogonal ranges.

Our construction relies on the Householder reflections determined by two distinct unit vectors u,v € R". This is given by Hy,, :=1-2
|t~ v| |4~ v){u— v|. Evidently, H,,, is self-adjoint, orthogonal, and Hy,»u = v and Hy,»v = u. For simplicity, choose

u:=(0,0,1) and V= 271/2(1, 1,0). (4.7)

Then, -
1 -1 V2
U= Hyy = % -1 1 V2
V2 V2 o0
Now choose ~

00 0 1 1 0

Yo:=|0 0 0| and XO:UYOU:%I 1 0}
0 0 1 0 0 2

Then, Xy and Y are orthogonal projections such that Xy Yy = 0.
Now, we make a simple perturbation. For a, b > 0 small, to be chosen later, define

a 0 0 c 0 0
A=10 b 0| and Y:=|0 d 0|
0 0 1 0 0 1
and also for 0 < t < 1, define
a::i(at+b’) and ﬁ:z%(a’—b').
Then,
a -a B
VAU=Xo+|-a o -pB|
B B 2a

The off-diagonal entries of UYU will not change sign as t varies, but we can make this happen by applying are further orthogonal
cosx 0 —sinx
transformation; define R := |: 01 0 :|, and finally put

sinx 0 cos x
X := RUAUR',
where R is the transpose of R, with x, a, and b to be chosen later. We compute
¢ 2 .2 . 1
X135 = (cos” x — sin” x) () + sin x cos X(E - oc(t))

and

X33 = —cos(x)B(t) +sin x(% - oc(t)).

We seek a small perturbation of Xo, and hence, we will take a, b, and |x| all to be small positive numbers. It is easy to see that the
sign change we seek occurs in X 5 if we take a << b << 1 and 0 < x < 1, and occurs in X if we take b << a < 1 and 0 < x < 1.

Example 4.2. To get a counterexample to (1.1), take a = 107, 5=10"",x=107%,¢ = 107'° and d = 0. Then, one finds

Tr[XY] <1.50001 x 107'%, while Tr[X*”°Y*”’X**'Y**']> 1.61022 x 107"°.
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Example 4.3. To get a counterexample to (1.2), take a = 107%, b = 107'%, x = 107, ¢ = 107, and d = 0. Then, one finds that
Te[XO YO X002 Y002 ¢ 5 38674,

which being negative, is certainly less that Tr[X"?>Y*>X">Y*?] > 0, and by continuity, somewhere the trace must be zero.

Note that the only difference between the two examples is that we have swapped the values assigned to a and b; all other parameters
are left the same. Numerical plots show that in both cases, the maximum value of [M13(t) + Ma3(t)] is less than 107> times the maximum
of [M13(t)| + |Ma3(t)| so that the last inequality in (4.1) is nearly saturated; there is near cancellation in the sum Xj ; + X} 3. Note that in
our counterexample to (1.1), the sum of the exponents s+ ¢ is 1.58, not so much larger than the minimum value, 3/2, at which such a
counterexample cannot exist. It would be of interest to see if one can build on this construction, possibly extending it into higher dimensions,
to show that the condition s + ¢ < 3/2 in Theorem 2.1 is sharp.

We close by showing that the monotonicity property for the Golden-Thompson inequality described in Theorem 3.2 does not hold for
arbitrary self-adjoint matrices H and K.

Recall that fyx (1) has been defined by (3.1),

fH,K(u) _ TI‘[EH+(1_u)K€uK], (48)

1
—; Sfrx(u) :Tr[eHKeK]ff Tr[e[HKe(lft)HeK]dt.
u 0

u=1

With X and Y as above, we define K = log(X) and H = log Y. Since H is diagonal, the integral fol eMKe'™D"ds can be explicitly evaluated as
a Hadamard product. One finds

%fH,K(u) X <-3x 10_6.

u=

This shows that the monotonicity proved in Theorem 3.2 is not true for general self-adjoint H and K.
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