Arch. Math. 119 (2022), 525-529

(© 2022 Springer Nature Switzerland AG
0003-889X/22/050525-5

published online August 24, 2022
https://doi.org/10.1007/s00013-022-01774-6

I Archiv der Mathematik

®

Check for
updates

A monotonicity version of a concavity theorem of Lieb
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Abstract. We give a simple proof of a strengthened version of a theorem
of Lieb that played a key role in the proof of strong subadditivity of the
quantum entropy.
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1. Introduction. Let M, (C) denote the n x n complex matrices, M, (C) the
subset consisting of positive semidefinite matrices, and M+ (C) the subset
consisting of positive definite matrices. The following theorem was proved by
Lieb in 1973 [8, Theorem 6]:

Theorem 1.1 (Lieb). For all self-adjoint H € M, (C), the function
Y +— Trlexp(H + logY)] (1.1)

is concave on M,FT(C).

As a simple consequence of this, Lieb deduced his triple matriz inequality,
a generalization of the Golden-Thompson inequality to three self adjoint ma-
trices. This played a fundamental role in the proof of strong subadditivity of
the quantum entropy [9]. For more recent applications of Theorem 1.1, see the
influential paper of Tropp [16].

We now prove a stronger version of this theorem in terms of monotonicity
instead of concavity. Recall that a linear map ® : M,,(C) — M, (C) is positive
if ®(A) € M, (C) whenever A € M, (C), and is unital if ®(I) = I, and trace
preserving if Tr[®(X)] = Tr[X] for all X € M, (C). We equip M,,(C) with the
Hilbert-Schmidt inner product, and we use ®' to denote the corresponding
adjoint of a linear map on M,,(C). Note that ® is unital if and only if ®' is
trace preserving. Our main result is:
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Theorem 1.2. Let ® : M, (C) — M,,(C) be unital and positive. Then for all
self-adjoint H € M,,(C) and all Y € M} T(C),

Tr [exp(H + log @T(Y))] > Trexp(®(H) + logY)]. (1.2)

Before giving the very simple proof, we explain how Theorem 1.2 implies
Theorem 1.1. Let ® : M,,(C) — My, (C) be defined by

d(H) = [lgg] and hence ®f ([161 }%D =Y + Ya. (1.3)

Thus,
Tr [6H+1og(yl+yz)] > Ty [6H+log Yl] L Tr [€H+logY2} .

Since Y+ Tr [e# 18] is homogeneous of degree one, this is the same as

concavity. Note that this particular map ® is not only positive; it is completely
positive.

Our proof is based on the well-known and elementary Gibbs variational
principle for the free energy in terms of the entropy S(X) = —Tr[X log X| of
a density matrix X. This states that for all self-adjoint K € M, (C),

log (Tr [e*]) = sup {Tr[XK] —Tr[Xlog X] : X € M,J7(C) , Tr[X] = 1}.

(1.4)

A short proof from scratch can be found in [4, Appendix A]. There is a simple
variant involving the relative entropy

D(X|Y)=Tr[X (log X — logY)] (1.5)

of two density matrices: For W € M, +(C), replace K with K +log W in (1.4)
to conclude that for all self-adjoint K € M,,(C) and all W € M,/ *(C),

log(Tr[eKHOg W])
— sup{TY[XK] — D(X|[W) : X € M+ (C), T[X] =1}.  (1.6)

We shall also use the result due to Miiller-Hermes and Reeb [11] that the
relative entropy is monotone under positive trace-preserving maps ®f. That
is, for all such maps ®, and all density matrices X,Y,

D(@'(X)||e'(¥)) < D(X||Y). (1.7)

A somewhat weaker result is due to Uhlmann, who proved in 1977 that (1.7)
is true whenever ®' is the dual of a unital Schwarz map; i.e., a unital map
® such that ®(A*A) > &(A)*P(A). Earlier still in 1973, Lindblad had shown
that (1.7) was valid for all unital completely positive ®. Lindblad’s proof relied
on the Lieb concavity theorem [8]. It is well known that the set of unital
completely positive maps is a proper subset of the set of Schwarz maps, which
in turn is a proper subset of the set of positive maps. Thus the theorem of
Miiller-Hermes and Reeb extended that of Uhlmann, which in turn extended
that of Lindblad. By now, quite elementary proofs of Lindblad’s theorem are
known, especially after the work of Pusz and Woronowicz [12,13] and then
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Donald [6] provided an elementary proof of the joint convexity of the relative
entropy functional (1.5), essentially by displaying it as a Legendre transform.

The duality argument that we now provide translates any of these mono-
tonicity results for the relative entropy into a monotonicity result for the func-
tional (1.1), and of course, starting from the result in [11], we obtain the
strongest conclusion.

Proof of Theorem 1.2. By (1.6),
log(TI_[eH+log @T(Y)])
= sup{Tr[XH] — D(X||®T(Y)) : X € M;}T(C), Tr[X] =1}
> sup{Tx[o! (W) H] — D@ (W)[[0}(Y)) : W € M+(C), Te[W] = 1}
> sup{Tx[W®(H)] - D(W||Y) : W € M} T (C), Tx[W] = 1}
—log Tr [6<I>(H)+10g Y} 7

where we used {®T(W) : W € M+ (C), Tx[W] =1} C {X € M,[+(C), Tr[X]
=1} and (1.7). Exponentiating both sides of the inequality yields (1.2). O

While Theorem 1.2 is strictly stronger than Theorem 1.1, the greatest inter-
est in it may lie in the very simple proof that its proof provides of Theorem 1.1.
This is an interesting example of how it may be easiest to prove a concavity
result by first proving a monotonicity result, and then applying that to the
particular map ® that is defined in (1.3).

It is interesting to observe another advantage of the monotonicity approach
to convexity or concavity inequalities. A duality method for proving convexity
and concavity inequalities was introduced by myself and Lieb in [3] which uses
the following lemma:

Lemma 1.3. If f(x,y) is jointly convez in x,y, then g(x) := inf, f(x,y) is con-
vex. If f(x,y) is jointly concave in x,y, then g(z) := sup,, f(z,y) is concave.

This may be found in [14, Theorem 1], and the simple proof is also given
in [3]. Since (X, W) — D(X||W) is jointly convex, for fixed K, (X,W) —
Tr[X K] — D(X||W) is jointly concave. Then by Lemma 1.3 and (1.6), W —
log Tr [eK “ng] is concave. However, this is a weaker statement than The-

orem 1.1 since if g(x) = log(f(z)) with f positive and twice continuously
differentiable,
f’(w))2 1
1 11
g (zr)=— + " ().
@=-(75) + 7"

Thus, concavity of f implies concavity of log f, but not the other way around.
However, monotonicity of f is equivalent to monotonicity of log f. For this
reason, we could simply use the Gibbs variational principle to prove our The-
orem 1.2. Tropp [15] found an ingenious variational representation of W —
Tr [eKHOg W] which allowed him to give a proof of Theorem 1.1 using the
joint convexity of the relative entropy and Lemma 1.3, along the lines of [3].
However, when using duality to prove the monotonicity theorem, the logarithm
is not an issue because log monotonicity is the same as monotonicity, and we
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do not need Lemma 1.3. Already in 1973, Epstein [7] gave a second proof of
Theorem 1.1 using the theory of Herglotz functions, but this is considerably
more involved than the present proof. For more information, see [2].
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