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Abstract. We consider a one dimensional Kac model with conservation of energy and an exclusion rule. Fix a number of particles n,
and an energy E > 0. Let each of the particles have an energy xj ≥ 0, with

∑n
j=1 xj = E. For ǫ positive, the allowed configurations

(x1, . . . , xn) are those that satisfy |xi − xj | ≥ ǫ for all i �= j . At each step of the process, a pair (i, j) of particles is selected uniformly
at random, and then they “collide”, and there is a repartition of their total energy xi + xj between them producing new energies x∗

i
and

x∗
j

with x∗
i

+ x∗
j

= xi + xj , but with the restriction that exclusion rule is still observed for the new pair of energies. This process bears
some resemblance to Kac models for Fermions in which the exclusion represents the effects of the Pauli exclusion principle. However,
the “non-quantized” exclusion rule here, with only a lower bound on the gaps, introduces interesting novel features, and a detailed
notion of Kac’s chaos is required to derive an evolution equation for the rescaled empirical measures for the process, as we show here.

Résumé. Nous considerons un modèle de Kac unidimensionnel avec conservation de l’énergie et une règle d’exclusion. Pour un
nombre de particules n, et une énergie E > 0 fixes, soit xj ≥ 0 l’énergie de la particule j avec

∑n
j=1 xj = E. Pour ǫ > 0 les confi-

gurations admises de (x1, . . . , xn) sont celles qui satisfont |xi − xj | ≥ ǫ, pour tout i �= j . À chaque pas du processus, une paire (i, j)

de particules est sélectionnée uniformément au hasard, puis les particules « collisionnent ». Leur énergie totale xi + xj est ensuite
redistribuée produisant de nouvelles énergies x∗

i
et x∗

j
avec x∗

i
+ x∗

j
= xi + xj , de telle sorte que la règle d’exclusion soit toujours ob-

servée pour la nouvelle paire. Ce processus présente des ressamblances avec modèles de Kac pour Fermions dans lesquels l’exclusion
représente les effets du principe d’exclusion de Pauli. Cependant, la règle d’exclusion « non quantifié » ici, avec seulement une borne
inférieure sur les écarts, introduit des nouveautées intéressantes, et une notion détaillée du chaos de Kac nécessaire pour dériver une
équation d’évolution pour des mesures empiriques réćhelonnée pour la processus, comme nous le montrons ici.
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1. Introduction

The first attempts to formulate kinetic equations for colliding particles that satisfy Boson or Fermion statstics go back at
least to the works of Nordheim [10] and Uehling and Uhlenbeck [16]. To make a rigorous derivation of these equations
starting from the Schrödinger equation for a large system of particles has proven very difficult. See [2] for a review. To
understand the classical spatially homogeneous Boltzmann equation Mark Kac introduced a Markov jump process to
mimic a real n-particle system and from this model he could rigorously derive a simplified (one dimensional) Boltzmann
equation [9]. A similar kind of jump process has been studied by Colangeli et al. [6], who derive a kinetic equation from
a particle system with discretized phasespace with exclusion.

We investigate a Kac model on the simplex with exclusion, but without dividing the simplex into cells, paying close
attention to questions concerning Kac’s notion of chaos for the model. Before we introduce our model with exclusion, it
will be helpful to recall Kac’s notion of chaos in the context of the corresponding model, in which states are characterized
by their energy only, without exclusion.

Consider a system of n (indistinguishable) particles with a total energy En, and assume that the state of a particle is
determined by its energy xj ≥ 0. The phase space of this system is then the simplex

SEn :=
{

(x1, . . . , xn) ∈R
n
+ :

n∑

j=1

xj = En

}
.(1)
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Let σn denote the uniform probability measure in SEn . In its simplest form, the Kac walk on the simplex SEn is the
process in which binary collisions occur in a Poisson stream of jump times, with the expected waiting time between
jumps being 1/n, and when a jump occurs, a pair (i, j), 1 ≤ i < j ≤ n is selected uniformly at random, and then the
energy of the pair is redistributed by the “collision”, a new energy x∗

i for the i-th particle is selected uniformly at random
from [0, xi + xj ], and then x∗

j is fixed by x∗
i + x∗

j = xi + xj . It is easy to see that the uniform probability measure is the
unique invariant measure for this process, and the single particle marginals in equilibrium are certain beta distributions.
The rate of approach to equilibrium has been studied by Giroux and Ferland [8]. The original Kac process [9] takes place
on the n− 1-dimensional sphere consisting of vectors (v1, . . . , vn) such that

∑n
j=1 v2

j = En. The process described above

is the image of the process on the sphere under the change of variables xj = v2
j .

As Kac discovered, the Kac process on the sphere propagates chaos, and it follows readily that the process on the
simplex does as well. This means the following: For any probability density Fn with respect to the uniform probability
measure on SEn , consider the empirical distribution

(2) μn = 1

n

n∑

j=1

δ(x − x̃j ) where x̃j = n

En

xj ,

where (x1, . . . , xn) is distributed according to Fn. Note that

(3)
∫ ∞

0
x dμn = 1

for every (x̃1, . . . x̃n) ∈ SEn . The notion of chaos concerns sequences, indexed by n, of probability measures or densities
on SEn . We use upper case letters, e.g. Fn, to denote such densities. While in some contexts it is natural to reserve upper-
case lets for the distribution functions of probability densities on the line, here such distribution functions do not come
into play, and it is more natural to use upper and lower case to distinguish between probability densities on the high
dimensional space SEn , and probability densities on R+.

Now let g(x) be any probability density on R+ with
∫ ∞

0 xg(x)dx = 1. A sequence {Fn} of probability densities on SEn

is called g-chaotic in the sense of Kac in case the sequence {μn} of empirical distributions as specified above converges
in probability to g(x)dx. The notion of chaos is often presented directly in terms of the probability measures: Consider a
sequence of probability measures {mn}∞n where the mn are symmetric probability distributions on En, the n-fold product
of a metric space E. Then {mn}∞n is said to be m-chaotic for some probability measure m on E, if for every k ≥ 1 and
functions φj ∈ C(E), j = 1, . . . , k the following limit holds:

(4) lim
n→∞

∫

E

· · ·
∫

E

φ1(x1) · · ·φk(xk)mn(dx1, . . . ,dxn) −
k∏

j=1

∫

E

φj (x)m(dx) = 0.

In fact, this definition is equivalent to the definition given in terms of the empirical measures, as proven e.g. in [15].
Kac’s main result in [9] (for the spherical case) is that if one starts with a chaotic sequence {Fn} of initial data that

is g-chaotic, and if for each t > 0 one lets {Fn,t } denote the sequence of densities resulting from running the evolution
for a time t , then this sequence is gt -chaotic for some density gt , and moreover, gt is the unique solution of a certain
non-linear Boltzmann-like equations starting from the initial data g. Thus, this Boltzmann-like equation gives a complete
description, in the large n limit of the evolution of the scaled empirical distribution under the Kac process provided one
starts with chaotic initial data.

Since SEn is very close to being a product space, it is possible to construct g-chaotic initial data for any probability
density g satisfying

∫ ∞
0 xg(x)dx = 1,

∫ ∞
0 x2g(x)dx < ∞ and g ∈ Lp(R+) for some p > 1: One takes

∏n
j=1 g(x̃j ), and

restricts it to simplex SEn , and normalizes [4]. By the Central Limit Theorem, under
∏n

j=1 g(xj ),
∑

j=1 x̃j is with high
probability very close to n, and so the mass is tightly concentrated on SEn . As long as one does not look at too many
coordinates at once, one cannot see the effects of the restriction. In the physics literature, this is known as the equivalence
of ensembles. A related result can be found in [15], where g is a density on R

k , and the simplex is replaced by a set
x1 + · · · + xn = na ∈R

k .
The restrictions that

∫ ∞
0 x2g(x)dx < ∞ and g ∈ Lp(R+) for some p > 1 may then be removed in a limiting process

[4], and thus one has a construction of chaotic initial data for every meaningful initial density g. The corresponding
nonlinear Boltzmann-like equation that governs the evolution of the large n empirical measure may then be studied in
terms of the linear Kolmogorov equation associated to the Kac process on SEn .

That is, Kac had found an interesting way to study, by probabilistic means, a class of non-linear equations of a type
that arise in kinetic theory. The method relies on the introduction of a family of stochastic processes indexed by n, the
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number of particles. Because of constraints such as
∑n

j=1 xj = En that correspond to conservation laws in the particle
system, the xj are not independent, but their dependence is weak enough, for a wide class of sequences of probability
measures including {σn}, that the empirical measure in (2) becomes non-random as n → ∞.

In the model introduced next, we consider another type of kinematic constraint. In addition to the conservation of
energy, we impose an exclusion condition. This brings dependencies of a new type into consideration, and we show that
Kac’s notion of chaos is not enough to identify the evolution of a limiting density. Therefore a new approach is required,
and a stronger notion of chaos, and one such approach is developed here.

1.1. The incorporation of exclusion

For Fermions, the Pauli exclusion principle asserts that a state (here characterized by its energy) only can be occupied by
at most one particle. In this continuous setting, we model this without “quantizing” the state space, by requiring that for
all pairs of particles, we have |xj − xk| > ǫ for some ǫ > 0. We define

SEn,ǫ :=
{

(x1, . . . , xn) ∈R
n
+ :

n∑

j=1

xj = En, |xj − xk| > ǫ for all i �= j

}
,(5)

and assuming that En > ǫn(n − 1)/2 so that SEn,ǫ �=∅, we let dσn,ǫ denote the uniform probability measure on SEn,ǫ .
The process that we consider is the following: Again, the collision times arrive in a Poisson stream with expected

waiting time equal to 1/n, and again, when a jump time occurs, a pair (i, j), 1 ≤ i < j ≤ n is selected uniformly at
random. The energy of the two particles is then reapportioned as before, with x∗

i chosen uniformly from [0, xi + xj ] and
then x∗

j = xi +xj −x∗
i , except the jump only occurs if the new configuration (x1, . . . , x

∗
i , . . . , x∗

j , . . . , xn) of energy levels
satisfies the exclusion condition; i.e., only if it belongs to SEn,ǫ . It is easy to see that σn,ǫ is the invariant measure for this
process, and since the process is reversible, it is natural to refer to it as the equilibrium measure.

While SEn,ǫ is non-empty whenever En > ǫn(n − 1)/2, if En is not too much larger than this value, the spacing
between most levels will be very close to ǫ. Think of a long line of parked cars with no marked spaces. For a new pair
of cars to park, they must both find gaps of sufficient width. If there is a constraint on the sum of their distances from the
start of the line, there may be no way for them to park. In terms of our model, if two cars pull out and look for different
spaces, it may be that their only option is to return to the spaces they had (or to swap).

We shall find interesting large n limits only if the energies En grow with n in a certain way. Define

(6) αn := ǫn(n − 1)

En

.

Then

(7) En − ǫn(n − 1)

2
=

(
1 − αn

2

)
En

is the excess energy, the difference between the minimum energy for a configuration of n particles satisfying the exclusion
constraint and the available energy. Clearly we must have 0 ≤ αn ≤ 2. We shall be studying sequences of probability
measures {Fnσn} on SEn,ǫ with En and n related by

(8) lim
n→∞

αn = α ∈]0,2[ .

As before, we rescale the variables with the average energy,

x̃j = n

En

xj ,(9)

and define the empirical distribution

μn := 1

n

n∑

j=1

δ(x − x̃j ).(10)

We also need to rescale ǫ, and set

(11) ǫ̃n = ǫn

En

= αn

n − 1
.
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Because,
∑n

j=1 x̃j = n for every (x1, . . . , xn) ∈ SEn,ǫ , one always has that

(12)
∫ ∞

0
x dμn = 1.

The exclusion limits the amount of mass the μn can assign to any half open interval ]a, b] in R+: There can be at most
(b − a)/ǫ̃n particles in this interval, and hence

(13)
∫

]a,b]
dμn ≤ 1

nǫ̃n

(b − a) = n − 1

nαn

(b − a).

It follows from (13) that if μn almost surely converges vaguely to g(x)dx along a sequence with αn → α, then

(14) g(x) ≤ 1

α
,

and provided no mass escapes,

(15)
∫ ∞

0
g(x)dx = 1.

In what follows we will only use the rescaled variables x̃j and ǫ̃n, but suppress the tildes from the notation. Moreover,
in this scaling En = n, and therefore SEn,ǫ becomes Sn,ǫn .

At this point we can define a notion of chaos for our class of models:

Definition 1.1. Let α > 0 and let f (x) be a probability density on R+. We define a sequence {Fn}n≥2 of probability
measures on Sn,ǫn to be (α,f )-chaotic if (x1, . . . , xn) is random with distribution Fn, and the empirical measures μn =
1
n

∑n
j=1 δ(x − xj ) converge in probability to f (x)dx as n → ∞ and αn := ǫn(n − 1)/En → α.

Let Pt be the semigroup associated to a Markov process on Sn,ǫn , that is, Fn(x, t) = PtFn(x,0). Following Kac,
we say that the semigroup Pt propagates chaos with parameter α in case whenever {Fn(x,0)} is (α,f0)-chaotic, then
{Fn(x, t)} is (α,ft )-chaotic for some probability density ft on R+.

In the Kac process that we study here, pairs of particle will interact by redistributing their energies xi and xj to a new
pair x∗

i and x∗
j with xi + xj = x∗

i + x∗
j provided the gaps around x∗

i and x∗
j are large enough for the exclusion constraint

to be satisfied. Let x ∈ R+. Then for all sufficiently large n, and all (x1, . . . xn) ∈ Sn,ǫn , x < max1≤k≤n{xk}. Let x(j) and
x(j+1) be the pair of consecutive energies such that x ∈ [x(j), x(j+1)[. Define the gap at energy x to be

ζ(x) := x(j+1) − x(j) − α

n − 1
.

Only when ζ ≥ α
n−1 is it possible for an interaction to result in either x∗

i ∈ [x(j), x(j+1)[ or x∗
j ∈ [x(j), x(j+1)[ since only

in this case is the minimum spacing α
n−1 (in the scaled variable) available above and below some energy in this interval.

It is probably intuitively clear, and will be shown later on, that the evolution of the empirical density depends strongly
on distribution of the energy gaps: For a given probability density f (x) as in Definition 1.1, and any 0 < α < 2, there
are different (α,f )-chaotic sequences {Fn}n≥2 that have very different gap distributions, and this will result in different
sorts of interactions being favored in the process, and thus to different results for ft under the time evolution. Thus, this
definition as it stands will not lead to a well-defined evolution equation for the limiting density ft . We must bring in
information on the gaps.

Definition 1.2. Let a sequence {Fn}n≥2 be (α,f )-chaotic according to Definition 1.1. We say that {Fn}n≥2 is (α,f )-
chaotic in detail if for any x ∈ R+, the random interval ]x(j), x(j+1)[ that contains x, the gap length ζx,n = x(j+1) −
x(j) − α/(n − 1) satisfies

lim
n→∞

P
[
(n − 1)ζx,n/α > r

]
→ e

− αf (x)
1−αf (x)

r
.(16)

We say that the semigroup Pt propagates detailed chaos with parameter α in case whenever {Fn(x,0)} is (α,f0)

chaotic in detail, then the same holds for {Fn(x, t)} for some probability density ft on R+.
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As we shall show below, this particular gap distribution specified in (16) is the only one that is possible: If the gap
lengths are asymptotically exponential, and the empirical distribution is asymptotically deterministic with density f , then
the exponential rates must be related to f as specified in (16). Thus one could formulate the definition less specifically,
only requiring that the gap lengths are asymptotically exponential with some rate.

This is probably the simplest generalization of the notion of chaos to our class of models with the exclusion constraint.
We consider four questions concerning the Kac model on the simplex with exclusion:

(1) Does the {σn,ǫ} of equilibrium measures satisfy the detailed chaos condition when αn → α? If so, what is the limiting
density fα for which this sequence is (α,fα)-chaotic, and how does fα compare with the Fermi–Dirac distribution,
which one might expect in a “quantized” model; i.e., one in which parking spaces are marked with lines?

(2) For which probability densities g on R+ that satisfy (14) and (15) do there exist sequences that satisfy (α, g)-chaos
and detailed (α, g)-chaos conditions?

(3) Is detailed chaos propagated, and if so, what is the equation that governs the evolution of the limiting marginal
densities?

(4) At which energy levels in equilibrium do collisions occur a rate bounded away from zero, and at which energy levels
are the collisions “frozen out”?

Theorem 2.1 gives a positive answer to the first question, explicitly identifying fα , which is not the Fermi–Dirac
distribution; see Figure 1. Theorem 2.1 provides quantitative bounds on the rate at which W1(μn, fα dx) → 0 in proba-
bility, where W1 is the Kantorovich–Rubinstein transport metric. Mass transport methods are the basis of a number of our
proofs.

Theorem 3.10 answers the second question – such chaotic sequences exist for all densities satisfying the two necessary
requirements (14) and (15). Such sequences can be constructed in qualitatively different ways, and we provide two
examples of constructions, the second one given in Theorem 3.13. Other results in this section provide quantitative chaos
estimates, again in the W1 metric for a broad class of densities g satisfying mild regularity hypotheses.

In Section 4 we derive under the assumption of propagation of detailed chaos, the Boltzmann-like equation that governs
the evolution of the limiting empirical measure. The equation resembles the Uehling–Uhlenbeck equation of quantum
kinetic theory, but with a different “exclusion factor” corresponding to our different exclusion model. But this exclusion
factor turns out to depend on the chaotic sequence: Definition 1.1 is not restrictive enough to uniquely determine the
evolution of the limiting empirical measure, though the additional information on the gaps provided in Definition 1.2 is
enough.

We prove that the limiting densities fα obtained from equilibrium measures {σn,ǫ} are stationary solutions to the
Boltzmann–Kac equation. We do not prove that propagation of chaos according to either Definition 1.1 or Definition 1.2
holds, but we do provide numerical evidence that detailed (α,f )-chaoticity is propagated, and also that if initial data are
only (α,f0)-chaotic, without the correct exponential gap distribution (16) for α and f0, this is actually improved by the
evolution: The gap distribution converges rapidly to the correct exponential distribution, so that in this sense it appear that
not only is chaos propagated, but it strengthens. The numerical evidence for this is presented in Section 5, and further
results are available as supplementary material [3].

2. The empirical distribution with exclusion

Equip the rescaled state space, still denoted Sn,ǫn and defined in (5), with the uniform probability measure σn,ǫ . Let E
denote expectation with respect to this probability measure. Then x1, . . . , xn become random variables.

For two probability measures μ and ν on R+, let W1(μ, ν) denote the Kantorovich–Rubinstein distance between μ

and ν. Recall that

(17) W1(μ, ν) = sup

{∣∣∣∣
∫ ∞

0
χ dμ −

∫ ∞

0
χ dν

∣∣∣∣ : χ ∈ Lip1

}
.

Lip1 denotes the class of 1-Lipschitz functions; i.e., functions χ such that |χ(x) − χ(y)| ≤ |x − y| for all x, y. Note that
we may restrict to χ ∈ Lip1 and χ(0) = 0 without changing anything.

Theorem 2.1. For αn = ǫn(n − 1)/En → α, the sequence of uniform probability measures on Sn,ǫn is (α,fα)-chaotic in
detail, where

fα(x) = d

dx
φ−1(x) = 1

φ′(φ−1(x))
,(18)
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Fig. 1. The function φ(ξ) for α = 0.0,1.0,1.5,1.9 (left), and the density f (x) for the same values of α. Curiously, for ξ = ξ0 ≈ 0.797 (the solution
of 1 − ξ − e−2ξ = 0), φ(ξ) is independent of α, and hence the fraction of the mass of f (x) in 0 ≤ x ≤ 2ξ0 (indicated by the dashed line) is ξ0 for all
values of α.

and

φ(ξ) := (1 − α/2) log

(
1

1 − ξ

)
+ αξ.(19)

Moreover, the sequence of empirical measures {μn}, defined as in (10), is such that there is a constant C such that for
any δ > 0 and all sufficiently large n,

P
{
W1(μn, fα dx) > δ

}
≤ 1

δ

(
C√
n

+ 3

2
|αn − α|

)
.(20)

The theorem is a corollary of Theorem 3.5, except for the statement of detailed chaoticity, which is proven in Sec-
tion 3.2. The function φ in equation (19) is known as the quantile function for the distribution with density fα and it is
derived as a limit of explicitly constructed quantile functions for each n. We refer to [5] for similar functions related to
Young diagrams and shape functions associated with random permutations.

Theorem 2.1 shows that although the exclusion introduces new dependencies between the random variables x1, . . . , xn

that are far more complicated that those induced by
∑n

j=1 xj = n which would be the only constraint in the absence of
exclusion, these new dependencies are not an obstacle to chaos in the sense of Kac: If σn,ǫ denote the law of (x1, . . . , xn),
and αn → α, then {σn,ǫ} is (α,fα)-chaotic.

While the form of φ(ξ) is simple, it seems difficult to express the function f in closed form, but it clearly differs from
the Fermi–Dirac density that is the relevant expression in a quantized setting, although it does resemble it for large values
of α. The function f is plotted for some different values of α in Figure 1.

2.1. Parameterization of Sn,ǫn by the standard simplex

We shall make use of a parameterization of the state space Sn,ǫn in terms of the standard simplex

S1 :=
{

(x1, . . . , xn) ∈ R
n
+ :

n∑

j=1

xj = 1

}
.(21)

We first define S∗
n,ǫn

to be the subset consisting of all (x1, . . . , xn) with x1 < x2 < · · · < xn. Up to a set of measure zero,
one recovers Sn,ǫn by taking the union over all permutations

⋃

π∈Sn

{
(xπ(1), . . . , xπ(n)) : (x1, . . . , xn) ∈ S∗

n,ǫn

}
.

The measures we study are all symmetric under interchange of particles, and hence it suffices to parameterize S∗
n,ǫn

.
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Lemma 2.2. For (z̃1, . . . , z̃n) ∈ S1, define Tn(z̃1, . . . , z̃n) to be the vector in R
n
+ whose j th component xj is given by

(22) xj = n

(
1 − αn

2

)(
z̃1

n
+ z̃2

(n − 1)
+ · · · + z̃j

n + 1 − j

)
+ j − 1

n − 1
αn.

Then Tn provides a one-to-one parameterization of S∗
n,ǫn

by S1, and moreover σn,ǫ is the pushforward of the uniform
probability measure on S1 under Tn, averaged over permutations.

Proof. First note that

n∑

j=1

(
z̃1

n
+ z̃2

(n − 1)
+ · · · + z̃j

n + 1 − j

)
= 1 and

n∑

j=1

j − 1

n − 1
αn = nαn

2
,

so that
∑n

j=1 xj = n, and for j > 1,

(23) xj − xj−1 = n

(
1 − αn

2

)
z̃j

n + 1 − j
+ ǫn ≥ ǫn.

Thus the image of Tn lies in Sn,ǫn . Moreover, (23) shows that Tn is invertible, and gives an explicit formula for the
inverse from which one sees, by the same computations that T −1

n (Sn,ǫn) ⊂ S1. This proves the statements about the
parameterization. The proof of the description of σn,ǫ in terms of Tn is somewhat more involved.

We begin by considering the case with no exclusion (ǫ = 0): The uniform density is also the equilibrium distribution
of a set of particles at equilibrium, so that for φ ∈ C(Rn),

E
(
φ(x1, . . . , xn)

)
= 1

Z

∫

0<x1+···+xn−1<n

φ(x1, . . . , xn)dx1 dx2 · · · dxn−1

= 1

Z̃

∫

0<x1+···+xn−1<n
x1<···<xn

∑

π

φπ (x1, . . . , xn)dx1 dx2 · · · dxn−1,

(24)

where xn = n − x1 − · · · − xn−1, and, in the second row, φπ denotes the composition of φ with the permutation operator
π : (x1, . . . , xn) 
→ (xπ1 , xπ2 , . . . , xπn), and the sum is taken over all permutations. The normalizing factor Z̃ is given by

Z̃ :=
∫

0<x1+···+xn−1<n
0<x1<···<xn

dx1 dx2 · · · dxn−1.(25)

Here we have parameterized Sn with its projection on {(x1, . . . , xn−1) | xj > 0, x1 + · · · + xn−1 < n}, and set
dσ(x1, . . . , xn−1) = dx1 · · · dxn−1 without the factor

√
n which may anyway be absorbed into Z̃ .

Now consider the case ǫ > 0: The expectation in equation (24) can then be computed with the same integrals, but
adding the restriction that xj − xj−1 > ǫn for all j > 1. Therefore we set zj = xj − xj−1 − ǫn > 0 for 1 < j < n and set
z1 = x1. This yields the following change of variables:

(26)

x1 = z1,

x2 = x1 + ǫn + z2 = z1 + z2 + ǫn,

· · ·
xn−1 = z1 + · · · + zn−1 + (n − 2)ǫn,

xn = n − (n − 1)z1 − (n − 2)z2 − · · · − zn−1 − ǫn(n − 1)(n − 2)/2.

The Jacobian of (z1, . . . , xn−1) 
→ (x1, . . . , xn−1) has determinant one, and hence to compute the integrals in equation
(24), it is enough to find the domain of (z1, . . . , xn−1). For each j < k ≤ n, and each 1 ≤ m ≤ n − j , we have xj+m ≥
xj + mǫn, and evidently this is the smallest value xj+m can take, given xj . Therefore,

n −
j∑

k=1

xk =
n−j∑

m=1

xj+m ≥ (n − j)xj + (n + 1 − j)(n − j)

2
ǫn.
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Rearranging terms,

xj <
1

n + 1 − j

(
n − x1 − x2 − · · · − xj−1 − ǫn

(n + 1 − j)(n − j)

2

)
.(27)

Since xk = z1 + · · · + zk + (k − 1)ǫn,

j−1∑

k=1

xk =
j−1∑

k=1

(j − k)zk + ǫn

(j − 1)(j − 2)

2
,

and since

(j − 1)(j − 2) + (n + 1 − j)(n − 1) + 2(j − 1)(n + 1 − j) = n(n − 1),

zj <
1

n + 1 − j

(
n −

j−1∑

k=1

(j − k)zk − ǫn

(j − 1)(j − 2)

2
− ǫn

(n + 1 − j)(n − j)

2

)

− z1 − · · · − zj−1 − (j − 1)ǫn

= 1

n + 1 − j

(
n

(
1 − αn

2

)
−

j−1∑

k=1

(n + 1 − k)zk

)
.

(28)

Define

(29) z̃j := n + 1 − j

n

1

1 − αn/2
zj .

Then (28) becomes z̃j ≤ 1 −
∑j−1

k=1 z̃k . Using this notation, the version of equation (24) with exclusion can be written

E
(
φ(x1, . . . , xn)

)
= Jn,ǫ

Zn,ǫ

∫ 1

0
dz̃1

∫ 1−z̃1

0
dz̃2 · · ·

∫ 1−z̃1−···−z̃j−1

0
dz̃j · · ·

· · ·
∫ 1−z̃1−···−z̃n−2

0
dz̃n−1

∑

π

φπ (x1, x2, . . . , xn),

(30)

where Jn,ǫ is the Jacobian corresponding to the change of variables given in (29). Taking ϕ to be the constant function 1,
it is evident that

Zn,ǫ = Jn,ǫ = 1

n!

(
n − nαn

2

)n−1

,

which gives the value of Zn,ǫ . However, we only need to know that Jn,ǫ/Zn,ǫ = 1, and then observe that the substitution
(29) transforms xj = z1 + · · · + zn−1 + (j − 1)ǫn into (22) for all j < n. �

Remark 2.3. Lemma 2.2 provides a convenient method for sampling (x1, . . . , xn): simply take (z̃1, . . . , z̃n) uniformly
from the standard n-simplex, i.e. z̃1 + · · · + z̃n = 1, and compute the xj according to the formula (22).

Remark 2.4. Because Tn is continuous and invertible with a continuous inverse, it sets up a one-to one correspondence
between symmetric Borel probability measures on Sn,ǫn and Borel probability measures on S1. This correspondence
provides a useful way to think about symmetric Borel probability measures on Sn,ǫn in terms of partitions of the excess
energy. In the rescaled variables, the excess energy is

n

(
1 − αn

2

)
=

n∑

j=1

n

(
1 − αn

2

)
z̃j .

Thus one may think of {z̃1, . . . , z̃n} as specifying a partition of the excess energy into n components
{
n

(
1 − αn

2

)
z̃j

}n

j=1
.(31)
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The first term in the partition may be understood as making an equal contribution of

n

(
1 − αn

2

)
z̃1

n

to the energy of each particle, and in the same way the second component makes equal contributions of

n

(
1 − αn

2

)
z̃2

n − 1

to the energy of each of the last n − 1 particles and so forth. Adding these up, together with the total excluded energies,
one arrives at (22).

3. Pre-chaotic sequences of probability measures on S1

We now identify a class of sequences of measures on S1 whose pushforwards under Tn will be shown to be (α, g)-chaotic
on Sn,ǫn in the sense of Definition 1.1.

For each n, let τn be a Borel probability measure on S1. Also define the function

(32) wn(ξ) = nEτn[z̃k] for
k − 1

n
< ξ ≤ k

n
,1 ≤ k ≤ n,

and w(0) = nEτn[z̃1]. Here Eτn is the expectation with respect to the measures τn. That is, for ξ > 0, wn(ξ) = nE[z̃⌈nξ⌉]
where ⌈nξ⌉ is the least integer k such that nξ ≤ k. Note that for each n,

∫ 1

0
wn(ξ)dξ =

n∑

k=1

Eτn [z̃k] = 1,

so that wn is a probability density.

Definition 3.1. Let w : [0,1[→ R+ be a continuous probability density. A sequence {τn} of probability measures on S1

is w-pre-chaotic in case

(33) nEτn[z̃j ] = w(j/n) + r(j/n)

for a continuous function r(s) decreasing to zero when s → 0, where for each 0 < ξ∗ < 1, and each ǫ > 0, there is an nǫ

so that

(34)
∣∣r(j/n)

∣∣ < ǫ for all n > nǫ, j < nξ∗,

and moreover, for some constant C < ∞ depending only on ξ∗,

(35) Var[z̃i] ≤ C

n
ǫ and

∣∣Cov(z̃j , z̃k)
∣∣ ≤ C

n2
ǫ for all n > nǫ, j, k < nξ∗,

for all n, j and k.

Remark 3.2. By Lemma 2.2, the equilibrium distribution σn,ǫ arises when the random partition in (31) is determined by
choosing (z̃1, . . . , z̃n) from a flat Dirichlet distribution; i.e., the uniform density on S1, and then the random variables z̃j

satisfy

E[z̃i] = 1

n
,

Var[z̃i] = (n − 1)

n2(n + 1)
,

Cov[z̃i, z̃j ] = −1

n2(n + 1)
.

(36)



752 E. Carlen and B. Wennberg

Moreover, it is clear that for each n, wn(ξ) = 1 for all n and ξ . In this case, w is continuous on the closed interval [0,1]
and hence is bounded at 1 also, though the definition allows for w(t) to diverge as t ↑ 1. Later, we shall see that we need
this generality.

The next lemma will be used several times in what follows.

Lemma 3.3. Let f and g be two non-negative integrable functions on [0,1] such that
∣∣∣∣
∫ 1

0

(
f (ξ) − g(ξ)

)
dξ

∣∣∣∣ ≤ a.

Then for all 0 < ξ∗ < 1,

∫ 1

0

∣∣f (ξ) − g(ξ)
∣∣dx ≤ 2

∫ ξ∗

0

∣∣f (ξ) − g(ξ)
∣∣dx + 2

∫ 1

ξ∗
g(ξ)dξ + a.

Proof. We have
∫ 1

0

∣∣f (ξ) − g(ξ)
∣∣dx =

∫ ξ∗

0

∣∣f (ξ) − g(ξ)
∣∣dx +

∫ 1

ξ∗

∣∣f (ξ) − g(ξ)
∣∣dx

≤
∫ ξ∗

0

∣∣f (ξ) − g(ξ)
∣∣dx +

∫ 1

ξ∗
f (ξ)dξ +

∫ 1

ξ∗
g(ξ)dξ.

Next,
∫ 1

ξ∗
f (ξ)dξ =

∫ 1

ξ∗
g(ξ)dξ +

∫ 1

ξ∗
(f (ξ) − g(ξ)dξ

≤
∫ 1

ξ∗
g(ξ)dξ + a −

∫ ξ∗

0

(
f (ξ) − g(ξ)

)
dξ

≤
∫ 1

ξ∗
g(ξ)dξ + a +

∫ ξ∗

0

∣∣f (ξ) − g(ξ)
∣∣dξ.

�

Our first application is the following:

Lemma 3.4. Let {τn} be a w pre-chaotic sequence, and let wn be defined in terms of τn as in (32). Then

(37) lim
n→∞

∫ 1

0

∣∣wn(ξ) − w(ξ)
∣∣dξ = 0.

Proof. Pick ǫ > 0, and choose 0 < ξ∗ < 1 such that
∫ 1
ξ∗

w(t)dt < ǫ. By hypothesis w is continuous on [0, ξ∗], and for all
n > nǫ ,

∫ ξ∗

0

∣∣wn(ξ) − w(ξ)
∣∣dξ =

∑

k<nξ∗

∫ k/n

(k−1)/n

∣∣w(k/n) + r(k, n) − w(ξ)
∣∣dξ

≤
∑

k<nξ∗

∫ k/n

(k−1)/n

∣∣w(k/n) − w(ξ)
∣∣dξ + ǫ.

If ω denotes the modulus of continuity of w on [0, ξ∗],
∣∣w(k/n) − w(ξ)

∣∣ ≤ ω(1/n) on

[
k − 1

n
,
k

n

]
.

Thus
∫ ξ∗

0

∣∣wn(ξ) − w(ξ)
∣∣dξ ≤ ω(1/n) + ǫ
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for all sufficiently large n. By Lemma 3.3, for all sufficiently large n,

∫ 1

0

∣∣wn(ξ) − w(ξ)
∣∣dξ ≤ 2ω(1/n) + 4ǫ.

Since ǫ > 0 is arbitrary, the lemma is proved. �

3.1. Chaotic sequences of probability measures on Sn,ǫn

In this section we prove the following:

Theorem 3.5. Let w be a probability density on [0,1] that is continuous on [0,1[, and let {τn} be a w pre-chaotic
sequence of probability densities on S1. Fix a sequence of energies {En} with αn = ǫn(n − 1)/En → α, and define the
maps Tn in terms of αn. Let τ̂n denote the pushforward of τn onto Sn,ǫn , averaged over permutations. Let {μn} be the
sequence of empirical measures associated to {τ̂n}. Then

(38) lim
n→∞

W1
(
μn, g(x)dx

)
= 0,

where g is a probability density on R+ related to w as follows: Define the increasing function φ on [0,1] by

(39) φ(ξ) = (1 − α/2)

∫ ξ

0

w(t)

1 − t
dt + αξ

and then

(40) g(x) = 1

φ′(φ−1(x))
.

Theorem 3.5 gives conditions for {τ̂n} to be (α, g) chaotic for a probability density g on R+ that is determined by α

and w. Notice that as long as w(1) �= 0 we have limξ→1 φ(ξ) = ∞, and if in addition α > 0 or if w does not vanish on
any interval, then φ is strictly increasing, so that φ is invertible from [0,1] to [0,∞[, and evidently it is differentiable.
It is also possible to invert the relation between g and w, so that given an appropriate density g, one can find the w for
which (39) and (40) yield g:

Theorem 3.6. Let α ∈]0,2[. Let g(x) be a probability density on R+ such that

(41) g(x) <
1

α
a.e. and

∫ ∞

0
xg(x)dx = 1.

Let G(x) =
∫ x

0 g(t)dt denote the distribution function of g, and for ξ ∈ [0,1] define

(42) w(ξ) := 1

1 − α/2

(
1

g(G−1(ξ))
− α

)
(1 − ξ).

Then w is a probability density on [0,1], and with φ defined as in (39)

(43) g(x) = 1

φ′(φ−1(x))
,

and

(44)
αg(x)

1 − αg(x)
= 2α

2 − α

1 − φ−1(x)

w(φ−1(x))
.
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Proof. We compute, using the change of variables x := G−1(ξ),

(1 − α/2)

∫ 1

0
w(ξ)dξ =

∫ ∞

0

(
1 − αg(x)

)(
1 − G(x)

)
dx

=
∫ ∞

0

(
1 − G(x)

)
dx − α

∫ ∞

0
g(x)

(
1 − G(x)

)
dx

=
∫ ∞

0
xg(x)dx − 1

2
α.

(45)

Thus, whenever, g(x) < 1/α almost everywhere and
∫ ∞

0 xg(x)dx = 1, w(x) is a probability density on [0,1].
With this choice of w(ξ) in (39), we find

(46) φ(ξ) =
∫ ξ

0

(
1

g(G−1(t))
− α

)
dt + αξ =

∫ ξ

0

1

g(G−1(t))
dt.

It follows that φ′(x) = 1/g((G−1(ξ)) = (G−1(ξ))′ and then since φ(0) = G−1(0) = 0, φ(ξ) = G−1(ξ). Thus, G(x) =
φ−1(x), and (43) is valid.

Finally, by (43),

αg(x)

1 − αg(x)
= α

φ′(φ−1(x)) − α
,

and then since φ′(ξ) = (1 − α/2)
w(ξ)
1−ξ

+ α, (44) follows. �

As an example, consider g(x) = e−x , which satisfies (41) as long as α ≤ 1. Then G(x) = 1 − e−x , and then G−1(ξ) =
− log(1 − ξ). Therefore,

w(ξ) = 1

1 − α/2

(
1 − α(1 − ξ)

)
,

which is bounded on all of [0,1]. By Theorem 3.5 and Theorem 3.6, for all α ≤ 1, there exists an (α, g)-chaotic sequence.
We now prepare to prove Theorem 3.5. The first step is to encode the empirical distribution into a random function as

follows: Define a random function ψn : [0,1] →R
+ by setting x0 = 0, and then

ψn(ξ) := xk−1 for
k − 1

n
≤ ξ <

k

n
,1 ≤ k ≤ n.

Explicitly,

ψn(ξ) = x⌊nξ⌋ =
(

1 − αn

2

) ⌊ξn⌋∑

j=1

z̃j

1 − j−1
n

+ αn(⌊nξ⌋ − 1)+
n − 1

,(47)

where ⌊nξ⌋ is the largest integer k such that k ≤ nξ . The point of the definition is this: Let χ be any 1-Lipschitz function on
R+ with χ(0) = 0. Then on account of (12), χ is, with probability 1, integrable with respect to the empirical distribution
μn, and one has

(48)
∫ ∞

0
χ dμn =

∫ 1

0
χ

(
ψn(ξ)

)
dξ + 1

n
χ(xn).

Define ρn to be the pushforward under ψn of the uniform measure on [0,1], so that we can rewrite (48) as

μn = ρn + 1

n
δ(x − xn) − 1

n
δ(x).

Had we used the ceiling function ⌈·⌉ in place of the floor function ⌊·⌋, we would have had μn = ρn, and then we would
have

∫ 1

0
ψn(ξ)dξ = 1

n

n∑

j=1

xj = 1,
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so that ψn would be a random probability distribution. This would be convenient, but then some estimates that follow
would be more complicated. It is easy to estimate the small difference:

Lemma 3.7. We have

(49) lim
n→∞

1

n
E[xn] = 0,

and for all δ > 0,

(50) lim
n→∞

P
{
W1(μn, ρn) > δ

}
= 0.

Proof. Since χ is 1-Lipschitz with χ(0) = 0,
∣∣∣∣
∫ ∞

0
χ dμn −

∫ ∞

0
χ dρn

∣∣∣∣ = 1

n

∣∣χ(xn)
∣∣ ≤ 1

n
xn,

and hence W1(μn, ρn) ≤ 1
n
xn. Thus, once we have proved (49), (50) follows by Markov’s inequality.

Now (36) yields

Exn = E

(
n

(
1 − αn

2

)(
z̃1

n
+ z̃2

(n − 1)
+ · · · + z̃n

1

)
+ αn

)
.

Pick 0 < ξ∗ < 1, and split the sum into two pieces

n∑

k=1

E[z̃k]
n − k + 1

=
∑

k≤⌊nξ∗⌋

E[z̃k]
n − k + 1

+
∑

k>⌊nξ∗⌋

E[z̃k]
n − k + 1

.

The last term satisfies
∑

k>⌊nξ∗⌋

E[z̃k]
n − k + 1

≤
∑

k>⌊nξ∗⌋
E[z̃k] ≤

∫ 1

ξ∗−1/n

wn(ξ)dξ,

and by Lemma 3.4, for and ǫ > 0 sufficiently large n, this is bounded above by
∫ 1

ξ∗−1/n

w(ξ)dξ + ǫ

uniformly in ξ∗. Because

lim
ξ∗↑1

∫ 1

ξ∗
w(ξ)dξ = 0,

we can choose ξ∗ < 1 so that
∑

k>⌊nξ∗⌋

E[z̃k]
n − k + 1

< ǫ

for all sufficiently large n. Next,

n
∑

k≤nξ∗

E[z̃k]
n − k + 1

=
∑

k≤nξ∗

nE[z̃k]
1 − (k − 1)/n

1

n
=

∑

k≤nξ∗

(wn(k − 1)/n)

1 − (k − 1)/n

1

n
.

By (33), for all ǫ > 0 this is bounded by
∫ ξ∗

0

w(t)

1 − t
dt + 2ǫ

for all sufficiently large n. Altogether, for all ǫ > 0 and all sufficiently large n,

1

n
E[xn] ≤ (1 − αn/2)

(
1

n

(∫ ξ∗

0

w(t)

1 − t
dt + 2ǫ + αn

)
+ ǫ

)
.

Since ǫ > 0 is arbitrary, this proves (49). �
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Now let n → ∞ with αn → α. We shall show below that if {τ̂n} is the pushforward of a w-pre-chaotic sequence {τn}
of probability densities on S1, and μn is the corresponding sequence of empirical measures, then along this limit, the
variance of ψn(ξ) converges to zero, and moreover, its expectation φn(ξ) := E[ψn(ξ)] converges to a limiting function
φ := limn→∞ φn. In this case

lim
n→∞

∫ ∞

0
χ dμn =

∫ 1

0
χ

(
φ(ξ)

)
dξ =

∫ ∞

0
χ(x)fα(x)dx,

with convergence in probability, where fα(x) := 1/φ′(φ−1(x)), as in Theorem 2.1.
Computing the expectation of ψn(ξ), we see that

φn(ξ) =
(

1 − αn

2

) ⌊ξn⌋∑

j=1

E[z̃j ]
1 − j−1

n

+ αn(⌊nξ⌋ − 1)+
n − 1

=
(

1 − αn

2

)
1

n

⌊ξn⌋∑

j=1

wn(j/n)

1 − j−1
n

+ (⌊ξn⌋ − 1)+
(n − 1)ξ

αnξ.

(51)

For j−1
n

< t ≤ j
n

(52)
1

1 − t
− 1

n

1

(1 − t)2
≤ 1

1 − j−1
n

≤ 1

1 − t
,

and therefore

(53)
∫ ξ

0

wn(t)

1 − t
dt − 1

n

∫ ξ

0

wn(t)

(1 − t)2
dt ≤ 1

n

⌊ξn⌋∑

j=1

wn(j/n)

1 − j−1
n

≤
∫ ξ

0

wn(t)

1 − t
dt.

Setting

(54) φ̃n(ξ) := (1 − αn/2)

∫ ξ

0

wn(t)

1 − t
dt + (⌊ξn⌋ − 1)+

(n − 1)ξ
αnξ ≥ φn(x),

we have

(55)
∣∣φn(ξ) − φ̃n(ξ)

∣∣ ≤ (1 − αn/2)
1

n

∫ ξ

0

wn(t)

(1 − t)2
dt ≤ (1 − αn/2)

C

n

1

1 − ξ
.

Note also that

(56) 1 − 2

ξ

1

n − 2
≤ (⌊ξn⌋ − 1)+

(n − 1)ξ
≤ 1,

and therefore, if we assume that αn → α,

φn(ξ) → (1 − α/2)

∫ ξ

0

w(t)

1 − t
dt + αξ =: φ(ξ)(57)

when n → ∞.
We then have from (53), (55) and (56) for all ξ ,

∣∣φ(ξ) − φn(ξ)
∣∣ ≤

∣∣φ(ξ) − φ̃n(ξ)
∣∣ +

∣∣φ̃n(ξ) − φn(ξ)
∣∣

≤ (1 − α/2)

∫ ξ

0

|w(t) − wn(t)|
1 − t

dt +
(

1 − (⌊ξn⌋ − 1)+
(n − 1)ξ

)
α

+ φ̃n(ξ) − φn(ξ).

(58)

Now define νn to be the probability measure on R+ that is the pushforward of the uniform probability measure on
[0,1] under φn, and let ν be determined by φ in the same way.
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Lemma 3.8. We have

(59) lim
n→∞

∫ 1

0

∣∣φn(ξ) − φ(ξ)
∣∣dξ = 0,

and

(60) lim
n→∞

W1(νn, ν) = 0.

Proof of Lemma 3.8. Let χ ∈ Lip1. Then

∣∣∣∣
∫ 1

0
χ

(
φn(ξ)

)
dξ −

∫ 1

0
χ

(
φ(ξ)

)
dξ

∣∣∣∣ ≤
∫ 1

0

∣∣φn(ξ) − φ(ξ)
∣∣dξ.

It remains to show (59). We estimate each of the terms coming from (58).
Suppose first that αn = α for all n. To bound the integral of the first term on the right in (58), change the order of

integration:

∫ 1

0

(∫ ξ

0

|w(t) − wn(t)|
1 − t

dt

)
dξ =

∫ 1

0

(∫ 1

t

|w(t) − wn(t)|
1 − t

dξ

)
dt

=
∫ 1

0

∣∣w(t) − wn(t)
∣∣dt,

and by Lemma 3.4, the right side vanishes in the limit n → ∞. Making the obvious addition and subtraction argument,
we see that the same conclusion holds under the assumption that limn→∞ αn = α.

Next, to estimate
∫ 1

0 (1 − (⌊ξn⌋−1)+
(n−1)ξ

)dξ we break the integral up into two pieces, and use (56) away from ξ = 0:

∫ 1

0

(
1 − (⌊ξn⌋ − 1)+

(n − 1)ξ

)
dξ ≤

∫ 1/n

0
1 dξ +

∫ 1

1/n

2

ξ

1

n − 2
dξ = 1

n
+ 2 logn

n − 2
,

and this too vanishes in the limit n → ∞.
Finally, to estimate

∫ 1
0 (φ̃n(ξ) − φn(ξ))dξ , we break the integral up into two pieces, but at the other end, and use (55):

∫ 1−1/n

0

(
φ̃n(ξ) − φn(ξ)

)
dξ ≤ (1 − α/2)

C

n

∫ 1−1/n

0

1

1 − ξ
dξ = (1 − α/2)

C logn

n

while
∫ 1

1−1/n

(
φ̃n(ξ) − φn(ξ)

)
dξ ≤

∫ 1

1−1/n

φ̃n(ξ)dξ ≤ (1 − α/2)

∫ 1

1−1/n

log(1 − ξ)dξ + 1

n
α

= (1 − α/2)
α + 1 + logn

n
.

To pass to the general case, let φ̃ denote the function φ with α replaced by some αn ∈]0,2[. Then it is easy to see that∫ 1
0 |φ − φ̃|dξ ≤ 3

2 |α − αn|. Now one more application of the triangle inequality yields (59) in general. �

Lemma 3.9. limn→∞ P{W1(ρn, νn) > δ} = 0. Recall here that ρn is the pushforward of the uniform measure on [0,1] by
the map ψn from equation (47).

Proof. Take χ ∈ Lip1 and estimate

∣∣∣∣
∫ 1

0
χ

(
ψn(ξ)

)
dξ −

∫ 1

0
χ

(
φn(ξ)

)
dξ

∣∣∣∣ ≤
∫ 1

0

∣∣χ
(
ψn(ξ)

)
− χ

(
φn(ξ)

)∣∣dξ,

uniformly in χ , and hence W1(ρn, νn) ≤
∫ 1

0 |ψn(ξ) − φn(ξ)|dξ . By Markov’s inequality, for any δ > 0,

(61) P
{
W1(ρn, νn) > δ

}
≤ 1

δ
E

(∫ 1

0

∣∣ψn(ξ) − φn(ξ)
∣∣dξ

)
.
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Now note that
∫ 1

0 ψn(ξ)dξ = 1
n

∑n−1
j=0 xj = 1 − 1

n
xn, and likewise

∫ 1

0
φn(ξ)dξ = 1

n

n−1∑

j=0

E[xj ] = 1 − 1

n
E[xn].

Therefore,
∣∣∣∣
∫ 1

0
ψn(ξ)dξ −

∫ 1

0
φn(ξ)dξ

∣∣∣∣ ≤ 1

n

∣∣xn −E[xn]
∣∣.

Then by Lemma 3.3,

∫ 1

0

∣∣ψn(ξ) − φn(ξ)
∣∣dξ ≤ 2

∫ ξ∗

0

∣∣ψn(ξ) − φn(ξ)
∣∣dξ + 2

∫ 1

ξ∗
φn(ξ)dξ + 1

n

∣∣xn −E[xn]
∣∣.

Next, by Lemma 3.8

lim sup
n→∞

∫ 1

ξ∗
φn(ξ)dξ ≤

∫ 1

ξ∗
φ(ξ)dξ + lim sup

n→∞

∫ 1

0

∣∣φn(ξ) − φ(ξ)
∣∣dξ =

∫ 1

ξ∗
φ(ξ)dξ,

and 1
n
E[|xn −E[xn]|] ≤ 2

n
E[xn] which tends to zero by Lemma 3.7. Therefore,

lim sup
n→∞

E

[∫ 1

0

∣∣ψn(ξ) − φn(ξ)
∣∣dξ

]
≤ 2 lim sup

n→∞
E

[∫ ξ∗

0

∣∣ψn(ξ) − φn(ξ)
∣∣dξ

]

+ 2
∫ 1

ξ∗
φ(ξ)dξ.

We next show that the first term on the right is zero. Pick ǫ > 0. Then by (35), there is a constant C depending only on ξ∗
such that for some nǫ

Var[z̃i] ≤ C

n
ǫ and

∣∣Cov(z̃j , z̃k)
∣∣ ≤ C

n2
ǫ for all n > nǫ, j, k < nξ∗.

We then have from equations (47) and (51) that for all ξ < ξ∗

Var
[
ψn(ξ)

]
= E

[(
ψn(ξ) − φn(ξ)

])2]

= E

[((
1 − αn

2

) ⌊ξn⌋∑

j=1

z̃j −E[z̃j ]
1 − j−1

n

)2]

=
(

1 − αn

2

)2
(⌊nξ⌋∑

j=1

Var[z̃j ]
(1 − j−1

n
)2

+
⌊nξ⌋∑

j,k=1
j �=k

Cov[z̃j , z̃k]
(1 − j−1

n
)(1 − k−1

n
)

)
.

(62)

Using the bounds on Var[z̃j ] and Cov[z̃j , z̃k] from equation (35), for all sufficiently large n,

Var
[
ψn(ξ)

]
≤

(
1 − αn

2

)2
(⌊nξ⌋∑

j=1

Cǫ

n(1 − j−1
n

)2
+

⌊nξ⌋∑

j,k=1
j �=k

Cǫ

n2(1 − j−1
n

)(1 − k−1
n

)

)
.(63)

The first of the terms in the parentheses is smaller than

ǫC

∫ ξ

0

1

(1 − ξ)2
dξ = ǫC

1

1 − ξ
,(64)
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and the second is smaller than

ǫC

(
1

n

⌊nξ⌋∑

k=1

1

1 − k−1
n

)2

≤ ǫC
(
log(1 − ξ)

)2
,(65)

where, as above, we have used (53) and its analog for (1 − ξ)−2. It follows that for all ξ < ξ∗,

Var
[
ψn(ξ)

]
≤ ǫC

(
(1 − ξ)−1 +

(
log(1 − ξ)

)2)
.(66)

Therefore, for all n > nǫ .

E

[∫ ξ∗

0

∣∣ψn(ξ) − φn(ξ)
∣∣dξ

]
=

∫ ξ∗

0
E

[∣∣ψn(ξ) − φn(ξ)
∣∣]dξ

≤
∫ ξ∗

0

(
E

[∣∣ψn(ξ) − φn(ξ)
∣∣2])1/2

dξ

≤
(
ǫC

(
(1 − ξ∗)

−1 +
(
log(1 − ξ∗)

)2))1/2
.

Since ǫ > 0 is arbitrary, this proves that

lim sup
n→∞

E

[∫ 1

0

∣∣ψn(ξ) − φn(ξ)
∣∣dξ

]
≤

∫ 1

ξ∗
φ(ξ)dξ

for all 0 < ξ∗ < 1. However, φ is integrable, we can choose ξ∗ to make this arbitrarily small. Thus,

lim
n→∞

E

[∫ 1

0

∣∣ψn(ξ) − φn(ξ)
∣∣dξ

]
= 0.

The main assertion now follows from (61). �

Proof of Theorem 3.5. By the triangle inequality,

W1(ν,μn) ≤ W1(ν, νn) + W1(νn, ρn) + W1(ρn, νn).

Now applying Lemma 3.7, Lemma 3.8 and Lemma 3.9 yields the result yields (38). Then since

lim
n→∞

μn

(
[0, x]

)
= lim

n→∞

∫ 1

0
1[0,x](ψn(ξ)dξ = lim

n→∞

∫ 1

0
1[0,x](φ(ξ)dξ = φ−1(x),

the cumulative distribution function of the limiting empirical measure is φ−1(x) and hence limiting empirical measure
has the density

g(x) = d

dx
φ−1(x) = 1

φ′(φ−1(x))
.(67)

�

3.2. Detailed chaoticity of the equilibrium sequence

As our first application of Theorem 3.5, we identify the limiting equilibrium density fα , and prove the detailed (α,fα)-
chaoticity of the equilibrium sequence:

Proof of Theorem 2.1. By Lemma 2.2, the sequence of uniform probability measures on Sn,ǫn are obtained by averaging
over permutations the pushforwards under the map Tn described there of the flat Dirichlet measure on the standard
simplices of the same dimension. In this case we have at fixed n that wj = 1/n for all j , and w(t) = 1. By Remark 3.2,
the sequence of flat Dirichlet measures on the standard simplices is w-chaotic in the sense of Definition 3.1 for w = 1.
For w(t) = 1 for all t , φ(ξ) is given by (19), and this identifies the limiting density fα .

We next show that detailed (α,fα) chaoticity holds for the sequence. The gap length ζx,n = x(j+1),n −xj,n −α/(n−1)

satisfies

n − 1

α
ζx,n = 2 − α

2α

(n − 1)z̃j

1 − j−1
n

where j =
⌊
nφ−1(x)

⌋
.
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Each z̃j has a Beta(1, n− 1) distribution, and hence the probability density for (n− 1)z̃j is n
n−1 (1 − z/(n− 1))n−1 which

converges to e−z as n → ∞. Therefore

lim
n→∞

P
[
(n − 1)ζx,n/α > r

]
→ e− 2α(1−φ−1(x))

2−α
r ,(68)

and by (44), this is equivalent to (16). with g = fα .
The rate information is easily extracted from the Lemmas since all but Lemma 3.8 give rates. However, one can extract

a rate from the proof of Lemma 3.8 by considering the last two displayed inequalities in the proof. The details are left to
the reader. �

3.3. Chaotic sequences by non-flat Dirichlet measures

The construction just provided leads to other chaotic sequences of probability measures on Sn,ǫn : Instead of pushing
forward the flat Dirichlet measure on S1, we can pushforward more general Dirichlet distributions, and as we show in this
section this leads to the construction of (α, g)-chaotic sequences for all probability densities g on R+ that satisfy (14) and
(15). However, except in the case of the flat Dirichlet measures, these sequences will not satisfy the detailed chaoticity.

Let w = (w1, . . . ,wn) be a probability measure on {1, . . . , n}. That is, wj ≥ 0 for all j and
∑n

j=1 wj = 1. Then

(69) hw(z̃1, . . . z̃n) =
(

n∏

j=1

Ŵ(nwj )

)−1

Ŵ(n)

n∏

j=1

z̃
nwj −1
j ,

is the density for a Dirichlet distribution on S1 with concentration parameters w. Random variables (z̃1, . . . , z̃n) with this
distribution satisfy

E[z̃j ] = wj ,

Var[z̃i] = wj (1 − wj )

n + 1
,

Cov[z̃i, z̃j ] = −wiwj

n + 1
.

(70)

Now let w(x) be a continuous probability density on [0,1], and suppose that for each n, we produce (w1, . . . ,wn)

by taking wj to be the mass assigned by w(x)dx to the j th interval on in the uniform partition of [0,1]. Let τn denote
the Dirichlet distribution on the standard simplex in n dimensions with the distribution given by (69) and this choice of
(w1, . . . ,wn). Then (37) holds on account of the continuity of w, and (35) holds with C = maxξ∈[0,1]{w(ξ)} which is
finite by the continuity of w. Thus {τn} is a w-pre-chaotic sequence.

Now fix α ∈]0,2[, and a sequence αn ⊂ [0,2] with αn → α. Let τ̂n denote the probability measure on Sn,ǫn obtained
by pushing forward τn under the map specified in Lemma 2.2 at the value αn, and then averaging over permutations. By
Theorem 3.5, {τ̂n} is (α, g) chaotic where

(71) g(x) = 1

φ′(φ−1(x))
and φ(ξ) = (1 − α/2)

∫ ξ

0

w(t)

1 − t
dt + αξ.

Provided
∫ 1

0 (1 − t)−1w(t)dt = ∞, φ increases strictly from 0 at ξ = 0 to ∞ at ξ = 1, and in fact, φ′(ξ) ≥ α for all ξ .
As before, let νn denote the pushforward of the uniform probability measure on [0,1] under φn, and let ν be defined

in the same way in terms of φ, so that ν = g(ξ)dξ where g(ξ) = 1/φ′(φ−1(ξ)). Thus we have:

Theorem 3.10. Let w be a continuous probability density on [0,1]. For each n and each 1 ≤ j ≤ n, define wj =∫ j/n

(j−1)/n w(ξ)dξ . Let the energies En be chosen so that αn → α. Equip Sn,ǫn with the probability measure that is the
pushforward under Tn (see Lemma 2.2) of the Dirichlet measure specified in (69) using these weights, averaged under
permutations. Then this sequence is (α, g)-chaotic where g is given by (71).

However, The chaotic sequences obtained in this manner do not satisfy detailed chaos. In this construction, for each
n and xj (n), Each z̃j (x) has a Beta(nwj (x), n − nwj (x)) distribution, and hence the probability density for (n − 1)z̃j (x)

converges to a non-exponential Gamma distribution unless wj → 1/n. To obtain sequence that satisfies detailed chaos,
we must pushforward a different class of pre-chaotic measures on the standard simplices. In the next subsection, we
describe one way of doing this.
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Remark 3.11. If the concentration parameters in the Dirichlet distribution are multiplied by a common factor K , and
hence equation (69) is replaced by

(72) hK
w (z̃1, . . . z̃n) =

(
n∏

j=1

Ŵ(Knwj )

)−1

Ŵ(Kn)

n∏

j=1

z̃
Knwj −1
j ,

we still have a Dirichlet distribution with the same expected values but with the variance covariance multiplied by the
factor 1/K . Equation (70) becomes

E[z̃j ] = wj ,

Var[z̃i] = wj (1 − wj )

K(n + 1)
,

Cov[z̃i, z̃j ] = − wiwj

K(n + 1)
.

(73)

Therefore all estimates leading to the proof of Theorem 3.10 are still valid, and therefore these measures are (α, g)-
chaotic as well. But increasing K implies that the random variables z̃i become more concentrated around their mean wi .
And while this does not change the limiting density g, it changes the gap distribution for all finite n, and we will see in
Section 4 that this is a fundamental difference for the limiting dynamics of the particle system.

3.4. Detailed chaoticity via order statistics

The construction that we now give uses another probability density h(η) on [0,1] that has to do with the excess energy
distribution.

The distribution of the random points xj ∈R+ is determined by the distribution of empty intervals ]0, x1[, ]x1 + ǫ, x2[,
or equivalently, as we have seen in Lemma 2.2, by the random variables zj in (26). These specify a random partition

{
[0, a1], (a1, a2], . . . , (an−1,1]

}

of [0,1] into n parts with aj − aj−1 = z̃j and a0 = 0. This random partition is closely related to a partition of the excess
energy. Recall that the fraction of the total energy that is excess energy is (1 − α/2). Given a probability density g(x)

on R+ that satisfies (41), (1 − αg(x)) represents the probability that the interval [x, x + dx] is unoccupied. Opening up
a gap in [x, x + dx] would raise the energy of all the particles with energy higher than x by dx. Thus this would make a
contribution of

(
1 − αg(x)

)(
1 − G(x)

)

to the total excess energy, where G is defined as in Theorem 3.6. Therefore, the fraction of the excess energy that can be
ascribed to gaps in [x, x + dx] is

h(x)dx = 1

1 − α/2

(
1 − αg(x)

)(
1 − G(x)

)
dx.(74)

One readily checks that h(x) is indeed a probability density. Let H(x) denote its cumulative distribution function. Out
of G and H we define two maps from [0,1] to [0,1], namely G ◦ H−1 and H ◦ G−1. We may use these two maps to
pushforward the uniform distribution on [0,1] onto [0,1] itself, producing two new probability measures on [0,1].

Define

(75) ψ(η) = g(H−1(η))

h(H−1(η))
,

and note that the cumulative distribution function of ψ is �(η) = G(H−1(η)). Likewise define

(76) w(ξ) = h(G−1(ξ))

g(G−1(ξ))

and note that the cumulative distribution function of w is H(G−1(η)). Also, note that

(77) w(ξ) = 1

ψ(�−1(η))
.
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From (75), and the definition of h in terms of g,

(78) ψ(η) = 1

1 − α/2

(
1

g(G−1(�(η)))
− α

)(
1 − �(η)

)
.

When there is an ǫ > 0 such that g(x) ≤ (α + ǫ)−1,

(79) ψ(η) ≥ ǫ

1 − α/2

(
1 − �(η)

)
,

and this provides a lower bound on ψ on any interval [0, η∗], for any η∗ < 1.
Likewise, we may recover w(ξ) as in equation (42) from the formula for h. When there is an ǫ > 0 so that 1/g(x) ≥

α + ǫ for all x,

w(x) ≥ ǫ(1 − ξ),

which provides a uniform lower bound on w(ξ) on [0, ξ∗] for any ξ∗ < 1. We see that w is the probability density on
[0,1] associated to g though Theorem 3.6.

Let �j , j = 1,2 be the cumulative distribution functions of two strictly positive probability densities φj , j = 1,2
respectively, on intervals [aj , bj ], j = 1,2. Then �−1

1 ◦ �2 : [a2, b2] → [a1, b1], and as is readily checked, �−1
1 ◦ �2

pushes φ2(x)dx onto φ1(x)dx. In particular, if φ2(x)dx is the uniform distribution on [0,1]; i.e.; �2(x) = x for all
x ∈ [0,1], �−1

1 pushes forward the uniform distribution on [0,1] onto φ1(x)dx on [a1, b1]. That is, for all continuous
functions χ on [a1, b1],

∫ b1

a1

χ(x)φ1(x)dx =
∫ 1

0
χ

(
�−1

1 (y)
)

dy.

In particular if ξ is a random variable that is uniformly distributed on [0,1], �−1
1 (ξ) is a random variable with the law

φ1(x)dx. Therefore, if ξ1, . . . , ξn−1 are the order statistics of n− 1 i.i.d uniformly distributed random variables, �−1
1 (ξ1),

. . . , �−1
1 (ξn−1) are the order statistics of n − 1 independent samples from the law φ1(x)dx.

Lemma 3.12. Let F(η) be the cumulative distribution function of a continuous probability density f (η) on [0,1] that is
uniformly positive on [0, η∗] for all 0 < η∗ < 1; i.e., for some a > 0, f (η) ≥ a for 0 ≤ η ≤ η∗. Let ξ1, . . . , ξn−1 be the
order statistics of n−1 i.i.d uniformly distributed random variables, and set ξ0 = 0, ξn = 1 and λj = ξj −ξj−1. Moreover
let ηj = F−1(ξj ) and set z̃j = ηj − ηj−1. Then for ηj , ηk ≤ η∗

E[z̃j ] = E

[
λj

f (ηj )

]
+ 1

n
r1,(80)

Var[z̃j ] = E

[(
λj

f (ηj )

)2]
+ 1

n2
r2,(81)

Cov[z̃j , z̃k] = 1

n2
r3,(82)

where r1, r2, and r3 converge to zero as n → ∞ with a rate depending on the modulus of continuity of f and the lower
bound on f on [0, η∗]. If f is Lipschitz continuous and uniformly bounded below on all of [0,1], then |ri | < C/n, with
C depending on f .

Proof. Related results for order statistics can be found e.g. in [1]. The present result is preciely adapted for our situation.
We know that λj = ξj −ξj−1 are distributed as a flat Dirichlet distribution, and hence that E[λi] = 1/n, and that Var[λj ] =
1/n2 +O(1/n3) and Cov[λj , λk] = −1/n3 +O(1/n4).

First, since (F−1)′(t) = 1
f (F−1(t))

,

z̃j =
∫ ξj

ξj−1

1

f (F−1(s))
ds = λj

1

f (ηj )
+ uj ,(83)

where

uj :=
∫ ξj

ξj−1

(
1

f (F−1(s))
− 1

f (F−1(ξj ))

)
ds.(84)
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If f (s) is Lipschitz continuous and bounded below by a > 0 for F−1(ξj ) ≤ η∗, then

∣∣∣∣
1

f (F−1(s))
− 1

f (F−1(ξj ))

∣∣∣∣ ≤
λ2

j

a2
.

Therefore E[uj ] ≤ CE[λ2
j ] ≤ 1

a2n2 . Otherwise, if f is only continuous, there is a function ω(δ) > 0, the modulus of
continuity, with limδ→0 ω(δ) = 0 such that

sup
|t1−t2|<δ

∣∣f (t1) − f (t2)
∣∣ ≤ ω(δ).

Then, for δ small enough, and ηj ≤ η∗ and f ≥ a > 0 on [0, η∗],

E
[
|uj |

]
= E

[
|uj |1λj <δ

]
+E

[
|uj |1λj ≥δ

]

≤ E
[
λjω(δ)1λj <δ

]
+ 1

a
P[λj > δ]

≤ 1

n
ω(δ) + 1

a

E[λ2
j ]

δ2

≤ 1

n
ω(δ) + 1

a

1

n2δ2
.

Choosing δ = n−1/3, we find,

r1 ≤ 1

n

(
ω

(
n−1/3) + 1

a
n−1/3

)
.

The proof of (81), which we omit, is very similar. To estimate the covariance we write

Cov[z̃j , z̃k] = E[z̃j z̃k] −E[z̃j ]E[z̃k],(85)

and

z̃j z̃k =
∫ ξj

ξj−1

∫ ξk

ξk−1

1

f (F−1(s))

1

f (F−1(t))
ds dt

= λjλk

1

f (ηj )f (ηk)

+
∫ ξj

ξj−1

(
1

f (F−1(s))
− 1

f (ηj )

)
ds

∫ ξk

ξk−1

1

f (F−1(t))
dt

+ λj

1

f (ηj )

∫ ξk

ξk−1

(
1

f (F−1(t))
− 1

f (ηk)

)
dt.

(86)

For the first term we note that E[λjλk] = n−2 + Cov [λj , λk], and by estimates like the ones used to estimate r1, we find
that the remaining terms are o(n−2), or even O(n−3) if f (s) is Lipschitz. Hence computing the covariance in (85) by
taking the expectation of (86) and using (80) yields (82). �

For the following theorem, recall the constraints for g as stated in equation (41), and the definition of h in (74), and
that G and H are their cumulative distribution functions.

Theorem 3.13. Let ψ(η) be defined by (75), and let ηj , j = 1, . . . , n − 1 be the order statistics of n − 1 i.i.d. random
variables with distribution ψ(η)dη, and let η0 = 0, ηn = 1. With z̃i = ηi −ηi−1, i = 1, . . . , n this induces a measure on the
standard n − 1 dimensional simplex S1, whose pushforward to Sn,ǫn is (α, g)-chaotic. Let x > 0, and let ]x(j), x(j+1)[ be
the random interval that contains x. If the density ψ(η) is continuous, then the gap length ζx,n = x(j+1) −x(j) −α/(n−1)

satisfies

lim
n→∞

P
[
(n − 1)ζx,n/α > r

]
→ e

− αg(x)
1−αg(x)

r
.(87)
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Fig. 2. The graphs show the particle density g(x) (red), the corresponding excess energy distribution h(x) corresponding to α = 1 (blue), and the
excess energy per particle, h(x)/g(x) (green). To the left, the density is the equilibrium density fα(x) as derived in Section 2, and to the right
g(x) = c1/((1 + (c2x − 1)2)(1 + (c2x − 4)2)) with the constants c1 and c2 chosen to make g(x) a probability density with mean 1. We see that the
density fα(x) is equivalent to distributing the excess energy uniformly among the particles.

Proof. By Lemma 3.12 applied with f = ψ , together with (77), which implies that

1

ψ(ηj )
= w(ξj ).

This permits us to rewrite (80), (81) and (82) in terms of w, we see that the sequence of laws of (z̃1, . . . , z̃n), averaged
over permutations, are w pre-chaotic family on S1. Here w is given as in (42). Then by Theorem 3.5, if we fix a sequence
of energies {En} with αn = ǫn(n − 1)/En → α, and define the maps Tn in terms of αn as in Lemma (22), the sequence
of their pushforwards onto Sn,ǫn , averaged over permutations, is (α, g)-chaotic. The statement about the gap distributions

then follows from (83) with f (η) = g(H−1(η))

h(H−1(η))
so that

f (ηj ) = g(G−1(ξj ))

h(G−1(ξj ))
.

�

It follows from (76) that w(ξ)dξ results from pushing the excess energy distribution forward onto [0,1] using the
distribution function G. That is h(x) = w(G(x))g(x). In equilibrium, this excess energy density is uniform; i.e., w(ξ) = 1,
and the approach to equilibrium for our process can be thought of as the approach of the excess energy distribution to
uniform. This is illustrated in Figure 2, which shows the cumulative excess energy for a couple of different densities g(x),
and the excess energy per particle as a function of the position x of a particle, (1 − αg(x))G(x)/g(x).

Lemma 3.12 and Theorem 3.13 provide a means of sampling the empirical distributions μn: Let ξ(i), . . . , ξ(n−1) be the
order statistics of n − 1 independent samples from the uniform distribution on [0,1] and then form η1, . . . , ηn through
ηj = �−1(ξ(j)), which then gives us the order statistics of n − 1 independent samples from ψ(η)dη. Then with η0 = 0
and ηn = 1, we define z̃j = ηj −ηj−1, from which we recover a sample of (x1, . . . , xn). We illustrate this way of sampling
the empirical distribution in Figure 3, where g is as in Figure 2, but with α = 1.5. Here the density is close to the maximal
density 2/3, which leads to slow convergence of the empirical measures.

Remark 3.14. The construction of the uniform measure on the simplex S1 by independent i.i.d uniform random variables
on the unit interval is not new here, and can be found for example in [17], where the authors study the asymptotics of
partitions of a number n into a sum of m integers.

Remark 3.15. This construction also illustrates the difference between (α, g)-chaoticity and detailed (α, g)-chaoticity,
and why detailed (α, g) chaos is difficult to express in terms of marginal distributions in the way Kac defined chaos (see
equation (4)). Assuming that g is continuous as before, we have a one to one map between a point (x1, . . . , xn) ∈ S∗

En,ǫ and
points ξj = �(ηj ) where ηj =

∑j

i=1 z̃i ∈ [0,1], with ηn = 1. After symmetrization the pushforward of a measure σn,ǫ on
SEn,ǫ by this map gives rise to a symmetric measure λn on [0,1]n, and one could compute the marginal distributions of
σn and λn and see that if the sequence {σn} is (α, g) chaotic, then {λn} is chaotic with respect to the uniform measure on
[0,1], and the other way around, and the fact that (α, g)-chaoticity of the sequence {σn,ǫ} corresponds to the usual notion
of chaos {λn} is encoded in the maps Tn. Detailed chaos can be expressed as saying that at the scale 1/n, the points xj
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Fig. 3. The graphs show the particle density g(x) (thin, red), and empirical histograms of samples (blue, thick) as defined in Theorem 3.13. To the left
n = 50, and to the right n = 1000. The number of independent samples is 5000 and the bin width in the histograms is 0.05.

after symmetrization behave as a Poisson point process: take any point ξ̄ ∈]0,1[, and a, b > 0. Then number of points
ξj ∈]ξ̄ − a/n, ξ̄ + b/n[ will converge to a Poisson distribution with parameter b − a when n → ∞. Hence detailed chaos
says in a sense that the set of points x1, . . . , xn in the limit are as random as possible, given the constraint that their laws
σn,ǫ are (α, g)-chaotic.

4. The Kac process

4.1. Specification of the Master Equation

Kac’s result [9] for the original Kac model is that propagation of chaos as described in the introduction is sufficient to
identify an evolution equation for the limiting densities, the Kac–Boltzmann equation. When the jumps are constrained by
the exclusion principle the situation is more subtle, and propagation of chaos according to the definition 1.1 is not enough
to identify a limiting equation. In this section we will present the Kac-process, and derive a limiting Kac–Boltzmann
equation that is valid under the assumption of chaos according to Definition 1.2, with an exponential gap distribution as
in Theorem 3.13.

The jump process is then as follows: With x = (x1, . . . , xn) ∈ Sn,ǫn ,

(1) pick a random waiting time t , exponentially distributed with rate n

(2) pick 1 ≤ j < k ≤ n uniformly among possible pairs, and let x̄j,k = xj +xk

2 .
(3) Let (x∗

j , x∗
k ) = (x̄j,k(1 − ξ), x̄j,k(1 + ξ)), where ξ is chosen uniformly in the [−1,1].

(4) If (x1, . . . , x
∗
j , . . . , x∗

k , . . . , xn) ∈ Sn,ǫn , then let x∗ = (x1, . . . , x
∗
j , . . . , x∗

k , . . . , xn), else do nothing, i.e. let x∗ = x

Note that the distribution of two particle energies after a collision would be exactly the same if the step (3) were replaced
by

(3b) Pick ξ randomly from [−1,1], and let

x∗
j = xj + ξ x̄j,k (modxj + xk),

x∗
k = xk − ξ x̄j,k (modxj + xk),

where mod here simply means that if xj + ξ x̄j,k > xj + xk , then (xj + xk) is added or subtracted to map x∗
j back

into the interval 0 ≤ x∗
j < (xj + xk).

This collision process is reversible for any fixed ξ , and can also be naturally generalized to collision models which favor
small energy exchanges in the collision, or for “grazing collision limits”, which are interesting in the classical setting.

However, for the purpose of writing down the generator of the process, the version as originally described is simplest.
Let L denote the generator. Then for any continuous function F on Sn,ǫn

LF(x) = 1

n − 1

∑

j<k

∫ 1

−1
1Sn,ǫn

(
x∗
i,k,ξ

)[
F

(
x∗
j,k,ξ

)
− F(x)

]
dξ,(88)
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where x = (x1, . . . , xn), and x∗
j,k,ξ = (x1, . . . , x̄j,k(1 − ξ), . . . , x̄j,k(1 + ξ), . . . , xn). Recall that the process satisfies de-

tailed balance, and is reversible, so that the operator L on the L2 space given by the invariant measure is self-adjoint. The
Kolmogorov forward equation, or what is the same thing, the Master Equation, of the process is then

∂

∂t
F (x, t) = LF(x, t).(89)

Let Pt denote the semigroup associated to (89), so that if F(x, t) denotes the solutions with initial data F(x,0), F(x, t) =
PtF(x,0).

4.2. The exclusion factor

To compute exactly the probability that the outcome from step (3) results in a jump as defined in (4) is difficult, but it is
possible to derive formula for the limit as n → ∞ under the assumption that the limiting gap distribution is known and
that the events that x∗

j and x∗
k are admissible positions for particles are independent. We also assume here that the density

g(x) is continuous.
First, to see why propagation of chaos in the sense of Kac is not enough to identify a limiting equation we compare

two different chaotic sequences that are (α,fα)-chaotic, where fα is the equilibrium density as found in Theorem 2.1. We
take the empirical measures with the xj defined as in (22), and αn = α for simplicity. On the other hand taking z̃j = 1/n,
for j = 1, . . . , n provides another chaotic sequence. In this latter sequence the gaps between particles are deterministic,
xj+1 − xj = (1 − α/2)/(n − j), and this means that to fit a new particle of size α/(n − 1) into an interval we must have
j
n

> 1 − 2−α
2α

, which is positive when α > 2/3, and therefore for all x smaller than

xj ≥
(

1 − α

2

) ⌊1− 2−α
2α

⌋∑

k=1

1

n + 1 − k
+ 3 − α

2
− α

n

which converges to

x̄α = log

(
2α

2 − α

)
+ 3α − 2

2
,

when n → ∞. So if α > 2/3 this (α,fα)-chaotic sequence does not allow any jump into an interval [0, x̄α]. On the other
hand, for the sequence constructed in Section 2, where the (z̃1, . . . , z̃n) taken from the flat Dirichlet distribution, the z̃j

are close to being exponentially distributed with mean 1/n. Hence for all j there is a positive probability that the j -th
gap is bigger than α/(n− 1), and therefore jumps are possible to any point in the interval [0,∞[, although the probability
will be very small in intervals near the origin if α is large.

In the following calculation we neglect the probability that x∗
j belongs to one of the gaps created when xj and xk

are lifted out, i.e. when the particles fall back into nearly the same point as where they started. The probability that this
happens converges to zero at the order 1/n, and can be neglected unless the excess energy is very small. Also in this
case, the effect of such a jump on the density will be very small, and therefore to see an effect of this one would need to
consider the process over a very long time scale. It could be interesting to study this situation in a diffusive scaling, and
to analyze as certain models for competing particle systems and rank based interacting diffusions [11,13,14].

For any x, consider an interval [x − δ/2, x + δ/2], where δ is assumed to be small and eventually converging to 0. We
will call a point x∗ in this interval admissible if it satisfies the exclusion constraint, given the particles that are already
present in the interval. The expected number of points xj belonging to this interval will be m + 1 = n

∫ x+δ/2
x−δ/2 g(y)dy ∼

nδg(x) due to the assumption that g is continuous. Now let x − δ/2 < x(0) < x(2), . . . ,< x(m) < x + δ/2 be the positions
of the m particles belonging to this interval, renumbered for convenience here, and let ζj+1 = x(j) − x(j−1) − α/(n − 1)

be the gaps between particles. For fixed δ we have that x(0) → x − δ/2 and x(m) → x + δ/2 in probability, and therefore
the error in considering only the interval [x(0), x(m)] will vanish in the limit as n → ∞. For a given gap ζi , the interval
available for putting a new particle x∗ is (ζi −α/(n− 1))1ζi>α/(n−1). In a jump, x∗ is chosen uniformly over any interval,
and therefore

P
[
x∗ is admissible | x∗ ∈]x(0), x(m)[

]
=

1
m

∑m
i=1(ζi − α

n−1 )1ζi>α/(n−1)

1
m

(x(m) − x(0))
(90)

which holds for any particle configuration, if the interval [x(0), x(m)] does not contain the two particles that are selected
for collision. The probability that x∗ is admissible can now be computed by taking the expectation of the right hand side
of equation (90) with respect to the other particles. To continue we make the following assumption:
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Assumption 4.1. For n → ∞, one may take δ = δn → 0 such that m → ∞ in probability, and such that (n − 1)ζi/α are
asymptotically i.i.d with a density ρx .

This holds for the two constructions of chaotic sequences given in Theorem 3.10 and Theorem 3.13 if the density g

is continuous. By the law of large numbers, the denominator of the right hand side of equation (90) is asymptotically
E[ζj ] + α

n−1 ∼ 1
(n−1)g(x)

, and the enumerator is asymptotic to

α

n − 1
E

[
n − 1

α
ζi − 1

]
= α

n − 1

∫ ∞

1
(s − 1)ρx(s)ds,(91)

and therefore, for any interval not containing xj or xk we have

lim
δ→0

lim
n→∞

P
[
x∗ is admissible | x∗ ∈ [x − δ/2, x + δ/2]

]
= αg(x)

∫ ∞

1
(s − 1)ρx(s)ds.(92)

For example, with the chaotic sequence from Theorem 3.13, ρx(s) = αg(x)
1−αg(x)

exp(− αg(x)
1−αg(x)

s), and we find in the limit
that

P[x∗ is admissible] = α2g(x∗)2

1 − αg(x∗)

∫ ∞

1
(s − 1)e

− αg(x∗)
1−αg(x∗)

s ds

=
(
1 − αg(x∗)

)
exp

(
− αg(x∗)

1 − αg(x∗)

)
.

(93)

Here we recognize the first factor 1 − αg(x∗) as the exclusion factor in the Uehling–Uhlenbeck equation for discrete
energy levels, and the second exponential factor reflects the fact that the continuous spacing of gaps is a less efficient use
of the available excess energy.

With the chaotic sequences constructed through the Dirichlet distribution as in Theorem 3.10 the distribution of the
gaps are Beta-distributions, as shown in equation (73), which gives the density for the distribution of a gap in the partition
of excess energy as

Ŵ(Kn)

Ŵ(Knwj )Ŵ(Kn(1 − wj )
z̃Knwj −1(1 − z̃)Kn(1−wj )−1,(94)

and hence, because ζj = (1 − α/2))
z̃j

1− j−1
n

that s = (n − 1)ζj/α has density

ρx,n(s) = csKnwj

(
1 − s

λj

)Kn(1−wj )−1

,(95)

where c is a normalizing constant and λj = (n−1)2α
2−α

1
1−G(x)

. Because j
n

∼ G(x) we have asymptotically

nwj = n

∫ j/n

(j−1)/n

w(ξ)dx ∼ w
(
G(x)

)
= 2α

2 − α

1 − αg(x)

αg(x)

(
1 − G(x)

)
≡ wg(x),G(x),(96)

and Kn/λn ∼ K 2−α
2α

(1 − G(x))). It follows that

ρx,n(s) → ρg(x),G(x)(s) = sKwg(x),G(x)−1 exp

(
−K

2 − α

2α

(
1 − G(x)

)
s

)
.(97)

One can now obtain a formula similar to equation (93) corresponding to the density ρg(x),G(x). The notable difference is
that with this density the probability that a point x∗ is admissible asymptotically does not only depend on the limiting
density g(x) but also on the cumulative distribution function G(x).

Hence, when analyzing the limiting behavior of the Kac process for this n-particle system, it is important to take the
gap distribution into account. We formulate this asymptotic result for the exponential gap distribution as a proposition:

Proposition 4.2. Let g(x) be a continuous probability density on [0,∞[, and let ((x1, . . . , xn))
∞
n=2 be a chaotic sequence

constructed as in Theorem 3.13. There is a sequence δn → 0 such that if x∗ is chosen uniformly in an interval [x, x + δn],
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then

lim
n→∞

P[x∗ is admissible] =
(
1 − g(x)

)
exp

(
− αg(x)

1 − αg(x)

)
.(98)

4.3. The Boltzmann equation

For the original Kac process, it is enough to prove propagation of chaos to identify an equation that describes the evolution
of a density in the limit of infinitely many particles. Here the situation is more complicated, because the asymptotic gap
distribution is important. We conjecture that the process defined here propagates chaos with exponential gap distribution,
but we do not have a proof. The conjecture is supported by numerical simulations that are presented in Section 5. Under
the assumption that detailed chaos is propagated, it is then possible to write down the corresponding kinetic equation,
and compare this with the corresponding Kac and Uehling–Uhlenbeck equations; a formal proof would follow along the
same lines as Kac’s original derivation.

Theorem 4.3. Suppose that the evolution specified by (89) propagates chaos in detail with parameter α, so that the
asymptotic gap distribution is exponential as in Theorem 3.13. Then the limiting empirical distribution gt evolves accord-
ing to

(99)
∂

∂t
g(x, t) = Q[g](x, t),

where

Q[g](x) = 1

2

∫ ∞

0

∫ 1

−1

(
g
(
x′)g

(
y′)�

(
αg(x)

)
�

(
αg(y)

)

− g(x)g(y)�
(
αg

(
x′))�

(
αg

(
y′)))dξ dy,

(100)

x′ = (1 − ξ)(x + y)/2,

y′ = (1 + ξ)(x + y)/2,
(101)

and

�(u) = (1 − u) exp

(
− u

1 − u

)
.(102)

The function �(u) specifies the effects of the exclusion constraint which slows down the evolution. The function is
plotted here in Figure 4, together with the function �(u) = 1 − u, which is the corresponding factor in the Uehling–
Uhlenbeck equation. With the car parking analogy from the introduction, this factor quantifies how much less efficient it
is to let cars park at will along a road compared to using fixed parking slots. In Kac’s original paper there is no exclusion
factor, and in that case �(u) is constant, equal to 1.

Fig. 4. The exclusion factor as a function of u (blue), compared with the fermionic factor 1 − u.
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Fig. 5. The exclusion factor �(αfα(x)) for α = 1.8, as a function of x. The thin red curve shows the logarithm of the same function, and the equilibrium
distribution fα(x) scaled by a factor α is given in blue.

Note that α−1 is the maximum density possible, and hence that αf (x) = 1 implies that the particles are densely
packed near x. The exclusion factor reduces the effective jump rate much more strongly than the usual factor 1 − u from
the Boltzmann equation for Fermions, and is a significant difference between the continuous setting that we study here,
and the discrete, quantized models. In Figure 5 we plot the function �(αf (x)), i.e. the exclusion factor evaluated at the
equilibrium density as a function of the energy x, which indicates that particles will very seldom get a new energy close
to x = 0, and therefore that the rate of convergence to equilibrium could be very low.

4.4. Properties of the collision operator

The collision operator Q[g] as defined in equation (100) is amenable to very much the same manipulations as the ordinary
collision operator for the Boltzmann equation, except that, in addition to the mass, there is only one conserved quantity,
the energy.

Theorem 4.4. Let Q[g] be defined as in equation (100). Then the following holds:
For any a, b ∈R, and any g(x) satisfying

∫ ∞
0 xg(x)dx = 1

∫ ∞

0
(a + bx)Q[g](x)dx = 0.(103)

Let fα(x) defined by equation (18) and (19). Then

Q[fα](x) = 0.(104)

If g(x, t) is a solution to equation (99), then

d

dt

∫ ∞

0
g(x, t) log

(
αg(x, t)

1 − αg(x, t)

)
dx ≤ 0.(105)

Proof. Let

R
(
x′, y′, x, y

)
= (g

(
x′)g

(
y′)�

(
αg(x)

)
�

(
αg(y)

)
− g(x)g(y)�

(
αg

(
x′))�

(
αg

(
y′)).(106)

Here x′ and y′ depend on a parameter ξ as defined in equation (101). Formally, for any h(x), a change of variables gives

1

2

∫ ∞

0

∫ ∞

0

∫ 1

−1
R

(
x′, y′, x, y

)
h(x)dξ dx dy

=
∫ ∞

0

1

u

∫ u

0

∫ u

0
R(z,u − z, v,u − v)h(v)dv dz du.

(107)
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We see, just as for the usual Boltzmann equation, that R(x′, y′, x, y) is symmetric with respect to the changes (x, y) →
(y, x) and anti symmetric with respect to changing (x′, y′, x, y) → (x, y, x′, y′), and therefore the righthand side of
equation (107) is

1

4

∫ ∞

0

1

u

∫ u

0

∫ u

0
R(z,u − z, v,u − v)

(
h(v) + h(u − v) − h(z) − h(u − z)

)
dv dz du

= 1

8

∫ ∞

0

∫ ∞

0

∫ 1

−1
R

(
x′, y′, x, y

)
(h(x) + h(y) − h

(
x′) − h

(
y′)dξ dx dy,

(108)

which implies (103). To prove (104), we write R(x′, y′, x, y) as

α2g
(
x′)g

(
y′)g(x)g(y)

(
�(αg(x))

αg(x)

�(αg(y))

αg(y)
− �(αg(x′))

αg(x′)

�(αg(y′))

αg(y′)

)
.(109)

Next we take g(x) = fα(x) and define

r(x) = log
�(αfα(x))

αfα(x)
= − log

(
αfα(x)

)
+ log

(
1 − αfα(x)

)
− αfα(x)

1 − αfα(x)
.(110)

Then

r ′(x) = −f ′
α(x)

(
1

fα(x)
+ α

1 − αfα(x)
+ α

(1 − αfα(x))2

)

= −f ′
α(x)

1

fα(x)(1 − αfα(x))2
.

(111)

On the other hand fα(x) satisfies

fα(x) = 1

φ′(F (x))
,(112)

where F(x) =
∫ x

0 f (y)dy and

φ(ξ) =
(

1 − α

2

)
log

1

1 − ξ
+ αξ.(113)

Therefore

1

fα(x)
= φ′(F(x)

)
=

(
1 − α

2

)
1

1 − F(x)
+ α and

f ′
α(x) = − φ′′(F (x))

φ′(F (x))2
f (x) = −φ′′(F(x)

)
f (x)3,

which when inserted into (111) gives

r ′(x) =
(

1 − α

2

)
1

(1 − F(x))2

1

( 1
fα(x)

− α)2
=

(
1 − α

2

)−1

.(114)

Hence r(x) is a linear function, and because the parenthesis in equation (109) is

exp
(
r(x) + r(y)

)
− exp

(
r
(
x′) + r

(
y′))(115)

and x + y = x′ + y′ we see that R(x′, y′, x, y) vanishes when g(x) = fα(x). Therefore not only does Q[fα](x) vanish,
but the whole integrand, which is to say that the collision process satisfies a detailed balance condition also after passing
to the limit.

Finally, to prove (105) we write

∂

∂t

(
g log

(
αg

1 − αg

))
= ∂g

∂t

(
log

(
αg

1 − αg

)
+ αg

1 − αg

)
= −Q[g](x)rg(x),(116)
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where rg(x) is the expression in (110) with fα replaced by g. Using the expression in (108), we then find

d

dt

∫ ∞

0
g(x, t) log

(
αg(x, t)

1 − αg(x, t)

)
dx

= −1

8

∫ ∞

0

∫ ∞

0

∫ 1

−1
R

(
x′, y′, x, y

)(
rg(x) + rg(y) − rg

(
x′) − rg

(
y′))dξ dx dy

= −1

8

∫ ∞

0

∫ ∞

0

∫ 1

−1
g(x)g(y)g

(
x′)g

(
y′)(erg(x)+rg(y) − erg(x′)+rg(y′))

×
(
rg(x) + rg(y) − rg

(
x′) − rg

(
y′)))dξ dx dy ≤ 0,

which proves (105). Therefore
∫ ∞

0 g(x) log(
αg(x)

1−αg(x)
)dx is an entropy for the Boltzmann equation (100). �

5. Simulation results

We present here simulations to illustrate the results presented in the previous sections, and to provide support for the
conjecture that the Kac process on Sn,ǫn propagates detailed chaos according to Definition 1.2, and moreover to investigate
the long time behavior of solutions of different types.

The sampling of initial data has been done as described by Theorem 3.10 and Theorem 3.13. A very large number of
random numbers have been used, and in particular for simulations with a large number of particles, it is necessary to use
random numbers with high precision. We have generated random numbers with 64 bits precision, using routines from the
GNU Scientific Library [7].

In order to avoid having to compute the distance between the new energy of a particle, x∗
j with the energies of all other

particles, which would imply a computational cost of O(n) for each jump, the xj are kept in an ordered list, which is
implemented as minor modification of the AVL-tree as described by Ben Pfaff [12]. In this way the computational cost of
one collision grows as O(log(n)).

In the first example the initial distributions are (α,fα)-chaotic, i.e. chosen to converge to the equilibrium distribution
with α = 1. We compare sampling initial data that are equidistributed (which corresponds to taking samples as in Re-
mark 3.11 with K → ∞ in equation (72)), and a Dirichlet distributed initial data with K = 0.02. These are shown at t = 0
(Figure 6), t = 0.1 (Figure 7), and t = 10.0 (Figure 8), showing that although the initial distributions are equilibrium-
chaotic, they are not at equilibrium for this jump process. Figure 9 shows the gap distribution at t = 0 and t = 10, and
includes also the result when the initial distribution is a true equilibrium for this process, with asymptotically exponen-
tially distributed energy gaps. For these cases, the gap distribution is very close to exponential at t = 10, which supports
our conjecture that this property is propagated in time. More simulation results can be found in the supplementary material
[3].

Fig. 6. The graphs show the equilibrium distribution (green) and the result from 5000 independent samples of the empirical distribution with n = 1000,
counted in bins of width 0.2. The black step function shows the mean outcome, and the blue dots illustrate the distribution of counts in the bins, with
the area of the dots proportional to the number of samples with the same count. The exclusion parameter α = 1.0.
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Fig. 7. The graphs show the outcome of the same simulation as in Figure 6 at time t = 0.05 and t = 0.1. This shows that although the initial data in
both cases are equilibrium chaotic, the non-equilibrium state gives quite different behavior of the evolution.

Fig. 8. These graphs represent the solutions of the same simulation as in Figure 6 at time t = 10.0. Here thee two simulations give the same result, a
convergence to the true equilibrium.

Fig. 9. The graphs show the gap distribution at time t = 0 (left) and t = 2 (right) for initial data with equal spacing of the excess energy (red) and
the Dirichlet 0.01-distribution (blue). At t = 2 this is presented in logarithmic scale to show that the distribution becomes exponential as conjectured.
The red and blue dots almost overlap here. At t = 0 the red curve represents a Dirac measure, and the blue curve shows that with the Dirichlet
0.01-distribution, most gaps are very close to zero, and the excess energy is essentially distributed to a few very large gaps.
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