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Abstract: We present current direct and astrophysical limits on the cosmological abun-
dance of black holes with extremal magnetic charge. Such black holes do not Hawking
radiate, allowing those normally too light to survive to the present to do so. The dominant
constraints come from white dwarf destruction for low and intermediate masses (2 × 10−5

g – 4× 1012 g) and Galactic gas cloud heating for heavier masses (> 4× 1012g). Extremal
magnetic black holes may catalyze proton decay. We derive robust limits – independent
of the catalysis cross section – from the effect this has on white dwarfs. We discuss other
bounds from neutron star heating, solar neutrino production, binary formation and annihi-
lation into gamma-rays, and magnetic field destruction. Stable magnetically charged black
holes can assist in the formation of neutron star mass black holes.
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1 Introduction

A simple, well-motivated extension of the Standard Model of particle physics (and Maxwell’s
equations) is the inclusion of magnetic monopoles. Magnetic monopoles are a natural
consequence of grand-unified theories (GUTs) [1, 2], have been searched for by a number of
different experiments [3–5], and were an original motivation for cosmic inflation [6, 7].

One possible manifestation of magnetic charges in our universe is magnetically charged
black holes. Primordial black holes could have formed in the early Universe from, for ex-
ample, large-amplitude, short-wavelength density perturbations or early phase transitions
[8, 9]. If monopoles existed (or perhaps dominated) at that time, one might expect

√
N

fluctuations to leave primordial black holes with magnetic charges. Light enough black
holes could eventually Hawking radiate until they become extremal, leaving a magnetically
charged remnant today, a fate different from that of small uncharged black holes. This is
touched upon in Ref.[10]. Additionally near Planck mass primordial black holes could ac-
quire magnetic charge by spontaneously emitting magnetic monopoles, leading their charge
to fluctuate and perhaps get caught at a stable extremal value. This formation process is
explored for extremal electrically charged black holes in Ref.[11]. More exotic formation
scenarios may exist, but we will not address those here. EMBHs are interesting because
they are not expected to Hawking radiate, making them stable dark matter candidates at
masses ruled out for uncharged black holes. Their large mass compared to that predicted
for magnetic monopole also allows many EMBHs to avoid the constraints on magnetic
monopoles, effectively providing a way to “hide” magnetic charge. Understanding the be-
havior of EMBHs gives insight into other exotic heavy magnetic objects, such as some
higher dimensional black holes [12].

In this paper, we put constraints on the abundance of primordial black holes with
magnetic charge. We focus on extremal magnetic black holes (EMBHs), but point out the
applicability and strength of the bounds for magnetic black holes (MBHs) heavier than
1015g with non-extremal charges. The dominant bounds come mainly from two sources –
Galactic gas cloud heating at large masses (> 4 × 1012g) and destruction of white dwarfs
(WDs) at lower masses. We present novel constraints from gamma-ray emission for EMBHs
at low masses, though they are never dominant. In addition, we touch upon bounds from
the destruction of magnetic fields and direct searches at MACRO.

Magnetic monopoles derived from some GUTs are predicted to catalyze proton decay
with significant cross sections [13, 14]. The bounds on EMBHs change significantly when
one assumes catalyzed proton decay in stellar objects – neutron stars, white dwarfs, and the
Sun – due to heating and neutrino emission. We scan over cross sections for this catalysis
to generate robust bounds on relic abundances of EMBHs, independent of the size of this
effect. The dynamics of nucleon decay near EMBHs are highly non-trivial, and we leave a
detailed analysis for future work.

This paper is organized as follows. In Section 2, we briefly discuss the relevant physical
properties of EMBHs. In Section 3, we describe bounds due to the annihilation of binary
EMBHs, the heating of the intergalactic medium, the destruction of WDs, destruction of
large scale magnetic fields, and non-detection of magnetic charges neglecting effects from
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catalysis of proton decay. In Section 4, we include the catalysis of proton decay for all
possible cross sections. This weakens the bounds in some mass regimes by, for example,
preventing the destruction of WDs. For illustration, we also show, for a fixed catalysis cross
section, bounds which arise from neutron star (NS) heating and proton decay in the Sun.
In Section 5, we explore bounds on MBHs heavy enough to be stable over cosmological
timescales even when sub-extremal. Section 6 includes comments on how to generalize the
bounds on EMBH abundance when EMBHs have a non-monochromatic mass spectrum,
how EMBHs may seed large scale magnetic fields. Section 7 concludes. We compare our
constraints with those from Refs.[15, 16] in Figs.1 and 3. Throughout this paper, unless
units are explicitly specified otherwise, we take c = ~ = k = 1 and ε0 = 1

4π .

2 Extremal Magnetic Black Holes (EMBHs)

In general relativity, MBHs are described by the Reissner-Nordstrom metric, one that is
spherically symmetric and carries an outer event horizon and an inner Cauchy horizon. The
extreme limit of the magnetic charge is one in which these horizons merge, producing the
metric:

ds2 = −
(

1− GM

r

)2

dt2 +

(
1− GM

r

)−2

dr2 + r2(dθ2 + sin2 θdφ2), (2.1)

whereM is the ADM (asymptotic) mass of the black hole and G is Newton’s constant. The
EMBH has, in natural units, a magnetic charge

Q =
M

mP
, (2.2)

where mP = G−1/2 = 1.22 × 1019 GeV is the Planck mass. In these units, Q = 105

corresponds to M ∼ 1 g. The minimum value for Q is set by the Dirac quantization
Qmin = 1

2e ∼ 6, where e is the electron charge [17]. Note that this is a different definition
of Q than is used in other works [15, 18] on EMBHs.

EMBHs have some interesting and unresolved properties. Being extremal, they will
not Hawking radiate [19]. Uncharged black holes with M . 5 × 1014g are predicted to
decay within the lifetime of the Universe. EMBHs are expected to be stable and could,
in principle, be cosmological relics.1 Ref.[18] indicates that there are large regions around
EMBHs where the magnetic fields are strong enough to condense electroweak bosons and
restore the Higgs field minimum to its origin, making Standard Model fermions massless.
Interestingly, one would also expect the sphaleron barrier for baryon number violation to
disappear [20] in this region. In addition, the interior of non-extremal magnetically charged
black holes will have an inner Cauchy horizon with known instabilities [21]. In general
relativity, the interior metric can only be extended in physically nonsensical ways (requiring
the existence of an infinite number of other universes). It is thus expected that new physics

1Recent work [18] suggests that EMBHs may have finite lifetimes if they decay into magnetic monopoles
or smaller EMBHs. The lifetime is model-dependent and sensitive to properties of the magnetic monopole,
so we will not consider it here.
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lives at this horizon, and in the extremal limit, this would be at r = GM . The physics
at this surface, for example, could involve the Planckian density [22] and violate baryon
number in a significant way or source other fields (black hole ‘hair’). Thus significant model
dependence dictates the physics at close ranges.

A possibly important feature of EMBHs is their potential for catalyzing proton decay,
akin to that in GUT-induced magnetic monopoles [13, 14]. It is a non-trivial question here
– not only is there model dependence with respect to the properties of the core of the
EMBH, but also the path to the core for a charged particle, which will involve gauge-boson
interactions at medium and long distances and gravitational and (potentially) black-hole
hair interactions at short distances2. A full analysis for specific models of EMBHs would
be interesting. However, to put a robust bound on these objects, we will allow the proton
catalysis cross section to be a free parameter (within reason), and will see it is possible to
put more model-independent limits from various astrophysical phenomena.

A number of other interesting properties of EMBHs were explored in Ref.[18]. One
is that charged Fermions near an EMBH will experience radically different dynamics. In
regions where the magnetic field is larger than the fermion’s squared mass, the low-lying
energy quantum states are Landau levels and should correspond to two-dimensional fermion
states which move radially and have degeneracy of order Q. This is predicted to enhance
the Hawking decay rate of non-extremal black holes by a factor of Q. This will have some
effect on the discussion of bounds on merger rates.

3 Bounds on EMBHs without Catalysis

Relic EMBHs are heavy magnetic charges expected to be non-relativistic at all relevant
times and follow the dark matter distribution once they decouple from the background
plasma. Their physical effects include gas heating, WD destruction, magnetic field destruc-
tion, and high-energy particle emission from annihilation. We describe the bounds from
these effects in the subsections below and summarize them as constraints on the average relic
density of EMBHs as a fraction of the average dark matter energy density, f ≡ ρbh/ρdm.
We take the dark matter density in the Milky Way to be ρMW

dm = 0.3 GeV cm−3. In this sec-
tion, we are ignoring the possibility of proton-decay catalysis. We plot the bounds (without
catalysis) for a range of masses in Fig.1.

3.1 Gas Cloud Heating

When an EMBH passes through an ionized plasma, it loses energy by exciting long range
Eddy currents. This heats the plasma via the kinetic energy of the accelerated electrons.
We constrain f by requiring that EMBHs not change the observed temperature of clouds
of warm ionized medium (WIM) in the Milky Way. The heating rate from friction must be
less than the average cooling rate determined in a survey of the WIM [23].

2For example, an EMBH should gravitationally repel particles with a large charge to mass ratio (e.g.,
the proton), as the end result would be super-extremal. This would also be true of particles with spin.
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Constraints on EMBH abundance without Catalysis

Figure 1: These are the bounds on the EMBH abundance, f , if nucleon catalysis effects, described
in Section 4, are neglected. The green region is ruled out by gamma-rays emitted from binary
mergers, (see Section 3.3). The yellow and light blue regions are respectively ruled out by the
existence of 1 Gyr old non-magnetic 1 M� WDs and by WD J0551+4135 which EMBHs can destroy
(see Section 3.2). The dark blue region is ruled out by EMBHs overheating warm ionized gas clouds
in the Milky Way (see 3.1). The red and purple regions are ruled out by EMBH interaction with
large scale magnetic fields (see Section 3.4). The orange region is ruled out by monopole searches
by MACRO, which is described in Section 3.5. For comparison, we show EMBH bounds set by
Bai et al. in Ref.[15] in black. The dashed bound comes from the Parker effect in the Andromeda
Galaxy (see Section 3.4), and the dotted one comes from EMBH annihilation in the Sun producing
excess neutrinos (see Section 4.4). We cut off the latter bound at M > 300 g because convection in
the Sun can suppress the annihilation rate for these EMBHs.

The friction between a magnetic monopole and a plasma is described in Ref.[24]. We
adapt it here for an EMBH with charge Q.

(
dE

dx

)

p

= −16π1/2e2ne

3
√
2Tme

Q2v

[
ln
(
4πneλ

2
Dl

)
+

2

3

]
, (3.1)

where ne, me are the electron number density and mass, respectively, T is the gas tem-
perature, v is the velocity of the EMBH, λD =

√
T

4πnee2
is the plasma Debye length,

and l =
(

2T
πme

)1/4
1

v1/2ωp
is the attenuation length of the plasma with plasma frequency

ωp =
√

4πe2ne
me

. Ionized gas clouds observed on this cooling survey [23] have an average
ne ∼ 0.08 cm−3 and T ∼ 6000 K. Using Eq.(3.1) we find that a single EMBH moving
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through at virial velocity v ∼ 10−3 will deposit energy into the plasma at a rate of

dE

dt
= 9× 106

(
M

109 g

)2

erg s−1. (3.2)

Unregulated by cooling, this will significantly change the temperature and behavior of the
gas within δt ∼ T

dT/dt ∼ 1 Myr
(

109g
M

)
1
f . A wide range of EMBHs can, therefore, change

the properties of the WIM in the Milky Way in a time comparable to that of other less
exotic heating processes [25].

The temperature of WIM clouds is regulated by a variety of heating and cooling pro-
cesses. The primary one is electron and hydrogen atom collisions with singly ionized carbon
atoms. These excite fine structure transitions in the ground state of carbon atoms from the
2P1/2 to 2P3/2 state. Observations of infrared emission from de-excitations of these carbon
atoms are used to estimate the cooling rate in ionized gas clouds [23], which is sensitive
to the temperature. The heating rate of the gas is estimated from and should not exceed
the observed cooling rate [23]. Doing so would disturb the observed dynamics of the gas,
changing both its temperature and cooling rate.

Cooling rates for a variety of WIM clouds are reported in Ref.[23] and grouped by
the velocity of the cloud. We compare the EMBH gas heating rate to the cooling rate
for low velocity clouds because this gives the strongest bounds.3 The average cooling rate
is (dE/dt) ∼ nH × 10−25.65±0.11

0.15 erg s−1, where nH ∼ 0.25 cm−3 is the number density
of hydrogen atoms in a typical cloud [23, 25]. The rate is given with 3σ uncertainties.
Requiring that EMBH WIM heating not exceed the 3σ upper limit in the cooling rate gives
the following constraint:

f . 1.6×
(

M

109 g

)−1 ( nH
0.25 cm−3

)
. (3.3)

This bound is only sensible if there are enough EMBHs, their density in the Galaxy being
∼ 1031f (M/g)−1 pc−3, in a warm gas cloud to heat it. Warm ionized gas clouds have a
typical radius of ∼2 pc and would thus be well populated by EMBHs with masses at least
up to 1015g [25]. Gas heating effects from EMBHs with M > 1015 g is discussed in Section
5.1. The above constraint is plotted in Fig.1.

3.2 White Dwarf Destruction

“Small” energy injections in the WD core of a Carbon-Oxygen (CO) WD can initiate run-
away fusion, which leads to Type Ia supernovae [26]. For example, depositing ∼ 6 × 1021

GeV within a region of radius of ∼ 6× 10−3 cm in less than ∼ 3× 10−12 s leads to runaway
fusion and supernovae in WDs with masses above 1M� [26–28]. EMBHs collect inside
WDs, and can eventually merge with each other and annihilate. The merger event releases
a large amount of electromagnetic (EM) energy, typically more than enough to destroy a

3In principle, a somewhat stronger bound can be found using high velocity gas clouds. However there
is significant uncertainty around ne in these gas clouds, making it difficult to compare the cooling rate to
the heating rate from EMBH.
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WD. We use this phenomenon and the observation of old (>1 Gyr) WDs in the Galaxy to
constrain the EMBH abundance.

The energy needed to destroy aWD depends on the its mass, with lighter WDs requiring
larger energy deposits. Not all EMBHs are heavy enough to supply the energy needed to
destroy all WDs. We account for this by considering bounds from two different sets of
WDs: a collection of known non-magnetic 1M� WDs, and WD J0551+4135, a 1.14M�
WD thought to have formed from the collision of two smaller CO WDs [29]. We use 1M�
WDs for multiple reasons. Hundreds such WDs have been observed [30]. Their average
age is 1.9 Gyr, though some ages over ∼ 10 Gyr [30]. Even allowing for some uncertainty
in their cooling ages, more than half would not exist if EMBHs could destroy them within
1 Gyr. WDs with starting masses above 1.05M� are expected to be primarily composed
of Oxygen and Neon, instead of Carbon and Oxygen [31], and require much larger energy
depositions to trigger runaway fusion [26]. These do not give useful bounds. 1M� is about
as heavy (having the smallest trigger energy) as CO WDs can initially form.

We also consider bounds from WD J0551+4135, a rare CO WD heavier than 1.05M�
thought to have formed from the collision of two smaller CO WDs just over 1 Gyr ago [29].
Its high mass of 1.14M� makes its trigger energy low enough that EMBHs too light to
trigger runaway fusion in 1M� WDs can destroy it. Key physical properties of these WDs
used for calculations are shown in Table 1. Both sets of WDs accumulate EMBHs, which

Mwd (M�) 1 1.14
Rwd (km) 5600 4600
ρc (g/cm3) 2.9× 107 7× 107

ET (GeV) 7× 1021 3× 1019

τdiff (s) 3× 10−12 6× 10−13

Bc (kG) 1 50
Mmin (g) 0.012 2× 10−5

MTh (g) 2600 5× 107

Mmax (g) 4× 1012 4× 1012

Table 1:
Above are the relevant properties of the WDs used to derive bounds in this work. The radius is
Rwd, ρc is the density at the core, ET is the threshold energy needed to initiate runaway fusion,
τdiff is the diffusion time, and Bc is the estimated magnetic field at the core. The EMBH masses
Mmin, MTh, and Mmax are the minimum mass needed to trigger runaway fusion, the threshold
mass required to overcome the WD core magnetic field, and the maximum mass that can sink to
the core in less than a Gyr, respectively. The first column is for generic non-magnetic 1 M� CO
WDs and the second is for WD J0551+4135. The radii, densities, and diffusion times are derived
using WD profiles from Ref.[28].

sink to the core, merge and initiate runaway fusion.
WDs are composed of a degenerate Fermi gas of electrons and an ion plasma of nuclei.

Friction with the Fermi gas and ion plasma traps traversing EMBHs. The stopping power
of a degenerate Fermi gas at zero temperature for a monopole is given in Ref.[32]. Adapting
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this for an EMBH, we find:

dE

dx
=
GM2ω2

pv

vf

[
ln

4Ef
νeiσ
− 1

2

]
, (3.4)

where vf is the Fermi velocity, Ef is the Fermi energy, and νeiσ ∼ 1017 s−1 is the electron
ion scattering frequency [33] at relevant WD densities and temperatures [34] (we use 106

g/cm3 and 106.8 K respectively). For these parameters the energy loss rate is

dE

dx
' 1.1× 1018 ×

(
ρwd

106g cm−3

)(
M

g

)2( v

2.3× 10−2

)
GeV/km, (3.5)

where ρwd is the average white dwarf density. The velocity is scaled to the escape velocity
at the surface of a 1M� WD, vesc ∼ 2.3× 10−2, for illustrative purposes.

The above description of the friction is appropriate when the energy gained by electrons
passing the EMBH, ∼ pv, is large compared to the temperature of the Fermi gas. Here, p is
the momentum of passing electrons. When the energy exchanged is small compared to the
temperature of the Fermi gas, finite temperature effects must be considered. The stopping
power for a magnetic charge in a Fermi gas with a finite temperature is shown in Appendix
A to be(
dE

dx

)
f

=
Ge2
√

2meM
2

π2
Log

[
2Ef
νeiσ

] ∫ 1

−1

∫ 1

−1

∫ ∞
0

√
E′ × f(E′)

(
1− f(E′ + ∆E′)

)
dxdydE′

(3.6)
where

f(E′) =
1

exp
(
E′−Ef
T

)
+ 1

, (3.7)

is the fraction of states occupied for a given electron energy E′, and

∆E′ = pv(x− y) (3.8)

is the energy gained by a passing electron. Ef is the Fermi energy of the gas, and x and y
are respectively the angles between the electron’s incoming and outgoing momentum and
v. The total friction in a WD can be estimated by combining the contributions from (3.6)
and (3.1) for a plasma of carbon nuclei.

The lightest EMBHs we consider, M ∼ 2 × 10−4 g ∼ 1020 GeV, have kinetic energies
within the Galaxy of ∼ 6× 1013 GeV. Using Eq.(3.5) to make a simplified estimate of the
energy losses, we find that the lightest EMBHs get trapped after traversing about ∼ 1000

km inside a WD. As heavier EMBHs lose kinetic energy over even shorter distances, it is
clear that every one which passes through a WD becomes gravitationally bound to it. WDs
accumulate EMBHs at a Sommerfeld enhanced rate:

Γwd '
(
ρMW
dm f

M

)
πR2

wd

v2
esc

v
∼ 2.7 ∗ 1020f

(
M

g

)−1( Rwd
5600km

)2 ( vesc
2.3 ∗ 10−2

)2
Gyr−1,

(3.9)
where Rwd and vesc are the WD’s radius and escape velocity, respectively.
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Once inside, EMBHs must sink to the WD core in order to pair and annihilate. The
EMBH mass and WD the core density and magnetic field determine an EMBH’s behavior.
The core magnetic field separates lighter EMBHs of opposite charge, preventing them from
annihilating initially. Heavier EMBHs can overcome the magnetic field, and friction with
the WD directs their behavior instead.

To annihilate, light EMBHs must first sink to where the magnetic and gravitational
forces from the WD balance the attractive force toward other EMBHs. The strength,
prevalence, and structure of WD magnetic fields remain an area of active research. The
surface magnetic field of WD J0551+4135 is ∼ 50 kG [29]. Current measurement techniques
only detect surface magnetic fields and are only sensitive to those &1 kG [35]. When
considering 1M� WDs, we only use those with magnetic fields too small to measure (. 1

kG). We argue that the core magnetic field is equal to the observed surface field. This
is justified because magnetic fields in WDs are thought to either be fossil fields left over
from the progenitor star or the result of differential rotation between proto-WDs in a binary
system and the common envelope they formed in [36]. In the former case, the WD magnetic
field arises from conserving the magnetic flux of the larger progenitor. Modeling indicates
that the poloidal fossil field can only persist over long time scales if it is supported by a
twisted toroidal field outside of the core [37]. In the latter case, the magnetic field comes
from a magnetized accretion disk, which settles onto the surface of the WD [38]. In both
cases, the magnetic field is generated well outside of the core, leaving no reason to expect
the core magnetic field to be much larger than that at the surface.

A sufficiently strong poloidal magnetic field will separate oppositely charged EMBHs
and prevent them from interacting. Interactions between EMBHs of the same sign charge
are comparatively weak and neglected in this estimate. One can estimate where EMBHs
will settle by balancing the attractive forces of gravity and the opposite-sign EMBHs with
the separating force of the magnetic field:

−Bint
M

mP
+

4πr

3

ρc
m2
P

M + 2
M2(N − 1)

m2
P (2r)2

= 0. (3.10)

Here, Bint is the magnetic field at the center, ρc is the local density, r is the radial distance
from the core and N is total number of EMBHs in the core, which we assume are split
evenly by charge. Note that the attraction between EMBHs and the opposite charge cluster
is doubled due to the combined magnetic and gravitational attraction. If only one EMBH
is present in the star, it will settle at r = 3

4π
BintmP

ρc
, which for a 1 M� WD with a core

density of ∼ 3 ∗ 107 g/cm3 and a core magnetic field strength of 1 kG is r ∼ 0.03 cm. We
determine the time needed to reach this region using Eq.(3.4) and a density profile derived
in Ref.[28] and find all EMBHs light enough to be separated by the core magnetic field sink
to their equilibrium point in well under 1 Gyr.

As N increases, the stable solution to Eq.(3.10) moves closer to the center and then
disappears. At this point, EMBHs fall to the center of the WD instead of separating into
polarized regions. This happens when

Bint < Min
[

4πr

3

ρc
mP

+
1

4

M(N − 1)

mP r2

]
, (3.11)
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which is met when N satisfies

B3
intm

3
P

3π2ρ2
c

= 2.2× 102g

(
Bint
103G

)3(108g cm−3

ρc

)2

< M(N − 1). (3.12)

Here ‘Min’ refers to the minimum as a function of r. EMBHs in separated clusters moving
at thermal velocity do not have enough kinetic energy to overcome the magnetic field and
reach each other until Eq.(3.12) is satisfied. When it is satisfied, mutual attraction between
the EMBH clusters dominate over other forces, and annihilation proceeds quickly. Only a
single annihilation is needed to destroy the WD.

EMBHs heavy enough to satisfy Eq.(3.12) when N = 1 are not affected by the core
magnetic field. They fall toward the core and interact with opposite sign EMBHs when their
mutual attraction becomes stronger than their gravitational attraction to the WD core. This

happens once they fall within a radius r∗ '
(

3M
8πρc

)1/3
∼ 9 cm

(
M

1012g

)1/3 (
108g cm−3

ρc

)1/3
.

For both the 1 M� and 1.14 M� WD, the time EMBHs need to sink to r∗ scales approxi-
mately linearly with their mass, with 4× 1012 g being the heaviest EMBHs that can reach
the core within a Gyr. The large friction with the WD should dissipate the angular mo-
mentum and kinetic energy of infalling EMBHs, leading them to sink directly to r∗. They
then only need to traverse r∗ to meet and annihilate. We can conservatively estimate the
time to reach each other as r∗/v∗, where v∗ is the EMBH velocity at the core, which scales
roughly as v∗ ∼ 10−21(M/1012g)−1 in the 1.14 M� WD case and faster in the 1 M� WD
case due to their lower core density. Even the heaviest, slowest EMBHs that make it to the
core in under a Gyr annihilate in well under a Gyr.

When two opposite charge EMBHs collide, they release energy through a magnetic
“chirp” during the collision and through Hawking radiation of the non-extremal black hole
left behind afterward. The magnetic dipole they represent vanishes in about ts ∼ 2rs =

4GM ∼ 10−38
(
M
g

)
s, the time it would take an EM signal to traverse the Schwarzschild

radii, rs = 2GM , of the two EMBHs. One can expect an EM “chirp” from the sudden
changing and rearranging of the magnetic field, akin to the gravitational chirp that happens
during the final moments of an uncharged binary merger and the subsequent ringdown. A

magnetic dipole, m, will radiate energy at a rate dE
dt = 2

3

(
d2m
dt2

)2
. Just before colliding, two

EMBHs separated by a distance 2rs will form a dipole with a dipole moment 2rs∗Q ∼ 4M
2

m3
P
.

If this were to suddenly disappear in ts, a burst of 2
3M ∼ 3.7×1023

(
M
g

)
GeV of EM energy

would be emitted. The energy needed to destroy each of the WDs is shown in Table 1.
The “chirp” alone allows any EMBH with M & 0.02 g to furnish the energy needed to
destroy a 1M� WD and with M & 8× 10−5 g to supply the energy needed to destroy WD
J0551+4135.

EMBHs can also supply enough energy to destroy a WD through the Hawking radiation
emitted by the non-extremal remnant left behind by the merger. Ref.[28] suggests a black
hole of mass M inside of a WD will Hawking radiate at a rate of ∼ 1.4 × 1049 GeV

s−1
(
M
g

)−2
. If we assume the EMBHs involved in the merger have approximately equal

masses, then the remnant left behind would then be non-extremal and need to lose ∼ M

of mass to become extremal again. These radiate at nearly the same rate as uncharged
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black holes, and may radiate even faster if we consider Q enhancements to the decay rate
described in Refs.[15, 18]. Assuming the merger remnant radiates at least ∼ 1.4×1049 GeV

s−1
(
M
g

)−2
, EMBHs with masses as low as 0.012 g for 1 M� WDs and 2× 10−5 g for WD

J0551+4135 will be able to supply the energy needed to destroy their host WD. Works such
as Ref.[39] suggest that the semi-classical description of Hawking emission is not correct
and that black holes may radiate different amounts of energy, with different characteristics
and over different time scales than predicted above. If true, this changes the mass range of
EMBHs able to destroy a white dwarf. If the emission rate slows down, then the heaviest
EMBHs may not radiate quickly enough to initiate runway fusion. If the amount of radiation
is reduced, then the lightest EMBHs may not emit enough energy to trigger fusion. Precisely
how this mass range would evolve depends on the details of how Hawking emission changes
outside of the semi-classical approximation, which remains uncertain [39]. This does not
particularly affect the bounds here, as most EMBHs able destroy a WD through Hawking
radiation can also do so through the magnetic chirp produced when they annihilate.

We limit the abundance of EMBHs so that WDs do not accumulate enough to overcome
the magnetic field barrier and annihilate within 1 Gyr (see Eq.(3.12)). The bound for
EMBHs too heavy to be affected by the WD core magnetic field is set by requiring that
WDs not accumulate 6 EMBHs in 1 Gyr. In a group of 6 EMBHs there is a > 95% chance
that at least one has the opposite charge as the others and is able to annihilate. The
existence of hundreds of non-magnetic WDs with masses around 1 M� and cooling ages
longer than 1 Gyr, without any apparent suppression based on age or mass [30], rules out
EMBH parameter space where annihilation within 1 Gyr would be expected. For the 1 M�
WDs this bound is

f <

1× 10−17 0.012 g ≤M ≤ 4.3× 102 g

2.3× 10−20
(
M
g

)
4.3× 102 g < M < 4× 1012g

, (3.13)

and for WD J0551+4135 this is

f <

2× 10−13 M ≤ 8.3× 106 g

2.4× 10−20
(
M
g

)
8.3× 106 g < M < 4× 1012g

. (3.14)

3.3 Binary Mergers and Gamma-Ray Emission

Oppositely charged EMBHs can form binary systems in the early Universe. These binaries
spin down and eventually merge. Assuming the EMBHs involved have approximately equal
and opposite charges, the merger leaves behind a new non-extremal black hole. The new
black hole will have lost a “chirp mass” fraction of its mass to EM and gravitational radiation
and then, unprotected by an extremal charge, would rapidly Hawking radiate down to its
new extremal mass. Conservatively, we assume it will radiate ∼M , the mass of the EMBHs.
The hot radiation from these merger remnants gets reprocessed by the thermal bath, and
reaches Earth as a gamma-ray signal. We can place constraints on the EMBH abundance
by requiring this to be less than the 2σ upper limit on the diffuse extra-galactic gamma-
ray flux reported in the most recent isotropic background analysis of data collected by the
Fermi-LAT Telescope [40].
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A binary decouples from the Hubble flow and begins spiraling inward when two opposite
charge EMBHs’ free-fall velocity toward each other exceeds the Hubble velocity pulling them
apart. The unique redshift, zd, when this happens is determined byM and by the co-moving
separation between the EMBHs, x. The time for a binary to merge, tm, is determined by
x, zd, and the distance y to the next nearest EMBH. EMBHs do not interact strongly with
others of the same sign charge, so only one EMBH in the binary will interact with the next
nearest charge. The next nearest EMBH will tug the in-falling opposite sign one out of its
free-fall path, causing the newly decoupled system to form an eccentric binary instead of
immediately annihilating in a head-on collision. The closer the next nearest EMBH, the
smaller the eccentricity of the binary system. Less eccentric binaries take longer to spin
down. This all affects the merger rate per black hole for a given redshift, Γm(z), which is
derived in full in Appendix B.2.

When a binary merges, it produces a sub-extremal MBH that begins to decay. An
uncharged black hole decays in [19, 28]

tbh ∼
15360π

153/8

M3

m4
P

∼ 1.3× 10−26

(
M

g

)3

s, (3.15)

which is a reasonable estimate for the time a non-extremal MBH needs to decay down to
it’s near-extremal mass (this is, in fact, an over estimate, as we only included degrees of
freedom up to MeV). This is fast compared to the age of the Universe for all black holes
constrained by radiation from this decay (roughly . 107 g), so it is reasonable to treat
the entire decay as simultaneous with the merger. Recent works [15, 18] suggest that the
decay rate for non-extremal magnetic black holes is enhanced by a factor of the black hole
charge, Q, This would reduce the decay time by 1

Q , further justifying our decision to treat
all decays as instantaneous.

Sub-extremal black holes in this mass range radiate both electromagnetically and
hadronically. The hadronic radiation quickly fragments into more stable particles, includ-
ing neutral pions. These then decay into 2 photons. A gamma-ray signal comes from both
the photons radiated directly by the black hole and those resulting from pion decays. We
estimate the combined photon spectrum d2Nγ

dEγdt
using the derived analytic expressions for a

decaying black hole’s photon spectra found in equations (30)-(37) of Ref.[41]. While the
merger remnant’s mass still exceeds its charge by an O(1) factor it will radiate with ap-
proximately the same surface temperature as a non-magnetic black hole. We estimate the
total photon spectrum produced during this decay as dNγ

dEγ
' tbh d

2Nγ
dEγdt

, as the black hole will
radiate most of it’s energy in this time and around its initial mass. Ref.[39] suggests that
the semi-classical description of Hawking radiation may be inaccurate. If true, one would
estimate the EMBH bounds using a modified photon emission spectrum derived from the
new description of black hole emission. The bounds on EMBH abundance primarily depend
on the total energy of radiated photons able to scatter with the thermal bath, those with
Eth = 36000

1+z GeV, where z is the emission redshift. These bounds will scale inversely with
the fraction of hawking radiation emitted above Eth.

Photon-photon interactions with CMB photons and Inverse Compton scattering off
electrons reprocess the initial photon energy distribution from the binary annihilation. The
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reprocessed gamma-ray spectral energy distribution has the form [42, 43]

L(Eγ , z) =

{
0.767Eth(z)−0.5E−1.5

γ Eγ ≤ 0.04Eth(z)

0.292Eth(z)−0.2E−1.8
γ 0.04Eth(z) < Eγ < Eth(z),

(3.16)

where Eth = 36000
1+z GeV is the threshold energy a photon must have to be reprocessed, Eγ is

the energy of the photon, and z is the redshift at the time of emission. Photons with initial
energies below Eth free stream to Earth [43], while those at higher energies are reprocessed.
A total reprocessed energy spectrum can be found by multiplying L(Eγ , z) by the amount
of energy radiated above Eth. The shape of the spectrum is independent of this energy. The
parts of the initial spectrum, NEinit(Eγ , z), that were and were not reprocessed combine to
give a total visible spectrum

NEtot(Eγ , z) =

{
NEinit(Eγ , z)θ(Eth − Eγ) + L(Eγ , z)

∫∞
Eth

NEinit(E
′
γ , z)initE

′
γdE

′
γ Eγ ≤ Eth(z)

0 Eγ > Eth(z).

(3.17)
Here, θ(x) represents the Heavyside function. The flux per unit energy of gamma-rays that
reach Earth can be found by convoluting the reprocessed spectrum with the merger rate as
a function of redshift:

Fγ(Eγ0) =
ρdmf

4π

∫ zm

0

1

H(z)
Γm(z)NEtot (Eγ0(1 + z), z) dz, (3.18)

where H(z) is the Hubble rate at z, and Eγ0 is the photon energy today, and Γm(z) is

the merger rate per black hole at z. zm =
√

Eth(z=0)
Eγ0

− 1 is the highest redshift at which
a photon with observed energy Eγ0 could be emitted and still reach Earth. Any photon
with Eγ0 that reaches Earth today must have been emitted at a redshift z < zm because
those emitted at earlier times will be reprocessed and redshifted down to lower energies.
The total flux per Fermi energy bin is found by integrating Fγ(Eγ0) over the energy range
for that bin. We require the integrated gamma-ray fluxes to be less than the 2σ upper
bound observed by Fermi. The strongest constraints come from the highest energy bin, 580
GeV-820 GeV.

We have, so far, neglected friction with the thermal bath. As explained in Section 3.1,
EMBHs interact strongly with plasmas such as the thermal bath. Friction slows infalling
EMBHs in binaries, causing them to decouple at later times and get stretched further apart
by the Hubble flow. The stretching reduces the number of binaries that form and causes
those that do to merge at later times. The result is that EMBHs that are still strongly
interacting with the thermal bath at zd, their friction-free decoupling redshift, do not sig-
nificantly contribute to either the merger gamma-ray signal or to the EMBH abundance
bound. We consider an EMBH to be strongly interacting with the thermal bath when fric-
tion more strongly influences its velocity than Hubble acceleration,

(
dE
dx

)
f
/(MV ) > H(z).

The frictional force grows as M2, making heavier EMBHs more sensitive to it. Friction
begins to weaken the bound for EMBHs with M ∼ 106g and removes it entirely for those
with M > 107g.
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Figure 2: The green region shows the bounds on the EMBH abundance, f , based on gamma-ray
emission from mergers of EMBH binaries not strongly influenced by friction with the thermal bath.
The dotted orange line gives a rough estimate of the bounds that arise from gamma-ray emission
from binaries whose initial infall dynamics were strongly influenced by friction with the thermal
bath. The friction-free bounds weaken for high f for EMBHs with 106 g < M < 107 g because less
eccentric binaries are more sensitive to frictional effects and raising f lowers the typical eccentricity.

The bounds are shown in Fig.2. The most notable feature is that they weaken at
higher f for EMBHs with masses 106 − 107g. Increasing f decreases the typical spacing
between EMBHs, which reduces the distance between a binary and the next nearest EMBH,
lowering the eccentricity of the most eccentric binaries. The merger rate is dominated by
these binaries, so decreasing the maximum eccentricity slightly lowers the merger rate. This
is normally insignificant, but becomes important when friction suppresses binary formation.

Weaker bounds may be found for heavy EMBHs (M > 107g) by accounting for friction.
These EMBHs form bound pairs if they can traverse the distance separating them within
one Hubble time while infalling at a terminal velocity set by friction, their charge, and
their initial separation. Friction reduces the number of bound pairs, so the constraint
from gamma-ray emission for EMBHs with M > 107g is weak compared to the other new
constraints presented in this paper. For comparison, we show a rough constraint for EMBHs
strongly affected by friction in Fig.2, but do not include this in our final set of constraints.

Ref.[18] suggests that fermionic radiation from near extremal MBHs is be enhanced by
a factor of Q, reducing the black hole lifetime by a factor of 1

Q , without changing the surface
temperature. This should not significantly change the the photon spectrum that reaches
Earth from mergers of EMBHs with M < 107g. The low energy portion of the spectrum
comes from hadronic decays. If the surface temperature remains unchanged, the hadronic
spectrum should have the same form, so the low energy part of the spectrum is unchanged.
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Reprocessed photons contribute to the high energy part of spectrum. The Q enhancement
may suppress the number of direct photons produced due to the reduction in the black hole
lifetime. However, electrons and positrons would be produced at a Q enhanced rate, and
produce the same spectrum as photons after reprocessing by the thermal bath [43].

3.4 Destruction of Large Scale Magnetic Fields

EMBHs interact with and can destroy large scale coherent magnetic fields. The bounds
from this are subdominant to those derived in this paper, so we only touch on them briefly.

Parker Bound There are multiple versions of the Parker bound [44–46] on the abun-
dance of magnetic monopoles based on their interaction with the Milky Way’s magnetic
field. This field accelerates magnetic charges, and drains its energy in the process. The
magnetic charges must not destroy the magnetic field or prevent it from forming. The
protogalactic Parker bound offers the most stringent monopole abundance constraints [44].
It limits the magnetic charge density present during the collapse of the protogalaxy, when
the Galactic magnetic field was only a small seed field unsupported by a Galactic dynamo.
When applied to EMBHs in the Milky Way this gives

f < 0.06. (3.19)

Stronger constraints, f < 4 × 10−4 [15] and f < 1.7 × 10−3 [16], were found by applying
a Parker type bound to the Andromeda Galaxy whose magnetic field is coherent over
larger length scales than those of the Milky Way. Uncertainty in this bound comes from
uncertainty in the properties of the magnetic field in Andromeda [15]. We show the bound
from Ref.[15] in Fig.3 for comparison.

Cluster Magnetic Fields The largest scale magnetic fields observed in galaxy clusters
are in radio relics. These are coherent over ∼ 2 Mpc [47, 48]. EMBHs in these clusters
would form a diffuse magnetic plasma, suppressing magnetic fields that extend over scales
larger than its Debye length, λd. Requiring λd > 2 Mpc for an EMBH plasma in a typical
galaxy cluster gives the bound

f < 0.7. (3.20)

3.5 MACRO

MACRO was a dedicated monopole detector that ran from 1989 through 2000 and relied on
ionization effects to detect passing magnetic charges [3]. While the detectors and analyses
focused on Dirac monopoles with Q = gD [3], they were at least as sensitive to higher charge
magnetic particles [49], and have been used to constrain a variety of similar objects, includ-
ing extremal electrically charged black holes [11]. MACRO flux bounds should therefore be
applicable to EMBHs. Assuming EMBHs do not cause nucleon decays, to be discussed in
Section 4, MACRO places an upper limit on the EMBH flux of [3]

F < 2.8× 10−16cm−2sr−1s−1. (3.21)

This corresponds to a bound

f < 217

(
M

g

)
. (3.22)
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4 The Effects of Proton Decay Catalysis on EMBH Bounds

As discussed in the introduction, EMBHs might catalyze proton decay, perhaps analogous
to the effect in monopoles from grand unified theories [13, 14]. However, uncertainty around
what lies at the ‘core’ of the EMBH (the strength of B-violation, the existence of short-
distance hair etc.) makes the cross section for this process model dependent.

We circumvent many of these complications by looking for robust bounds independent
of the cross section for catalysis. Inside of WDs, heat produced by catalysis can generate
convection currents that prevent the EMBHs from annihilating, weakening the bounds
from WD destruction. On the other hand, catalysis can cause anomalous heating of NSs
causing x-ray emission. In addition, excess heating of WDs can set a (weaker) bound, while
catalysis in the Sun can be constrained by neutrino detectors, such as Super Kamiokande.
EMBH abundance constraints from the MACRO detector are weakened but still present
when accounting for catalysis effects. Whatever the catalysis cross section, we can place a
robust bound on the EMBH abundance at any mass.

We estimate the most robust bound by finding the threshold catalysis cross section
needed to activate convection in WDs, σth. This minimal cross section is then used to find
bounds from WD heating. Increasing the cross section above σth increases the heating in
WDs, strengthening the heating bound. Reducing the cross section below σth will allow
EMBH annihilations to resume in WDs. For a set cross section, NS heating generates
stronger bounds than WD heating. However, many estimates of the catalysis cross section
depend on the velocity of passing nuclei [50–52], which are quite different in WD (∼ 10−4)
and NS (∼ 0.3) cores, making it unreasonable to assume EMBHs will have the same effective
cross sections in both environments. We only compare bounds that rely on catalysis in WDs,
where we can give a more consistent description of the cross section. Catalysis bounds in
the Sun and in NSs are described and shown for a specific cross section for comparison and
future application to specific models of EMBHs.

Whether σth is physically reasonable depends on two different length scales set by the
EMBH and by the properties of the WD core: a geometric scale and a scattering length.
One might expect a catalysis cross section at the geometric scale where the energy scale of
the magnetic field is larger than the proton mass and the dynamics are better described by
two-dimensional degenerate radial fermions [18]. This cross section will be referred to as
the QCD cross section.

σQCD =

√
π

8

M

mPΛ2
QCD

∼ 2× 10−22cm2

(
M

g

)
, (4.1)

where ΛQCD ≡ 218 MeV is the approximate QCD scale. All nuclei entering this region
will have dynamics dominated by the background magnetic field and could plausibly have
non-negligible overlap with a proton-decaying core. We note that this cross section can be
altered by an angular momentum barrier between the strong magnetic field of an EMBH
and the electric charge and magnetic moment of an incoming nuclei [50].

While σQCD defines the region where nucleon decay may occur, the strong magnetic
field around EMBHs allows them to have even larger effective catalysis cross sections. For
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example, charged nuclei with non-zero magnetic moments accelerate and radiate photons
when passing through the magnetic field near an EMBH, causing them to fall into a bound
state which overlaps σQCD [51, 52]. Any enhancement to the effective catalysis cross section
is limited by scattering in the WD medium. Nuclei falling toward the EMBH can scatter
and regain enough kinetic energy to escape before reaching the inner decay region. This
introduces the second important length scale: the scattering length of the nuclei in the local
medium,

ls =
mn

ρc

1

πλ2
d

∼ 5× 10−8

(
T

106K

)−1

cm (4.2)

Here, mn is the mass of the nucleus involved, and λd, T , and ρc are the Debye length,
temperature, and density in the WD core, respectively.

The length scales described above set effective upper limits on σth. Given that σQCD
describes a region where nucleon decay may occur, any value of σth ≤ σQCD is physically
plausible. Mechanisms exist to allow σth to grow larger than σQCD [51, 52], but this is
limited by nuclear scattering. σth is only physically plausible if

σth ≤ σM ≡ Max[πl2s , σQCD], (4.3)

where we define σM as the maximal allowed catalysis cross section within the WD core.
How we determine σth, the EMBH annihilation rate, and the WD heating bounds

is elaborated on in the sections below. Fig.3 shows the minimal bounds once catalysis
effects are considered, along with the bounds not impacted by catalysis for a full picture
of the constraints if catalysis is non-negligible. We have made the conservative simplifying
assumption that once convection starts in a WD, the EMBHs will be spread throughout
the star and unable to annihilate. In truth, they may still interact and annihilate under
these conditions; however, calculating how the annihilation rate andWD convective currents
evolve with the catalysis cross section requires detailed modeling of convection in WD cores,
which is beyond the scope of this paper and will only yield more stringent bounds.

For illustration only, we display all of the bounds that arise if we assume the catalysis
cross section is fixed at σQCD in all environments in Fig.4. Here, additional bounds arise
from physical processes, such as NS heating and neutrino production from proton decay in
the Sun.

4.1 Convection in White Dwarfs

As explained in Section 3.2, EMBH abundances are strongly constrained by their annihila-
tion destroying WDs. Catalysis heating bounds are significantly weaker but still relevant.
When an EMBH falls into a WD, or any medium, it can cause nearby nuclei to decay
into lighter particles, releasing the nucleon mass energy and making the EMBH a source of
radiation. The energy radiated can create a severe enough temperature gradient to initiate
convection in a WD core [53]. Friction between the EMBHs and convecting material drags
them away from center, potentially preventing them from annihilating within 1 Gyr and
undermining the WD annihlation bound described in Section 3.2. The catalysis cross sec-
tion determines the amount of heat generated in the WD core, which sets the temperature
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Figure 3: The colored regions denote the minimum bounds on the EMBH abundance when catal-
ysis effects are considered. The WD overheating and annihilation bounds are related by catalysis
effects and marked as one in light blue. The bounds from overheating or destroying 1 M� WDs
dominate for EMBHs with M > 0.012g. Lighter EMBHs cannot destroy a 1 M� WD when they
annihilate so overheating WD J0551+4135 is used to constrain those with M < 0.012 g. No phys-
ically reasonable catalysis cross section could prevent EMBHs with 7 g � M � 2 × 105 g from
annihilating in 1 M� WDs at all times, so the original annihilation bound remains in a somewhat
weakened form. The bounds appear jagged because the catalysis effects were considered at discrete
cooling temperatures and would vary smoothly if these effects were considered at arbitrary cooling
temperatures and times. There are plausible catalysis cross sections that prevent EMBH annihila-
tion outside of this mass range, and so bounds come from WD heating instead. Bounds from gas
heating and binary mergers are unaffected by catalysis and are described in Sections 3.1 and 3.3,
respectively. Constraints derived in Ref.[15] are shown in black for comparison and labeled Bai et al
2020. The dashed line comes from a Parker bound applied to the Andromeda Galaxy (see Section
3.4). The dotted line comes from energetic neutrinos produced from EMBH annihilations in the
Sun (see Section 4.4). We cut this bound off for EMBHs with M > 300 g because convection in
the Sun suppresses their annihilation rate.

gradient, which itself determines whether convection occurs. If convection does not happen,
then the bound determined in Section 3.2 stands with some modifications. Once convec-
tion starts, we assume the EMBHs, now spread throughout the WD, do not annihilate.
Estimating the annihilation rate once convection begins requires detailed modeling of how
EMBHs move within WD convection currents and would only yield stronger bounds.

We determined whether EMBH annihilations could happen by comparing the minimum
luminosity from EMBH induced nuclei decays needed to initiate convection, Lth, to Lm, the
maximum luminosity that can be radiated by EMBHs in the WD core assuming realistic
catalysis cross sections and that enough EMBHs are present to annihilate under no catalysis
conditions. We determined Lth for a variety of WD ages because younger WDs are hotter,
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Figure 4: This plot shows catalysis bounds on EMBH abundance assuming σcat = σQCD. The
yellow and red lines denote bounds from 1 M� WDs and WD J0551+4135 respectively. The
annihilation bounds for 1 M� WDs hold, though perhaps in weakened form for, EMBHs with
M � 9×105 g. These bounds appear jagged because the annihilation rate was estimated at discrete
WD cooling times and would appear smooth if arbitrary cooling times were used instead. Heavier
EMBHs initiate convection at all times and are constrained by overheating old WDs (Section 4.2).
All EMBHs produce enough energy to start convection in WD J0551+4135 at all times, so only
heating bounds are displayed. The green region is ruled out by overheating old NSs. This bound
weakens for EMBHs with M < 107 g because they annihilate inside of NSs, reducing the number
that contribute to heating. The dip in this bound appears because only a few EMBHs with M > 107

g are needed to overheat a NS, making annihilation unimportant (see Section 4.3). The brown line
marks constraints from a MACRO monopole search (Section 4.5). The blue line marks the limit
from observations of energetic neutrinos produced by EMBH induced proton decay in the Sun. This
cuts off for EMBHs which sink to the stellar core and annihilate quickly (M < 300 g).

and can accommodate more EMBHs before convection turns on. This was done separately
for both sets of white dwarfs considered.

Throughout the WD’s conductive region, the temperature gradient is
(
dT

dr

)

cond

=
−Ltot

4πκr2
, (4.4)

where Ltot is the combined luminosity from all of the EMBHs in the WD, κ is its conductiv-
ity, and r is the distance from the center of the WD. We use the expression for κ presented
in Ref.[33] for a WD made of equal parts carbon and oxygen with the density profiles for
1.14 M� and 1 M� WDs derived in Ref.[28]. Two conditions must be met for convection
to occur. First, there must be a region in the star which satisfies

(
dT

dr

)

ad

<

(
dT

dr

)

cond

, (4.5)
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where T is the temperature, (
dT

dr

)
ad

=
1

4

T

P

dP

dr
(4.6)

is the adiabatic temperature gradient,

P =

∫ Rwd

r

dP

dr′
dr′ (4.7)

is the pressure, and
dP

dr
=
GMint(r)ρ(r)

r2
(4.8)

is the pressure gradient. Mint(r) is the mass contained within the radius r, and ρ(r)

is the mass density at r. Starting with a surface temperature, Ts, we calculate T and
dT
dr as a function of r in km steps moving inward from the surface and in m steps for
the inner-most kilometer of the WD. At each step we check if the convective condition
has been met. WD interiors cool over time, causing older ones to develop more extreme
temperature gradients and leading convection to start at lower decay luminosities than in
younger stars. Some EMBHs will start convection in cool Gyr-old WDs but not hotter
100 Myr-old ones. To account for this, we considered the temperature gradient for WDs
at cooling ages {109, 108, 107, 106, 105} years and their corresponding internal temperatures
Ts = {106.8, 107.3, 107.7, 107.85, 107.95} K, as estimated in Ref.[34].

If Eq.(4.5) is satisfied near the core, we check for the second condition needed to initiate
convection. Buoyant forces acting on the WD material must be greater than the viscous
forces resisting deformation. The Rayleigh number, Ra, parameterizes the relationship
between these forces. For spherical geometries

Ra =
4πGρ(r)D(r)

3χν
r5, (4.9)

where

D(r) =
1

T

[(
dT

dr

)
cond

−
(
dT

dr

)
ad

]
(4.10)

is the adiabatic excess at a given radius r [53], χ is the thermometric conductivity, and ν is
the kinematic viscosity [54], which we take from Ref.[55]. Ra must be & 103 for convection
to occur in a spherical system where heat is generated in the convection medium [56].

For each cooling temperature and set of WDs, we determined Lth, the minimum lu-
minosity where Eq.(4.5) and Ra & 103, are satisfied. To determine if Lth is physically
plausible, we also calculated Lm, the maximal luminosity that could be radiated from all
of the accumulated EMBHs if they each had the largest possible cross section:

Lm = NwdρcσMvn (4.11)

Here, Nwd is the number of EMBHs present in the WD core, which we take to be the
minimum number needed to destroy a WD if catalysis did not happen, set by Eq.(3.12),
and vn is the thermal velocity. Convection only starts if Lth ≤ Lm.
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The original annihilation bounds remain unchanged if, at every temperature checked,
Lth > Lm. If Lth > Lm at some, but not all, temperatures, then the annihilation bound is
modified to prevent WDs from accumulating enough EMBHs for an annihilation to occur
within the maximum time period for which Lth < Lm. Finally, if Lth ≤ Lm at every
temperature scale checked, then there exists a physically reasonable catalysis cross section
that prevents annihilation at all times. To find this, we first determine the catalysis cross
section, σ that corresponds to Lth for each mass and cooling age:

σ =
Lth

Naccρcvn
. (4.12)

For a given mass, σth is the maximum σ found among all of the different cooling tempera-
tures considered. σth is determined separately for 1 M� WDs and WD J0551+4135. The
maximum of the two is used to set the catalysis heating bounds in WDs and is referred to
as σH . When M < 0.012 g, the annihilation bound only applies to WD J0551+4135 and
so only its value of σth is used to set σH . The calculated values of σth and σH can be found
in Fig.5.

4.2 White Dwarf Heating

The heat produced from EMBH catalyzed nucleon decays can make WDs older than a few
billion years more luminous than expected. Observations confirm the existence of WDs
with luminosities below 10−4L� [57, 58] and ages above 8 Gyr [30, 59, 60]. The EMBH
abundance must be low enough to allow these old WDs to cool to their observed luminosities
and WD J0551+4135 to cool to its observed luminosity, 3×10−4L� [29], within its estimated
lifetime of 1.3 Gyr [29].

The luminosity of EMBHs in a WD core is

L = vnσHρc, (4.13)

with vn =
√

3Twd
mn

and ρc as the thermal velocity of nuclei and density in the core, re-
spectively. We take Twd, the temperature of the WD core, to be 106.5K in a WD with
L = 10−4L� and 106.8K in WD J0551+4135, based on modeling in Ref.[34]. The cross
sections used for different EMBH masses, σH , are presented in Fig.5. Some works [50–
52] suggest that the catalysis cross section can grow as the velocity of passing particles
decreases. If such a velocity dependence is present, then σH for a young hot WD may
correspond to a larger cross section in an older cooler one with lower thermal velocities.
We use σH in our estimate because the velocity dependencies are model dependent, the
thermal velocities of nuclei in the hottest and coolest WDs considered vary by less than
an order of magnitude, and accounting for velocity dependencies will only strengthen the
heating constraint.

A WD that has accumulated EMBHs for tacc years without annihilation will radiate
with a combined luminosity

Lcat = LΓwdtacc, (4.14)

where Γwd can be found in Eq.(3.9). One must keep Lcat below 10−4L� for 1M� WDs
older than tacc ∼ 8 Gyr and 3×10−4L� for WD J0551+4135, assuming tacc ∼ 1.3 Gyr. For
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Figure 5: The black and gray lines above show the minimum catalysis cross sections, σth, needed
to start convection at all cooling times considered in 1 M� WDs and WD J0551+4135, respectively.
The red region excludes implausible cross sections in the WDs, with the red line marking σM . No
physically viable value for σth for 1 M� WDs exists for EMBH masses where the black line crosses
into the red region. Here, some form of the original annihilation bound stands. Heating bounds are
set wherever the annihilation bounds break down (M < 8 g and 2 × 105 g< M) using σH , which
is marked by the green dotted line and follows whichever value of σth for the two sets of WDs is
larger. It follows σth1.14M� at low masses where no annihilation bound exists for 1 M� WDs. σM

and σth are temperature sensitive and are set for WDs at T = 107.95 K which corresponds to a
cooling time of 105 years. This is when the star is hottest and least sensitive to energy injections
from catalysis.

WD J0551+4135 this age is a conservatively low estimate, as it is thought to result from
the merger of two older WDs (1.3 Gyr ago) that would themselves have had more time
to accumulate EMBHs [29]. The bounds on EMBH abundances from WD heating can be
found in Fig.3.

4.3 Neutron Star Heating and Background X-Rays

The effects of magnetic monopoles falling into NSs was explored thoroughly in Ref.[61].
Magnetic monopoles cause nearby neutrons to decay and release their mass energy as lighter
particles. The power radiated by all the monopole-catalyzed decays heat the NS, increasing
its x-ray radiation. Constraints come from limiting the diffuse x-ray signal to be below the
observed soft x-ray background. This same analysis can be applied to EMBHs.

This picture is complicated by annihilation effects and uncertainty around what lies at
the NS core. EMBH self annihilation reduces the number able to catalyze nucleon decay,
and, therefore, the resulting x-ray signal. EMBHs cannot annihilate in NSs with a type II
superconducting core, whereas a core that transitions to a type I superconductor or to an
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exotic state of matter may offer little resistance to annihilation. This uncertainty will be
discussed below.

The NS must first capture passing EMBHs. They lose energy due to friction with
the NS’s electron Fermi gas [62]. We estimate the stopping power using Eq.(3.6), where
Ef ∼ 100 MeV is the electron Fermi energy, ne ∼ 1036cm−3 is the electron density, and v
is the velocity of the infalling EMBH which we take to be the escape velocity ∼ 0.3 [63].
Numerically we find that a NS with a 10 km radius can capture the entire relevant mass
range of EMBHs.

Once inside, an EMBH radiates with a luminosity

Lns = 2.5× 1024σcat
bn

(vns
0.3

)( ρns
5× 1014g cm−3

)
GeV s−1, (4.15)

where vn ∼ 0.3 is the neutron velocity, ρns ∼ 5 × 1014g is the core density, and σcat
is the catalysis cross section. For illustrative purposes, we show this bound assuming
σcat = σQCD. When annihilation effects are not relevant, the EMBHs have a combined
luminosity of Ltot = NaccLns, where Nacc is the total number of EMBHs accumulated.
When annihilation is fast compared to the accumulation rate, the EMBHs that actually
remain in the NS all carry the same sign charge. Their number is set by a random walk
with Nacc steps. In this case Ltot =

√
NaccLns. We take Nacc = tnsΓns, where tns is the

age of the NS, and the EMBH accumulation rate is

Γns ≈
(
ρMW
dm f

M

)
πr2

ns

v2
esc

v
∼ 5f

(
m

g

)−1

s−1 = 1.4× 1017f

(
m

g

)−1

Gyr−1, (4.16)

for an NS with rns = 10 km and an escape velocity vesc = 0.3. The energy output from all
of the EMBHs give the NS a surface temperature

Tns =

(
Ltot

4πr2
nsσb

)
, (4.17)

where σb is the Stefan-Boltzmann constant.

4.3.1 Bounds from Overheating Neutron Stars

The bounds on EMBH abundance come from limiting the x-ray radiation from catalysis
heated NSs. We follow the analysis in Ref.[61]. A NS heated to a temperature Tns radiates
photons with energy E like a black body with a differential luminosity of [61]

dL

dE
= 2× 1036

( rns
10km

)2 E3

eE/Tns − 1
ergs KeV−4s−1. (4.18)

The differential flux that reaches Earth is

dF

dE
=
dL

dE

e−τ(l,E)

4πl2
, (4.19)

where l is the distance to the NS and τ(l, E) is the absorption length for photons with
energy E in the Galaxy and can be found in Ref.[61].
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The catalysis decay luminosity of an individual NS depends on the number of EMBHs
it has accumulated, which depends on its age. To get the total x-ray flux from all of the
NSs, one must integrate their luminosities as a function of time over the range of possible
ages. For simplicity, we assume NSs in the Galaxy are produced at a constant rate over
∼ 1010 years, and have a local number density of nns ∼ 10−4pc−3 [61]. As we will explain
in Section 4.3.2, EMBHs may be free to annihilate in up to 90% of NSs. Therefore when
calculating the total radiation from nearby ones, we assume 10% accumulate all EMBHs
that pass through them, while the other 90% only retain EMBHs that do not annihilate.

Accounting for absorption in the ISM, the total differential flux from all NSs out to a
distance of dns ∼ few kpc, about as far as the x-ray signal is expected to travel without
scattering [61], is

dF

dE tot
=
nnsB(E)

t0

∫ t0

0

dL

dE
dtns, (4.20)

where tns is the age of the NS, t0 is 10 Gyr, and B(E) is the integrated fraction of photons
with energy E that reach Earth:

B(E) =

∫ dnd

0
e−τ(l,E)dl (4.21)

The total flux that reaches Earth will be compared against sounding rocket soft x-ray
observations from Ref.[64]. The counting rate per frequency band for a given flux is

Γband =

∫
dF

dEtot
Aband(E)dE (4.22)

whereAband(E) is the detector response function for each of the four different x-ray detection
bands and can be found in Ref.[61].

In large regions of the sky the counting rate measured by Ref.[64] was 1
3 the all-sky

average [61]. As in Ref.[61], we set limits by requiring the count rate of soft x-rays produced
from radiating NSs to be less than this. We use the weakest of the limits derived from the
four bands. The resulting bounds are shown in Fig.4.

4.3.2 Annihilation Effects and the Superconducting Core

Whether EMBHs can annihilate in a NS depends on the properties of its inner core. The
inner ∼5 km is thought to be occupied by a type II superconductor [65]. When an EMBH
falls into a NS, it sinks into the superconducting surface, which produces 2 flux tubes around
the EMBH for each unit of dirac magnetic charge, qd = 1

2e , it carries. Each flux tube carries
a magnetic flux of πe and an energy per unit length of ∼ 2× 1011 GeV cm−1 [66]. This acts
as a tension pulling the EMBH back toward the surface of the superconducting core.

The EMBHs form a suspended surface where gravitational and tension forces balance,
∼ 0.6 km above the center of the NS independent of the EMBH mass. In agreement
with Ref.[15], we find that annihilation between suspended EMBHs is too slow to alter the
radiation bounds. However, NSs are poorly understood at these depths and may transition
to a new state which does not support the EMBH surface and prevent annihilation (such as
a type I superconductor [67, 68] or some exotic state of matter [69]). Any such transition
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would reduce the number of EMBHs available to catalyze neutron decay and severely weaken
the bounds.

NS cores require densities above ∼ 7×1014g cm−3 to transition [67]. While the equation
of state and mass range that avoid exotic transitions remains an area of active research
[69], lighter NSs are expected to have less dense cores that do not transition [70]. Based
on modeling in Ref.[71], we estimate that NSs with masses . 1.1M� can reasonably be
treated as having a core density below the transition threshold. Based on the available
mass measurements for NSs [72], we estimate that ∼ 10% have masses below ∼ 1.1M�.
These NSs do not permit EMBH annihilation and so keep those they accumulate. The
remaining 90% amass EMBHs at a random walk rate proportional to the square root of the
number that pass through them. We make the conservative assumption that annihilation
is fast whenever it is possible, as this gives the lowest estimate for the number of EMBHs
accumulated, the smallest NS x-ray luminosity, and the weakest bounds.

At high masses (M & 109 g), a single EMBH can cause a NS to overheat, so annihilation
suppression no longer matters. Only few EMBHs with 107g < M < 109g are needed to
overheat a NSs, so Nacc is not much smaller than

√
Nacc, and all NSs contribute to the

bound. The bound on EMBHs with M < 107g is dominated by radiation from non-
annihilating NSs.

4.4 Proton Decay in the Sun, Neutrinos and SuperK

Proton decay in the Sun has been constrained by neutrino observations at Super Kamiokande
[73]. Most of the EMBHs we focus on would become trapped while passing through the
Sun and cause proton decay once inside. Heavier EMBHs get caught in the convection
zone, while those lighter than about 300 g make it to the core and eventually annihilate.
Bounds come from the steady-state number in the Sun. These bounds are weaker than
those derived for NSs and WDs when the catalysis cross section is held constant. How-
ever, some enhancements to the cross section from EMBH-proton bound states [51, 52] or
angular momentum effects [50] can make the solar neutrino bound stronger than the WD
heating bound for some masses. Details of this constraint are included for reference when
considering specific EMBH models with specific σcat. As a toy example, we will assume
σcat = σQCD for the remainder of this section. We also note that Ref.[15] derives stronger
solar bounds by considering neutrino emission from EMBHs that annihilate in the solar
core. These bounds should apply to EMBHs which are light enough; however, Ref.[15]
does not consider how those heavier than 300 g get trapped in the convection zone which
suppresses their annihilation rate and weakens these constraints.

Super Kamiokande is a water Cherenkov detector sensitive to neutrinos with energies
above 5.5 MeV [74]. About half of proton decays produce charged pions, which themselves
dominantly decay via π+ → µ+ + νµ → e+ + νe + ν̄µ + νµ, producing three neutrinos with
O(10 MeV) energies [73]. The analysis in Ref.[73] limits the flux of neutrinos resulting from
proton catalysis in the Sun with 90% certainty to I90 < 166.6 cm−2 s−1. This limits the
proton decay rate in the Sun to be less than

Fmaxp =
4πd2I90

bπ+(1− aπ+)
= 4× 1029s−1, (4.23)
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where bπ+ ∼ 0.5 is the branching fraction of protons into π+, aπ+ ∼ 0.2 is the probability
that a pion gets absorbed by the solar core [73], and d is the Earth-Sun distance.

An EMBH passing through the Sun will lose energy as described in Eq.(3.1). Since the
average velocity is v ' 10−3 and the escape velocity from the solar surface is vesc ' 2×10−3,
the EMBH needs to lose much of its kinetic energy to become gravitationally bound to the
Sun. Taking an average internal temperature for the Sun of T = 2 × 106K in Eq.(3.1),
one finds this requires M & 0.5 g. The Sun accumulates such EMBHs at the (slightly)
Sommerfield enhanced rate of

Γ� ∼ πr2
�

(
ρMW
dm f

M

)(
1 +

v2
esc

v2

)
v = 4× 1022Gyr−1f

(
M

g

)−1

, (4.24)

where r� ' 7× 105 km is the solar radius.
Heavier EMBHs will get trapped in the convection zone, which makes up the outer

third of the Sun. The temperature varies from 2× 106 K at the base of the convective zone
to 5700 K at the surface. The convective motions have velocities around 10−6 [75]. Using
the solar mass profile M�(x) [76], we add the term GMM�(x)/(r� − x)2 to Eq.(3.1) to
account for the change in gravitational potential and numerically integrate the energy loss
as an EMBH traverses the Sun. The velocity drops below the convection value if M & 300

g. Thus, this range of masses will be trapped in the convection region.
One can check that annihilation within the convection region is unimportant. EMBHs

trapped in the convection region will move with stellar convection currents and annihilate
at a rate Γ ∼ N�n�σvth, where N� and n� are the number and number density of EMBHs
accumulated in the convection region, vth is the thermal velocity, and σ is a cross section
defined by the region where two EMBHs approaching each other at free-fall velocity can
meet within the time a convection flow would cross the convection region ∼ 7×105s (a rough
‘coherence’ time for the flow). Γ is never large enough to significantly alter the number of
EMBHs accumulated in the Sun, so we neglect its contribution to these constraints.

The proton catalysis rate is

Fp = Γ�t�npvpσcat, (4.25)

where t� = 4.6 Gyr is the age of the Sun, np is the proton number density set by the local
density, 0.2 g cm−3, and vp ∼ 10−4 is the local proton thermal velocity. For illustrative
purposes, we set σcat = σQCD. Comparing this rate with the current bound (4.23) gives
our constraint for M > 300 g.

EMBHs with M < 300 g pass through the convection region and sink to the core. The
vast majority that reach the core will ultimately annihilate. Only those that have not yet
done so can contribute to proton catalysis. The total number in the Sun at any time, Ntot,
is made up of those that have not yet annihilated because they are either in the process of
sinking to the core (Nsink) or part of a charge imbalance due to the random walk of charge
accumulation (Nran). There could additionally be a delay in annihilation if there is a strong
enough magnetic field in the core, but we will ignore this possibility to set a conservative
bound. Thus, Ntot = Nsink +Nrand.
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We estimate the number of EMBHs in transit as:

Nsink = Γ�tsink , (4.26)

where the sinking time tsink can be computed numerically. Using estimated temperature
and density profiles in the Sun [76], we find

tsink ∼ 103s

(
M

g

)
(4.27)

for M > 0.5 g, implying Nsink ∼ 109f . On the other hand, the number accumulated from
random asymmetries in the signs of the EMBHs passing through the Sun over its lifetime
t� is

Nrand =
√

Γ�t� ' 4× 1011
√
f

(
M

1 g

)− 1
2

. (4.28)

The EMBHs actively sinking toward the core and those in the innermost region of the star
are in different environments and have different catalysis rates. We estimate the outer core
where EMBHs are sinking to have Tout ∼ 7 × 106 K and ρout ∼ 50 g cm−3, and the inner
core where the random walk EMBHs reside to have Tin ∼ 16×106 K and ρin ∼ 150 g cm−3.
Using this information and Eq.(4.25), one can find the catalysis rates for both sinking and
random walk EMBHs. Combining these gives the total proton decay rate, which must be
less than Fmaxp given by Super K. The resulting bounds are shown in Fig.4.

One might worry that the accumulated random walk magnetic charge could be large
enough to alter the dynamics in the stellar core. The maximum possible random walk
charge for EMBHs that accumulate here would produce a magnetic field ∼ 10−6G in the
lower convection region. This is negligible compared to the magnetic field already present,
which could be as strong as 100 G [77], and is thus unlikely to influence stellar dynamics.

4.5 Direct Constraints

The magnetic monopole detector MACRO, described in Section 3.5, is sensitive to nucleon
decay effects. Nuclear decay catalyzed by a traversing monopole produces extra radiation
which changes the detector’s sensitivity. MACRO produced separate analyses and flux
bounds for monopoles that do [78] and do not catalyze nucleon decay [3]. In the catalysis
case, the flux limit from MACRO data depends on the catalysis cross section. The flux limit
for a magnetic charge moving at v ∼ 10−3, F (σcat), is presented for magnetic charges with
catalysis cross sections up to σcat = 10−24cm2 in Ref.[78]. Increasing the catalysis cross
section weakens MACRO’s ability to verify EMBH events [78]. We take this cross section
and the corresponding flux limit F . 10−15 cm−2 s−1 sr−1, as it is the most conservative
limit considered in Ref.[78]. This gives the below constraint, which is presented in Fig.4.

775 <

(
m

g

)−1

f. (4.29)
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5 Sub-Extremal Magnetic Black Holes

This work so far has focused on EMBHs in a mass range, (M < 1015g), in which MBHs must
be extremal to stable over the lifetime of the Universe. If the Q enhancement to the radiation
rate of leptons and fermions described in Ref.[18] is present, then sub-extremal MBHs only
survive to the present if their surface temperature is too low to effectively radiate electrons
and positrons (M & 1017g) [18]. The sections below explore the behavior of and abundance
constraints on MBHs heavy enough to be stable over the lifetime of the Universe even
when sub-extremal (M > 1017g). Some of the previously discussed constraints on EMBHs
continue to apply at these high masses and also apply to sub-extremal MBHs. Heavy MBHs
are constrained by their interactions with warm ionized gas clouds in the Milky Way and
with WDs. Some can cause NSs to collapse into black holes. For convenience, we describe
the charge of an MBH using q, a fractional value of the charge compared to the extremal
charge, Qext, of a black hole with mass M .

q ≡ Q

Qext
=
QmP

M
. (5.1)

5.1 Gas Heating

Generalizing the constraints on EMBH abundance due to overheating warm gas clouds (see
Section 3.1) for MBHs gives:

q2f < 3

(
M

109g

)−1

. (5.2)

This bound cuts off when MBHs either pass through WIM clouds too rarely to alter their
behavior or lose a significant fraction of their kinetic energy to friction with the interstellar
medium. Based on Eq.(3.1), an MBH with M & 3 × 1021 g may deposit the total energy
needed to overheat the entire cloud in a single passage. The energy is initially deposited in
a small region defined by the plasma attenuation length l ∼ 16 km. Depositing the energy
needed to heat a ∼ 2 pc cloud into a cylindrical cross section with a radius of ∼16 km
will heat the region to extreme temperatures, causing it to expand supersonically. This
would significantly alter the cloud’s structure and behavior within its sound crossing time,
∼ 5× 105 yr for typical warm clouds [25]. Natural processes such as cooling and supernova
shocks evolve the WIM over timescales of 106 yr [25]. MBHs must not disrupt WIM clouds
more quickly than naturally observed processes. We limit the abundance of MBHs with
M > 3× 1021 g, so that typical WIM clouds encounter them less than once per 105 yr.

This bound also cuts off when MBHs lose an O(1) fraction of their kinetic energy to
friction with the WIM within ∼ 10 Gyr. Losing this much kinetic energy causes them to
sink toward the Galactic center. There may be interesting phenomenology around this, but
we have not found new constraints that arise from it. Modifying Eq.(3.2) gives

dE

dt
= 9× 10−3q2

(
M

109 g

)2

erg s−1 (5.3)
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for MBHs passing through warm ionized regions. They lose energy most efficiently in the
WIM, which fills 1% of the Galactic disk [79]. Most dark matter in the Galaxy, ∼ 90%, sits
outside of the Galactic disk in the dark matter halo. We assume then that MBHs moving
along virial orbits around the Galactic center spend ∼ 10% of their time in the Galactic
disk. Using all of this, we estimate that MBHs lose an O(1) fraction of their kinetic energy
within 10 Gyr if (

M

1019 g

)
q2 & 1.6. (5.4)

The gas heating bound cuts off where this is saturated. The bounds for MBHs with differ-
ent parameters are shown in Fig.6.

5.2 White Dwarf Consumption

MBHs with M > 1017g can get trapped inside of a 1.2M� WD and consume it within 1
Gyr. Their abundance is constrained by the existence of hundreds of WDs older than a
Gyr and with masses ∼ 1.2M� [30]. These WDs yield the strongest bounds because they
are both abundant and dense enough to capture a wide range of MBHs. Uncharged black
holes simply pass through a WD, while MBHs are trapped by friction with the Fermi gas.
MBHs experience the same frictional forces in a WD as EMBHs (described in Eqs.(3.6) and
(3.1)) but reduced by q2. Using this and the 1.2 M� WD density profiles derived in [80],
we find that all black holes that satisfy

q & 3× 10−16

(
M

1017g

)−1/2

(5.5)

will get trapped in any 1.2M� WD they pass through.
Estimates in Ref.[28] indicate that an uncharged black hole should be able to consume

an entire WD within

t ∼
c3
sm

4
P

4πλρc

(
1

M
− 1

mWD

)
∼ 32 Myr

1017g
M

, (5.6)

where cs ∼ 3×10−2 is the speed of sound in a 1.2 M� WD, λ is an O(1) constant presented
in Ref.[28], ρc ∼ 108g cm−3 is the density at the core of a 1.2 M� WD, and mWD is the
mass of said WD [28]. One might worry that interactions with the large magnetic field
around MBHs slows accretion or that MBHs cannot absorb electrically charged particles
without becoming super-extremal. While the magnetic field around an MBH can repel
charged particles before they reach the event horizon [81], the outward flow of repelled
material would be resisted by pressure from the WD. The pressure from ρc ∼ 108g cm−3

of material moving away from the MBH at cs is approximately four times greater than the
ambient pressure in the WD core. Balancing forces, ρwd is reduced by at most a factor of
∼4 in the area around the MBH, increasing the accretion time by up to a factor of ∼4.
All MBHs with M > 1017g will still be able to consume an entire 1.2 M� WD within a
Gyr. EMBHs in this mass range do not become super-extremal upon absorbing a single
electrically charged particle because the magnetic and electric charges add in quadrature.
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Figure 6: These are the constraints on MBHs with M > 1015g. The purple region is excluded for
all MBHs that satisfy Eq.(5.5) due to WD consumption. The dashed lines represent bounds from
overheating WIM clouds in the Milky Way. Each color traces the bound for MBHs with a different
value of q. This bound tilts upward when a typical WIM cloud only encounters an MBH once every
105 years. The bound cuts off when MBHs lose an O(1) fraction of their kinetic energy to friction
with the WIM clouds within 10 Gyr. MBHs are unstable on cosmological timescales if q �= 1 in the
gray region [18]. Bounds on uncharged black holes applicable to MBHs are shown in black [82].

.

Typical 1.2 M� WDs must not accumulate 1 MBH capable of consuming it within 1
Gyr. This gives

f < 10−4

(
M

1017g

)
(5.7)

for all MBHs that satisfy Eq.(5.5). This constraint is shown in Fig.6

5.3 Neutron Star Collapse

The recent LIGO/Virgo observation of a 2.6 M� compact object occupying the mass-gap
between the theoretical maximum mass for NSs and minimum mass for stellar black holes
[83] has raised questions about how such an object could form. Ref.[84] suggests that a
low mass black hole, perhaps the object observed by LIGO/Virgo, could result from a NS
absorbing non-annihilating dark matter and collapsing into a black hole. Some MBHs can
get trapped in NSs due to friction with the Fermi gas and cause this collapse.

The minimum accretion rate for a black hole in a degenerate neutron gas with a stiff
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equation of state (the conditions of a NS core) was found [85] to be:

Ṁ = 3× 104

(
M�
s

)
M

M�
(5.8)

An MBH can therefore consume a ∼ 2M� NS within

t = 0.8 Gyr
(

M

1022g

)−2

. (5.9)

Those with masses above ∼ 1022 g can easily consume a NS within 1 Gyr, causing it to
collapse into a mass-gap black hole.

Only MBHs that get caught in NSs can consume them. Using Eq.(3.4), we find NSs
with Ef ∼ 100 MeV, ne ∼ 1036cm−3, vesc ∼ 0.3 and r = 10 km [63] will trap any MBH
that passes through which satisfies

q ≥ 10−16

(
M

1022g

)−1/2

. (5.10)

Using Eq.(4.16) one finds the probability that a NS captures one of these MBHs is 1.4 ×
10−5f

(
1022g/M

) (
T

Gyr

)
, where T is the age of the NS. Clearly, MBHs heavy enough to

collapse a NS (M > 1022 g), and that satisfy Eq.(5.10), could never be abundant enough
to observably alter the NS abundance. Regardless, they offer a new way to produce black
holes in the mass gap range.

6 Discussion

6.1 Generalized Mass Functions

Throughout this paper we have assumed that EMBHs have a monochromatic mass function.
It is worth exploring how the bounds described in the above sections transform for EMBHs
with non-monochromatic mass functions, as these commonly arise from models of primordial
black hole formation. We outline how one would apply the constraints described in this
paper to EMBHs with a general mass function below. We describe the mass function using
dn
dM (M), which gives the differential number density of EMBHs as a function of mass.

The constraint from WIM cloud heating in Section 3.1 is estimated by comparing the
total heat generated by many EMBHs passing through WIM clouds in the Milky Way to
the observed heating and cooling rates of said clouds. The heating rate for EMBHs with a
general mass function can be found by multiplying the heating rate per EMBH, Eq.(3.2),
and dn

dM , and then integrating over all relevant masses. This can be compared against the
observed cooling rate to obtain bounds.

The constraints from EMBH annihilation in WDs leading to runaway fusion and su-
pernovae is described in Section 3.2. The total mass of EMBHs accumulated in a WD
depends on the local density of dark matter and not the mass of the EMBHs themselves.
Additionally, a set accumulated mass of EMBHs, MTh, is needed to overcome the core
magnetic field and start annihilation (see Table 1). The annihilation bound is sensitive to
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the whether EMBHs have enough mass to provide the energy needed to initiate runaway
fusion, and whether they are light enough to sink to the core within 1 Gyr. The bounds
from WD J0551+4135 can be straightforwardly adapted for general EMBH mass functions
because all EMBHs lighter than 4× 1012g can sink to the core and trigger runaway fusion
within 1 Gyr. WD J0551+4135 must not accumulate a group of at least six EMBHs, each
lighter than 4 × 1012g, whose combined mass exceeds MTh within 1 Gyr. Not all EMBHs
supply enough energy when they merge to trigger runaway fusion in 1 M� WDs. This com-
plicates estimating the bounds because the non-extremal black hole produced in an EMBH
merger will only radiate off the mass of the smaller EMBH. One can simplify this estimate
by considering two different sets of EMBHs. The first is those with 4× 1012 > M & MTh.
These will trigger runaway fusion once the WD accumulates 6 EMBHs whose combined
mass exceeds MTh. The second set is EMBHs with M �MTh. If we make the simplifying
assumptions that all EMBHs in this group pair and annihilate exactly once, that annihila-
tions are fast compared to the time needed to accumulate MTh of EMBHs, and that the
distribution of EMBHs in the WD matches the true distribution, then one could estimate
the number of times the WD would need to accumulate MTh of EMBHs before it would be
expected that one of the annihilating pairs contains two EMBHs heavy enough to trigger
runaway fusion. The faster of the two processes can be used to set the bound.

Generalizing the constraints on EMBH abundance due to gamma-rays produced when
EMBH binaries annihilate (Section 3.3) requires modifying the derivation for the EMBH
merger rate presented in Appendix B.2. The details of the original and modified derivation
are described there. Broadly, the merger rate comes considering a collection of cold EMBHs
whose separations in the early Universe are described by a Poisson distribution. These initial
separations dictate which EMBHs form binaries, the semi-major axes and eccentricities of
these binaries, and the time they take to merge. The merger rate at any time t comes from
integrating over all binaries whose semi-major axis and eccentricity lead them to merge
after t has passed. When the mass spectrum is not monochromatic, one must include terms
in the distribution of binary parameters that account for the distribution of EMBH masses.
The merger rate then comes from integrating this over the space of EMBH masses, binary
semi-major axes, and eccentricities which produce binaries that merge after t has passed.
Each merger remnant will radiate off the mass of the lighter EMBH in the binary before
becoming extremal again. This amount of radiation per merger, along with the modified
merger rate described in Appendix B.2 can be used to estimate the total diffuse gamma-ray
signal produced by binary mergers, which can be compared to the observed diffuse extra
galactic gamma-ray signal observed by FERMI-LAT.

The existence of large magnetic fields in both the Milky Way and in galaxy clusters
was used to limit EMBH abundance in Section 3.4. Too many EMBHs would damage the
Galactic magnetic field by removing energy from it and would screen the large coherent
magnetic fields observed in galaxy clusters. Both effects are mass independent, and limit
the total fraction of dark matter that can be made of EMBHs of any mass.

The MACRO monopole detector set upper limits on the flux of magnetic charges near
the Earth (see Section 3.5). One can use this to constrain EMBHs with arbitrary mass
distributions by comparing the expected flux of EMBHs, given by 1

4πv
∫

dn
dM dM , where
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v ∼ 10−3 is the local EMBH velocity, to the MACRO flux.
The way EMBH catalysis of nucleon decay affects WD annihilation bounds is explored

in Section 4.1. This is somewhat more complicated for EMBHs with non-monochromatic
distributions, as the catalysis cross section typically varies with EMBH mass. The heat
produced by catalysis can cause convection in WD cores which prevents EMBH annihi-
lation. If the annihilation bounds break down, the EMBH abundance is constrained by
comparing the predicted luminosity from EMBHs catalysing nucleon decay in WDs to that
observed in old dim WDs. One can determine whether the annihilation bounds stand by
comparing Lth, the luminosity from catalysis decays needed to start convection in WDs,
to LM , the maximum plausible luminosity from a collection of EMBHs in the WD. When
the typical EMBH masses are small compared to MTh, LM can be determined by integrat-
ing

∫
MTh
n

dn
dM σMρcvthdM . Here n is the number density of EMBHs, σM is the maximum

plausible catalysis cross section, defined in Eq.(4.3), ρc is the density at the WD core, and
vth is the thermal velocity of nuclei there. As in the monochromatic case, the annihilation
bounds remain in tact unless Lth < LM at all WD cooling temperatures. When annihi-
lation bounds break down, one can estimate the average cross section per unit of EMBH
mass using Lth

vthMThρc
. This can be used to estimate the luminosity EMBHs would produce

in an old dim WD and compared to the observed luminosities to get constraints. If the
typical EMBH mass is large compared to MTh, then only 6 are needed to cause the WD to
explode. In this case, one can estimate LM as the expectation value for the luminosity of
6 randomly selected EMBHs radiating at σM . If the annihilation bound breaks down, one
can find the heating bound by using the same general method described for light EMBHs,
though using Lth/6vthρc as the average catalysis cross section.

Section 4.3 describes the EMBH abundance constraints from nucleon catalysis in many
nearby NSs producing too much x-ray radiation. The catalysis cross section we used to
demonstrate this constraint, σQCD, is proportional to the EMBH mass. With this cross
section, the nucleon decay rate and the resulting bound relies on the total mass of EMBHs
accumulated in NSs and not generally on the mass of the specific EMBHs involved. The
bound becomes mass dependent once EMBHs are heavy enough (M > 107 g) that one
or a few of them cause NSs to produce too much radiation. At higher masses (M >

109 g) individual EMBHs captured in a fraction of all NSs can saturate the limits on x-
ray radiation. One can assume the EMBH mass distribution across all NS reflects the
true distribution. In this case, one can estimate the fraction of NSs which would acquire
a given luminosity based on the probability that they accumulate a certain number of
EMBHs of a given mass. Integrating this over all masses would give the expected combined
luminosity from all NSs, which could then be compared to observed x-ray measurements to
get constraints.

Section 4.4 describes the constraints that emerge from EMBH induced proton decay in
the Sun producing too many energetic neutrinos. As in Section 4.3, we demonstrate this
bound using σQCD as the catalysis cross section, which makes it dependent on the total
mass of EMBHs trapped in the Sun, and not the mass of said EMBHs. Those lighter than
300 g annihilate too quickly to produce observable decays, while those heavier than 300 g
get trapped in the convection zone where annihilation is strongly suppressed. Generalized
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bounds come from limiting the fraction of EMBHs heavier than 300 g so that the proton
decay rate stays below observed limits.

6.2 Seeding Magnetic Fields

One possibly interesting area we did not address is the connection between EMBHs and
primordial magnetic fields. It has been suggested that primordial magnetic fields present
just before recombination could reduce the Hubble tension by altering the way charged
particles cluster [86]. Additionally, many models of galactic magnetic field formation rely
on the presence of a small seed field around the time of galaxy collapse [87]. The seed
fields needed to generate the µG magnetic fields observed in galaxies today vary with the
particular model, but reach as low as 10−30G fields coherent over distances of & 100 pc
[88]. EMBHs and MBHs carry high magnetic charges and can generate reasonably strong
magnetic fields coherent over the average separation between them. Taking the typical
EMBH separation, one can estimate the scale of the typical magnetic fields they produce:

B ∼ 4

3

(
4πρdmf∆

3M

)2/3

Q(1 + z)2 ∼ 1.5 ∗ 10−23 G × (f∆)2/3q

(
M

g

)1/3

(1 + z), (6.1)

where ∆ is the local EMBH overdensity. Such a field would be coherent over length scales

l ∼
(

3M

4πρdmf∆

)1/3

∼ 1.5 ∗ 10−9pc ×
(
M

g

)1/3 (f∆)−1/3

(1 + z)
. (6.2)

There are some unconstrained regions of parameter space where MBHs could play a role in
galactic magnetic field formation. This idea is explored further in Ref.[10].

7 Conclusion

In this work, we have extensively explored the phenomenology of EMBHs and stable MBHs.
We have placed stringent bounds on their abundances based on their ability to destroy WDs
either by initiating supernovae (EMBHs with M < 4×1012 g) or by consuming them (MBHs
with M> 1017 g). We also derived bounds which apply to both extremal and non-extremal
MBHs based on overheating WIM clouds in the Milky Way. We described how EMBHs
merge and the observable emission that results from these mergers. We provided minimal
model-independent constraints for EMBHs that catalyze nucleon decay, while leaving a
precise calculation of the catalysis cross section for future work. As in Refs.[15, 16], we do
not consider a detailed exploration of how EMBHs form.

There is still much to understand about EMBHs. How exactly low mass EMBHs
accrete, whether nucleon catalysis happens, and the exact details of such a process are
not yet understood. While it is quite clear that EMBHs cannot constitute a meaningful
fraction of the dark matter, they remain long-lived, well-motivated, very simple extensions
of the Standard Model. They offer new mechanisms for heating Galactic plasma, producing
gamma-rays, initiating supernovae, and generating NS mass black holes. Their behavior
also gives us insight into more exotic objects, such as higher dimensional black holes, which
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carry magnetic charge [12]. EMBHs remain interesting tools to consider for many current
and future astrophysical questions.
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A Magnetic Friction with a Fermi Gas at Finite Temperatures

The friction between a magnetic charge and an electron Fermi gas at finite temperature can
be found by modifying the derivation presented in Ref.[32]. The energy of electrons that
scatter off a passing magnetic charge will change by ∆E = pv(cosθ− cosθ′), where θ is the
angle between the velocity of the incoming electron and the magnetic charge velocity v, θ′

is the angle between the scattered electron’s velocity and v, and p is the momentum of the
electron. The energy given to a magnetic charge from all of the scattering electrons can be
found by integrating:

dE

dx
=

∫
E,θ,θ′,Ψ,φ

n(E) (1− f(E + ∆E))
dσ

dΩ
∆E

sinθsinθ′sinΨdθdθ′dΨdφ

4π
. (A.1)

Here
n(E) =

me

π2

√
2meE ×

1

exp
(
E−Ef
T

)
+ 1

(A.2)

is the number density of electrons with energy E in a Fermi gas at temperature T and with
a Fermi energy Ef .

f(E) =
1

exp
(
E−Ef
T

)
+ 1

(A.3)

represents the fraction of occupied states at energy E. The scattering cross section dσ
dΩ is

analogous to a Rutherford scattering cross section [32]

dσ

dΩ
=

Q2e2

4p2sin4(Ψ/2)
, (A.4)

where cosΨ = sinθsinθ′cos∆φ + cosθcosθ′. Ψ is the angle between the velocities of the
incoming and scattered electron. The integral over Ψ diverges as a log as Ψ approaches
zero. We cut it off at Ψmin = νieσ

2Ef
, which limits the scattering angle by the scattering length

in the medium [32]. Integrating Eq.(A.1) over Ψ and φ gives 16π log
(

1
Ψ

)
. Substituting

x = cos θ and y = cos θ′ gives:

dE

dx
=
Ge2
√

2meM
2

π2
log
[

2Ef
νeiσ

]
×
∫ 1

−1

∫ 1

−1

∫ ∞
0

√
E×f(E) (1− f(E + ∆E)) dxdydE, (A.5)

where G is the gravitational constant, e is the electron charge, me is the elctron mass, and
νeiσ ∼ 1017 s−1 is the electron ion scattering frequency [33].
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B Calculation Details for Binary Mergers

B.1 Derivation of the Merger Time for an EMBH Binary

The time it takes an EMBH binary to merge can be found by considering the energy lost
to EM radiation emitted during orbit. EMBHs moving through an orbit radiate as two
perpendicular oscillating magnetic dipoles. Energy losses via gravitational radiation come
from the binary’s quadropole moment, and are subdominant. The binary emission rate for
black holes of arbitrary electric charge and mass in circular orbits is presented in [89, 90].
The emission rate for black holes with arbitrary electric and magnetic charge can be found
in [91]. The merger rate for charged black holes in a circular orbit is also considered in [16].

The electric and magnetic fields of two perpendicular magnetic dipoles which vary
arbitrarily with time can be described in spherical coordinates by orienting them in the
θ = π/2 plane.

B =
2 cos θ

r2

[
1

r
+

d

dτ

]
(m2(τ) +m1(τ)) r̂

+
1

r

[
1

r2
+

1

r

d

dτ
+

d2

dτ2

]
(− sin θm1(τ) + cos θ cosφm2(τ)) θ̂

− sinφ

r

[
1

r2
+

1

r

d

dτ
+

d2

dτ2

]
m2(τ)φ̂

E =− sinφ

r

[
1

r

d

dτ
+

d2

dτ2

]
m2(τ)

+
1

r

[
1

r

d

dτ
+

d2

dτ2

]
(sin θm1(τ) + cos θ cosφm2τ) φ̂,

(B.1)

where m1(τ) and m2(τ) are the dipole moments as a function of the retarded time τ = t−r,
and r is the radius from the center of the dipole. The energy loss is found by taking
dE
dt =

∫
1

4π (E × B) · dA at r = ∞. Changes to the shape of the orbit are described
by changes to the angular momentum along the θ = 0 axis, which can be described by
dL
dt = 1

4π

∫
cos θ (r × (E ×B)) dA integrated over a sphere at r =∞. Using the terms from

Eq.(B.1), this gives:

dE

dt
=

2

3

[(
d2

dτ2
m2(τ)

)2

+

(
d2

dτ2
m1(τ)

)2
]

dL

dt
=

2

3

[
d2m2

dτ2

dm1

dτ
+
d2m1

dτ2

dm2

dτ

]
.

(B.2)

To use these expressions to get a merger time, one must describe the dipole moments
in terms of orbital parameters of the binary system. Each EMBH moves about the center
of mass of the system with an angular velocity:

φ̇ =

√
2G(M1 +M2)

a3(1− e2)3
(1 + e cosφ)2, (B.3)
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where a is the semi-major axis of the orbit, e is the eccentricity, and M1 and M2 are the
masses of each EMBH. EMBHs feel an equal mutual magnetic and gravitational attractive
force, which is accounted for by the extra factor of 2 in the above expression. The distance
of an EMBH from the center of mass of the system, d, is set by:

d =
a(1− e2)

1 + e cosφ
. (B.4)

In terms of these parameters the dipole moments are:

m1(τ) = 2
M1

mp
d(τ) cosφ

m2(τ) = 2
M1

mp
d(τ) sinφ,

(B.5)

where mp is the Plank mass and m−2
P = G. Using these expressions, all of the time

derivatives of the dipole moments can be found in terms of a, e, and φ. Putting these into
Eq.(B.2) gives:

dE

dt
=

32G3M1M2(M1 +M2)2

3a4(1− e2)4
(1 + e cosφ)4

dL

dt
=

8G5/2M1M2 (2 (M1 +M2))3/2

3a5/2(1− e2)5/2
(1 + e cosφ)3.

(B.6)

Averaging the energy and angular momentum losses over a single orbit gives:〈
dE

dt

〉
= −4G3M1M2(M1 +M2)2

a4(1− e2)4

(
8

3
+ 8e2 + e4

)
〈
dL

dt

〉
= −G

5/2M1M2(2(M1 +M2))3/2

a5/2(1− e2)5/2

(
8

3
+ 4e2

)
.

(B.7)

For comparison to the energy losses from gravitational radiation, we rewrite these
assuming M1 = M2 = M .〈

dE

dt

〉
= − 16M4G3

a4(1− e2)4

(
8

3
+ 8e2 + e4

)
〈
dLy
dt

〉
= −M

7/223/2G5/2

a5/2(1− e2)5/2

(
8

3
+ 4e2

) (B.8)

The power output from gravitational waves for an EMBH binary is〈
dE
dt

〉
= 1024

5
G4M5

a5(1−e2)7/2

(
1 + 73

24e
2 + 37

96e
4
)
[92], very small compared to the power from EM

radiation. The extra factor of 16 comes from enhancements to the energy and angular
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momentum of the binary due to the magnetic attraction between EMBHs. Power loss from
gravitational radiation will only match EM radiation once a drops down to 12

5 rs, where
rs = 2GM is the Schwarzschild radius, and is thus unimportant for estimating the time
needed for EMBH binaries to merge.

The energy of the system is related to the semi-major axis by E = −GM2

a . This is
twice the energy of a neutral black hole system of the same mass due to the extra attractive
force between the EMBHs. The average rate of energy loss can be related to the average
change in the semi-major axis by

〈
dE
dt

〉
= GM2

a2

〈
da
dt

〉
, which gives;〈

da

dt

〉
=

16G2M2

a2(1− e2)4

(
8

3
+ 8e2 + e4

)
. (B.9)

For e = 0 one can solve for the merger time analytically

tm0 =
a3

0

128G2M2
= 4.8× 1049s

(a0/m)3

(M/g)2
, (B.10)

where a0 is the initial semi-major axis. For comparison, the merger time if only the gravi-
tational radiation were considered would be

tGm0 =
5

512
√

2

a4

G3M3
= 5.8× 1079s

(a0/m)4

(M/g)3
. (B.11)

When e 6= 0 the merger time also depends on how the eccentricity evolves. Using
L2 = GM3a(1− e2) gives the relation

L

〈
dL

dt

〉
= GM3

(
(1− e2)

〈
da

dt

〉
− 2ae

〈
de

dt

〉)
, (B.12)

which can be rearranged to find〈
de

dt

〉
=

8G2M2

a3(1− e2)3

(
20

3
e+ 5e3

)
. (B.13)

Eqs.(B.9) and (B.13) can be used to find〈
da

de

〉
=

2a

(1− e2)

(
8
3 + 8e2 + e4

)(
20
3 e+ 5e3

) . (B.14)

Integrating this gives a as a function of e:

a = a0
(1− e2

0)

e
4/5
0 (3e2

0 + 4)2/5

e4/5(3e2 + 4)2/5

(1− e2)
, (B.15)

where a0 and e0 are the starting semi-major axes and eccentricities of the system. Finally,
Eq.(B.15) can be plugged into Eq.(B.13) and integrated to get a general expression of the
merger time as a function of the initial semi-major axis and eccentricity of a binary system.

tm =
a3

0

8G2M2

(1− e2
0)3

e
12/5
0 (3e2

0 + 4)6/5

∫ e0

0
e′7/5

(3e′2 + 4)6/5

(20
3 + 5e′2)

de′ (B.16)
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In the limit e0 ∼ 1, the integral over e becomes ∼ 0.35, and tm becomes

tm =
0.034a3

0

8G2M2
(1− e2

0)3. (B.17)

If we do not assume M1 = M2 = M then this is

tm =
0.034a3

0

2G2(M1 +M2)2
(1− e2

0)3. (B.18)

B.2 Derivation of the EMBH Binary Merger Rate

The EMBH merger rate can be found by modifying derivations for the merger rate of
uncharged black hole binaries [93, 94] to account for the extremal magnetic fields. The
initial orbital parameters of binaries, their semi-major axes, a0, and eccentricities, e0, are
characterized by their co-moving separation, x, the co-moving distance to the next nearest
EMBH, y, and the redshift, zd, when the binary decouples from the Hubble flow. Co-moving
distances will correspond to distances in the present, when the scale factor equals 1, if the
separated objects never decouple from the Hubble flow.

When friction with the thermal bath is not important, EMBH binaries decouple from
the Hubble flow and form a stable binary when the time needed for them to free-fall into
each other becomes less than the Hubble time [93, 94]. During radiation domination this
corresponds to a decoupling redshift

(1 + zd) =
3M(1 + zeq)

4πρdmx3
=
kdM

x3
, (B.19)

where kd ≡ 3(1+zeq)
4πρdm

, ρdm is the dark matter density, and zeq is the redshift of matter
radiation equality.

The infall dynamics change when friction with the thermal bath becomes large com-
pared to Hubble acceleration. In this scenario, the binary decouples when the EMBH
terminal infall velocity exceeds the Hubble velocity vH = H(z)x

(1+z) , where H(z) is the Hubble
expansion rate at a redshift z. The terminal infall velocity is found by balancing the attrac-
tive force between the EMBHs, 2GM2(1+z)2

x2
, with the frictional force exerted by the plasma

on them. The frictional force between a magnetic monopole and a plasma is described in
Ref.[24]. We adapt it here for an EMBH with mass M :(

dE

dx

)
f

= −16π1/2e2ne(z)

3
√

2T (z)me

GM2V

[
log
(
4πne(z)λ2

Dl
)

+
2

3

]
, (B.20)

where ne, is the electron number density in the thermal bath which we take to be ∼
(1 + z)3 ρc0Ωb

mpr
, ρc0 is the critical density today, Ωb is the baryon fraction, mpr is the proton

mass, e and me are the electron charge and mass, respectively, T is the gas temperature
which we take to be ∼ 2.7(1 + z)K, V is the velocity of the EMBH, λD =

√
T

4πnee2
is

the plasma Debye length, l =
(

2T
πme

)1/4
1

V 1/2ωp
is the attenuation length of the plasma

and ωp is the plasma frequency. To simplify comparing forces we will represent (dEdx )f as
M2V (1 + z)5/2F . F represents the mostly z, M and V independent component of (dEdx )f
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If Fz5/2M > H(z) at the regular decoupling redshift, zd, then the EMBHs will continue
moving apart with the Hubble flow until 2G

x2(1+z)1/2F = H(z)x
(1+z) . During radiation domination

this gives a decoupling redshift

(1 + zb) =

(
2G

H0

√
ΩrF

)2/3

x−2 = kbx
−2, (B.21)

where kb ≡
(
H0
√

ΩrF
2G

)2/3
, Ωr is the fraction of the critical energy density composed of

radiation at z = 0, and H0 is the Hubble constant. Binaries must decouple by matter
radiation equality because the ratio between the free-fall time and the Hubble time becomes
constant during matter domination.

The semi-major axis of the binary is a0 = x
2(1+zd) . The eccentricity, e0, of the binary is

set by interactions with the next nearest EMBH. It pulls the opposite charge EMBH in the
binary out of it’s free-fall path, without affecting the same charge one. The displacement
from its free-fall path sets the semi-minor axis for the binary, b. This can be estimated by

2b =
1

2

(
2GM(1 + zd)

2

y2

)(
x3

2GM(1 + zd)3

)
=
x2

y2
a, (B.22)

which gives a starting eccentricity

e0 =

√
1− x4

4y4
. (B.23)

The probability that two oppositely charged EMBHs are separated by a co-moving
distance between x and x+ dx and that the next nearest one is between y and y + dy can
be described by a Poisson distribution.

dp =
1

2
(4πn)2x2y2dxdy, (B.24)

where n is the co-moving number density of EMBHs. The factor of 1
2 arises because each

EMBH can only pair with an oppositely charged partner. x is by definition less than y. y
can be at most the average separation between EMBHs. This defines

ymax ≡
(

3M

4πρdmf

)1/3

. (B.25)

Eq.(B.24) can be re-written using Eqs.(B.19) and (B.23) to give a probability distribution
for the orbital parameters of all of the binaries. That can then be related to the probability
that a binary merges at a specific time, tm, by Eq.(B.17) which is derived in Section B.1.
Rearranging Eq.(B.17) gives a0(tm, e0), the starting semi-major axis that corresponds to a
binary with eccentricity e0 that would merge in tm.

a0 =
M2/3t

1/3
m(

0.034
8G2

)1/3
(1− e2

0)
(B.26)
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All binaries that merge at tm have parameters that lie along the curve in e − a space
a0(tm, e0). With a bit of algebra, one finds when e ∼ 1 the probability that an EMBH
binary merges between tm and tm + dt is

dp =
(4πn)2

24

M5/2k
3/2
d(

0.034
8G2 tm

)1/2 e0

(1− e2
0)13/4

dtde (B.27)

The merger rate per EMBH, Γm, at a specific tm can be found by integrating dp
dt over all

possible starting eccentricities for a binary merging at tm.

Γm =
dp

dt
=

(4πρdmf)2

27 ∗ 4

M1/2k
3/2
d(

0.034
8G2 tm

)1/2 ( 1

(1− e2
max)9/4

− 1

(1− e2
min)9/4

)
(B.28)

f is the fraction of dark matter composed of EMBHs. Multiplying Γm by nbh, the proper
number density of EMBHs at tm, would give the rate at which EMBH mergers happen at
tm.

The bounds used in these integrals emax and emin are the largest and smallest eccentric-
ities a binary merging at tm could have. We define eupper as the eccentricity a binary with
semi-major axis a0 and y = ymax, the highest eccentricity possible for that binary given the
average separation between EMBHs.

eupper =

√
1− a0

4kdy4
max

(B.29)

emax is set by where the a0(e0, tm) curve intersects eupper or aeq, the semi-major axis of a
binary that decouples at the latest allowed decoupling redshift zeq.

emax =



√√√√1−

(
M2/3t

1/3
m

4kd

(
0.034
8G2

)1/3
y4m

)1/2

tm ≤ Tc√√√√1−

(
kdM2tm(1+zeq)4(

0.034
8G2

)
)1/3

tm > Tc,

(B.30)

where

Tc =
0.034
8G2

26M2k5
dy

12
m (1 + zeq)8

(B.31)

Finally, emin is the lowest eccentricity a binary that merges in tm and decouples after zf
can have. zf denotes the redshift at which frictional and Hubble acceleration are equal:

(1 + zf ) =
FM2

H0

√
Ωr
. (B.32)

emin is 0 when all binaries that merge in tm decouple after zf .

emin =


√√√√1−

(
kdM2tm(1+zf )4(

0.034
8G2

)
)1/3

tm > Tf

0 tm < Tf ,

(B.33)
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where

Tf =

(
0.034
8G2

)
M2kd(1 + zf )4

. (B.34)

Here emin is determined in the limit that emin ∼ 1 because the merger rate is dominated by
binaries with e ∼ 1.

If one wanted to generalize the merger rate to EMBHs with a non-monochromatic
mass specturm then one could follow the same general procedure outlined above with some
modified values of dp, zd, and e. Instead of simply integrating over the range of eccentric-
ities that will lead a binary to merge in the present, one must integrate over all possible
eccentricities and EMBH masses for a given mass distribution. One can approach this by
rewriting Eq.(B.24) as

dp =
1

2
(4πn)2x2y2δ(tm − t)χ(M1)χ(M2)χ(M3)dxdydM1dM2dM3 (B.35)

where χ(M) is the mass pdf such that
∫
χ(M)dM = 1, M1 and M2 are the masses of the

EMBHs in the binary, and M3 is the mass of the third EMBH that perturbs the infalling
pair and sets the eccentricity, and t is the time the mergers take place. tm is given in
Eq.(B.18) and a function of a0, e0, M1, and M2.

The decoupling redshift for EMBHs of different masses is

(1 + zd) =
6M1M2(1 + zeq)

4πρdm(M2 +M2)x3
. (B.36)

The generalized eccentricity is

e0 =

√
1− x4

4y4

(
M3(M1 +M2)

M1M2

)2

. (B.37)

Substituting Eqs. (B.36), (B.37), and (B.18) into Eq.(B.35) in the same manner as was
done above will give the probability that a binary has the correct eccentricity and masses
to merge in tm. One can integrate this over the range of possible eccentricities, noting that

ymax =
(

3〈M〉
4πρdmf

)1/3
, and the range of possible masses. This will likely need to be done

numerically for arbitray mass distributions.
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