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Abstract: We consider the scattering of high energy and ultra relativistic spherically sym-
metric shells in asymptotically AdSD spacetimes. We analyze an exclusive amplitude where a
single spherically symmetric shell goes in and a single one comes out, such that the two have
different global symmetry charges of the effective gravity theory. We study a simple wormhole
configuration that computes the square of the amplitude and analyze its properties.
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1 Introduction

We expect that global symmetries should be violated in a theory of quantum gravity [1–13].
It is interesting to quantify the amount of violation for various processes, see [14–20] for recent
discussions in this direction.

As a simple academic problem, we can consider a two to two exclusive amplitude at very
high energies, namely, energies high enough to produce an intermediate black hole state.1 This
is an academic question not only because it is hard to collide particles at such high energies
but also because we expect many particles in the final state, rather than just two particles.
In other words, the typical process consists of two particles colliding, making a black hole and

1We thank Nima Arkani-Hamed for insisting on this question.
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then emitting many particles as Hawking radiation. Nevertheless, if we insist on producing
just two particles, we expect that the amplitude will be very small. We can make a simple
qualitative estimate as follows. The state with two particles is very special compared to the
eS(E) states that a black hole with energy E can have. Therefore a simple estimate for the
probability is

|A|2 ∼ e−S(E) (1.1)

In this paper we consider an even simpler version of this problem where we send in a
spherical shell we call A and we get out a spherical shell we call B. This can be viewed as the
s-wave sector of the above problem. We imagine that A and B have different charges under
a global symmetry, which could be discrete or continuous. Our main result is to identify a
wormhole geometry that indeed gives us the estimate (1.1). Since we assumed that A and B
carry different global charges, there is no semiclassical geometry that can give us the amplitude
itself. However, there is a semiclassical geometry that can give us an estimate for the square
of the amplitude.

This type of question is essentially the same as the one discussed in [21] (see also [22,
23]). Namely, their focus was the computation of an overlap between two different black hole
microstates. They observed that there is a simple wormhole geometry computing the square
of the overlap. For the same reasons, the same topology appears in our problem, namely we
have a wormhole connecting the regions of spacetime that set up the boundary conditions for
the computation of A and A∗, see figure 1.

Figure 1: Sketch of the topology of the wormhole we will consider. The two sides are setting up
the computation of A and A∗ respectively.

The main point of this paper is to discuss in more detail the geometry for initial and
final boundary conditions containing highly relativistic objects which are appropriate for a
scattering situation. The geometry contains some exotic features such as negative Euclidean
time evolution which would seem to make it ill-defined according to the criteria proposed
in [24, 25]. We will argue that after including a suitable period of Lorentzian evolution the
geometry appears to be sensible and trustworthy.
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1.1 The set up in more detail

We will consider a general AdSd+1 geometry and add operators at the boundary to produce
incoming or outgoing shells

At,E,∆E =

∫
dt′eit

′Ee−(∆E)2(t−t′)2〈0|B(t)A(0)|0〉. (1.2)

Here an operator A acts on the vacuum to produce a spherical shell with energy roughly E.
After a time t a shell of type B comes out leaving behind just the vacuum. We take ∆E

sufficiently small 1
β(E) � ∆E � 1/t, which of course means that we consider time separations

t� β(E), where β(E) is the inverse temperature of a black hole with energy E.
As we mentioned above, we will be interested in a geometry as in figure 1 that computes

|At,E,∆E |2, in a suitable averaged sense. The simplest way to think of such an average is to
average the square of the amplitude over some small window of energies around the energy
E. We will comment on this point a bit more in section 4. The assumption that we have
spherically symmetric shells implies that the solution consists of several regions, each a portion
of a Schwarzschild AdSd+1 geometry. These are

ds2 = −f±dt2± +
dr2

f±
+ r2dΩ2

d−1, f± = 1 + r2 − µ±
rd−2

(1.3)

where Ωd−1 is the (d− 1) sphere. In the AdSd+1 vacuum region we have µ− = 0, and outside
the shell we have µ+ ∝ E. The shell is taken to be pressure-less and composed of many
massive particles. Our main job will be to explain how the various shells connect to each
other in the full geometry, providing a more detailed version of figure 1 for computing the
observable (1.2).

We will be interested in the regime where the rest mass of the shell is much less than the
energy E, so that we are dealing with highly boosted particles. In this regime, the action of
the solution is dominated by some universal entropy factors and the contributions from the
propagating shells is subleading. However, it is important to understand which regions of the
geometry are carved out by the shells.

The paper is organized as follows. In section 2, we discus various thin shell solutions that
will serve as building blocks for constructing the wormhole. In section 3, we discuss the actual
wormhole solutions that are the point of this paper. Finally, in section 4, we end with some
discussion and some comments on the flat space limit. Various details that are not essential
to the main point are left to the appendices.

2 Simple shell solutions

2.1 One shell solution

We consider a single shell in an asymptotically AdSd+1 spacetime. This will be the basis for
other solutions we will discuss later. This type of solutions was discussed in [26] and more
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recently in [20, 27–30]. For simplicity we consider a shell which is composed of a spherically
symmetric distribution of massive particles, so that the integral over the sphere has rest mass
m.

The simplest solution involves a single junction between two regions with different en-
ergies, E±, with E+ > E−, see figure 2. The metric in each region is a portion of the
Schwarzschild AdS black hole metric (1.3), in Euclidean signature. When the rest mass m is
small

E+ − E− � m , E± =
(d− 1)ωd−1µ

16πGN
(2.1)

the solutions are relatively simple. For this reason we will only consider this case in this paper.
Locally, for each region of the geometry, there is an U(1) isometry generated by the Killing
vector ∂t. A fixed point of this U(1) isometry exists only on the portion of the geometry
corresponding to the lower energy.

Figure 2: Single shell solution. We suppressed the Sd−1, only the Euclidean time and radial
directions are indicated here. The dot at the center indicates a fixed point of the U(1) isometry.

We can view figure 2 as a semiclassical estimation of the square of the matrix element

Z =

∫
dE−

∫
dE+ρ(E−)ρ(E+)|〈E+|A|E−〉|2 (2.2)

=

∫
dE−ρ(E−)〈E−|A†PE+A|E−〉 = Tr[A†PE+APE− ]

where the integrals are over a narrow range of energies. In the second line, PE± is a projector
into a band of energies centered around E±.

The equations that determine the shell trajectory, in Euclidean-AdS, come from the Israel
junction conditions [26], which lead to, see appendix A,

ṙ2 = f± − a2
±, τ̇±f± = a±,

a± =
f− − f+ ∓

(
m̃
rd−2

)2
2 m̃
rd−2

=
µ+ − µ− ∓ m̃2

rd−2

2m̃
, m̃ ≡ 8πGN

(d− 1)ωd−1
m,

(2.3)

where ωd−1 is the volume of unit (d− 1)-sphere.
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We derive the action of thin shell solutions in general dilaton gravities in appendix. B.
In terms of these coordinates, the general answer (B.21) takes the following form

logZ = S−+
ωd−1

8πGN

∫
rd(dτ+−dτ−)+

(d− 2)ωd−1

16πGN

(∫
µ+dτ+ −

∫
µ−dτ−

)
− d− 2

d− 1
m

∫
d`.

(2.4)
The first term S−, being the entropy of the black hole with energy E−, arises from the fixed
point of the U(1) isometry. The integrals are along the line describing the shell trajectory. If
we had multiple shells, we would get one such integral per shell, and we have to sum them all
to get the final action.

Let us look at the solution for the shell trajectory. The turning point rt of the shell is
determined by ṙ = 0 in (2.3), leading to

m̃ = rd−2
t

(√
f−(rt)−

√
f+(rt)

)
. (2.5)

For the case we are interested in, µ+ > µ−, and m̃ much smaller than the difference of the
two, we can expand (2.5) at large ρt and get

rt ≈
µ+ − µ−

2m̃
=
E+ − E−

m
, (2.6)

from which we see that the shell becomes very close to the boundary when its rest mass is
small (2.1). We also see that mrt is the energy of the shell at position rt.

In the small m limit, we expect that the expression (2.4) is related to a short distance
limit of a two point function. We can check it as follows. Since rt � 1, we can use (2.3) and
expand (2.4) in the asymptotic region

logZ = S− +
ωd−1

8πGN

∫ [
rd
(
a+

f+
− a−
f−

)
+
d− 2

2

(
µ+a+

f+
− µ−a−

f−

)
− (d− 2)m̃

]
d`

= S− − 2m

∫ ∞
rt

(
1

r
+O

(
1

r3

))
dr.

(2.7)

The integral of the 1/r term is divergent, but it reproduces the UV divergence from the
renormalization of the operators A and A†. After we subtract this UV divergence, we get

logZ = S− + 2m log rt +O(m). (2.8)

We indeed see that in the small mass limit (2.1) the term coming from the shell is small, so
that we just get

logZ ∼ S− (2.9)

which is the entropy of the lower energy solution. Note also that the second term in (2.8)
can be viewed as the two point function of an operator, with two insertions separated by a
euclidean time τ ∼ 2/rt, which indeed what we get by solving (2.3). More precisely, we can
think of the shell as n operators, each of dimension ∆ = m/n, uniformly distributed on Sd−1,
in the large n limit.
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This same configuration can also be used to revisit a problem analyzed in [31].2 Namely,
one starts with a black hole with energy E+. The question is: what is the probability of
emitting a shell with energy ω = E+ − E−? We imagine that the shell has a relatively small
rest mass, ω � m. This computation is given by the same expression as in (2.2) and figure 2.
The only difference is that now we need to divide by the number of initial states, eS(E+), in
order to compute the typical probability in a particular initial state. The final probability is

P ∼ eS(E−)−S(E+). (2.10)

This example shows that we need to take care of the normalization of the initial state in order
to translate the computations into physical probabilities.

Note that we can view our computation as computing the final probability that a shell
reaches the region far away, including all ways for the shell to get there. In particular, the
solution and its action are independent of the details of the Lorentzian solution or its approach
to the near horizon region. Furthermore, in the light shell regime (2.1) the trajectory is very
far from the black hole horizon, see (2.6). We are considering a system in thermal equilibrium
and the probability that we find the shell far away only depends on the total number of
states that contain the shell there. It is given by a purely entropic factor. In particular,
the Lorenztian problem might include possible barriers, such as angular momentum barriers,
between the far away region and the horizon. Such barriers do not matter when we consider
the problem in thermal equilibrium, but they are relevant out of thermal equilibrium. We
comment on this point further in appendix C.

2.1.1 Solution when E− = 0

A special case of the previous solutions arises when we set E− = 0, meaning that we consider
an initial state with no black hole at all. Then we have S− = 0 and the action (2.8) is
essentially zero in the small m limit. When m→ 0, we have∫

dτ+ =

∫
a+

f+
d` = 2

∫ ∞
rt

a+

f+

√
f+ − a2

+

dρ = O
(
m

µ+

)
(2.11)

We should compare this shift in τ+ with β(E+) which is finite in the small m limit. This
means that only a very small portion of the Euclidean circle of the E+ black hole is covered
in this geometry.

Notice that we can view this configuration as the norm of a state. Namely, the state that
we obtain at t = 0 by cutting along the dotted line in figure 3. The Euclidean evolution can
be viewed as the preparation recipe for this state. This state can be evolved in Lorentzian
time to produce a falling shell that collapses into a black hole, see figure 3 (b). The Euclidean
diagram in figure 3 (a) can be viewed as computing the norm (squared) of the initial state at
t = 0. In other words, even if we do not neglect the shell contribution to the action, this shell
contribution is just computing the norm of the initial state.

2Our solution appears different from the one discussed in [31], though the final estimate of the probability
is the same (2.10).
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Figure 3: (a) Euclidean picture. The shell can be viewed as computing a two point function. We
can view the cut along the dotted line as the state created by the operator. (b) Picture we obtain
after we evolve the state from (a) into Lorentzian time. The dashed line is the horizon.

2.2 Two shell solution

Here we consider a simple two shell solution that can be interpreted as follows. We start
with a black hole with energy E and add an excitation A that takes it to energy E′ and then
remove it to leave a black hole with energy E again. We repeat this procedure with shell B†.

2.2.1 E < E′ case

The simplest version of the solution arises when E < E′ in which case we get the configuration
in figure 4. This solution contains a fixed point of the isometry only at the center of region
with energy E, which means that the contribution is

eS(E) (2.12)

Note the time τAB between the insertion of A and B is a positive Euclidean time. This time
is not fixed a priori as we are fixing the energies. This time results from solving the classical
equations and it represents a saddle point in the integral over times that transforms a fixed
time process to a fixed energy process.

2.2.2 E > E′ case

In this case, the solution becomes more interesting. If we follow the behavior of each shell
as we lower E′ relative to E we see that the two shells cross each other. In fact, we would
like to argue that the right solution has the form displayed in figure 5. The interesting part
is the yellow central region. We claim that in this region we have negative Euclidean time
evolution, the opposite of the usual one. In other words, the Euclidean time τAB between the
red and blue shell in figure 5 is negative. An explicit way to see it is to look at τAB(E,E′) first
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Figure 4: Two shell solution when E < E′. The central region, with energy E, contains fixed
point of the isometry, but the other two regions do not contain fixed points. The operators A and
B are separated by a positive Euclidean evolution τAB > 0.

in the regime E < E′, where it is positive, and then analytically continue it to E > E′. In
(D.1) we give this function in the case of JT gravity explicitly. Therefore, the yellow region in
figure 5 looks like the usual Schwarzschild solution with energy E, but with a Euclidean time
evolution which is roughly −β(E), the opposite to the usual one. In particular, this means
that the contribution to the action that comes from the fixed point of the isometry at the
center of the yellow disk is e−S(E), the opposite to the usual one.3 For the other two disks we
get a positive entropic factor so that the total contribution is

e2S(E′)−S(E). (2.13)

Figure 5: Two shell solution for E > E′. The central region involves negative euclidean time
evolution. Lines of the same color are identified. This means that the euclidean time separation
τAB between A and B along the boundary of the yellow region is negative.

3This can be seen more explicitly in the discussion of appendix. B, see eqn (B.15).
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We could interpret this process as one where we start from a Euclidean black hole with
energy E and act with an operator that lowers the energy. This is an unlikely process and we
have to pay a probability price eS(E′)−S(E). We pay this twice since we have both the A and
B operators. This agrees with (2.13) after we divide by eS(E) which is the number of initial
black holes. Here we simply checked that the answer makes sense.

Since the configuration looks a bit exotic, it is useful to explore it in a well studied context.
For that purpose we could consider this problem in JT gravity, where the exact expressions
for these correlators are known [32]. We can also consider the semiclassical limit of the exact
formula and see that it agrees with (2.13), see appendix D where we further check this for
more general values of the mass. Despite this success for the case of JT gravity, in section 3.1.1
we will see that the negative Euclidean evolution poses a problem in more realistic situations.

These purely entropic results for the various processes are reminiscent of similar results
which involve de-Sitter tunneling events, see e.g. [33].

3 Solutions with charge violation

We now turn to the configurations that are the main point of this paper. We start first with
a naive solution which has some problems but will be a good starting point for describing the
proposed correct solution later.

3.1 A naive first attempt

Here we consider the process where we start with the vacuum, we insert an operator A with
energy E and then we insert an operator B which extracts that energy and leaves the vacuum.
We insert the operator A at t = 0 and integrate over the time of operator B such that the
intermediate states have energy E. In other words

AA→B = 〈0|BPEA|0〉 =

∫
dt′ eiEt

′〈0|B(t′)A(0)|0〉 (3.1)

where we imagine that A and B carry different global symmetry charges so that we do not
have any bulk process going from A to B. In other words, if we compute AA→B directly using
semiclassical gravity, we simply get zero. Note that (3.1) is simpler than (1.2) and we will
discuss the importance of the difference later.

We are interested in a geometry that is a candidate for computing

PA→B = |AA→B|2 (3.2)

The first naive proposal for geometry for computing (3.2) is the one specified in figure
6. It consists of three separate segments. Two of them look like vacuum AdS and the third
is a Schwarzschild AdS black hole. It is the E′ → 0 limit of the solution discussed in section
2.2.2. The peculiar feature of this solution, is that the boundary time evolution in the black
hole region is negative. This means that the Euclidean time separation between the A and B
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Figure 6: First attempt for a solution.

operator insertions is negative. In other words, the saddle point for the time integration in
(3.1) and (3.2) is of the form

t = i(positive), (3.3)

where this positive constant is close to β(E)/2 where β(E) is the inverse temperature of the
black hole that we produce. This can be seen by noticing that the black hole geometry in
figure 6 is given by cutting out two pieces identical to the black hole regions in figure 3. From
equation (2.11) we see that these latter pieces only cover a very small portion of the Euclidean
circle. Therefore almost all the Euclidean circle is left in the disk geometry, with −|β(E)|/2
on each side. (We defined β(E) to be positive, but we put the modulus to emphasize the
negative value in our solution.)

The fact that the Euclidean time is negative has an interesting consequence for the action
of the solution. The action has the opposite sign relative to the usual one for the Euclidean
black hole, so that we get

Z ∝ e−S(E) (3.4)

in the regime of a light shell. This is in constrast to the usual disk contribution which contains
a +S(E) in the exponent. As a special limit of section 2.2.2, to understand the reason it is
good to look at the derivation of (B.15) and note that we will have a length of time which is
−β(E) for the solution in question.

3.1.1 Problems with this solution

Normally we do not want to allow negative Euclidean time evolution because infinitely high
energies would contribute an infinite amount. However, here we are fixing the energy, so that
this problem does not obviously arise.

However, there is a related problem. Suppose that the particles created by A and B are
coupled to another neutral particle χ. This leads to the correction in figure 7 (a), which would
give an exponentially large correction

e|`AB |mχ (3.5)
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where `AB is the distance between the two shells, see figure 7(a). This makes the solution
suspect and not very trustworthy.

The physical reason for this large correction can be understood as follows. We could
imagine that the shell A emits a particle χ which leaves the shell with a smaller energy
Ẽ < E. Now we can consider this shell collapsing to a black hole leaving the particle χ
outside. Then we can consider a B shell with energy Ẽ coming out of the black hole, which
then absorbs the particle χ and acquires the initial energy E. The diagram estimating the
square of the amplitude for this process is in figure 7 (b) while a cartoon of this process is
depicted in figure 7 (c). The exponentially small process then happens at energy Ẽ < E.
This smaller energy process has a suppression factor e−S(Ẽ) which is larger than the one for
the case that we do not emit the particle χ, which was e−S(E). In conclusion, the emission
of the particle χ has led to an exponential enhancement of the amplitude. If the energy of
the χ particle, Eχ, is relatively small, E � Eχ, the net enhancement is proportional to eβEχ .
Of course, this result is very reasonable, since the amplitude is so strongly dependent on the
energy, we want to minimize the energy at which the charge violation happens. Unfortunately,
this would take us to very small energies, where we cease to trust the solution. But this is
physically saying that the most important violations (from this instanton) happen when the
black hole has a size comparable to the scale of the breakdown of the effective gravity theory,
which is at or above the Planck distance.

This same problems we discussed here would also affect the solution in section 2.2.2 in
theories where there are interactions among the bulk particles.

Another puzzling aspect of the solution is that the time separation of shell A and B seems
to be purely Euclidean, which is in tension with the naive Lorentzian picture that the shell B
comes out later than the shell A in Lorentzian time. We will see in section 3.2 that the same
ingredient which solves the problem of large correction also naturally solves this problem.

Note that this solution does not satisfy the criterion proposed in [24, 25] for a good
complexified gravity solution. This can be seen by considering the metric close to the bound-
ary. In the ordinary case where we have positive Euclidean evolution, the metric behaves as
ds2 = fdτ2 + ... where f is real and positive. However, negative Euclidean evolution means
that we are taking τ → eiπτ which gives rise to a phase e2πi in the metric. Here we are
assuming that we are deforming the direction of dτ smoothly. The phase e2πi would violate
the criterion proposed in [24, 25].

3.2 The proposed solution

In this section, we discuss a solution that seems to be under better control. To get a solution
that is under control we need to modify the problem slightly.

The idea is to compute the amplitude for states where we fix the time difference between
A and B on each side to some time t, but with some error, so that we can also fix the energy,
also within some error consistent with the uncertainty principle. In other words, we consider

At,E,∆E =

∫
dt′eit

′Ee−(∆E)2(t−t′)2〈0|B(t)A(0)|0〉. (3.6)
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Figure 7: (a) Correction due to the exchange of a single charge neutral particle χ. (b) Correction
due to a two particle exchange process. (c) A cartoon of the process that is captured by (b).

We are interested in taking t� β(E), and 1/β � ∆E � 1/t.

Figure 8: In the shell approximation the solution has a zero mode which corresponds to a relative
rotation between the two shells.

It turns out that we can generate the appropriate solution from the one we already
discussed above. First we notice that, in the shell approximation, the solution in figure 6 has
a zero mode, where we rotate the position of one of the shells relative to the other, see figure 8.
This zero mode changes the time separation between A and B. Since we want a time separation
of order a Lorenzian time t, then we can use this zero mode, but analytically continued to
Lorentzian time. This means that we are performing a large relative boost between the times
associated to the shells A and B. This generates a large region of Lorentzian time in the
solution. We call this Lorenzian region the “bow tie” geometry displayed in figure 9. This
geometry consists of a bow tie section of the Schwarzschild AdS geometry, connected then
to the Euclidean geometry discussed in 3.1. This bow tie geometry is very similar to the
geometry that appeared in [22] in connection to the ramp in the spectral form factor. The
only difference is that in [22] they identified the blue and red dotted lines in figure 9 to form
a double cone. Here instead we are connecting these to the shells.
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Figure 9: Geometry that estimates the square of (3.6). The green region is the Lorentzian “bow
tie” geometry. The yellow region is the region with negative Euclidean time. The grey region
involves positive euclidean time. Solid or dashed lines of the same color are identified. The dotted
black line represents a cross section of the wormhole.

The idea is that the extra Lorentzian evolution will essentially suppress the excitations
away from the invariant states. In other words, the Euclidean evolution can be viewed as
creating a certain state along the dotted lines of the bow tie geometry. There is one state
along the red dashed lines and one along the blue dashed lines. Let us call the first state
|ΨAA†〉b and the other state |ΨBB†〉b. The b subindex emphasizes that these are states in the
bulk semiclassical theory. We are computing the overlap between these two states with the
insertion of a boost in the bulk generated by the bulk boost isometry H

b〈ΨBB† |e−itH |ΨAA†〉b (3.7)

The state that is created can be viewed as the Hartle-Hawking state plus some corrections.
The Hartle-Hawking state is invariant under boosts. However, the corrections are not. In
fact, under large boosts we expect that the part of the overlap involving the corrections will
become very small because the states will become very different. Therefore, at large times,
we expect that only the Hartle-Hawking vacuum |HH〉b will survive, with corrections given
by the various quasinormal mode frequencies

b〈ΨBB† |e−itH |ΨAA†〉b ∼ b〈ΨBB† |HH〉b b〈HH|ΨAA†〉b +
∑
n

cne
−iωnt , (3.8)

where the quasinormal modes frequencies have negative imaginary part Im(ωn) < 0 which
lead to a suppression at late times.

Now, we pick a time which is large enough so that the exponential suppression due to
this time evolution is larger than the exponential enhancement due to the negative Euclidean
time evolution.

The amount of enhancement coming from negative Euclidean time evolution is of order
eβ(E)δE , where δE is the change of the energy of the black hole, see section 3.1.1. If the real and
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imaginary parts of the quasinormal modes were comparable, then it would be enough to take t
to be somewhat larger than β to ensure that we have a well behaved solution. Unfortunately,
for AdSD>3 there are quasinormal modes with high angular momentum which have very small
imaginary parts.4 Therefore, in order to suppress these modes we need to take times which
are very large. In order to determine how large these times need to be, we need to determine
the size of the imaginary part of the quasinormal mode frequencies. In the single particle
approximation these can be exponentially small since we might need to tunnel through an
angular momentum barrier to get to the horizon. Once we include interactions, these modes
can decay by the emission of gravitational radiation that falls through the black hole horizon.
These decays happen over times which are positive powers of the angular momentum ` (see
recent discussion in [34]). Now, the absolute maximum angular momentum is set by the energy
of the shell. Therefore we find that the time t will need to scale at most like a power of the
energy, in order for the solution to be well-behaved. Of course, since the energy is large, we
are talking about a very long time.

In appendix. E we make some further remarks on the "bow tie" geometry. In particular,
in figure 9, if we only focus on the "bow tie", the geometry has a fixed point under time
evolution, which is reminiscent of the "double-cone" geometry proposed in [22]. In appendix.
E we comment further on the "bow tie" geometry and its relation to quasinormal modes.

Another way to see that large Lorentzian time helps suppress fluctuations is to estimate
the distance between the AA† shell and the BB† one. This distance was used in (3.5). We
discuss the calculation of this distance in appendix F. We find that a large Lorentzian time
evolution gives rise to a contribution to the distance with a large positive real part, which
suppresses the particle exchange.

3.3 A boundary interpretation

Let us discuss the boundary interpretation of the bulk computation that we just discussed.
This interpretation is the same as the one given in [22, 23], adapted to our setup.

On the boundary theory, the square of the amplitude is a computation of the form

|A|2 ∼
∫
dtR ν(tR)

∫
dtL ν

∗(tL)〈0|B(tR)A(0)|0〉〈0|A†(0)︸ ︷︷ ︸B†(tL)|0〉 (3.9)

where ν(t′) = eit
′Ee−∆E2(t−t′)2 .

This computation exactly factorizes. It is interesting to think about its behavior as a
function of the time t which governs the rough separation between the insertion times of the
two operators. It is useful to think in terms of the evolution in the doubled system, one
evolving forwards in time and the other backwards in time. In other words, we can view the
term with braces in (3.9) as producing a state in a doubled system

A|0〉〈0|A† −→ |ΨAA†〉 = A†LAR|0〉|0〉 (3.10)

4We thank Douglas Stanford for discussion on this point.
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This state is completely factorized. We then evolve it with e−it(HR−HL) and then overlap it
with a similar ket state produce with the B’s. In this situation, for large t we expect that
the terms corresponding to the propagation of states with different energies |EL − ER| & 1/t

should give oscillatory phases that would average to zero. This is related to the decay of
the quasinormal mode and thermalization in the boundary theory [22, 23]. We also see that
thermofield double like states with EL = ER are left invariant under this evolution and will
contribute to the long time average of (3.9). However, just this time evolution does not
generate a projection on to a TFD state since that would create entanglement and non-
factorization. However, a suitable joint average over t, over an energy window, or over some
microscopic couplings could do that. This then is interpreted as giving us the typical value of
the square of the matrix element, as in [22, 23].

4 Discussion

In this paper we have presented a geometry, summarized in figure 9, that computes an estimate
for the square of an amplitude for the scattering of spherically symmetric shells coming and
going to the AdSD boundary,

|AA→B|2 ∼ e−S(E) (4.1)

The geometry involves a wormhole and therefore all the same interpretational issues that
were described previously for other cases [5, 6, 35] also arise in this case and we now briefly
summarize them. This computation is most sensibly interpreted as the result of an average
over microscopic details of the quantum gravity theory [21–23, 36]. In particular, we could view
the amplitude, A itself as a fluctuating quantity that is a random variable whose root mean
square is what we computed. In particular it also has a fluctuating phase. The fluctuations
arise when we vary the couplings, vary the energy, or vary other detailed quantities. A concrete
way to interpret the average is simply averaging the square of the amplitude over a small high
energy window. By considering higher powers |A|2n and looking at wormhole contributions
consisting of pairs of wormholes, one can argue that the quantity A is a complex gaussian (in
this approximation) [22].

It would be interesting to understand the prefactor in (4.1). This would force us to
understand more clearly the quantum fluctuations around the saddle point geometry.

One comment is that we do not expect to find a non-zero answer if the symmetry is
gauged as opposed to global. The difference is that now there are multiple solutions that
differ from the original one by the action of a symmetry operator on one of the sides. These
give different configurations because they create a (flat) gauge field with a non-zero integral
across the wormhole. If the symmetry is discrete there are just a discrete set of values and
if it is continuous a continuous set. But the net effect is the same, these produce non-zero
phases which add up to zero when there is a net charge flowing through the wormhole [5, 6].

As it was discussed in [37–40], we can extract flat space scattering amplitudes from limits
of AdS correlators. This is just a limit of the correlators we have been considering. We might
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think that the limit is straightforward, and that the answer continues to be given by e−S(E).
Nevertheless, this answer is unsatisfactory since we are not obtaining it from a solution where
we are putting scattering conditions at null infinity. In other words, one would have liked to
have a solution where we have null shells in the asymptotically flat space region.

The difficulty with the flat space limit is also connected to the fact that we are thinking
of the intermediate black hole as an object in thermal equilibrium, with radiation that goes
all the way to infinity. In a scattering situation this will not be the case.

In flat space, it is interesting to compute two to two amplitudes for various values of
Mandelstam variables s and t. We can view these as resulting from higher partial waves,
j > 0, with Kerr black holes as intermediate states. However, the shell analysis is not as
simple as for j = 0, since Kerr is not the unique solution outside a body with mass and
angular momentum. So the configurations could be more complicated and we have not looked
at it in detail.

The problem of computing high energy scattering amplitudes using classical gravity solu-
tions was recently discussed in [28], who also considered the scattering of shells. One difference
is that they had the same shell going in and out (so no charge violation) and they used it
to compute the amplitude itself. Their shells were moving into the complexified black hole
geometry and “scattering” off its features. In particular, the shell trajectories are not the same
as the ones we considered and there was no wormhole.

Note that we estimated the violation through this calculable process which is exponentially
small in the regime where we can estimate it. However, we expect that a more realistic theory
would lead to stronger violation via Planck suppressed operators that violate the symmetry.

We concentrated on this particular process, just to understand the rules for how to com-
pute it since it involves a fairly simple setup. However, this is not the most interesting question
regarding charge violation. For practical purposes what one wants to do is to put bounds on
the coefficients of local operators that violate the global charge. For example, one is really
interested in the dimension six operators mediating proton decay in the Standard Model.
Perhaps bounds might be obtained by some kind of dispersion relation argument which could
relate the high energy behavior described here to the low energy one, but we do not see a way
to do it.
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A Review of the junction conditions for thin shells

We now review the the junction conditions [26] with the shell. For discussions see [27–29].
Let’s consider the Einstein Hilbert action for Euclidean-AdSd+1 with a pressure-less shell

made from dust of particles

S = − 1

16πGN

∫
M
dd+1x

√
g (R+ d(d− 1)) +

1

8πGN

∫
∂M

ddx
√
h (K −K0)−

∫
m(r)d`

(A.1)

Here we have fixed the AdS radius to 1. The metric inside (−) and outside (+) of the shell
are given as

ds2 = f±dτ
2
± +

dr2

f±
+ r2dΩ2

d−1. (A.2)

We can go to Lorentzian by a Wick rotation τ± → it± . The metric is continuous across the
shell with the constraint

d`2 =

(
f+τ̇

2
+ +

ṙ2

f+

)
d`2 =

(
f−τ̇

2
+ +

ṙ2

f−

)
d`2. (A.3)

The energy density profile is give by m(r). Following [28] it is useful to insert 1 and
rewrite the action on the shell as∫

m(r) d` =

∫
d2y

dΩd−1

ωd−1

∫
d` m(r)

√
gmnẏmẏn δ

(2)(y − y(`)) (A.4)

where ym ∈ {τ, r} and gmn is the metric along those directions. The volume of the unit sphere
is ωd−1. The component of the stress tensor along the sphere vanish and we obtain

Tmnshell = ẏmẏn
m(r)

ωd−1rd−1

∫
d` δ(2)(y − y(`)) (A.5)

The junction conditions are given in terms of the extrinsic curvatures as

[K]ab − [K]hab = −8πGNTab (A.6)

where [K] = K+ − K−. We pick the normal of the shell to be outwardly pointing. The
{a, b} indices correspond to coordinates on the shell, and Tab is the pull-back of the bulk
stress-tensor. The extrinsic curvatures evaluate to

Kij = τ̇ r f(r)ĝij , K`` =
∂`(τ̇ f)

ṙ
(A.7)

where ĝij is the metric on the unit sphere. All together the equations of motion become

τ̇−f− − τ̇+f+ =
8πGN m(r)

(d− 1)ωd−1 rd−2
, ∂`

(
rd−2 [τ̇−f− − τ̇+f+]

)
= 0. (A.8)
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The second equation fixes m(r) = m to a constant. This equation is simply the continuity
equation of the stress tensor on the shell. Indeed the second equation comes from the compo-
nents of the junction equation along the sphere. For an ideal fluid this would fix the pressure
on the shell, which is vanishing in our setup.

We solve for the profile of the shell from the relation

4 ṙ2

(
m̃

rd−2

)2

− 4f+f− +

((
m̃

rd−2

)2

− f+ − f−

)2

= 0, m̃ ≡ 8πGN
(d− 1)ωd−1

m. (A.9)

It is useful to recast the equations as

ṙ2 = f± − a2
±, τ̇±f± = a± ≡ ∓

(
m̃
rd−2

)2 ± (f+ − f−)

2 m̃
rd−2

. (A.10)

B Action of spherically symmetric thin shell solutions

In this section we will discuss the computation of the action for general spherical symmetric
thin shell solutions. Here we will try to be as general as possible and consider the problem in
general two dimensional "entropion" or dilaton gravities.

B.1 The action

Any problem involving spherically symmetric shells reduces to a two dimensional gravity prob-
lem since nothing will depend on the angular directions. Furthermore, any two dimensional
gravity action can be written, up to field redefinitions, as “entropion” gravity5

− Igrav =

∫
√
g
[ s

4π
R+ T (s)

]
(B.1)

where s is a field and T (s) a general function of that scalar field. This scalar field is equal to
s = A/4GN where A is the area of the sphere. The general solutions have an isometry, which
we make manifest as shifts of a coordinate τ . In addition we choose a coordinate ρ set by
the value of the scalar field, s = ρ. We use ρ rather than r to distinguish it from the radial
coordinate in the higher dimensional discussion. The equations then imply that

ds2 = f̂dτ2 +
dρ2

f̂
, s = ρ , f̂ ′ = 4πT (ρ) (B.2)

or
f̂ = 4π [E(ρ)− E(ρh)] , with E ′(ρ) = T (ρ) (B.3)

where ρh is where f̂ = 0 and corresponds to a horizon of the solution. The constant of
integration in (B.2) was chosen to ensure this. We have written the equations in the Euclidean
signature. The thermodynamic quantities are then equal to

S = sh = ρh , T = T (ρh) , E = E(ρh) (B.4)
5This is sometimes called “dilaton” gravity, which is a bad name since the field s, in two dimensions, is not

associated to dilatations but to the entropy.
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so that we see that the function T (s) appearing in (B.1) is simply the temperature as a
function of the entropy [41, 42].

To this action, we can add the thin shell action

− Ishell = −
∫
m̂(s)d` (B.5)

where ` is the proper length and m̂(s) is the proper mass which could depend on the field s.
Recall that in higher dimensions s is related to the area of the sphere and the shell action
could depend on it.

We can derive the junction conditions from this 2d point of view by looking at the equa-
tions of motion for the total action Igrav + Ishell in the vicinity of the shell. These are easier
to obtain in conformal gauge for the metric gµν = ηµνe

2ω̂. For a shell along x0 in these
coordinates the relevant terms near the shell are

− I ∼
∫
dx0dx1 s

2π
(−∂2ω̂)−

∫
dx0m̂(s)eω̂ (B.6)

giving the equations

1

2π
∂1ω̂|+− + ∂sm̂(s)eω̂ = 0 ,

1

2π
∂1s|+− + m̂(s)eω̂ = 0 (B.7)

where ± indicate the two sides of the shell. We can write (B.7) in a coordinate invariant way
as

1

2π
(K+ −K−) + ∂sm̂(s) = 0 ,

1

2π
∂ns|+− + m̂(s) = 0. (B.8)

The first equation in (B.7) implies also a delta function in the curvature localized at the
shell. When we integrate the action this leads to an extra term of the form∫

√
g
s

4π
R =

∫
√
g
s

4π

(
−2∇2ω̂

)
=

∫
dx1 eρ̂s∂sm̂(s) =

∫
d` s∂sm̂(s). (B.9)

where the first integrals are only around a small strip including the shell.
In addition, we are demanding that the metric and the field s are continuous along the

shell. Going back to our coordinates in (B.2) we notice that the coordinate ρ is the same
on both sides of the shell, but t± could be different. In addition, the function f̂ could be
different since there can be different integration constants ρ± = ρh,±. Then the second
junction condition (B.8), together with the continuity equation for the metric implies,

τ̇+f̂+ − τ̇−f̂− + 2πm̂ = 0 , 1 = f̂+τ̇
2
+ +

ρ̇2

f̂+

= f̂−τ̇
2
− +

ρ̇2

f̂−
(B.10)

The first junction condition in (B.8) can the be derived from these and the bulk equations.
From (B.10) we can derive that

ρ̇2 = f̂± − a2
±, τ̇±f̂± = a± = ∓(2πm̂)2 ± (f̂+ − f̂−)

4πm̂
(B.11)

This is consistent with the higher dimensional junction conditions in (A.10).
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B.2 Evaluating the action

We now turn to the problem of evaluating the action. We will be interested in configurations
with fixed energy at the boundary, rather than fixed time difference. So, we now discuss
the corresponding boundary terms. The gravitational action need to be supplemented by the
following boundary terms

− Igrav bdy =

∫
bdy

sb
2π
K + βE =

∫
bdy

sb
2π
K + E

∫
dτ (B.12)

where we are cutting out the boundary at radial cutoff ρb = sb.
The total action is given by

logZ = −Igrav − Igrav bdy − Ishell

=

∫
√
g
[ s

4π
R+ T (s)

]
+

∫
bdy

sb
2π
K + E

∫
dτ −

∫
m̂(s)d`

(B.13)

The action has a divergence when the cutoff is taken to infinity, so we also need to add a
suitable counterterm Ict in order to extract the interesting finite part. We will elaborate the
explicit form of Ict later.

Using the equations of motion the on shell action can be simplified as follows. The bulk
terms ∫

√
g
[ s

4π
R+ T (s)

]
=

1

4π

∫
dτ

∫
dρ (−(f̂ ′ρ)′ + 2f̂ ′) (B.14)

become a total derivative in ρ and can be integrated into boundary terms. There are several
different types of "boundaries" we can have. The simplest is if the integral in ρ starts at the
horizon. In this case we get contribution

∆τ

4π
(f̂ ′ρ)|ρ=ρh =

β

4π
(f̂ ′ρ)|ρ=ρh = sh. (B.15)

In other words, we get a contribution that is the entropy whenever a fixed point of U(1)

action is in the geometry. Note that for ∆τ → −β this contribution changes sign. This is
what happens when we have negative Euclidean time evolution.

The second kind of boundary is the cutoff boundary at large radius ρb, from which we get

1

4π

∫
dτ
[
−f̂ ′(ρb)ρb + 2f̂(ρb)

]
(B.16)

We note that the first term in (B.16) exactly cancels the extrinsic curvature term in (B.12). To
cancel the divergence from the second term f̂(ρb), we need to add a counterterm proportional
to the length of the boundary

− Ict = − 1√
4π

2
√
E(ρb)

∫
dτ

√
f̂(ρb), (B.17)
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where we adjusted the coefficient so that the leading term would cancel the last term in (B.16).
Combining (B.16) with the boundary terms in (B.12) as well as the counterterm Ict, we get

1

4π

∫
dτ
[
−f̂ ′(ρb)ρb + 2f̂(ρb)

]
+

∫
bdy

sb
2π
K + E

∫
dτ − 2

√
E(ρb)

∫
dτ

√
f̂(ρb)

4π
=

=

∫
dτ 2E(ρb) + E

∫
dτ −

∫
dτ 2

√
(E(ρb)− E(ρh))E(ρb)

= 0, as ρb →∞.

(B.18)

In the last step, we used that E = E(ρh) as in (B.4). So the conclusion is that we don’t get
any net contribution from the spatial infinity!

Back to (B.14), other than the horizon and spatial infinity, we can also pick up contribu-
tions from the inner/outer "boundary" at the thin shell. We have

1

4π

∫ (
−(ρf̂ ′) + 2f̂

)
(dτ− − dτ+) =

1

4π

∫
(ρf̂ ′)(dτ+ − dτ−) +

1

2π

∫
d` (τ̇−f̂− − τ̇+f̂+)

=
1

4π

∫
(ρf̂ ′)(dτ+ − dτ−) +

∫
m̂(s)d`.

(B.19)
where we used (B.10) to go to the second line. The second piece in (B.19) cancels the last
term in (B.13).

There is one additional contribution from (B.14) that is easy to miss. This comes from a
delta-function contribution in the Ricci scalar localized at the shell which gives, see (B.9),

− Idelta function =

∫
near shell

s

4π
R =

∫
d` s∂sm̂(s). (B.20)

where the integral is over a small region near the shell that picks up the delta function
contribution.

Finally, after collecting all the pieces, we get

logZ =
∑
i

si +
1

4π

∫
(ρf̂ ′)(dτ+ − dτ−) +

∫
d` ρ∂ρm̂ (B.21)

where si is the contribution from each fixed point of the U(1) action. As we explained around
(2.8), in the limit that the rest mass is small, E � m̂, we can ignore the last two terms and
only the entropy contribution survives.

In order to go to the notation of appendix A we need to remember that

ρ =
A

4GN
=
ωd−1

4GN
rd−1 (B.22)

and also the two dimensional metric here is the r and t part of the metric there but rescaled
by a factor of dρdr , namely

f̂dτ2 +
dρ2

f̂
=
dρ

dr

[
fdτ2 +

dr2

f

]
→ f̂ =

dρ

dr
f. (B.23)
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In particular, we can use this to rewrite the action (B.21) in terms of the variable of appendix
A and the main body of the paper. When we do that we also need to remember that d`here =√

dρ
drd`there. Similarly, m̂here =

(
dρ
dr

)−1/2
mthere. In the main body of the paper the total

mass of the shell was r independent. However, due to the extra factor the mass in (B.21) is ρ
dependent and leads to a non-trivial contribution. Similarly, the term involving ρ∂ρf̂ can be
rewritten as 1

d−1r∂r(
dρ
drf). We can then rewrite the resulting expression using (2.3) to get the

formula (2.4).

C Comment about potential barrier

In our calculation in sec. 2.1, the black hole is in thermal equilibrium with its environment,
so it is convenient to simply extract the radiation (in this case, the shell) from the thermal
environment far away rather than extracting it from the near horizon region.

Figure 10: We can consider a case where there is a potential barrier for the shell separating the
near horizon region (r ∼ rh) and far away region. In such cases, we expect it to cost more action
if the shell is nucleated near the horizon.

To illustrate this point further, we could imagine a situation that there is a potential
barrier separating the particle from the near horizon region to infinity. In other words, we can
have

ṙ2 = Veff(r) (C.1)

where the effective potential Veff(r) has multiple zeros outside the horizon, see fig. 10. Here
Veff(r) is the effective potential for the movement of the shell in the Lorentzian signature. In
our Euclidean tunneling solution, the trajectory exists in the classically forbidden region, i.e.
where Veff(r) > 0, see the green curve in fig. 10.

In such cases, we could consider a different solution for the shell where it is nucleated at a
location that is closer to the horizon. This is represented by the orange curve in fig. 10. Since
the shell has to tunnel through an extra potential barrier in order to get to the boundary, we
expect that this solution will be further suppressed.
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Of course, in a situation where the black hole is not in thermal equilibrium with its
environment, then we have no choice but to extract the particles near the horizon and there
will be an extra suppression.

D Comparison with the exact answer in JT gravity

D.1 Negative Euclidean evolution in JT gravity

In the discussion of sec. 2.2, we introduced the quantity τAB(E,E′), which is the Euclidean
time separation between operators A and B. In the case of JT gravity, this separation can be
worked out explicitly and it takes the following form:

τAB =
β

2π
θ , with sin

θ

2
=

E′ − E + πm2√
(E′ − E + πm2)2 + 4πEm2

, (D.1)

When E′ � E, namely the situation considered in fig. 4, we have τAB ≈ β/2. On the
other hand, as we take E larger, the right hand side of (D.1) becomes negative. Therefore the
analytic continuation of τAB(E,E′) to the regime E � E′ becomes negative and eventually
approaches −β/2.

D.2 Comparing the action

Here we evaluate the action (B.21) for the specific case of JT gravity, where we can compare
it to the exact answer from Schwarzian theory [32].

We look at two cases, first with E < E′, where the geometry doesn’t involve negative
Euclidean evolution, see fig. 4. The second case involves E > E′, which is the case we are
interested in and does involve negative Euclidean evolution, see fig. 5. We’ll see that in both
cases the classical action agrees with the exact answer.

There are some common features of the both cases. Since here we are treating JT gravity
as a two dimensional theory rather than a dimensional reduction of higher dimensional theory,
the mass function m is independent of the radial coordinate. Therefore, the total action
simplifies to

logZ =
∑
i

si +
1

4π

∫
(ρf̂ ′)(dτ+ − dτ−) (D.2)

where the value of si depends on the fixed points of U(1) isometry we have in the geometry.
It can come with a minus sign if it is located in the region where we have negative Euclidean
evolution. In JT gravity, we have

f̂± = ρ2 − ρ2
±. (D.3)

In fig. 4, ρ+ corresponds to the entropy of black hole with energy E, while ρ− corresponds to
the one with E′. In fig. 5, it is reversed. Applying (B.11) to the specific case of JT gravity,
we have

ρ̇2 = ρ2 − ρ2
t , f̂±τ̇± = a± =

ρ2
+ − ρ2

− ∓ m̃2

2m̃
,

ρ2
t = a2

± + ρ2
± =

(m̃± iρ+ ± iρ−)

4m̃2
,

(D.4)
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where we’ve defined m̃ ≡ 2πm. Note that (m̃± iρ+± iρ−) means the product over four terms
with different choices of signs.

We can evaluate the second term of (D.2) as follows

1

4π

∫
ρf̂ ′+dτ+ =

1

4π

∫
ρ2ρ

τ̇+

ρ̇
dρ =

2

4π

∫ ρc

ρt

dρ
2a+ρ

2

(ρ2 − ρ2
+)
√
ρ2 − ρ2

t

=
1

2π

[∫ ρc

ρt

dρ
2a+√
ρ2 − ρ2

t

+

∫ ρc

ρt

dρ
2a+ρ

2
+

(ρ2 − ρ2
+)
√
ρ2 − ρ2

t

]

=
1

2π

[
2a+ (log ρc − log ρt + log 2) + iρ+ log

(
a+ − iρ+

a+ + iρ+

)
+O

(
1

ρc

)] (D.5)

Replacing + by − we get the contribution from the other term in (D.2). The terms that
diverges as log ρc can be canceled out by a counterterm

Ict = − 1

π
(a+ − a−) log ρc =

1

π
m log ρc. (D.6)

Different ways of regulating might lead to answers that differ by linear terms in m, so we
won’t keep track of such terms in below. Therefore, plugging (D.5) back into (D.2), we get

logZ =
∑
i

si + 2× 1

2π

[
2(a− − a+) log ρt + iρ+ log

(
a+ − iρ+

a+ + iρ+

)
− iρ− log

(
a− − iρ−
a− + iρ−

)]
=
∑
i

si +
1

π

{
m̃ log

(m̃± is+ ± s−)

m̃2
+ is+ log

[
(m̃+ is+)2 + s2

−
(m̃− is+)2 + s2

−

]
− is− log

[
(m̃− is−)2 + s2

+

(m̃+ is−)2 + s2
+

]}
.

(D.7)
where we have a factor of two in the second term since we have two particle trajectories. We
also used that ρ± = s±.

We now specify to the two situations in fig. 4 and 5 and compare with the exact answer.

D.2.1 E < E′

In this case, the exact answer from Schwarzian theory gives

logZexact = log

ρ(s′)2ρ(s)
Γ
(
m± i s2π ± i

s′

2π

)2

Γ(2m)2

 , ρ(s) ∝ s sinh s (D.8)

We have E = s2/(4π), E′ = s′2/(4π).6 In order to compare with the classical answer, we
expand it in the semiclassical regime s′ � s� m̃� 1,

logZexact ≈ 2s′ + s+
1

π
(m̃± is± is′) log(m̃± is± is′)− 2

π
m̃ log(2m̃)

≈ s+
1

π
m̃ log(m̃± is± is′)− 2

π
m̃ log m̃+

is

π
log

[
(m̃+ is)2 + s′2

(m̃− is)2 + s′2

]
− is′

π
log

[
(m̃− is′)2 + s2

(m̃+ is′)2 + s2

]
(D.9)

6Our convention differs from [32]. We have Ehere = πEthere, shere = 2πkthere and our m is ` there.
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We see that it agrees with what we had in (D.7), after we identify s+ = s′, s− = s. Here we
only have one U(1) fixed point in the geometry, associated with the black hole with energy
E, so we have

∑
i si = s.

D.2.2 E > E′

In this case, we expand (D.8) in a different regime s� s′ � m̃� 1. We have

logZexact ≈ 2s′ + s+
1

π
(m̃± is± is′) log(m̃± is± is′)− 2

π
m̃ log(2m̃)

≈ 2s′ − s+
1

π
m̃ log(m̃± is± is′)− 2

π
m̃ log m̃

+
is

π
log

[
(m̃+ is)2 + s′2

(m̃− is)2 + s′2

]
− is′

π
log

[
(m̃− is′)2 + s2

(m̃+ is′)2 + s2

] (D.10)

It agrees with (D.7) after identifying s+ = s, s− = s′. As opposed to the previous case, we have
three fixed points in the geometry, two coming from the E′ black hole and one coming from
the E black hole. The fixed point of the black hole with energy E is located in a region with
negative Euclidean evolution, so it contributes with a minus sign. Therefore,

∑
i si = 2s′ − s,

agreeing with the exact answer.
Note that for the topological term we get simply eS0 for both diagrams in figure 4 and 5.

We would also get the same topological factor if we wrote the final answer for the diagram of
figure 5 as logZ ∼ 2(S0 + s′)− (S0 + s).

E Bow tie, boost evolution and quasinormal modes

In our construction of the wormhole geometry we see that the middle of the geometry is given
by a "bow tie", see figure 9. Even though our whole geometry is smooth, we could wonder
whether it is possible to single out the bow tie geometry, fixing boundary conditions along the
red and blue dashed lines in fig. 9 and define matter partition function on it. In other words,
we want a prescription for computing the transition amplitude b〈ΨBB† |e−itH |ΨAA†〉b in (3.7)
on the bow tie.

Naively the geometry seems singular since the bifurcation surface is a fixed point under
the boost evolution. However, a way to avoid the singularity is to do an analytic continuation
as in [22]. Writing the metric near the horizon as

ds2 = −r2dt2 + dr2 (E.1)

with the right side with r > 0 and the left side with r < 0, the analytic continuation prescrip-
tion is

r → r − iε (E.2)

Another way to say it is that we do not go through the singularity r = 0 directly, but instead
go through the lower half plane of the complex r plane.7

7In [22] the prescription is to go through the upper half plane. We believe that the difference comes from
that [22] considers the boost evolution as eiHt, while we are define it in the ordinary way e−iHt.
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This analytic continuation has the property that the boost evolution leads to a Hamilto-
nian whose eigenvalues have negative imaginary parts. In fact the eigenstates relevant to this
evolution are the same as the quasinormal modes, as we explain in more detail in appendix
E.1. In other words, the eigenfrequencies obey

ω = (real)− i(positive) (E.3)

So that the evolution of the perturbations under the time shift t will be suppressed as

exp [−(positive)t] . (E.4)

E.1 Boost evolution and quasinormal modes

In this section we would like to argue that the eigenvalues of the boost evolution, using the
prescription in (E.2), are given by the quasinormal mode frequencies of the black hole.

We will argue this by noting that the problem that computes the quasinormal modes is
mathematically identical to the problem of computing the eigenvalues of the boost operator,
subject to the prescription (E.2).

We will consider a general black hole in AdS. The quasinormal modes are solutions of
the bulk wave equation in the region outside the horizon that have definite frequency under
the Schwarzschild time. For simplicity, we normalize the time direction so that β = 2π, since
what we are about to explain does not depend on the normalization of time.

φ = e−iωtFw(r) (E.5)

The modes obey a Dirichlet boundary condition at infinity. This selects a single solution of
the wave equation, up to an overall normalization. Near the horizon they also obey an ingoing
boundary condition. In order to specify more clearly this boundary condition, we expand the
metric near the horizon as

ds2 = dr2 − r2dt2 + · · · = −dX+dX− + · · · , X± = ±re±t (E.6)

The solutions of the wave equation near ρ = 0 go as ρ±iω. It is useful to rewrite the solutions
near the horizon in terms of X± as

e−iωtriω ∼ (X−)iω , e−iωtr−iω ∼ (X+)−iω (E.7)

Notice that the first solution is singular in the future horizon where X− = 0 and the second
solution is singular in the past horizon where X+ = 0. The quasinormal mode condition
selects the solution that are non-singular in the future horizon, therefore it selects the second
kind of solutions. The function of r that obeys the Dirichlet boundary in (E.5) behaves as

F ∼ A(ω)riω +B(ω)r−iω , r ∼ 0 (E.8)

The quasinormal mode condition is
A(ω) = 0 (E.9)
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which gives a discrete set of frequencies. These frequencies can be complex because the
boundary conditions are not invariant under complex conjugation.

We now consider the problem of determining the eigenvalues under H evolution. More
precisely, we imagine that we have some sources to the past, and we want to expand them as
we go to the future, t � 0. For this problem we now have two sides. The solution obeying
the Dirichlet boundary conditions can be written as

φr = e−iωtFω(r) , for r > 0 ; , φl = Λe−iωtFω(|r|) , for r < 0 (E.10)

where Fω is the solution of the Dirichlet problem on one side (unique up to an overall scale).
We take the same function on both sides, and we allowed an arbitrary relative normalization
Λ between the two sides.

We now demand that the function obeys the analytic continuation property (E.2). This
means that we want that, for r > 0,

φr(e
−iπr) = φl(−r) −→ A(ω)eπωriω +B(ω)e−πωr−iω = Λ

[
A(ω)riω +B(ω)r−iω

]
(E.11)

Equating the corresponding powers we find

Aeπω = ΛA , Be−πω = ΛB (E.12)

For generic ω we cannot obey both equations. So, one of the equations must be trivial. We
should have one of two conditions

A(ω) = 0 , or B(ω) = 0 (E.13)

But these are precisely the conditions we have obtained above for the quasinormal modes.
To be precise, A(ω) = 0 gives us the solution that are regular in the future horizon, while
B(ω) = 0 gives us the solutions that are regular in the past horizon.

We could also imagine obeying (E.12) by taking ω = −in, with integer n and Λ = eiπn.
In this case the two exponentials in r differ by an even integer. This means that the solutions
will not quite have the form (E.8) generically. Instead there will be a solution that starts with
r|n| plus positive powers and another that starts with r−|n| and contains an r|n| log r term in
its power series expansion around r = 0. This means that we need to set to zero the coefficient
of this second solution, which generically (for general black holes) will not happen since we
are already fixing ω. Note that for special black holes we can have quasinormal modes with
ω = in, such as the ones in AdS2 or AdS3.

When we are looking at the eigenvalues of H, we want to put sources in the past horizon,
so that solutions might be singular there, but are regular in the future horizon. So we select
the same condition as the quasinormal mode one.

F Distance between the shells at large t

In this appendix we discuss the distance between the AA† shell and the BB† shell in the
geometry in fig. 9. We will first separate operators A and B (and similarly for operators A†
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and B†) by an almost Lorentzian time τ + it, t� β with τ > 0, and eventually continuing τ
to ∼ −β(E)/2.

The configuration is shown in fig. 11. In principle, we would like to compute the shortest
geodesic distance between the two shells, denoted by `AB in the diagram. The computation of
it is a bit more complicated since the end points of the geodesic are at finite radius. However,
we can instead compute ˜̀

AB, which is the geodesic distance between the operators A and B.
In higher dimensions, we fix the two end points of the geodesic to be at the same point on the
sphere. ˜̀

AB is a good proxy to `AB since in our final geometry, the shells are very close to
the boundary of the spacetime. The main difference in ˜̀

AB and `AB simply comes from the
asymptotic regions, which gives rise to a divergence in ˜̀

AB that we shall subtract. After the
subtraction, we expect ˜̀

AB and `AB to have similar dependence on t.

Figure 11: Computing the distance between the two shells.

We will do the calculation explicitly for geodesics with zero angular momentum in AdS5,
though we expect that the feature that the distance remains large even with negative Euclidean
evolution is general.8 The distance we are interested in here has been studied in the context
of two point functions in eternal black holes. We will follow the discussion in [43] where the
large t limit of the distance was analyzed. The geodesic is parametrized by a single parameter
ξ, which is determined by the time separation τ + it by

τ + it =

∫
dr

ξ√
f(r)− ξ2f(r)

, f(r) = 1 + r2 −
r2
h(1 + r2

h)

r2
. (F.1)

The AdS radius is set to one in this calculation. After determining the parameter ξ, the
distance is computed via

˜̀
AB =

∫
dr√

f(r)− ξ2
. (F.2)

8One can also verify the same claims in the case of JT gravity, using for example formula (A.15) in [16].
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Reference [43] worked out the explicit relation between τ + it and ξ

τ + it =
β

2
− i

(2r2
h + 1)

rh log

 (1− ξ2)− 2iξrh + 2r2
h√

(1− ξ2)2 + 4r2
h + 4r4

h


−i
√
r2
h + 1 log

(1 + ξ2)− 2ξ
√
r2
h + 1 + 2r2

h√
(1− ξ2)2 + 4r2

h + 4r4
h

 (F.3)

Given a value of τ + it, this equation does not determine ξ uniquely. [43] studied the specific
case τ = β/2 and found that complex solutions of ξ gives the dominant calculation. These
correspond to complex geodesics that do not live in the real sections of the spacetime. In fact,
similar conclusion holds for τ < β/2. When t becomes large, ξ approaches a complex value

ξ∗ =

√
1− 2irh

√
1 + r2

h, (F.4)

which is a solution of the equation

(1− ξ2)2 + 4r2
h(1 + r2

h) = 0. (F.5)

The final answer involves summing over this solution and another solution corresponds to −ξ̄∗.
They will have similar properties, so we focus on one for now. We can expand (F.3) around
ξ = ξ∗ and find

t ≈ −iτ + t0 −
1

2(rh + i
√
r2
h + 1)

log(ξ − ξ∗) (F.6)

where t0 is some complex constant, and we get

ξ = ξ∗ + e
−2

(
rh+i
√
r2h+1

)
(t−t0−iτ)

, t� β. (F.7)

From (F.7) it becomes clear that by continuing τ to ∼ −β/2 wouldn’t affect the result too
much. It will push ξ slightly further away from ξ∗, but they are still very close since it is
dominated by the dependence on t.

The distance ˜̀
AB is then determined by

˜̀
AB =

∫
dr√

f(r)− ξ2
= 2 log(2rc)−

1

2
log
[
(1− ξ2)2 + 4r2

h(1 + r2
h)
]

(F.8)

where we dropped terms that vanish as we take the cutoff rc to infinity. The term 2 log(2rc)

is just the usual UV divergence, which is canceled by counterterms. The second term tells us
how ˜̀

AB depends on t. By expanding it around ξ = ξ∗, we find

˜̀
AB ∼ −

1

2
log(ξ − ξ∗) ∼

(
rh + i

√
r2
h + 1

)
(t− t0 − iτ), t� β, (F.9)

so we see that taking τ from positive to ∼ −β/2 slightly shortens the distance, but the distance
remains very large since it is dominated by the term linear in t. Note that the distance has an
imaginary part that grows with t. This is related to the oscillatory behavior of the quasinormal
modes in the eternal black hole background [43, 44].
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