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We study photon geodesics in topological solitons that have the same asymptotic properties
as Schwarzschild black holes. These are coherent states in string theory corresponding to pure
deformations of spacetime through the dynamics of compact extra dimensions. We compare these
solutions with Schwarzschild black holes by computing null geodesics, deriving Lyapunov exponents,
and imaging their geometries as seen by a distant observer. We show that topological solitons are
remarkably similar to black holes in apparent size and scattering properties, while being smooth and
horizonless. Incoming photons experience very high redshift, inducing phenomenological horizon-
like behaviors from the point of view of photon scattering. Thus, they provide a compelling case for
real-world gravitational solitons and topological alternatives to black holes from string theory.

I. INTRODUCTION

The Event Horizon Telescope (EHT) has opened a
new observational window on the environment near black
holes [1]. Its success and future experimental prospects
in imaging could lead to paradigm-changing research in
gravitational phenomenology by providing novel ways to
explore the strong-gravity environment near black holes,
and, as excitingly, the possibility to observe “exotic”
compact objects beyond general relativity (GR).

There is a wide variety of interesting proposals for
beyond-GR objects and phenomena, including boson
stars [2], gravastars [3], firewalls [4], non-local interac-
tions [5], soft hair around the horizon [6], and fuzzballs
[7]. Describing their gravitational signature and their
observational differences will offer a promising route for
new tests of gravity through direct observations.

In quantum gravity, black holes correspond to ther-
modynamic ensembles of quantum states. The general
paradigm necessary to fully characterize such states is
still lacking. Often, however, quantum states can be co-
herent enough to admit classical descriptions. Indeed,
many examples of such states can be constructed from
string theory and characterized in various theories of
gravity. Their existence has led to some of the most ex-
citing results in theoretical physics in the last 30 years,
such as holography and AdS/CFT [8] and black hole mi-
crostate geometries [9]. The latter objects appear in the
fuzzball proposal, which aims to resolve the black hole
information paradox in string theory [7].

The recent developments in EHT and gravitational-
wave observations raise the prospect of observing indi-
vidual coherent states of gravity. These are necessarily
smooth, horizonless and ultra-compact geometries, pro-
duced by pure deformations of spacetime without ordi-
nary matter and supported by electromagnetic flux. For
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many years, however, these states could only be obtained
from supersymmetric theories of gravity, and thereby
outside the regime of what we might expect to be astro-
physically realistic (see [10–13] for some analysis of their
gravitational signatures). Until recently, it was not clear
whether these coherent states can be constructed beyond
the lamppost of supersymmetry, and it was widely be-
lieved that they could not exist.
With the motivation of potential observations, two

of the authors developed a new framework for con-
structing solutions in generic, non-supersymmetric, clas-
sical theories of gravity with extra compact dimensions
that are smooth and horizonless. The solutions admit
gravitational solitons induced by non-trivial topology in
the internal space that is supported by electromagnetic
flux [14–17]. Moreover, these solutions can be embedded
in string theory, where they can be appropriately inter-
preted as coherent states of quantum gravity [17]. They
are characterized and distinguished by their topological
microstructure, which necessitates extra compact dimen-
sions. These are referred to as topological solitons.
In four dimensions, topological solitons manifest as

singular ultra-compact objects that are indistinguishable
from black holes from afar. Their higher-dimensional na-
ture becomes apparent at small distances from the soli-
tons, which then resolve the system to smooth and hori-
zonless geometries.
There exist simple building blocks that can be used

to construct complex bound states of topological soli-
tons that may be astrophysically relevant. These blocks
can be seen as a new topological phase of matter that
is inherently geometric. The basic unit corresponds to a
spherically symmetric spacetime with a “bubble of noth-
ing” corresponding to a non-contractible two-cycle. It is
stabilized by adding electromagnetic flux which assigns
charges to the bubble [18]. This basic ingredient has been
named the topological star [14].
By considering bound states of topological stars, we

can obtain net-neutral topological solitons with proper-
ties comparable to Schwarzschild black holes [15]. These
are the first smooth horizonless geometries from string
theory that correspond to a Schwarzschild solution far
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away without any matter in the interior, and they are
aptly called Schwarzschild topological solitons.

In this paper, we are interested in describing the phe-
nomenology and gravitational signature of these topo-
logical solitons. This will highlight their possible rele-
vance to describe convincing observational alternatives
to black holes. As a first step, we derive their imaging
phenomenology and scattering properties by analyzing
the behavior of null geodesics in these two types of topo-
logical solitons.

In contrast to gravitational objects produced by ordi-
nary baryonic matter, topological solitons are pure defor-
mations of spacetime with no clear matter delimitation.
However, like black holes, we show that these solitons
possess an unstable outer photon shell that circumscribes
the geometry. Therefore, in the same way that a shadow
gives a size to a black hole, we define the apparent size of
topological solitons by their outer photon shell, as seen
by an asymptotic observer.

Furthermore, photons that enter the shadow of a black
hole are absorbed and disappear. The physics is different
for smooth and horizonless geometries: incoming photons
are non-trivially scattered by the topological microstruc-
ture, but re-emerge at some point. From the point of view
of an asymptotic observer, the dynamics of these pho-
tons carries information about a possible smooth topo-
logical microstructure beyond the would-be shadow. We
detail the key mechanisms for which such microstruc-
ture can still present black hole-like features and induce
a phenomenological horizon behavior for photon scatter-
ing (these mechanisms have been initially analyzed in
Ref. [10]). The scattering properties of topological soli-
tons in the vicinity of their outer photon shell will thus
provide insight into the common features with black holes
in GR, but will also identify small deviations that could
be useful smoking guns for future imaging experiments.

More precisely, we analyze the properties of the
outer unstable photon shells of topological stars and
Schwarzschild topological solitons by deriving their ap-
parent size and associated Lyapunov exponents. We also
show that the solitons have inner stable photon shells
that are not accessible for photons coming from outside
the solitons. Moreover, we have built our own ray-tracing
code to study their overall gravitational lensing proper-
ties, as they would be perceived by a distant observer.

We show that Schwarzschild topological solitons have
properties remarkably close to those of Schwarzschild
black holes, while being smooth and horizonless. Their
apparent size is strikingly close to the Schwarzschild
shadow. Their Lyapunov exponents, redshift, and the
time elapsed along the geodesics of initially incoming
photons are also remarkably similar. Overall, they
provide the first relevant smooth, horizonless string-
theoretic alternatives to non-extremal black holes in GR.

The paper is organized as follows. In Sec. II we re-
view the properties of topological stars and Schwarzschild
topological solitons. In Sec. III we analytically derive and
analyze their photon shells and some geodesics trajecto-

ries. In Sec. IV we present our numerical imaging results.
In Sec. V we summarize our conclusions and possible di-
rections for future work.

II. THE GEOMETRIES

We consider classes of solutions in five-dimensional or
six-dimensional Einstein-Maxwell theory with a generic
action of the form [14, 15]

SD =
1

16πGD

∫
dDx

√
− det g

(
R− 1

2
|F |2

)
. (1)

The solutions are asymptotic to R1,3×S1 or R1,3×T2, a
product of four-dimensional Minkowski with a circle or
a torus. We parametrize these extra compact dimen-
sions as y1 and y2, and consider that they have a finite
and small size asymptotically. The solutions admit non-
trivial topology supported by electromagnetic flux (since
we are only interested in uncharged null geodesics in these
backgrounds, we will not specify the flux; we refer the in-
terested reader to Refs. [14, 15] for more details). They
correspond to pure states of gravity that are induced by
the dynamics of the extra compact dimensions. More-
over, they can be embedded in string theory and admit a
description in terms of bound states of strings and branes
[17]. Note that the charges under the gauge fields can be
interpreted as “hidden dark charges,” such that they only
interact gravitationally with ordinary baryonic particles
and are not ruled out by current observations [10, 13, 19].

A. The topological star

Topological stars are five-dimensional horizonless ge-
ometries that are spherically symmetric and static. They
can be labeled by two parameters rB > rS ≥ 0 and they
have a metric

ds25 = −
(
1− rS

r

)
dt2 +

dr2(
1− rS

r

) (
1− rB

r

) + r2 dΩ2
2

+
(
1− rB

r

)
dy21 , (2)

where dΩ2
2 = dθ2 + sin2 θ dϕ2 is the line element of a

two-sphere. The solutions carry a magnetic charge [14]

Q =
√
3rSrB , (3)

where we have considered that the electric coupling is
e = (16πG5)

−1/2. The spacetime is smooth and termi-
nates at r = rB where the y1-circle smoothly collapses,
defining the origin of a R2 space. In this region, the
geometry has an R2×S2 topology and thus admits a S2

bubble with radius rB. Regularity imposes an algebraic
constraint between rB, rS and the extra-dimension size,
Ry1

. However, adding a conical defect at the bubble al-
lows rB and rS to decouple from Ry1

[14]. We depict a
typical geometry in Fig. 1.
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FIG. 1. Schematic description of a topological star. The
spacetime is smooth and terminates at r = rB where the y1
circle degenerates. This induces a large topological bubble of
charge Q that can be considered as the “surface” of the star.

Upon compactifying on the y1-circle, topological stars
can be described by singular four-dimensional solutions
with ADM mass (in units where G4 = 1)

M =
2rS + rB

4
. (4)

The solutions correspond to classically and thermody-
namically meta-stable states of the theory of gravity (1)
if and only if [18]

rS < rB < 2 rS , (5)

which we assume from now on. Topological stars admit
an extremal limit when rS → rB, where they approach
extremal black string solutions [14].

Finally, it is also useful to parametrize the solitons
in terms of asymptotic quantities measurable at infin-
ity: the mass and the charges. In the range (5), there
exists one topological star at given mass and charge:

rS = M+
√
M2 − 1

6Q
2 , rB = 2

(
M −

√
M2 − 1

6Q
2

)
.

(6)
We consider solutions in the range

4√
3
< µ <

√
6 , µ ≡ Q

M
. (7)

The extremality bound is at µ ∼ 4/
√
3, while the stability

bound is at µ ∼
√
6.

As objects labeled by mass and charge, the domain
of validity of the topological stars differs from Reissner-
Nordström black holes (which exist for µ ≤ 1) and
from the five-dimensional black string in this same the-
ory (which exist for µ ≤ 4√

3
). In this paper, we will

study geodesics of topological stars and compare them
to Schwarzschild black holes of the same mass.

FIG. 2. Schematic description of a Schwarzschild topological
soliton. It is a neutral bound state of three topological stars.
The spacetime is smooth and terminates at r = ℓ+ 2σ where
the y1 and y2 circles degenerate alternatively. This induces a
large topological bubble that can be considered as the “sur-
face” of the soliton.

B. The Schwarzschild topological soliton

The Schwarzschild topological solitons constructed in
Ref. [15] are six-dimensional smooth horizonless solutions
that are axially symmetric and static. They correspond
to net-neutral bound states of three topological stars in
six dimensions. They consist of a chain of three bubbles
where the y1 and y2 circles smoothly degenerate. The
two outermost bubbles carry opposite charges, while the
one in the middle is uncharged. We have depicted the
profile of the geometry in Fig. 2.

In contrast to the single topological star, the present
soliton is neutral while being supported by electromag-
netic flux, and is therefore in the same regime of mass
and charge as a Schwarzschild black hole. The solutions
are given in terms of two mass parameters, ℓ and m, and
a parameter q related to the amplitude of the internal
charges. Since we are dealing with bound states of three
bubbles, we introduce three local spherical coordinates
centered around each bubble:

r1 ≡
r
(0)
− + r

(1)
−

4
− σ , cos θ1 ≡

r
(0)
− − r

(1)
−

4σ
,

r2 ≡
r
(1)
− + r

(1)
+

4
− 1

2
(ℓ− 2σ) , cos θ2 ≡

r
(1)
− − r

(1)
+

2(ℓ− 2σ)
,

r3 ≡
r
(1)
+ + r

(0)
+

4
− σ , cos θ3 ≡

r
(1)
+ − r

(0)
+

4σ
, (8)

where we have defined 2σ to be the size of both outermost
bubbles, and four distances, (r

(0)
± , r

(1)
± ), that depend on
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the main spherical coordinates (r, θ) as follows:

σ ≡
√

m2 − q(q − 2γ) , γ ≡ 2mq

ℓ+ 2m
,

r
(0)
± ≡ 2r − (ℓ+ 2σ)(1± cos θ) , (9)

r
(1)
± ≡

√
((2(r − σ)− ℓ) cos θ ± (2σ − ℓ))2 + 4r(r − ℓ− 2σ) sin2 θ.

Smooth and regular solutions exist when the parameters

satisfy the conditions [15]:

ℓ > 2m, q < m

√
ℓ+ 2m

ℓ− 2m
. (10)

The second inequality corresponds to the extremal
bounds of the two outer bubbles, where they degener-
ate into extremal black holes.

The metric is given by

ds26 =
1

Z

[
−dt2 +

r1r3
(r1 + 2σ)(r3 + 2σ)

dy21

]
+

r2 Z

r2 + ℓ− 2σ
dy22 + Z

[
f

(
r dr2

r − ℓ− 2σ
+ r2 dθ2

)
+ r2 sin2 θ dϕ2

]
, (11)

where we have introduced the functions

Z ≡ (r1 + σ +m)(r3 + σ +m) + (q − γ(1 + cos θ3)) (q − γ(1− cos θ1))√(
(r1 + 2σ)2 + γ2 sin2 θ3

(
1 + 2σ

r1

))(
(r3 + 2σ)2 + γ2 sin2 θ1

(
1 + 2σ

r3

)) ,
f2 ≡ 1

(1 + 2δ)2
(r1(r1 + 2σ) + γ2 sin2 θ3) (r3(r3 + 2σ) + γ2 sin2 θ1)((

r2 +
1
2 (ℓ− 2σ)

)2 − 1
4 (ℓ− 2σ)2 cos2 θ2

)
(r1 + σ(1− cos θ1)) (r3 + σ(1 + cos θ3))

(12)

× r1(1 + cos θ1) + r3(1− cos θ3)

r1(1− cos θ1) + r3(1 + cos θ3)

(r1 + 2σ)(1− cos θ1) + (r3 + 2σ)(1 + cos θ3)

(r1 + 2σ)(1 + cos θ1) + (r3 + 2σ)(1− cos θ3)

×
(
1 + 2δ

(q − γ)(r1 − r3) + (γm− ℓ(q − γ))(cos θ1 + cos θ3)

(q − γ)(r3 − r1) + γm(cos θ1 + cos θ3)

)2

, δ ≡ m2(ℓ+ 2m)2 + ℓ2q2

(ℓ+ 2m)2(ℓ2 − 2m2) + 2ℓ2q2
.

The spacetime is smooth and terminates at r = ℓ + 2σ.
At this locus, either r1 = 0, r2 = 0 or r3 = 0, depending
on the value of θ. The ranges of θ are delimited by the
critical angle cos θc =

ℓ−2σ
ℓ+2σ . For 0 ≤ θ ≤ θc and π− θc ≤

θ ≤ π, r3 = 0 and r1 = 0, respectively. In these regions
the y1-circle degenerates. For θc ≤ θ ≤ π − θc, r2 = 0,
and the y2-circle degenerates. Regularity conditions lead
to algebraic constraints on the parameters in terms of
extra-dimension sizes [15]. In this paper, we restrict to
a part of the phase space that has properties similar to
Schwarzschild black holes:

ℓ =
4M

3
(1 + ϵ2) , m =

2M

3

(
1− ϵ2

2

)
,

q =
4M

3
√
3ϵ2

(1− ϵ1),
(13)

whereM is the four-dimensional ADMmass of the soliton

M =
4m+ ℓ− 2σ

4
, (14)

and (ϵ1, ϵ2) are infinitesimal parameters related to the
ratios of the extra-dimension sizes with the ADM mass.
In this limit, the two outer charged bubbles are very close
to their extremal limit σ = O(ϵ1M).

Away from the bubbling structure, the solutions are
approximated with extreme precision by a singular vac-
uum solution given by the four-dimensional metric (see

Ref. [15] for more details)

ds24 =−
(
1− 4M

3r

) 3
2

dt2 + r2
(
1− 4M

3r

)− 1
2

sin2 θ dϕ2

+

(
1− 4M

3r

) 1
2
(
dr2 + r2

(
1− 4M

3r

)
dθ2
)[(

1− 2M
3r

)2 − ( 2M3r )2 cos2 θ]2 . (15)

This axially-symmetric solution has a naked singularity
at r = 4M/3. Our solitons are indistinguishable up to
a scale infinitesimally close to this locus, and resolve the
singularity into a smooth bound state of bubbles in six
dimensions.
The approximated singular solution is not geodesically
complete at r = 4M/3 ∼ ℓ+2σ. At this locus, one must
consider the full bubbling solutions given in Eq. (11), for
which the spacetime terminates smoothly there. How-
ever, the approximated geometry is helpful to describe
the dynamics of null geodesics for trajectories that do
not get too close to the soliton surface.

III. NULL GEODESICS

We aim at describing the physics of null geodesics in
the classes of topological solitons introduced above. They
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are generically given by the equations

ẍµ + Γµ
αβ ẋ

α ẋβ = 0 , xµ ≡ (t, r, θ, ϕ, y1, y2), (16)

where Γµ
αβ is the Levi-Civita connection and we have

defined ẋ = dx
dτ , so that τ is an affine parameter.

Null geodesics in backgrounds with four isometries along
(t, ϕ, y1, y2) have five constants of motion: the Hamilto-
nian H = gµν ẋ

µẋν = 0 and the momenta associated to
the four commuting Killing vectors pµ ≡ gµν ẋ

ν . This
leads to

ṫ = −gtt , ϕ̇ = gϕϕ pϕ , ẏa = gyaya pya , a = 1, 2 ,

grr ṙ
2 + gθθ θ̇

2 = −gtt − gϕϕ p2ϕ − gy1y1p2y1
− gy2y2p2y2

,

(17)

where the dependence on y2 must be dropped for the
topological stars.

The momenta along the extra dimensions induce an
effective mass since gyayap2ya

→ p2ya
at large distance

r → ∞. The only difference with massive probes is that
this effective mass term increases as the probe approaches
the soliton. This should produce small deviations for
massive trajectories that approach it closely. Moreover,
pya

necessarily scales as “(extra-dimensional sizes)−1,”
and a probe with momentum corresponds to a very mas-
sive and highly excited particle that is unlikely to be pro-
duced in any physical process. Therefore, we will focus
on massless geodesics from a four-dimensional perspec-
tive. This requires py1 = py2 = 0.

A. Photon scattering in topological stars

Topological stars are spherically symmetric back-
grounds, so we limit attention to geodesics in the equa-
torial plane without loss of generality. The equations
reduce to the following radial equation [20, 21]:

ṙ2 − VTS = 0 , VTS ≡
(
1− rB

r

)[
1−

(
1− rS

r

) p2ϕ
r2

]
.

(18)

1. Photon spheres and Lyapunov exponent

Topological stars have photon spheres, obtained by im-
posing ṙ = r̈ = 0. There are two solutions, labeled by
the radii of the photon sphere (R1, R2) and given by

R1 = rB = 2

(
M −

√
M2 − 1

6Q
2

)
,

R2 =
3

2
rS =

3

2

(
M +

√
M2 − 1

6Q
2

)
,

(19)

Their associated angular momenta and angular velocity,

pϕ and Ω = ϕ̇/ṫ, are p1 = Ω−1
1 =

r
3
2
B√

rB−rS
for the first

photon sphere, and p2 = Ω−1
2 = 3

√
3rS
2 for the second

photon sphere.
An important observation here is that the “end-to-

spacetime” locus, i.e., the surface of the star r = rB,
is a photon sphere. Therefore, a photon can be trapped at
the surface of the topological star. This unusual feature
is dramatically different from other compact objects.
The second photon sphere, R2, is not always part of

the spacetime if we take into account the stability bound
of Eq. (5). Thus, depending on whether 3rS is greater
or smaller than 2rB, we have one or two photon spheres.
There are two kinds of topological stars according to this
attribute: the topological stars of the first kind with one
photon sphere, and the topological stars of the second
kind with two photon spheres. They exist in different
ranges of (rS, rB), which can be translated to different
ranges of mass-to-charge ratios, as depicted in Fig. 3.
The photon spheres are stable (unstable) if the second

derivative of the potential with respect to r is negative
(positive). We find that, for both kinds of topological
stars, the outermost photon sphere is unstable. However,
for the topological stars of the second kind, the inner
photon sphere (the surface of the star) is stable. This
highlights long-term trapping effects for such geometries,
and leads to an interesting spectrum containing slowly-
damped quasinormal modes [22]. This long-term trap-
ping has been analyzed in the context of other topological
solitons in string theory that are coherent manifestations
of supersymmetric black hole microstates [11, 23]. It is
a well-understood instability in black hole microstates,
that is key to resolve black hole information paradox.
Note however that no geodesics coming from outside the
outer photon sphere can be trapped at the inner sphere.
This is only possible for photons that originate in be-
tween R1 and R2.
One can derive Lyapunov exponents associated to the

unstable photon spheres. For spherically symmetric
spacetimes they are generically given by [24, 25]

λ =

√
1

2ṫ2
d2VTS

dr2

∣∣∣
r=Ra

. (20)

We find

λI =

√
(rB − rS)(2rB − 3rS)

r2B
, λII =

2
√
3rS − 2rB

9r
3
2

S

,

(21)
where λI and λII are the Lyapunov exponents of the first
and second kinds of topological stars, respectively. One
can also write the exponents in terms of the mass and
charge using Eq. (6).
We have plotted the Lyapunov exponents as a func-

tion of µ and in unit of M−1 in Fig. 3. The exponents
vary in the range [0, 1

4 ]. Even if one cannot compare
rigorously to Schwarzschild black holes since we are deal-
ing with charged geometries, the maximum is larger than
the value of the Lyapunov exponent at the Schwarzschild
shadow, λSch = 1/(3

√
3)M−1 ≈ 0.19M−1.



6

λ�

�
�

� �
�

�
�

���

���

���

���

���

���

μ

λ
λ��

γ�

���

���

���

���

���

γ

γ��

������� ������

λ�

����

����

����

����

����

����

μ

λ�
λ��

γ�

���

���

���

���

���

γ

γ�� γ���
λ���

������� ������

δ�
δ�������

����
����
����
����
����
����

μ

δ��
δ���

λ�

�
�

� �
�

�
�

���

���

���

���

���

���

μ

λ

λ��
γ�

���

���

���

���

���
γ

γ��

FIG. 3. Scattering properties of topological stars as a function
of the charge-to-mass ratio µ. Top panel: the Lyapunov and
critical exponents associated to their outer unstable photon
sphere. Middle panel: Description of the two kinds of topo-
logical stars. Bottom panel: their apparent size with respect
to the Schwarzschild shadow, as defined in Sec. III A 2.

Therefore topological stars have properties similar to
black holes: they induce strong gravitational lensing, and
they have a photon sphere surrounding the geometry that
is highly sensitive to initial boundary conditions. Note
that this does not necessarily mean that geodesics in
topological stars have chaotic behavior [24]. Indeed, the
geodesic equations are integrable, and the Lyapunov ex-
ponents at the photon spheres just indicate the average
rate of expansion or contraction of adjacent geodesics in
the phase space.

Finally, following Pretorius and Khurana [26], we com-
pute the critical exponent measuring the ratio between
the Lyapunov instability time scale with the orbital time
scale, given by

γc =
ϕ̇

2πλ ṫ
. (22)

We find that

γcI =
1

2π

√
rB

2rB − 3rS
, γcII =

1

2π

√
3rS

3rS − 2rB
. (23)

These critical exponents are also plotted in the top panel
of Fig. 3. They are always greater than the Schwarzschild
exponent γSch = (2π)−1 and they diverge as Q/M →
12
√
2/7, which is when the stable and unstable photon

spheres merge.
As argued in Ref. [26], the critical exponent γc is rele-

vant for critical phenomena in binary mergers, in partic-
ularly to understand whether only a fraction of the total
energy of the system can be radiated in the ultrarelativis-
tic limit [27].
In the encounter of two black holes, three outcomes

are possible. For large values of the impact parameter of
the collision, the black holes just scatter off each other.
At small values of the impact parameter, they merge di-
rectly following a nearly radial plunge. However there is
also an intermediate regime leading to a delayed merger,
where the black holes can revolve around each other (in
principle) an infinite number of times by fine-tuning the
impact parameter around some critical value b = b∗.
Reference [26] observed that γc is proportional to the

number of orbits spent in this critical region and conjec-
tured that in the ultrarelativistic limit, by fine-tuning b
around b∗, the two black holes could in principle radiate
all of their kinetic energy. The critical exponent plays
a critical role in this conjecture, at least in the extreme
mass-ratio limit [28].
An important observation is in order: while for black

holes we can directly relate the Lyapunov exponents to
the black hole’s quasi-normal modes [25], this is not pos-
sible for topological solitons. Indeed, this computation
implicitly requires the presence of a horizon at which the
scalar waves satisfy ingoing boundary conditions. The
physics is different in the context of smooth horizonless
geometries, as we will discuss in a separate study [22].

2. Apparent size of topological stars

Topological stars, and more generically smooth topo-
logical structures in string theory, are not made of ordi-
nary matter but correspond to coherent states of gravity.
There is no stress-energy tensor that can be used to define
traditional features such as their size. Their phenomeno-
logical attributes are inherent to the spacetime itself, in
analogy with horizons for black holes. The geometric
size of topological solitons is given by various topological
cycles at the locus where the spacetime ends.
Another way to associate a size to compact object such

as black holes is to consider their shadow, i.e., their pho-
ton shell. Topological stars have an outer photon sphere
that surrounds the object and gives them an apparent
size. Unlike black holes, this photon sphere does not de-
limit a sharp shadows, since geodesics that go in also
come out. The photon sphere is more appropriately seen
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as a region for extreme gravitational lensing. This is sim-
ilar to the effect of black hole shadows, but with small
differences that we will highlight in Sec. IV.
Using a simple parallax relation, we define the appar-

ent size δ of a topological soliton as the size of its outer
photon shell as seen by an asymptotic observer:

δ = lim
r→∞

r2ϕ̇

ṙ
, (24)

where ϕ̇ is fixed such that pϕ is the critical momen-
tum associated to the outer photon sphere. For the
Schwarzschild metric we have the well-known result

δShadow = 3
√
3M ≈ 5.2M , (25)

while for the two kinds of topological stars we find

δI =
r

3
2

B√
rB − rS

=
2
√
2
(
1−

√
1− 1

6µ
2
)3/2

3
√
3

√
1− 3

√
1− 1

6µ
2

δShadow .

δII =
3
√
3rS
2

=
1 +

√
1− 1

6µ
2

2
δShadow . (26)

We have plotted these apparent sizes as a function of
the charge-to-mass ratio in the bottom panel of Fig. 3.
Topological stars of the first kind are slightly more com-
pact than topological stars of the second kind. More-
over, topological stars always look more compact than a
Schwarzschild black hole of the same mass: the aspect
ratios range from 0.66 to 0.54. This is perhaps not sur-
prising: increasing the charge increases the energy den-
sity, and thereby should lead to stronger gravitational
attraction.

B. Photon scattering in Schwarzschild solitons

Schwarzschild topological solitons are axially symmet-
ric solutions, and thus the geodesic equations are not
integrable. Computing photon trajectories is therefore a
challenge. The upside is that this implies a greater diver-
sity of trajectories and more novel features as compared
to spherically symmetric systems.

Some techniques have been developed in the con-
text of four-dimensional black hole bound states (see,
e.g., Ref. [29, 30]). However, the aim of this paper is
not to have an exhaustive analytic classification of null
geodesics. We will consider only a few illustrative exam-
ples that allow us to obtain an apparent size given by the
outermost photon shell of the solitons, and its associated
Lyapunov and critical exponents.

Null geodesics are given by a two-dimensional potential

ṙ2 + r2
(
1− ℓ+ 2σ

r

)
θ̇2 − VSTS = 0 ,

VSTS =

(
1− ℓ+2σ

r

)
f

(
1−

p2ϕ

r2Z2 sin2 θ

)
,

(27)

where f and Z are defined in Eq. (12). Using a numer-
ical approach, that we will detail in the next section,
we have observed that the solitons have an outermost
photon shell at r ∼ 8M/3 ∼ 2ℓ. It has an ellipsoidal
shape due to the axial symmetry, and is slightly flat-
tened at its poles. Moreover, it has similar scattering
properties to the Schwarzschild shadow: all trajectories
that are slightly outside the photon shell escape the ge-
ometries, while incoming photons necessarily reach the
end-to-spacetime locus, r = ℓ + 2σ, and remain trapped
for a long time.
We will characterize the photon shell numerically in

Sec. IV. To obtain some analytic results, we consider the
scattering properties of this outermost photon shell and
its apparent size by focusing on some trajectories that
depend on one variable only.

1. Outer photon shell and Lyapunov exponent

Since the solitons are Z2-symmetric, θ → π − θ, the
two-dimensional potential necessarily has ∂θVSTS = 0 at
θ = π/2. Therefore we can study geodesics on the equa-
torial plane. At θ = π

2 , the geodesics are governed by a
one-dimensional potential obtained from (27). We have
VSTS = ∂rVSTS = 0 if and only if

p2ϕ = r2Z2|
θ=

π
2
, (r− ℓ− 2σ) ∂r(rZ)|

θ=
π
2
= 0 . (28)

The function rZ, defined in (12), has a global minimum
around r ∼ 2ℓ ∼ 8M/3 (13). Thus, there are two photon
orbits on the equator: one at the end-to-spacetime locus
r = ℓ+2σ, and another at around twice the distance. The
latter corresponds to the outermost photon shell of the
solitons, restricted to the equatorial plane. Moreover, the
sign of ∂2

rVSTS indicates that the outer orbit is unstable
under perturbation along the radial direction, while the
inner one is stable. This is similar to the topological star
of the second kind.
We derive the Lyapunov and critical exponents asso-

ciated to the outer photon orbit, which measure the in-
stability in the equatorial plane. For that purpose, one
can make use of the approximate geometry introduced in
Eq. (15). Indeed, our solitons are almost indistinguish-
able from the metric (15) around r ∼ 8M/3, and will
therefore have the same properties (modulo small cor-
rections of the order of the extra-dimension sizes). The
geodesic potential on the equatorial plane of the metric
(15) is given by

Vapp =

(
1− 2M

3r

)4(
1− 4M

3r

)2
[
1−

(
1− 4M

3r

)2 p2ϕ
r2

]
. (29)

This potential has indeed a photon orbit at r = 8M
3 sat-

isfying

λSTS =
27

128M
, γcSTS =

4

9π
. (30)
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Its associated angular momentum and angular veloc-
ity are pϕ = Ω−1 = 16M

3 , respectively. There-
fore, the two exponents and the angular velocity
associated to the unstable equatorial orbit are re-
markably close to the Schwarzschild values, since we
have (γcSTS, γcSch) ≈ (0.16, 0.14), (λSTS, λSch) ≈
(0.21, 0.19)M−1 and (Ω,ΩSch) ≈ (0.192, 0.187)M−1. If
the angular velocities are almost identical, the Lyapunov
exponent of the soliton is slightly larger. Therefore, the
scattering properties of our neutral smooth horizonless
geometries are remarkably close to Schwarzschild, but
more unstable in the vicinity of its outermost photon or-
bit.

2. Apparent size of Schwarzschild topological solitons

As in the case of topological stars, the photon shell
that surrounds the geometry gives an apparent size to
the soliton. On the equator, the photon orbit is at r =
8M/3 ≲ 3M , which is the radius of the Schwarzschild
shadow. While in the spherically symmetric case of the
topological star r is a scalar and defines physical radius
of a sphere, this is not the case in the axially-symmetric
system. Nonetheless, the apparent size of the soliton can
be defined as in Eq. (24), and we find

δSTS =
16

3
M ≈ 5.3M . (31)

This value is once again remarkably close to the
Schwarzschild apparent size (25), and so an asymptotic
observer will barely notice the difference between the par-
allax angles.

One should a priori do a similar computation out of the
equatorial plane to obtain the total size of the solitons.
Due to the complexity of the geodesic equations, this
is only possible numerically. However, we will see in the
next section that the outer photon shell is actually almost
spherically symmetric and slightly flattened at its poles,
so that the apparent size on the equatorial plane (31) is
a good approximation of the total apparent size of the
Schwarzschild topological solitons.

At first sight the metric of a Schwarzschild topologi-
cal soliton, which is well approximated by Eq. (15), is
very different from the Schwarzschild metric. However,
its outer photon shell is remarkably similar in size and
scattering properties to the shadow of a Schwarzschild
black hole. For such gravitational objects without mat-
ter sources, the photon shell or the shadow define the
size and the effective properties of the geometry. We
therefore expect that their images will look very similar.
However, unlike the shadow, all photons that enter the
soliton can come out. This is the main difference, and in
the rest of the paper we will explore numerically how this
difference affects the scattering and imaging properties of
these objects.

IV. IMAGING

In this section, we study null geodesic trajectories as
seen from a distant observer using numerical ray-tracing
methods. This has been done previously for other exotic
ultra-compact geometries (see e.g. [30] for a review, and
[10, 31] for a non-exhaustive list of recent work). We
constructed our own code since the ones in the litera-
ture require a four-dimensional metric. Our geometries
are well captured by four-dimensional physics up to the
soliton surface. However, the extra compact dimensions
are needed to resolve the singularity of the effective four-
dimensional system in order to have a geodesically com-
plete spacetime.
We applied our code to four types of geometries of the

same mass M = 3/4 (this choice ensures that the topo-
logical star of the second kind and the Schwarzschild soli-
ton both rB ∼ ℓ ∼ 1), and also to empty flat space for cal-
ibration. The four geometries are a Schwarzschild black
hole, the two kinds of topological stars (with charge taken
in their range of validity in Fig. 3), and the Schwarzschild
topological soliton.
Our main results are presented in Fig. 5. Moreover,

since the Schwarzschild topological soliton is not spher-
ically symmetric, in Fig. 6 we analyze its imaging prop-
erties for different inclination angles of the observer with
respect to the axis of symmetry.

A. Methodology

We solve numerically the geodesic equations (16) and
impose the null condition, gµν ẋ

µẋν = 0, on the initial
data. To avoid any issues with the geodesics approaching
the degeneracy locii of the solitons, we solve the equations
in terms of the proper radial coordinate, given by ρ2 =
r − rB for the topological stars and ρ2 = r − ℓ − 2σ for
the Schwarzschild topological soliton. Once the geodesic
equations are solved, we switch back to the r coordinate.
The observer is placed on a “celestial” sphere at a large

radius R where the spacetime is mostly flat (see Fig. 4).
We choose R = 20M in most of the cases, and R = 40M
in one situation that we specify in Fig. 4. We consider a
camera of 106 pixels that is pointing towards the center
of the spacetime, with an angle of view of δφ = 2π/7
when R = 20M and δφ = π/7 when R = 40M .
The geodesics are numerically integrated backwards in

time from the camera to where they originated on the
celestial sphere. More precisely we shoot 106 geodesics
with different angles (φ1, φ2) in the camera frame, and
integrate them until they cross the sphere. To highlight
the gravitational effects of the backgrounds on the null
geodesics, we track the following physical quantities:

• Their original position on the celestial sphere, given
by (θ, ϕ). Note that the original position corre-
sponds to the ending position from the point of
view of the integration.
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FIG. 4. Illustration of the artificial background grids. The camera (gray point) is on a “celestial” sphere centered around the
gravitational objects (represented as a white ball). The sphere has a large radius with respect to the object size: R = 20M for
the three first backgrounds, and R = 40M for the last. For the first background, the sphere is covered by a quadri-color patch
with a grid of meridians and latitudes of angle π/20. For the second and third backgrounds, the celestial sphere is covered by
pictures of the Milky Way. For the last background, the sphere is totally black, and there is a bright “accretion disk.” The
disk has a π/3 inclination angle with respect to the camera-object plane and the disk radius is in the range [(3 + 1/3)M, 5M ].
The celestial spheres have been artificially cut here to improve the readability of the figures.

• The total time elapsed along the geodesics, ∆t,
where t is the time measured on the celestial sphere.

• The maximum redshift, max(−gtt), experienced by
the geodesics along the trajectory.

• The coordinates of the intersection, if it exists,
between the geodesics and an effective “accretion
disk” centered around the geometry. The disk has
a π/3 inclination angle with respect to the plane of
the camera and the center of mass, and its radius
is ranging from (3 + 1/3)M to 5M . Note that our
disk is chosen for illustrative purposes only, and it
lies below the Schwarzschild innermost stable cir-
cular orbit bound at 6M . Our objective is more
a conceptual comparison of the solitons and the
Schwarzschild metric than a realistic imaging sim-
ulation for future EHT experiments, which could
be a topic for future projects. As the solitons are
very similar to Schwarzschild, a disk located close
to the “shadow” is needed to highlight possible de-
viations.

From these quantities, we construct several illustrative
graphs.

We first highlight the distorted apparent sky seen by
the camera by dividing the celestial sphere into four
quadrants, each painted with a different color and a grid
of meridians and latitudes (leftmost panel in Fig. 4). We
assign a definite color to each pair (θ, ϕ) on the celes-
tial sphere, and reconstruct the picture on the camera by
taking their associated (φ1, φ2) after scattering.
Using the same method, we then produced slightly

more “arty” pictures by covering the celestial sphere with
images of stars in the Milky way (second and third panels
in Fig. 4).
Then we simulate the picture that could be obtained

when a bright accretion disk orbits around the geometries
(right panel in Fig. 4). This is a simple illustration of
what could be seen by the Event Horizon Telescope in the

future [1, 13, 32]. To reduce the irrelevant gravitational
lensing effect at “short” distance, we double the radius of
the celestial sphere and divide the camera angle by two.
We plot the elapsed time of the geodesics in units of the

mass of the geometry and as a function of the position
on the camera (φ1, φ2). This estimates the chaoticity
experienced by the geodesics and the failure of the probe
approximation. Indeed, a long elapsed time generally
implies a greater chance for the photon to be absorbed
by the geometry.
We also plot the maximum redshift experienced by null

particles along the trajectory normalized to the redshift
at the celestial sphere. This provides, together with the
elapsed time, a measure of how much energy a geodesic
would lose by escaping the soliton [33]. More concretely,
this allows us to go beyond the probe computation and
to estimate a darkening factor for highly-redshifted tra-
jectories of order

√
−max gtt [10, 33].

We apply these steps to a flat spacetime for calibration,
and to four typical spacetimes of identical mass M = 3/4:

• A topological star of the first kind with rB = 1.4,
rS = 0.8, and charge Q ≈ 1.83 [Eq. (3)].

• A topological star of the second kind with rB =
1.04, rS = 0.98, and charge Q ≈ 1.75 [Eq. (3)].

• A Schwarzschild topological soliton with ℓ = 1.005,
m = 0.49875 and q = 8.1496. The parameters are
chosen so that we are in the Schwarzschild regime
given by Eq. (13).

• A Schwarzschild black hole of mass M = 3/4.

B. Results and analysis

Our results are presented in Figs. 5 and 6, which we
analyze here.
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FIG. 5. Gravitational lensing effects of the smooth horizonless solitons compared to flat space and a Schwarzschild black hole.
From left to right: the five different backgrounds, flat space, the two kinds of topological stars, the Schwarzschild topological
soliton, and the Schwarzschild black hole. From top to bottom: the quadri-color screen, the elapsed time, the maximum redshift
experienced, the two “arty” sky screens, and the accretion disk picture.
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FIG. 6. Gravitational lensing effects of the Schwarzschild
topological soliton as a function of the angle between the ob-
server and the axis of symmetry. From left to right: the
observer is on the equatorial plane of the soliton θ = π/2,
on the North-hemisphere side at θ = π/3, and on the axis
at θ = 0. The rows follow the same conventions as in Fig. 5,
and the scale for the elapsed time (second row) and maximum
redshift experienced (third row) are also the same.

1. Gravitational lensing and photon orbits

We first discuss the lensing effect of the smooth hori-
zonless solitons in comparison to black holes in GR using
the quadri-color imaging, and also the more “arty” pic-
tures in Figs. 5 and 6.

As expected, topological stars have a strongly coherent
effect on the trajectories due to the integrable structure
of their geodesic equations. From the point of view of an
asymptotic observer, they are circumscribed by their out-
ermost unstable photon spheres. Topological solitons are
pure deformations of spacetime, with no ordinary matter
radiating out and indicating the surface of the star. Thus,
like black holes, their apparent size is determined by the
size of their photon shell as seen from an asymptotic ob-
server: see Eq. (26). However, unlike black holes, the
photon sphere is not a shadow: all trajectories that enter
bounce back. For topological stars, the bouncing is very
simple, so that when the trajectory reaches the “end of
spacetime” at r = rB, it bounces back with mirror sym-
metry. Therefore, topological stars behave like “spherical
spacetime mirrors” for lights. However, the trajectories
are still strongly curved, so that they produce non-trivial
rings where photons rotate several times around the soli-
tons. In each ring, and especially in the central one, the
whole spacetime gets reflected coherently. This feature
produces a “water wave surface” effect in the “arty” pic-
tures at the bottom of Fig. 5.

As argued in Sec. III A, the stable inner photon sphere
of the second kind of topological stars is not visible by the
observer. Therefore, both kinds of topological stars are
relatively similar from afar. Moreover, their apparent
sizes are very much comparable, as we analytically de-
rived in Sec. III A 2. They are also significantly smaller
than the Schwarzschild shadow, although the comparison
of a charged gravitational object with a neutral one must
be taken with a grain of salt.

On the other side, the imaging of the Schwarzschild
topological solitons can be directly compared to the
Schwarzschild pictures, since they are both neutral. As
expected from Sec. III B, the two geometries look re-
markably similar in several aspects. The outermost
photon shell of the solitons is extremely close to the
Schwarzschild shadow. While the size has been derived
analytically in the equatorial plane in Eq. (31), we can see
now that it has an ellipsoidal shape that is smaller than
the Schwarzschild shadow along the axis of symmetry.

Moreover, the topological solitons have replaced the
inside of the shadow with regular gravitational structures
inducing chaotic scattering behaviors that are expected
from coherent black hole microstates. First, the quadri-
color screen reveals that increasingly many trajectories
traveling inside the would-be black hole shadow follow
chaotic paths. They are scattered across the celestial
sphere and form fewer coherent structures, as indicated
by the larger chaotically-colored regions. This is a direct
consequence of having non-integrable geodesic equations.

However, the picture still has some remnants of coher-
ence through multiple internal photon rings, as we can
see in Fig. 5 (and also in Fig. 6, when the inclination an-
gle varies). The Schwarzschild topological soliton consid-
ered here is the most primitive neutral soliton supported
by electromagnetic flux one can build: the solutions are
axially-symmetric bound states of three bubbles with a
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dipolar structure. As a consequence, this dipolar sym-
metry has an imprint on the scattering properties, such
that some geodesics can orbit coherently around each in-
dividual bubble and induce the ring patterns we observe.
However, considering more generic and less symmetric
geometries will lead to more chaotic and less coherent
gravitational lensing effects.

The “arty” pictures for the Schwarzschild solitons
highlight a more realistic consequence of these chaotic
features. Unlike topological stars, the geodesics that
travel inside the would-be black hole shadow get scat-
tered away as a blurred homogeneous cloud with a faded
coherent dipolar pattern. Therefore, they provide realis-
tic alternatives for exotic smooth regular geometries from
quantum gravity beyond black holes in GR.

In conclusion, the probe calculation confirms the an-
alytical results. Schwarzschild topological solitons have
scattering properties very close to those of Schwarzschild
black holes. These include their apparent size, scattering
angles, etcetera. However, the smooth microstructure in-
side the soliton reflects the light chaotically, unlike black
holes. We will estimate the fate of these reflections by
going one step beyond the probe picture.

2. Chaoticity, redshift and effective scrambling

The redshift and elapsed-time plots allow us to go be-
yond the probe description of the scattering properties.
Indeed, when backreaction is included, light with nearly
trapped chaotic trajectories and high redshift begins to
interact with the background and lose energy. This pro-
duces an effective scrambling behavior, as expected in
black holes, but caused here by a physically regular mech-
anism. The photons in these trajectories, even if they es-
cape within the probe calculation, are expected to be sig-
nificantly redshifted and fall outside the detectable wave-
length range [10, 13, 33]. Therefore, the elapsed time and
experienced redshift, combined with chaotic motions, ex-
hibit horizon-like characteristics in smooth topological
geometries without horizons.

In Fig. 5, we show that topological stars are once
again very coherent geometries. They do not induce a
long-term trapping to photons that go inside the geome-
tries, except for those concentrated on the photon orbits.
The redshift experienced is relatively small, with a maxi-
mum value of order 10 for topological stars of the second
kind. Therefore, generic topological stars do not generate
strong black-hole-like effects on scattering photons.

For the Schwarzschild topological solitons, the photons
crossing the outermost photon shell experience extreme
redshift and time delay, and therefore have horizon-
like properties. It is also remarkable how the pictures
look similar to the scattering in supersymmetric classi-
cal fuzzballs [10], which are known to be gravitational
manifestations of quantum microstates of extremal su-
persymmetric black holes with very long throats.

From the second row in Fig. 6, we can see that the

regions of high elapsed time correspond to the highly
chaotic regions in the quadri-color pictures. They corre-
spond to complicated trajectories that are orbiting back
and forth around the bubbles forming the bound states.
As explained in Sec. II B, the Schwarzschild topological

solitons consist of a vacuum bubble having near-extremal
bubbles with opposite charges at its poles. The latter
have almost zero size, and are smooth topological reso-
lutions of extremal black strings. Therefore, the solitons
have a very high redshift at the location of the charged
bubbles (see Ref. [15] for more details on the exact values
of the redshift in terms of the mass and extra-dimension
sizes). In the third row of Fig. 6, the high-redshift regions
correspond to the trajectories that go very close to these
bubbles. Overall, the redshift experienced by photons
that go inside the outer photon shell ranges from 102 to
104, and it can be even higher for solutions where the
charged bubbles are even closer to their extremal limit.
Moreover, the energy loss of the photons can be

well approximated by the maximum redshift encountered
along the trajectory. In this sense, the redshift is a good
approximation for the “darkness” that must be added
to the probe computation [33]. According to that prop-
erty, we could have therefore darkened the “arty” pic-
tures in Fig. 6 by a factor

√
max(−gtt) to obtain more

realistic photon scattering images. This would make the
Schwarzschild topological solitons almost indistinguish-
able from a Schwarzschild black hole, since all of the pat-
terns inside the photon shell would barely be visible.
Furthermore, from the EHT measurements [1], the up-

per bound on the image brightness at the center of M87*
is < 10%. By assuming that this implies a 10−2 red-
shift on average, the Schwarzschild topological soliton
presented in this analysis is already within this bound.
While it is an interesting example of what may exist ac-
cording to string theory, it excitingly raises the prospect
of horizonless stringy alternative for Schwarzschild black
holes in the real world.

3. Accretion disk

Let us now discuss the last row of Figs. 5 and 6, where
we have done a simple simulation of the image produced
by adding a bright accretion disk orbiting around our
geometries.
For these plots, we have approximately taken into ac-

count the effect of the redshift on the expected lumi-
nosity of the scattered photons. More specifically, we
have reduced the luminosity by 10% for each unit of
max log10(−gtt) (for example, the luminosity of a pho-
ton with maximum redshift of 104 is reduced by 40%).
This is a much smaller darkening factor than we might
realistically expect, since we should simply multiply the
luminosity by

√
max(−gtt). However, the approximation

gives a good visual idea of the darkening effect, while still
allowing scattered geodesics to be discerned in the high-
redshift region of the geometries.
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For a Schwarzschild black hole, the light coming from
the front of the disk goes directly to the observer, so it
is almost undistorted. In contrast, the light coming from
the other side is strongly bent. Because of this lensing,
a significant part of the light is seen at a higher inclina-
tion and a small “tail” appears from below, outlining the
shadow of the black hole [34].

We observe the same generic properties for the solitons
due to their outer photon shell that surrounds the geome-
tries. However, as these are smooth topological geome-
tries, some of the photons are reflected in a non-trivial
way by passing inside the topological solitons and bounc-
ing off. For topological stars, the reflections are very co-
herent circles, as if the light had been reflected by a spher-
ical “spacetime mirror.” For the Schwarzschild topologi-
cal solitons, most of the light that goes in is chaotically
scattered, forming a residual glow from inside the soli-
ton. Some trajectories however still follow the coherent
dipolar patterns formed by the bound states, inducing
coherent ring reflections from the inside.

Remarkably, the image of the Schwarzschild topolog-
ical soliton is once again almost indistinguishable from
the image of a Schwarzschild black hole. This similarity
would have been even more striking if we had darkened
the pictures by a more realistic factor of

√
max(−gtt).

The main difference are the “inner reflections” in the
solitons. This is a remarkable feature since the metrics
are very different, even outside the Schwarschild horizon.
However, since their outermost photon shell is very much
comparable in size and in terms of Lyapunov exponents,
the two classes of geometries have very similar gravita-
tional lensing properties. Being able to differentiate them
with EHT will require a great improvement in resolution
to detect more precisely what is scattered from inside the
would-be black hole shadow [32].

The Schwarzschild topological solitons are there-
fore the first compelling non-supersymmetric and non-
extremal geometries that are manifestations of quantum
gravity states of matter, and that have scattering prop-
erties very similar to Schwarzschild. They are the first
bound states of strings and branes in string theory that
demonstrate the existence of viable alternative to astro-
physical black holes in GR.

V. CONCLUSIONS AND OUTLOOK

In this paper, we have analyzed the properties of
four-dimensional string-theoretic horizonless topological
solitons that are non-extremal and can have macro-
scopic properties comparable to astrophysical black
holes. These new objects constructed by two of the au-
thors provide a compelling case for gravitational solitons
in the real world from string theory.

We considered two types of geometries. The first,
topological stars, are simple spherically-symmetric ge-
ometries that have a non-zero dark charge [14]. The
second, Schwarzschild topological solitons, are neutral

axially-symmetric bound states of topological stars that
can have the same mass and charge as four-dimensional
Schwarzschild black holes [15].

We focused on the physics of null geodesics and light
scattering in these backgrounds, highlighting differences
and similarities with ordinary black hole solutions in GR.
Topological solitons are coherent states of gravity that
emerge from dynamics of extra-dimensions which cannot
be described in terms of any standard dynamics of mat-
ter. However, they still scatter light non-trivially, and
therefore they have gravitational lensing signatures that
could be probed by future experiments.

Just like Schwarzschild black holes, topological solitons
have an outer photon shell that surrounds the geometries
and can be used to define their apparent size. Moreover,
this photon shell is unstable, and we have derived the
associated Lyapunov and critical exponents. For topo-
logical stars these exponents depend on its charge, but
they are of the same order as Lyapunov and critical ex-
ponent of Schwarzschild black holes. However, we have
shown that Schwarzschild topological solitons have an
outermost photon shell with a Lyapunov exponent and
a size remarkably similar to the Schwarzschild shadow.
These similarities are remarkable, taking into account
that the two metrics are very different.

We have pushed the comparison further by building
our own ray-tracing code to study numerically the light-
scattering properties of these solitons. Through various
illustrative plots, we have demonstrated that topolog-
ical stars are highly-coherent gravitational lenses that
can be described as “spacetime mirrors.” Despite hav-
ing a photon shell, they do not have shadows: photons
that “go in” generally bounce off without experiencing
high redshifts or large time delays. However, scattering
in Schwarzschild topological solitons is much more com-
plex: light that enters the photon shell of the solitons can
have strong chaotic behavior, very high redshift and large
elapsed time. These properties are expected to produce
an effective scrambling behavior and a phenomenologi-
cal horizon effect from regular gravitational structures.
All together, the Schwarzschild topological solitons have
scattering properties very similar to Schwarzschild black
holes. The main difference will be a residual faded glow
that emerges from inside the would-be shadow.

The present project has shown that topological solitons
from quantum gravity are relevant to describe real-world
physics and as macroscopic alternatives to black holes.
This motivates further studies to better understand to
what extent they are similar or different from black holes.
The presence of smooth topological microstructures be-
yond the shadow should also have observational implica-
tions for the tidal stress that geodesics encounter when
passing through the solitons [35], for quasinormal mode
spectra [11, 22, 23], and potentially also for gravitational-
wave echoes [13, 36].

Moreover, our computations have highlighted the pres-
ence of stable inner photon rings deep inside the topo-
logical microstructures. Even if they are not reachable
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from outside the outer photon shell, these trapped sur-
faces where matter can accumulate, radiate and inter-
act with the soliton are associated with non-linear insta-
bilities [37, 38]. In four-dimensional GR, they can lead
to migration to non-ultracompact configurations or col-
lapse to a black hole [37, 39]. In string theory, additional
quantum gravity degrees of freedom can induce geometric
transitions and quantum tunnelings, so that these states
may scramble to less coherent and more generic quan-
tum states. Thus, the fate of the instability is still to
some finite and non-singular states. While in the classi-
cal limit, it is expected that such generic states will be
more and more indistinguishable from black holes, our
work demonstrates that residual observable differences
might remain.

The accretion disk images we obtain in this paper
were produced to highlight theoretical differences be-
tween black holes and topological solitons, not to be ex-
perimentally realistic. In the future, we would like to
provide a more experimentally-relevant analysis by mod-
eling plasma orbiting topological solitons with full radia-
tive transfer methods [21, 40].
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