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We propose a systematic approach to deriving symmetry generators of Quantum Field Theories in
holography. Central to this analysis are the Gauss law constraints in the Hamiltonian quantization
of Symmetry Topological Field Theories (SymTFTs), which are obtained from supergravity. In
turn, we realize the symmetry generators from world-volume theories of D-branes in holography.
Our main focus is on non-invertible symmetries, which have emerged in the past year as a new type
of symmetry in d ≥ 4 QFTs. We exemplify our proposal in the holographic confinement setup,
dual to 4d N = 1 Super-Yang Mills. In the brane-picture, the fusion of non-invertible symmetries
naturally arises from the Myers effect on D-branes. In turn, their action on line defects is modeled
by the Hanany-Witten effect.

Introduction. The study of quantum dynamics is at
the heart of uncovering any fundamental principles of na-
ture. From various points of view, in condensed matter
physics, mathematical physics and quantum field theory,
such explorations have established the study of symme-
tries as an essential “backbone” of quantum systems. It
thus comes as a genuine surprise in the past year where
a dramatic extension to symmetries in 4d quantum field
theories (QFTs) were uncovered, which unlike ordinary
ones that form groups, obey fusion-like composition laws.
These non-invertible symmetries are well-established in
d = 2, 3, however, they are unexpected in d ≥ 4. Within
the past year various systematic approaches to the con-
struction of non-invertible symmetries have appeared in
[1–7]. Physical implications include characterization of
de/confining vacua and constraints on pion decays [8, 9],
and other applications appeared in [8–14].

All constructions thus far rely on field theory meth-
ods. Here we provide the holographic perspective from
symmetry inflow, supergravity and branes. Other pre-
liminary aspects of holography and non-invertible sym-
metries have been recently studied in [14–16]. Funda-
mental for the holographic construction is the Symme-
try Topological Field Theory (SymTFT) [17–20], which
naturally arises in brane/holographic setups from the
anomaly polynomial and inflow [21–25]. The SymTFT
onWd+1 encodes the full symmetry structure – the back-
ground fields for global symmetries and their ’t Hooft
anomalies – of a QFT on Wd = ∂Wd+1. When placed on
a slab with boundariesWd andMd and gapped boundary
condition on Md, the SymTFT reduces to the anomaly
theory of the QFT.

In this paper we propose a holographic derivation of
the SymTFT, as well as the study of the resulting sym-
metries – including non-invertible ones– that depend on
said boundary conditions. We derive the SymTFT by de-
scent from the anomaly polynomial in d+ 2 dimensions,
which is encoded in the supergravity. Motivated by the
work on BF-type theories in [26], the Hamiltonian quan-
tization of the SymTFT on Wd+1 allows us to extract
the Gauss law constraints that generate gauge symmetry
transformations. Under inflow, the bulk gauge symmetry
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FIG. 1. Top: Hanany-Witten transition, where the (x0, x3)-
plane is displayed to show the equivalence with the field the-
ory transition. Bottom: ’t Hooft loop passing through the

non-invertible defect N (1)
3 becomes attached to a topological

surface operator.

restricts to the global symmetries of the boundary the-
ory and the bulk generators flow to the desired symmetry
operators.

This is complemented by a realization of the symme-
try generators in terms of D-branes and their worldvol-
ume theories. The bulk supergravity fields, which de-
fine the symmetries, pull back on the brane worldvol-
ume theories. In addition, the D-branes also contribute
topological sectors that dress the symmetry defect, while
the kinetic terms of the brane action drop out at the
boundary. These defects become non-invertible depend-
ing on the boundary conditions for the bulk fields. The
brane setup and its dynamics towards the boundary pro-
vide a compelling holographic interpretation for the non-
invertible fusion via the Myers effect of Dp-branes into
a single D(p + 2)-brane, which in turn implements the
non-invertible fusion.

We demonstrate our proposal in the Klebanov-
Strassler solution, that is dual to a flow to confining pure
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N = 1 SU(M) Super-Yang Mills (SYM) [27]. Global
properties of the gauge group can be identified in holog-
raphy as in [28] and the study of holographic confine-
ment using the ’t Hooft anomalies of higher-form sym-
metries was carried out in [29]. In this paper, we de-
termine a framework to construct all symmetries in this
setup, in particular the non-invertible symmetries in the
PSU(M) = SU(M)/ZM theory, which map between de-
/confining vacua when spontaneously broken. In the
brane-picture the non-invertible fusion is naturally en-
coded in the Myers effect on D-branes [30]. Further-
more, the de-/confining transition is beautifully modelled
by the Hanany-Witten brane-transition [31], figure 1.
Though we focus on holographic confinement, the meth-
ods are general and can be used to study the symmetry
generators of any QFT from its SymTFT.

Field Theory. Non-Invertible symmetries in QFTs in
spacetime dimensions d ≥ 4 have recently been con-
structed using various approaches. One is based on
the presence of global symmetries that enjoy a mixed
’t Hooft anomaly [1]. For concreteness we consider a 4d
gauge theory (on a spin manifold) with 0-form symmetry
Γ(0) = Z2M , whose background field is A1, and 1-form
symmetry Γ(1) = ZM with background field B2. Con-
sider the anomaly

A = −2π
1

M

∫
A1 ∪

P(B2)

2
, (1)

where P is the Pontryagin square. This anomaly arises
in 4d N = 1 supersymmetric Yang-Mills theories for in-
stance, where Γ(0) is the chiral symmetry. There is a

non-anomalous Z(0)
2 ⊂ Z(0)

2M .
The generalized 0- and 1-form symmetries [32] are gen-

erated by 3d and 2d topological defects Dg
3(M3) and

Dh
2 (M2), respectively, which have group composition

Dg1
p (Mp)⊗Dg2

p (Mp) = Dg1g2
p (Mp). Due to the anomaly,

the generators for Γ(0) transform non-trivially in presence
of background fields for Γ(1)

Dg
3(M3) → Dg

3(M3) exp

(∫
M4

−2πi

M

P(B2)

2

)
, (2)

where ∂M4 =M3. Gauging the 1-form symmetry makes
this defect inconsistent. The proposal in [1] is to dress
the defect Dg

3(M3) with a minimal TQFT AM,p, which
has 1-form symmetry ZM and cancels the anomaly [33].

For ZM this is the minimal (spin) TQFT AM,1 =
U(1)M . The dressed defects are

N (1)
3 = D

(1)
3 ⊗AM,1 , (3)

where the superscript labels the generator of the 0-form
symmetry. This defect has non-invertible fusion [4, 8].
ForM odd the TQFTs obeyAM,1⊗AM,1 = AM,2⊗AM,2.
This results in the non-invertible fusion of the 3d defects
in the PSU(M) theory

N (1)
3 ⊗N (1)

3 = AM,2 N (2)
3 . (4)

Defining the conjugate N (1)†
3 = D−1

3 ⊗AM,−1 results in

N (1)
3 ⊗N (1)†

3 =
∑

M2∈H2(M3,ZM )

(−1)Q(M2)D2(M2)

|H0(M3,ZM )|
, (5)

which is the condensation defect of the 1-form symme-

try on M3 with D2(M2) = e
i2π

∫
M2

b2/M , where b2 is the
gauge field for the 1-form symmetry. We will now turn to
supergravity/branes and show how these non-invertible
symmetries are naturally implemented in this framework.

Symmetries from Holography. We illustrate the sys-
tematic approach by realizing it in the holographic con-
finement setup in type IIB supergravity introduced by
Klebanov-Strassler [27]. It describes the near-horizon ge-
ometry of N D3-branes probing the conifold (i.e. the
Calabi-Yau cone over the Sasaki-Einstein 5-manifold
T 1,1 ∼ S3 × S2) with M D5-branes on S2 ⊂ T 1,1. The
near-horizon geometry is W5 ×T 1,1, where the 4d space-
time where the QFT lives is W4 = ∂W5, see (C4). We
assume integral N/M , so that the duality cascade in field
theory ends on 4d N = 1 SU(M) SYM. The 5d effective
action is written in terms of p-form field strengths f1, F2,
g2, h3, f3 with Bianchi identities

df1 = 2MF2 , dg2 =Mh3 , dF2 = dh3 = df3 = 0 . (6)

We solve the Bianchi identities (6) in terms of

f1 = fb1 + dc0 + 2MA1 , F2 = Fb
2 + dA1 , (7)

g2 = gb2 + dβ1 +Mb2 , h3 = hb3 + db2 , f3 = fb3 + dc2 ,

where A1, c0, b2, β1, c2 are globally defined p-form gauge
potentials and fb1 , Fb

2 , g
b
2 , h

b
3 , f

b
3 are closed forms with

integral periods, representing topologically non-trivial
base-points. From (6) it follows that Mh3 and 2MF2

are cohomologically trivial. Assuming W5 has no tor-
sion, hb3 = 0 = Fb

2 . The base-points fb1 , g
b
2 represent

integral lifts of classes in H1(W5;Z2M ), H2(W5;ZM ) de-
scribing discrete gauge fields for a Z2M 0-form symmetry
and ZM 1-form symmetry.

The relevant terms in the 5d bulk action consist of
standard kinetic terms and non-trivial topological terms.
The latter can be extracted [29] from the consistent trun-
cation of [34] or via anomaly inflow [24], as reported in
appendix A. In order to construct the symmetry gen-
erators, it is convenient to dualize the 0-form potential
c0 into a (globally defined) 3-form gauge potential c3.
Our task, carried out in appendix A, is then to write
the 5d bulk action in terms of A1, b2, β1, c2, c3 and the
base-point fluxes fb1 , g

b
2 , f

b
3 . The final action consists of

standard kinetic terms and

Stop = 2π

∫
W5

[
1
2N(b2dc2 − c2db2) +M(A1dc3 + c3dA1)

+Nb2f
b
3 +A1(g

b
2 )

2
]
. (8)

Symmetry Generators. We now analyze the 5d bulk
action in the Hamiltonian formalism, treating the radial
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direction of W5 as Euclidean time similarly to the AdS5

cases [26, 28]. Crucially, the action does not depend on
the time derivatives of the time components of the gauge
potentials. As a result, the associated canonical momenta
are identically zero. Varying the action with respect to
the time components of the gauge potentials implements
the (classical) Gauss constraints. We denote the varia-
tion of the action with respect to the time component of

A1 as GA1 , and so on. We find that Gβ1 = G̃β1 and

Gb2 = G̃b2 −Nd4c2 −Nfb3 , Gc2 = G̃c2 +Nd4b2 (9)

GA1
= G̃A1

+ 2Md4c3 + (gb2 )
2 , Gc3 = G̃c3 + 2Md4A1 .

Here, d4 denotes external derivative along the spatial slice
W4, tilde the kinetic term contributions, and all fields are

understood as restricted to W4. The contributions G̃ of
the bulk kinetic terms are suppressed near the boundary
[26, 28].

We provide a detailed derivation of symmetry genera-
tors from the Gauss law constraints in appendix A. For
concreteness, let us illustrate the general analysis here

by considering e
2πi

∫
M4

(2Md4c3+(gb2 )
2)

as it is brought to
the boundary. Our task is to define a genuine operator
on a 3-cycle M3 such that, when raised to the 2M -th
power and with M3 = ∂M4, it reproduces the opera-

tor e
2πi

∫
M4

(2Md4c3+(gb2 )
2)

from the Gauss constraint. We
consider two options. In Option (i), we fix gb2 at the
boundary as a classical background. This corresponds
to 4d N = 1 SU(M) SYM, with a global electric ZM
1-form symmetry coupled to a non-dynamical discrete
2-form field. The genuine operator on M3 in this case

is simply the standard holonomy e
2πi

∫
M3

c3 accompanied

by the c-number phase e
2πi
2M

∫
M4

(gb2 )
2

. This operator obeys
group-like fusion rules. In Option (ii) we sum over gb2 at
the boundary. In field theory, we gauge the electric 1-
form symmetry of 4d N = 1 SU(M) SYM, thereby get-

ting the PSU(M) theory. Casting the phase e
2πi
2M

∫
M4

(gb2 )
2

as a genuine operator on M3 we can rewrite 1
2M (gb2 )

2 us-
ing a 3d auxiliary theory (this is a type of inflow from the
bulk operator onM4 toM3), which we detail in appendix
A. The symmetry generator on M3 is thus

N (1)
3 (M3) =

∫
Dae2πi

∫
M3

(c3+ 1
2Mada+agb2) , (10)

which has the non-invertible fusion rule (4).

The far IR for PSU(M). The Z(0)
2M global symmetry

of 4d N = 1 SU(M) SYM is spontaneously broken to

Z(0)
2 in the far IR and the theory has M confining vacua.

The mixed anomaly (1) is matched by a non-trivial 4d
Symmetry Enhanced Topological Phase (SET) [32]

L4d =Mϕdc3 +
1
2ϕdb1db1 + Λ2(db1 +Mb2) , (11)

where ϕ is a compact scalar of period 1, c3, b2, b1 are
gauge potentials and Λ2 a Lagrange multiplier. The b1, b2
fields are non-dynamical. The possible VEVs ⟨e2πiϕ⟩ =

e2πip/M (p = 0, 1, . . . ,M − 1) label the M vacua, while

e
2πi

∫
C3
c3 describes a domain wall between vacua. The

action (11) is invariant under the gauge transformations
b′1 = b1 − Mλ1, c

′
3 = c3 + db1λ1 − 1

2Mλ1dλ1. Thus

e
2πi

∫
M3

c3 has a ’t Hooft anomaly, consistently with the
fact that the domain walls in the SU(M) theory support
a 3d TQFT AN,−1 [35].
In [29] it is demonstrated how the SET (11) emerges

from the 5d bulk couplings in the IR geometry T ∗S3 (de-
formed conifold). In contrast to the UV analysis above,
the IR analysis receives contributions from both topolog-
ical and kinetic terms. The Lagrange multiplier Λ2 is an
imprint of the Stückelberg pairing between b1, b2 in the
5d action. The scalar ϕ is identified as c0/M .
Let us now turn to the PSU(M) theory. The far IR is

still described by (11), but now b1, b2 are local dynamical
fields. Using db1 = −Mb2, we see that the vacuum with
⟨e2πiϕ⟩ = e2πip/M exhibits a discrete 2-form gauge the-

ory
∫
M4

pM
2 b22. The domain walls are no longer realized

as e
2πi

∫
M3

c3 , which is not gauge invariant, but precisely
by (10). Indeed, this operator raised to the 2M -th power
with M3 = ∂M4 reduces to the manifestly gauge invari-

ant quantity e
2πi

∫
M4

(2Mdc3+db1db1) (where gb2 is locally
modeled by db1). On the domain wall, both a and b1
are dynamical and summed over. The total 3d theory
is then an Abelian CS theory with levels encoded in the
matrix (M 1

1 0 ). This is a Dijkgraaf-Witten theory with
gauge group Z1, hence trivial, as anticipated in [33].

D-branes as Symmetry Generators. The topological
defects also arise as boundary limits of probe branes in
the bulk that are parallel to the boundary. Both in AdS
in hyper-polar coordinates and in the W5 geometry of
the KS solution, where the boundary sits at r → ∞,
the tension TDp ∼ rp (p > 0), such that the DBI part
of the action is subleading and the Wess-Zumino term
dominates [36]. In addition, we stress that these D5-
branes are not BPS but they can be stable in the sense
of [37] in r → ∞. The topological terms for a D5-brane
wrapping the S3 contain the bulk forms c3 (from C6 on
S3) and b1 (from C4 on S3), as well as the U(1) gauge
field a on the brane. We derive the action on the defect by
reducing the D5-brane Wess-Zumino action in appendix
B. The result reads

SD5 = 2π

∫
M3

(
c3 +

M

2
ada+ adb1

)
. (12)

Here b1 is a local gauge field. The cohomology class of
db1 is identified with gb2 and is part of the data of the
b2 configuration in (7). It is interesting to understand
what happens as (12) is pushed to the boundary. We
always perform a path integral over a, which is a localized
mode on the D5-brane. We may or may not integrate
over the topologically trivial part of b1, which is a bulk
mode, depending on the boundary conditions. If we do
not integrate over it, the holonomy of c3 is dressed with
the non-trivial TQFT U(1)M . If we integrate over it,
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it becomes a trival theory just as in the supergravity
derivation. The D-branes therefore precisely give rise to
the minimal TQFT stacking.

Non-invertible Fusion and Myers Effect. To see
the non-invertible fusion, we can either repeat the field
theory analysis, given the explicit form of (12). There is
a much more elegant way to obtain the fusion directly in
string theory. The fusion is computed by stacking two
D5-branes, which gives rise to a non-abelian gauge the-
ory. However, a non-abelian brane configuration with an
orthogonal S2 geometry and a non-trivial B-field under-
goes the Myers effect [30] in reaching the configuration
with minimal energy (see appendix C). The end point
configuration is given by a single D7-brane with two
units of worldvolume gauge flux on S2. We then write

f2 = fS
2

2 + da, with
∫
S2 f

S2

2 = 2. From the expansion

of the Wess-Zumino action of the D7, integrating on S2

and S3, the terms are

SD7/2D5 = 2π

∫
M3

(2c3 +Mada+ 2adb1) . (13)

Note that this argument is applicable for any integral
value of M . From the brane we thus obtain the following
perspective on the fusion. Each single D5-brane results in
topological defects that are dressed with U(1)M = AM,1

CS theories – thus string theory construction automat-
ically results in the minimal TQFT dressing of the de-
fects. The “brane-fusion” predicts the action (13), which
is U(1)2M CS-theory coupled to b2. This is obtained also
by fusing two U(1)M theories, [38] and therefore realizes
the field theory fusion rule in (4).

It is also tempting to conjecture that the fusion of N (1)
3

with its conjugate N (1)†
3 (5) is the fusion between defects

created by brane and anti-brane, with a non-trivial field
configuration. This result in the condensation defect,
which is the lower-dimensional brane that couples to db1.
This is in fact expected from tachyon condensation of the
D-Dbar system [39], which needs to preserve the charge
under db1, and thus is expected to give rise to a non-
trivial condensate. This will be discussed elsewhere, and
shown to correspond to a mesh of D3-branes.

Action on ’t Hooft lines and Hanany-Witten. The
brane perspective makes the interaction between the ’t
Hooft line H and the non-invertible symmetry defect,

N (1)
3 , manifest. Field-theoretically, when such a line

crosses the non-invertible topological defect, a topolog-
ical surface operator is created, which connects N and
H, see figure 1. This effect can be derived by observ-
ing that 4d N = 1 PSU(M) SYM is self-dual under

τ−1στ−1, where τ is stacking with e2πi
1
M

∫
P(B2)/2, B2 is

the background field for the magnetic 1-form symmetry,
and σ is gauging this 1-form symmetry (cfr. [1] section
B). We may then realize the non-invertible topological

defect N (1)
3 via a half-space gauging argument, and use

this picture to derive the aforementioned action on ’t
Hooft lines, along the lines of [4, 8].
In order to see this effect in supergravity we need to

define a surface operator, which extends in the radial
direction, r, and ends on the boundary, O2(M2). The 5d
bulk EOMs select a natural candidate for O2(M2): the
b2 EOM imply

−kf3d ∗ f3 = Nf3 + f1g2 −Mkg2 ∗ g2 =:MF3 , (14)

where the k’s are constants from the kinetic terms, and
Nf3 and f1g2−Mkg2∗g2 are separately closed. The latter
combination encodes the 3-form field strength of the 2-
form potential dual to b1. On shell, F3 = dâ2 for some
globally defined 2-form potential. The operator O2(M2)
is identified with a Wilson surface for â2,

O2(M2) = e
2πi

∫
M2

â2 , â2 = a2 + κc2 , (15)

where κ = N/M and a2 is the dual of b1 (in type IIB a2
comes from C4 on S2, and the duality is a consequence
of the self-dual F5 flux).

This bulk picture fits with the D-brane picture, in
which O2(M2) is realized by a D1-D3-brane bound state
on S2 ⊂ T 1,1, or alternatively D3s with κ = N/M
units of flux supported on S2 [29]. In brane engineer-
ing, a Hanany-Witten transition [31] can occur when
two branes link non-trivially in spacetime and are passed
through each other, thereby creating a new extended ob-
ject stretching between them. In our setup this can hap-
pen for D3s wrapping S2 and extending along the radial
direction r and D5s on S3 localized at the boundary:

Brane x0 x1 x2 x3 r z1 z2 w1 w2 w3

D3 X X X X

D5 X X X X X X

F1 X X

(16)

Here z1,2, w1,2,3 are local coordinates on S2 and S3, re-
spectively. The relevant brane linking in our system is
measured by the following quantity L defined moduloM ,

L =

∫
M2×S3

F5 = −
∫
M1×S2

F3 =

∫
M2

db1 = −
∫
M1

dc0 ,

(17)
where M2 = Rx1

× Rx2
and M1 = Rr. On the worldvol-

ume of N (1)
3 , the EOM for a implies db1 = −Mda. Thus,

db1 is exact modulo M . As a result, the linking L must
be conserved modulo M . When the D3 crosses the D5,
this changes to db1 = −Mda + δ(pt ⊂ M2). The local-
ized source is the effect of a new object (an F1-string)
that is created, which intersects both M2 and M3 and
extends along t = x0, x3, figure 1. The system in (16) is
related to the original Hanany-Witten setup NS5-D5-D3
by S- and T-dualities. The D3- and D5-branes link in
the direction x3, this means that an F1 is created when
the the D3 crosses the D5 (16). F1 strings are indeed

electrically charged under e−2πi
∮
b2 , which was precisely

the dressing for O2(M2). This also matches the physics
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of the action on the ’t Hooft loop in PSU(M) through a
non-invertible domain wall between de-/confining vacua,
that mimicks closely the order/disorder transition in the
Ising model.

Outlook. We provide a bottom up approach – via Gauss
law constraints in supergravity – and top down one –
via branes in string theory – for constructing symmetry
operators in holography. Our methods are crucial for
a systematic extraction of symmetry defects, whenever
SymTFTs are available. It deserves further study. Fu-
ture applications include theories that have similar type
of mixed anomalies in the SymTFT, such as N = 4
SYM theories holographically dual to AdS5 × S5 with

non-invertible duality defects [2, 13]. A similar realiza-
tion of these topological defects in terms of M5-branes
at the boundary of conical in G2-holonomy spaces is also
tempting, and show similar features to (16). Finally we
also briefly comment on the holographic realization of
the (self-) duality and triality of non-invertible topologi-
cal defects [4] for N = 4 SYM in AdS5×S5. Duality and
Triality are all subgroup of SL(2,Z) symmetries, there-
fore is very tempting to conjecture that the topological
defects in this case are engineered by 7-branes wrapping
S5. These are just example of possible applications of
this approach, which we plan to come back in the future,
but very importantly they show the broader scope of
the holographic supergravity and brane approach, which
are meant to address questions about symmetries of the
QFTs living at the boundary.
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S. Schäfer-Nameki, Phys. Rev. D 104, 066005 (2021),
arXiv:2104.12764 [hep-th].

[30] R. C. Myers, JHEP 12, 022 (1999), arXiv:hep-
th/9910053.

[31] A. Hanany and E. Witten, Nucl. Phys. B 492, 152 (1997),
arXiv:hep-th/9611230.

[32] D. Gaiotto, A. Kapustin, N. Seiberg, and B. Willett,
JHEP 02, 172 (2015), arXiv:1412.5148 [hep-th].

[33] P.-S. Hsin, H. T. Lam, and N. Seiberg, SciPost Phys. 6,
039 (2019), arXiv:1812.04716 [hep-th].

[34] D. Cassani and A. F. Faedo, Nucl. Phys. B 843, 455
(2011), arXiv:1008.0883 [hep-th].

[35] D. Gaiotto, A. Kapustin, Z. Komargodski, and
N. Seiberg, JHEP 05, 091 (2017), arXiv:1703.00501 [hep-
th].

[36] In addition, as suggested by [28], when compactifying
on S3 the low-energy brane action, we can consider the
truncation to the (topological) sector which describes flat
fields only, and ignore any irrelevant 3d kinetic terms.
These will only describe the dynamics of modes with non-
zero flux.

[37] D. Arean, D. E. Crooks, and A. V. Ramallo, JHEP 11,
035 (2004), arXiv:hep-th/0408210.

[38] Two U(1)M theories correspond to∫
DaDa′e

2πi
∫
M3

[M2 (ada+a′da′)+(a+a′)db1]. Define

http://dx.doi.org/10.1103/PhysRevLett.128.111601
http://dx.doi.org/10.1103/PhysRevLett.128.111601
http://arxiv.org/abs/2111.01141
http://dx.doi.org/ 10.1103/PhysRevD.105.125016
http://arxiv.org/abs/2111.01139
http://arxiv.org/abs/2204.06564
http://arxiv.org/abs/2204.09025
http://arxiv.org/abs/2208.05973
http://arxiv.org/abs/2208.05982
http://arxiv.org/abs/2208.05993
http://arxiv.org/abs/2205.05086
http://arxiv.org/abs/2205.06243
http://arxiv.org/abs/2205.06243
http://dx.doi.org/ 10.1007/JHEP09(2021)203
http://arxiv.org/abs/2104.07036
http://arxiv.org/abs/2208.04331
http://arxiv.org/abs/2206.07073
http://dx.doi.org/10.1007/JHEP08(2022)053
http://arxiv.org/abs/2205.01104
http://arxiv.org/abs/2207.02831
http://arxiv.org/abs/2206.14093
http://arxiv.org/abs/2203.09537
http://dx.doi.org/10.1007/s00220-013-1880-1
http://dx.doi.org/10.1007/s00220-013-1880-1
http://arxiv.org/abs/1212.1692
http://dx.doi.org/10.1007/JHEP02(2021)132
http://arxiv.org/abs/2008.05960
http://arxiv.org/abs/2112.02092
http://arxiv.org/abs/2112.02092
http://arxiv.org/abs/2203.10063
http://dx.doi.org/10.1088/1126-6708/1998/09/004
http://dx.doi.org/10.1088/1126-6708/1998/09/004
http://arxiv.org/abs/hep-th/9808060
http://dx.doi.org/10.4310/ATMP.1998.v2.n3.a8
http://arxiv.org/abs/hep-th/9803205
http://arxiv.org/abs/hep-th/9803205
http://dx.doi.org/10.1007/JHEP01(2020)125
http://dx.doi.org/10.1007/JHEP01(2020)125
http://arxiv.org/abs/1910.04166
http://dx.doi.org/ 10.1007/JHEP02(2021)116
http://dx.doi.org/ 10.1007/JHEP02(2021)116
http://arxiv.org/abs/2002.10466
http://dx.doi.org/10.1007/JHEP03(2021)196
http://dx.doi.org/10.1007/JHEP03(2021)196
http://arxiv.org/abs/2007.15003
http://arxiv.org/abs/hep-th/0412167
http://arxiv.org/abs/hep-th/0412167
http://dx.doi.org/10.1088/1126-6708/2000/08/052
http://arxiv.org/abs/hep-th/0007191
http://dx.doi.org/10.1088/1126-6708/1998/12/012
http://arxiv.org/abs/hep-th/9812012
http://dx.doi.org/10.1103/PhysRevD.104.066005
http://arxiv.org/abs/2104.12764
http://dx.doi.org/10.1088/1126-6708/1999/12/022
http://arxiv.org/abs/hep-th/9910053
http://arxiv.org/abs/hep-th/9910053
http://dx.doi.org/10.1016/S0550-3213(97)00157-0
http://arxiv.org/abs/hep-th/9611230
http://dx.doi.org/10.1007/JHEP02(2015)172
http://arxiv.org/abs/1412.5148
http://dx.doi.org/10.21468/SciPostPhys.6.3.039
http://dx.doi.org/10.21468/SciPostPhys.6.3.039
http://arxiv.org/abs/1812.04716
http://dx.doi.org/10.1016/j.nuclphysb.2010.10.010
http://dx.doi.org/10.1016/j.nuclphysb.2010.10.010
http://arxiv.org/abs/1008.0883
http://dx.doi.org/10.1007/JHEP05(2017)091
http://arxiv.org/abs/1703.00501
http://arxiv.org/abs/1703.00501
http://dx.doi.org/10.1088/1126-6708/2004/11/035
http://dx.doi.org/10.1088/1126-6708/2004/11/035
http://arxiv.org/abs/hep-th/0408210


6

a+ = a + a′, so that integrating out sets a+ = 2a,
which gives precisely the brane-action (13).

[39] A. Sen, JHEP 08, 012 (1998), arXiv:hep-th/9805170.
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Appendix A: Supergravity Analysis and (Non-Invertible) Symmetry Generators

The Klebanov-Strassler setup [27] provides a holographic realization of 4d N = 1 SYM theory in type IIB string
theory. It consists of two main ingredients. First, a stack of N D3-branes, extending along R1,3 and situated at the
tip of the conifold, i.e. the non-compact Calabi-Yau metric cone over T 1,1, a Sasaki-Einstein 5-manifold with topology
S2 × S3. The near-horizon geometry at this stage is AdS5 × T 1,1, supported by N units of F5 flux. The second
ingredient is a stack of M D5-branes wrapping the S2 inside T 1,1 and extending on R1,3. The backreaction of the M
D5-branes has two important effects: the AdS5 metric is deformed (see ds2W5

below (C4)); the F5 flux on S5 is no
longer constant, see (C5). This appendix focuses on the low-energy 5d effective action on W5 obtained from reduction
of the 10d couplings of type IIB supergravity on the horizon T 1,1, threaded by the fluxes in (C5).

a. Bulk topological couplings from anomaly inflow and consistent truncation. The relevant terms in the 5d bulk
effective action take the form S = Skin + Stop. In our conventions, the action enters the path integral as eiS . The
kinetic terms are standard, i.e. a sum of terms of the form f1 ∧ ∗f1 and similar for the other field strengths, with
constant coefficients. The topological terms Stop are written as an integral over a 6-manifold W6 such that ∂W6 =W5,

Stop = 2π

∫
W6

[
Nh3f3 + F2g

2
2 − f1g2h3 − 1

4N
2F3

2

]
. (A1)

These couplings can be derived via anomaly inflow in type IIB supergravity. The starting point is the 11-form [24]

I11 = 1
2F5dF5 −F5H3F3 . (A2)

This object captures both the Chern-Simons coupling in the 10d type IIB supergravity action, and the effect of the
selfduality of F5. The quantity F5 is a non-closed 5-form, related to F5 as F5 = (1 + ∗10)F5. The task at hand is to
expand F3, H3, F5 onto cohomologically non-trivial forms of the horizon T 1,1. The latter is topologically S2 × S3.
Its Einstein metric reads ds2(T 1,1) = 4

9Dψ
2 + 1

6ds
2(S2

1) +
1
6ds

2(S2
2), where ds

2(S2
i ) = dθ2i + sin2 θidϕi (i = 1, 2) are

round metric on unit-radius S2’s, the angle ψ has period 2π, and Dψ = dψ+ 1
2 cos θ1dϕ1 +

1
2 cos θ2dϕ2. We turn on a

Kaluza-Klein 1-form gauge field A1 associated to the isometry ∂ψ, by means of the replacement dψ
2π → dψ

2π + A1. Let

us define Vi =
1
4π sin θidθidϕi (i = 1, 2). The expansion of H3, F3, F5 reads

H3 = h3 , F3 =Mω3 + f1ω2 + f3 , F5 = NV5 + g2ω3 . (A3)

The quantities h3, f1, f3, g2 are the field strengths of external gauge potentials. The integers M , N capture the D5-
and D3-brane charges in the Klebanov-Strassler setup. We have introduced ω3 = (V1 − V2)

Dψ
2π , ω2 = − 1

2 (V1 − V2),

V5 = ω2ω3 +
1
2F2(V1 + V2)

Dψ
2π , where F2 = dA1. The 3-form ω3 is dual to the non-trivial 3-cycle in T 1,1, which can

be represented by the S1
ψ fibration over S2

1 at a generic point on S2
2 . The 2-form ω2 is dual to the non-trivial 2-cycle

in T 1,1 and is normalized by requiring
∫
T 1,1 ω2ω3 = 1, which encodes the fact that the 2-cycle and 3-cycle in T 1,1

have intersection number 1. We have dω2 = 0, dω3 = −2ω2F2, dV5 = 1
2 (V1 + V2)F2

2 . In particular, the definition of
V5 is engineered in such a way that dV5 contains no terms linear in F2. This is necessary to ensure the compatibility
of (A3) with the type IIB Bianchi identities dF5 = H3F3, dH3 = 0, dF3 = 0 (we have F1 ≡ 0). The 10d Bianchi
identities also imply the Bianchi identities (6) for the external field strengths. The 6-form integrand in (A1) can now
be readily reproduced by plugging (A3) into (A2) and fiber-integrating along T 1,1.

The topological couplings (A1) can also be inferred from the consistent truncation of [34]. With reference to the
full set of topological couplings in the 5d action of [34] (and using their notation) we freeze C0 to a constant, we
gauge fix the scalars bJ , cJ to zero, we set to zero the massive 1-form fields b1, c1 and the massive scalar bΦ, we

http://dx.doi.org/10.1088/1126-6708/1998/08/012
http://arxiv.org/abs/hep-th/9805170
http://arxiv.org/abs/2208.07508
http://dx.doi.org/10.1016/S0550-3213(00)00206-6
http://dx.doi.org/10.1016/S0550-3213(00)00206-6
http://arxiv.org/abs/hep-th/0002159
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set p = 0, q = M , k = N . The couplings (A1) are reproduced with the identifications (A1, g2, f1, h3, f3)here =
(− 1

2A, f
Φ
2 , Dc

ϕ, db2, dc2)there. The term F3
2 in (A1) originates from dA(dãJ1 )

2 in [34], due to the fact that A+ ãJ1 is a

massive vector. Since we are interested in massless modes, we can set effectively ãJ1 = −A.
b. Dualization of c0. After solving the Bianchi identities (6) in terms of base-point fluxes and globally defined

gauge potentials, we can write the topological action (A1) as an integral of a globally defined 5-form on W5,

Stop = 2π

∫
W5

[
Nb2(dc2 + fb3 ) +A1(g

b
2 )

2 + b2g
b
2f

b
1 + 1

2M f̃1(g̃
2
2 + 2g̃2g

b
2 − 1

4N
2(dA1)

2) + 1
2M fb1 g̃

2
2

]
, (A4)

where we have introduced the shorthand notation f̃1 = dc0+2MA1, g̃2 = dβ1+Mb2, and suppressed wedge products

for brevity. We add a Lagrange multiplier to the action, implementing the Bianchi identity for f̃1,

Smult = 2π

∫
W5

(2MdA1 − df̃1)c3 , (A5)

where c3 is a globally defined 3-form potential. After integrating by parts the term df̃1c3, the total action Skin +

Stop + Smult depends algebraically on f̃1, which can be integrated out using its classical equation of motion f1 ∝ ∗f4
(recall that f1 = fb1 + f̃1), with f4 given as

f4 = dc3 − 1
2M

(
g̃22 + 2g̃2g

b
2 − 1

4N
2(dA1)

2
)
. (A6)

The new action after eliminating f̃1 has standard kinetic terms and a new set of topological couplings as in (8).
More precisely, to reproduce (8) we also have to add some total derivatives to the 5d action, constructed with the
globally-defined gauge potentials and the closed base-point fluxes.

c. Canonical momenta and Gauss constraints. We consider a 5d spacetime of the form W5 = M4 × Rt with
product metric ds2(W5) = ds2(M4) − dt2. We write the 5d exterior derivative as d = d4 + dt∂t. We decompose the
gauge potentials in components without and with a leg along the time direction t, (where we denote the spatial slice
part with a bar)

A1 = A1 + dtA0
0 , β1 = β1 + dt β0

0 , b2 = b2 + dt b01 , c2 = c2 + dt c01 , c3 = c3 + dt c02 . (A7)

The Lagrangian L is defined by S = 2π
∫
dtL, and it is the integral over M4 of a 4-form Lagrangian density. The

canonical momenta associated to the spatial components A1, β1, b2, c2, c3 are defined as variational derivatives of L
with respect to ∂tA1, ∂tβ1, and so on. Similarly, the Gauss constraints are defined as the variational derivatives of L
with respect to the time components A0

0, β
0
0 , and so on,

δL =

∫
M4

[
ΠA1δ∂tA1 +Πβ1δ∂tβ1 +Πb2δ∂tb2 +Πc2δ∂tc2 +Πc3δ∂tc3 + GA1δA

0
0 + Gβ1δβ

0
0 + Gb2δb01 + Gc2δc01 + Gc3δc02

]
,

where we have denoted the momenta with Π and the Gauss constraints with G. We compute

Πb2 = Π̃b2 − 1
2Nc2 , Πc2 = Π̃c2 +

1
2Nb2 , ΠA1

= Π̃A1
−Mc3 , Πc3 = Π̃c3 −MA1 , Πβ1

= Π̃β1
, (A8)

where we used a tilde to denote the contributions originating from the kinetic terms. The Gauss constraints are

reported in (9). The quantities Π̃, G̃ satisfy

G̃A1
= −d4Π̃A1

, G̃β1
= −d4Π̃β1

, G̃b2 = d4Π̃b2 +MΠ̃β1
, G̃c2 = d4Π̃c2 , G̃c3 = −d4Π̃c3 . (A9)

This can be seen by noting that the part of the 4-form Lagrangian density that originates from the 5d kinetic terms
depends on the various gauge potentials only via the following combinations: d4A1, d4b2, d4β1 +Mb2, d4c2, d4c3
∂tA1 − d4A

0
0, ∂tb2 − d4b

0
1, ∂tβ1 − d4β

0
0 +Mb01, ∂tc2 − d4c

0
1, ∂tc3 − d4c

0
2. The relations (A9) then follow from the chain

rule for functional derivatives. Combining (9), (A8), and (A9) we arrive at the expression for the Gauss constraints
in terms of the canonical momenta,

Gb2 = d4Πb2 +MΠβ1
− 1

2Nd4c2 −Nfb3 ,
Gc2 = d4Πc2 +

1
2Nd4b2 ,

GA1
= −d4ΠA1

+Md4c3 + (gb2 )
2 ,

Gc3 = −d4Πc3 +Md4A1 ,
Gβ1

= d4Πβ1
. (A10)
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d. Symmetry Generators from Gauss law constraints. We briefly review why the Gauss law constraint can be used
to construct symmetry operators. For this we consider a p-form gauge field Ap with transformation Ap → Ap+dλp−1

on a d + 1-dimensional spacetime with constant time slices Wd. Let GA be the Gauss constraint, which is a closed
(d− p+ 1)-form. In Hamiltonian quantization, it generates a small gauge transformation as the operator

exp

(
2πi

∫
Wd

λp−1 ∧ GA
)
. (A11)

Now we consider a singular gauge transformation that has support on a boundary surface Md−p = ∂Md−p+1 as

dλp−1 = δ (Md−p) . (A12)

This allows us to associate a symmetry generator for gauge transformation on the pair (Md−p,Md−p+1) as

exp

(
2πi

∫
Md−p+1

GA

)
. (A13)

If GA = dOA, with OA a globally defined operator, we can integrate by parts to obtain a genuine dynamical operator

defined on d − p-cycles as e
2πi

∫
Md−p

OA
. Now as we take the W4 near the boundary of W5, the kinetic terms are

suppressed and the operator is topological on Md−p [26, 28].
If Ga cannot be expressed as a derivative of a gauge invariant and globally defined operator, consider Md−p =

∂Md−p+1 and define

SA(Md−p) = e
2πi

∫
Md−p+1

GA
. (A14)

In this operator the contribution from the kinetic terms are derivatives of local operators. The main task is now to
define a genuine operator on Md−p.
Let us concretely carry this out in the case of A = A1 with Gauss law constraints

GA1
= G̃A1

+ 2Md4c3 + (gb2)
2 . (A15)

Here G̃A1
= dÕA1

is exact and c3 is globally defined. We wish to define a genuine operator on M3 = ∂M4 such that,
when raised to the 2M -th power it reproduces the operator constructed from the Gauss law constraint SA1

(M4). At
this stage, we will also consider the operator near the boundary of W5 and therefore can drop the contribution from
the kinetic term. However we must now consider the different choices of boundary conditions. The first case we fix
b2 and thus gb2 at the boundary as classical backgrounds. This corresponds to 4d N = 1 SU(M) SYM, with a global
electric ZM 1-form symmetry coupled to a non-dynamical discrete 2-form field. The genuine operator on M3 in this

case is simply the standard holonomy e
2πi

∫
M3

c3 accompanied by the c-number phase e
2πi 1

2M

∫
M4

(gb2)
2

. This operator
obeys group-like fusion rules.

The more interesting scenario is when we sum over gb2 at the boundary. In field theory, we gauge the electric 1-form

symmetry of 4d N = 1 SU(M) SYM, thereby getting the PSU(M) theory. Here we cannot treat e
2πi 1

2M

∫
M4

(gb2)
2

as
a c-number. However we observe that

e
2πi

∫
M4

(gb2)
2

=

∫
DaDce−2πi

∫
M4

(M2da∧da+2Mda∧gb2+dc∧g
b
2) , (A16)

where gb2 is flat on the left hand side. Therefore integrating over a and c reproduces the right hand side. Now we are
free to write

e
2πi

∫
M4

(gb2)
2

=

∫
DaDce−2πi

∫
M4

(M2da∧da+2Mda∧gb2+dc∧g
b
2) =

∫
Da e−2πi 2M

∫
M3

(M
2 a∧da+a∧g

b
2) . (A17)

In the middle term, the integral localizes to configurations that satisfy d(Mda+gb2 ) = 0 and dgb2 = 0 thereby realizing
the first equality. In the last expression we have integrated over c and integrated by part to M3. Now we have
rewritten the right hand side in a way that we can take the 2M -th root. The genuine operator on M3 can then be
determined using this prescription. For the anomaly in the solution at hand we find (10), which precisely has the
non-invertible fusion rule (4).
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Appendix B: D5-brane action and reduction

The topological couplings in the D5-brane action are encoded in the 6-form

I
D5(0)
6 =

[
eda−B2(C6 + C4 + C2 + C0)

]
6-form

= C6 + C4(da−B2) +
1

2
C2(da−B2)

2 +
1

6
C0(da−B2)

3 . (B1)

We neglect contributions from the tangent and normal bundles. The associated 7-form anomaly polynomial is

ID5
7 = dI

D5(0)
6 = F7 + F5(da−B2) +

1

2
F3(da−B2)

2 +
1

6
F1(da−B2)

3 , (B2)

where F7 = dC6−H3C4, F5 = dC4−H3C2, F3 = dC2−H3C0, F1 = dC0. In these conventions, the Bianchi identities
read dFp = H3Fp−2 (p = 3, 5, 7) and dF1 = 0. To reduce ID5

7 on S3, we use

F7 = f4volS3 + . . . , F5 = g2volS3 + . . . , F3 =MvolS3 + . . . , F1 = 0 + . . . , B2 = b2 + . . . (B3)

where the ellipses stand for contributions that are not relevant for the S3 reduction. The 10d Bianchi identities require
in particular df4 = h3g2, dg2 =Mh3, where h3 = db2. We obtain

ID5
4 :=

∫
S3

ID5
7 = f4 + g2(da− b2) +

1

2
M(da− b2)

2 , (B4)

with
∫
S3 volS3 = 1. Let us collect powers of the D5-brane gauge field a,

ID5
4 =

(
f4 − g2b2 +

1

2
Mb22

)
+ da(g2 −Mb2) +

1

2
Mdada . (B5)

The Bianchi identity for g2 is solved by setting g2 = db1 +Mb2, hence g2 −Mb2 = db1. (Here we do not separate the
base-point for g2 explicitly; it is understood that b1 can be topologically non-trivial.) The Bianchi identities for f4
and g2 imply that d(f4 − g2b2 +

1
2Mb22) = 0. We may therefore introduce a bulk 3-form gauge potential c3 satisfying

f4 − g2b2 +
1

2
Mb22 = dc3 . (B6)

The 4-form anomaly polynomial I4 then reads

ID5
4 = dc3 + dadb1 +

1

2
Mdada , hence I

D5(0)
3 = c3 +

M

2
ada+ adb1 . (B7)

The bulk extended operator of interest is the holonomy of I
(0)
3 with charge 1, e

2πi
∫
M3

I
(0)
3 .

The topological terms for a D7-brane wrapping T 1,1 ∼= S3 × S2 are derived analogously from the 9-form anomaly
polynomial ID7

9 = F9 + F7(da−B2) +
1
2F5(da−B2)

2 + 1
3!F3(da−B2)

3 + 1
4!F1(da−B2)

3. We take into account the

worldvolume gauge flux on S2 with the replacement da→ fS
2

2 + da,
∫
S2 f

S2

2 = 2. We may use
∫
S2(f

S2

2 + da−B2)
p =

2p(da−B2)
p−1. In total,

ID7
4 :=

∫
T 1,1

ID7
9 = 2ID5

4 . (B8)

We have not included an F5 ∝ volT 1,1 contribution because this flux is not quantised in the UV KS solution, see (C5).

Appendix C: Review of Myers Effect and Application to D5-branes on S3

In this appendix we briefly review the main aspects of the Myers effect [30], applying it to k D5-branes wrapping S3

in the Klebanov-Strassler geometry. Before proceeding with the details of the explicit construction that we consider,
let us set the basis by providing the general expression for the non-Abelian DBI and WZ action of the brane. First of
all the coordinate orthogonal to the Dp-brane stack are promoted to matrices in the adjoint of U(k), Xi. The action
is then

Snon−Abelian
Dp = −µp

∫
dp+1x STr

(
e−ϕ

√
− det gq

√
detΘ− P

[
e

1
2π ιX ιX

(
e−B ∧ C

)])
, (C1)
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where gq is the pullback of the metric onto the branes, STr is the symmetrized trace and P the pullback on the
worldvolume. The matrix Θ is

Θij = δij +
1

2π

[
Xi, Xk

] (
g⊥kj −Bkj

)
, (C2)

where g⊥ is metric perpendicular to the branes. In the WZ action we have the contraction ιX , which is given by the
action of the operator Xi∂xi on the potentials. For instance, on a two-form C(2) = 1

2Cijdx
i ∧ dxj :

ιXιXC
(2) = XjXi Cij =

1

2
Cij

[
Xj , Xi

]
. (C3)

To perform explicit computation with the action (C1) we need to Taylor expand up to two-derivatives terms and at
most quartic scalar interactions, which can be thought as first order correction given by the non-Abelian action with
respect to the Abelian one.

Let us go back to the setup we are studying. The metric of the KS solution for large values of the radial coordinate
is given by the Klebanov-Tseytlin metric [41],

ds210 = ds2W5
+R2(r)ds2T 1,1 , R(r) ∼ ln (r/rs)

1/4
, (C4)

where ds2W5
= r2dx⃗2

R2(r) +
R2(r)dr2

r2 , and rs = r0e
− 2πN

3gsM2 − 1
4 . The non-trivial fluxes in the background are∫

S3

F3 =M ,

∫
S2

B2 = L(r) ,
∫
T 1,1

F5 = K(r) = N +ML , L :=
3gsM

2π
ln(r/r0) . (C5)

The stack of k D5-branes wraps S3 engineering the topological defects, and we would like to study its dynamics
close to the boundary at r → r0, with r0 >> 0, in order for the supergravity regime to be reliable. The orthogonal
directions are spanned by {x3, r, θ, γ}, where the last two are the coordinates of S2 ⊂ T 1,1. Let us put aside x3, which
will not affect the analysis of this section. Since we are in a regime where for r → ∞ the radial dynamics of the entire
k D5-branes system is frozen and we focus on the dynamics of the relative positions of the k D5-branes, we also fix
the warping factor R(r = r0). The geometry spanned by the coordinates {r, θ, γ} orthogonal to the D5 brane stack
in the limit r → r0 is R3 where the metric is ds2R3

{r,θ,γ}
= 1

2r20
(dr2 + r2dΩ2). The B components in R3 which depend

on Xi are then given by

Bij =
1

r30
ϵijkX

k. (C6)

The fluxes (C5) allow for no WZ action for the D5 stack wrapping S3 since the only background which pulls back to
the brane is B2. Hence we need to expand the DBI action, which up to quadratic order reads,

Snon−Abelian
D5 = −µ5 Tr

∫
d6x
√
gq
(
1 +

1

2
gµνq g⊥ij∂µX

i∂νX
j − 1

4π
Bij [X

j , Xi] +
1

16π2
[Xi, Xj ]g⊥jk[X

k, X l]g⊥li

)
. (C7)

The static solutions are described by

[[Xi, Xj ], Xj ]− 2[Xk, Xj ]ϵkj
i = 0 , (C8)

where we rescaled Xi → r0X
i. Commuting matrices are always solutions, however the minimal energy solution is one

where the fiels are non-commutative ones such that Xi ∼ αi, where αi are the realization as k × k matrices of su2
in the k-dimensional representation. The dynamical consequence for the D5 branes is that they puff up and polarize

into a D7 with k unit of fS
2

2 flux, or alternatively a bound state of D5/D7, in analogy with the D0/D2 bound state
system studied in the original paper [30].
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