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ABSTRACT: We present new families of AdSs solutions in M-theory preserving 4d N = 2
supersymmetry. We perform a systematic analysis of holographic observables for these so-
lutions, providing evidence for an interpretation in terms of 4d superconformal field theories
(SCFTs) of Argyres-Douglas type, realized in class S via a sphere with one irregular, and one
regular puncture. The gravity solutions exhibit internal M5-brane sources that correspond to
the irregular puncture. For a family of solutions, we identify explicitly the class S puncture
data and perform a detailed match, including Higgs branch operators. For other families
we comment on proposed field theory duals, based on irregular punctures labeled by nested
Young tableaux.
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1 Introduction and summary

1.1 Holographic duals of Argyres-Douglas SCFTs

Infinite families of non-trivial 4d superconformal field theories (SCFTs) can be realized by
reducing a 6d (2,0) SCFT on a Riemann surface, implementing a partial topological twist
to preserve supersymmetry. This idea dates back to the original class S constructions of 4d
N =2 SCFTs [1, 2], as well as their generalizations to 4d N' = 1 theories [3-7].

One of the key ingredients in the class S constructions is a rich spectrum of allowed punc-
tures on the Riemann surface [1, 2|. This includes so-called irregular punctures, which can be
used to realize 4d SCFTs of Argyres-Douglas type [8-10]. The latter exhibit remarkable fea-
tures: they possess Coulomb branch operators of fractional dimensions; they are intrinsically
strongly coupled; they can be regarded as describing the interactions of massless, mutually
non-local BPS dyons, as in the original paper [11].

In this work, we investigate 4d N/ = 2 SCFTs that originate from the reduction of the 6d
(2,0) SCFT of type Ay_1, which is realized on the worldvolume of a stack of N M5-branes.
Working at large IV, we may access non-trivial aspects of these 4d N’ = 2 SCFTs by studying
the dual AdS5 supersymmetric geometries in 11d supergravity. For the cases in which the
Riemann surface has no punctures, or only regular punctures, the dual AdSs solutions have
been known for quite some time [12, 13]. More recently, holographic duals for a family of class
S constructions with irregular punctures have been proposed [14-16].

Building on [15], in this paper we find new AdS5 supersymmetric solutions in M-theory.
Our analysis is based on a direct study of the BPS conditions in eleven dimensions (as opposed
to uplift on S* from 7d gauged supergravity). The explicit, closed analytic forms of the
new solutions allow us to compute exactly several holographic observables of interest. In
particular, we identify a class of BPS M2-brane operators that have fractional conformal
dimensions, together with the correct charges to be mapped to Coulomb branch operators
on the field theory side: these prompt an interpretation in terms of putative dual SCFTs of
Argyres-Douglas type.

Our geometries exhibit singularities that are interpreted in terms of internal Mb-brane
sources, along the lines of [15]. Previous results in the literature, see e.g. [17-24], show that
internal sources in holography can be a powerful ingredient in the construction of non-trivial
holographic pairs. This work makes further steps in the program of characterizing internal
sources in gauge/gravity duality.

1.2 Summary of main results

We begin with an overview of the key steps in our analysis, and a summary of our findings.

The role of an additional U(1) isometry. Our starting point is the canonical form of
AdSs solutions in 11d supergravity preserving 4d N' = 2 supersymmetry [25]. The 11d metric



takes the form
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(dy2 +eP (da? + dx%))} . (1.1)

In particular, the 6d internal space is an S? x S’>1< fibration over a 3d base space spanned by
the coordinates x1, x2, y. A more complete review of this class of solutions, and the definition
of all quantities entering (1.1), is given in section 2.1. For the purposes of this introduction,
it suffices to recall that the warp factor X and all metric functions are determined in terms of
a single function D = D(x1,x9,y), satisfying the continual Toda equation

02 D+ 02,D+0pe” =0. (1.2)

Our primary goal is to construct and analyze new solutions that may admit an interpre-
tation in terms of a 4d SCFT of Argyres-Douglas type. The search for such solutions may
be refined from the following considerations. In the geometric class S construction of the
Argyres-Douglas type SCFTs, the Riemann surface is a sphere with an irregular puncture
at one pole, and possibly a regular puncture at the opposite pole. In this setup, two U(1)
symmetries play an important role. The first is the U(1),4 symmetry that rotates the phase of
the fiber in the cotangent bundle to the Riemann surface. The second is the U(1), isometry
of the Riemann surface (rotation along the axis connecting the two poles of the punctured
sphere). In the absence of an irregular puncture, the superconformal U (1), R-symmetry would
simply be identified with U(1)4. In the presence of the irregular puncture, however, the U(1),
symmetry is a linear combination of U(1)4 and U(1), [8-10],

Oy = 0y + 0D . (1.3)

The mixing coefficient o depends on the specific Argyres-Douglas SCFT under consideration;

for the cases relevant to this paper, o = where N is the number of M5-branes wrapping

N
N+k>
the Riemann surface, and k is an integer (Ietermined by the choice of irregular puncture. As
indicated on the LHS of (1.3), the superconformal R-symmetry is associated to the angle x
in (1.1).

In the search for new M-theory solutions, we would like the geometry to reflect the U(1)
mixing in field theory recalled above. In order to see this manifestly, the line element (1.1)
should admit a second U(1) isometry besides d,. We thus input an additional requirement in
our construction: a U(1) isometry in the 3d base space spanned by z1, x2, y, which has to be

compatible with the Toda equation (1.2). This leads to introduce polar coordinates
r1 =r1cosf3, To =rsinf, (1.4)

and restricts the Toda potential D to be independent of the angular coordinate £.! This

! Another possible way to implement the additional U(1) isometry is to work with the z1, x2 coordinates,
demand that D be independent of z2, and periodically identify the x2 coordinate. It may be verified, however,
that this procedure is equivalent to the introduction of the polar coordinates (r, 8), up to a conformal scaling
of dz? + dz2 and a redefinition of D.



angular coordinate is associated to a linear combination of 04, 0, that is independent to the
superconformal R-symmetry generator (1.3).

Before proceeding, it is worth clarifying an important physical point related to the 93
symmetry. Naively, the fact that the solution admits a ds isometry seems to imply an addi-
tional global flavor U(1) symmetry in the 4d field theory. Crucially, however, this conclusion
may be invalidated after a more careful analysis of the background 4-flux G4. In the solutions
of [14, 15], the Kaluza-Klein vector associated to Jg is massive by virtue of a Stiickelberg
coupling. This phenomenon originates from the fact that the background 4-flux Gy is in-
variant under dg, but cannot be completed to an U(1)g-equivariant closed 4-form. We will
observe the same phenomenon in all new solutions discussed in this work: even though 0J3 is a
symmetry of the supergravity solution, the associated Kaluza-Klein vector is always massive
via a Stiickelberg mechanism of the same kind as in [14, 15].

Separable solutions to the Toda equation. At this stage, our task is to study solutions
to the Toda equation that are invariant under 8 rotations. To keep the analysis tractable, at
present we restrict our search to exact, analytic solutions. Building on previous experience in
[15], we make a change of coordinates from r, y to a new pair of variables ¢, u, and impose
the following separability condition,

y=tu, r=r1(t)ra(u) . (1.5)

(1.5) is a technical assumption that results in a remarkable simplification: we achieve full
separation of variables in the Toda equation, thus yielding new analytic solutions.?

The 11d geometries and flux configurations given by these new solutions to the Toda
equation are studied in detail in section 3. Metric regularity and positivity dictate the allowed
region for the coordinates t, u. The solutions can be grouped accordingly into two main
classes. The first class consists of solutions in which we have a rectangular domain in the
(t,u) plane. The second class consists instead of solutions with a non-rectangular domain.
We perform a classification of solutions in the first class: three possibilities arise, as depicted
in Figure 1, with Case II reducing to the solutions previously analyzed in [15]. We refrain
from a classification of solutions in the second class, instead studying some representative
examples, depicted in Figure 2.

The solutions of the first class (with rectangular domains) are singled out on physical
grounds by the structure of singularities in the 11d metric and warp factor. Indeed, for all cases
in Figure 1 we can furnish an interpretation of the singularities in the 11d solution in terms of
smeared Mb5-brane sources of the same kind as in [15]. While the physical implications of these
singularities are difficult to ascertain purely from a supergravity perspective, the analysis of
[15] has demonstrated that they can be consistently utilized as ingredients in the construction
of meaningful, non-trivial holographic pairs. This gives us confidence that the new solutions
of this paper can also be interpreted as duals to some 4d SCFTs. We then proceed to compute

2The physics of the ansatz (1.5) is an interesting question which we reserve for the discussion section, since
our comments rely on intuition gained from a closer analysis of the solutions.



various holographic observables: central charge; flavor central charges; dimensions of some
BPS operators from wrapped M2-branes. A subclass of these BPS operators may be identified
in the putative N' = 2 field theory duals as Coulomb branch operators of fractional scaling
dimension, reinforcing our classification of the dual SCFTs as of Argyres-Douglas type.

Map to an electrostatic problem: more geometries. The solutions to the axisymmet-
ric Toda equation can be analyzed by means of the Bécklund transformation, a functional
transform that maps the Toda equation with rotational symmetry in the zizo plane to the
Laplace equation in R? with axial symmetry (see e.g. [13]). In this electrostatic picture, a
solution is specified by a choice of charge density along the axis of cylindrical symmetry in
R3. From the perspective of this frame, our task is to identify those charge densities that
correspond to solutions that have an interpretation in terms of 4d SCFTs of Argyres-Douglas
type.

The next step in our analysis is to determine explicitly the Bécklund transformation of
the analytic Toda solutions found via the separation of variables (1.5). This task is addressed
in section 4, where in particular, we identify the charge densities associated to our new Toda
solutions. These charge densities are piecewise linear continuous functions, determined by a
finite number of slope and intercept parameters. The latter are related in a non-trivial way to
the flux quanta and geometry of the solutions in the Toda frame. Once the charge densities
are identified, they can be generalized systematically, thereby furnishing solutions which do
not necessarily originate from a separable Toda potential.

We apply this circle of ideas to the solutions first discussed in [15], corresponding to
Case II in Figure 1. Upon identifying and generalizing the associated charge density in the
electrostatic frame, we find solutions dual to class S constructions with one irregular puncture,
and one puncture labeled by an arbitrary Young diagram. Our analysis confirms and extends
results first reported in [16].

Comparison with field theory: central charges and Higgs operators. In the final
part of this paper, we perform a systematic comparison with 4d SCFTs of Argyres-Douglas
type. More precisely, we consider class S constructions in which the irregular puncture is of
type Ag\];]_)l[k] in the notation of |9, 10|, while the regular puncture is specified by a partition
of N, or equivalently a Young diagram Y. Building on previous results in the literature
[9, 26-29] (see also [16]), we compute a closed-form expression for the large-N behavior of the
central charge of the theory with labels (A%v_)l[k], Y), for arbitrary Young diagram Y. We
similarly derive general expressions for the central charge of the flavor symmetry associated
to the regular puncture, and for the Coulomb branch operators. All the solutions constructed
here have Coulomb branch operators of fractional dimensions — one of the hallmarks of N' = 2
SCFTs of Argyres-Douglas type. In the special case in which N/k is an integer, and the regular
puncture is either maximal (full) or minimal (simple), a 4d /' = 1 Lagrangian description
is available [30, 31]. In these cases, the Lagrangian description is especially useful to access

Higgs branch operators across the duality.



We identify the Case II solutions of Figure 1 with the Argyres-Douglas SCFTs with labels
(Ag\],\[_)1 [k],Y), for Y aregular puncture labeled by a general partition of N — these are the same
solutions that were identified in [16], and that generalize the more restrictive class of regular
puncture geometries described in [15]. The Case I solutions are a one parameter generalization
of these SCFTs which include an additional smeared M5-brane source, leading to additional
Higgs branch operators and larger flavor symmetry. A hypothesis for the field theory duals
of the Case I solutions is that they correspond to Argyres-Douglas theory realized with one
regular puncture and one irregular puncture which is labeled by more refined data compared
to Ag\],\?l[k] We check that in a certain limit, this extra data is consistent with that of a
nested Young tableaux structure of the irregular puncture, as in [9, 10]. The determination of
the precise irregular puncture data and more refined tests of this proposal are left for future
work.

Plan of the paper. The rest of this paper is organized as follows. Section 2 is devoted to
the analysis of the Toda equation and its solutions obtained via separation of variables. In
Section 3 we study the geometry and flux configurations of the M-theory solutions determined
from the Toda solutions of Section 2. In Section 4 we perform the Bécklund transform, while
Section 5 is devoted to generalizations of the charge density profiles, and their implications on
the M-theory solutions. In Section 6 we perform a detailed comparison with various large- N
quantities for 4d SCFTs of Argyres-Douglas type. We conclude with a brief discussion. The
appendices collect some derivations and technical material.

Reference [16| appeared while this work was being completed, which has some overlap with a
class of solutions we present.

2 Supergravity solutions

In this section we briefly review the canonical form of AdS5 solution of 11d supergravity
preserving 4d A/ = 2 superconformal symmetry. These solutions are specified by a choice of
Toda potential D satisfying (2.3) below. We proceed with a construction of analytic solutions
to (2.3) based on a suitable separation of variables.

2.1 Canonical form of AdSs solutions in 11d supergravity

The most general AdSs solution of 11d supergravity preserving 4d N = 2 superconformal
symmetry was characterized in Lin-Lunin-Maldacena (LLM) [25]. The 11d metric and flux
are given as [13]

2 2 o—6A Dx? —0y,D

d2 :67 d2Ad y e d2 2 Yy d2 D d2 d2

574 mz{s( Ss) + 1 S(S)+1—y8yD+ 1y (y+e (dzy + 952)) )
1 3 5 1

Gy = ﬁVolsg A [DX Ad(y? ei6>‘) + (1 — o> 676)‘) dv — iayeD dxi A d$2:| . (2.1)
m



The line elements on AdSs and S? have unit radius. The quantity m is a mass scale. The
warp factor A and the function D depend on y, x1, x2 and are related by

X —0,D
—6X Y
e N = ————— | 2.2
y(1—-yo,D) (22)
The function D satisfies the Toda equation
2 2 2 D
07, D+ 03,D+0,e” =0. (2.3)

The coordinate x is an angular coordinate with period 27. The 1-form Dy is defined as
1
Dx=dx+v, wv=—; (BxlDd:rg—@szdxl) . (2.4)

The 2-form volg: is the volume form on a unit-radius round S?. The Killing vector 9, is dual
to the U(1), R-symmetry of the 4d N' = 2 SCFT, while the isometries of S? are mapped to
the SU(2)r R-symmetry.

It is convenient to introduce polar coordinates (7, §) in the (x1,x2) plane,

z1+ixg =reb . (2.5)

In particular, the angle 5 has period 27. If the Toda potential D is independent of 3, (2.3)
can be rewritten as 1
= 0p(royD) + 92e” =0 (2.6)
,

Convenient choice for the mass scale m. The value of the mass scale m is not physical.
It can be set to any positive value by a rescaling of the z1, x2, y coordinates and the Toda

~

potential, of the form z1 = aZ1, z2 = aZ2, y = ay, D(x1,x2,y) = D(Z1,%2,y), where a > 0 is
a constant. In later sections, we shall find it convenient to set

drmPe =1, (2.7)

where £}, denotes the 11d Planck length. In our conventions, G4-flux is quantized as

G
/C4 (27@)3 €7, (2.8)

where Cy4 is a 4-cycle in spacetime.

2.2 Toda equation and separation of variables

We can analyze the Toda equation (2.6) by taking the coordinates y and r to be separable
functions. That is, we write
Y = tu’ r = Tl(t)TQ(’LL) s (29)

in terms of new coordinates ¢, u. Inserting (2.9) into the metric given in (2.1), we find a cross



Here and in the rest of this section, a prime on a function of one variable denotes differentiation
with respect to that variable. Imposing that this cross term vanish, we obtain an expression
for the Toda potential in terms of ¢, u, (), r2(u),

tu
el =

(2.11)

ririrorh

Plugging this back into the Toda equation (2.6), we find a pair of decoupled ODEs for r(t)

and 7o (u),
o) s (Ehe) -t Regme en
t \(r}) u \ (5) r1 K (t) ro  Ka(u)
In the previous expression we have introduced the quadratic polynomials
Ki(t)=—o(t—t)(t—t2),  Kz(u)=o0(u—w)(u—us), (2.13)

where o, t1, t9, u1, ug are constant parameters. In order to have real K7, Ko, the parameter

o must be real. The roots t;, to of Ky are either both real, or both complex and complex

conjugate of each other. Similar remarks apply to the roots ui, ug of K.
Combining (2.11) and (2.12) we may write

D — 21722
2.2
SR

(2.14)

If desired, the first order ODEs in (2.12) are readily integrated, yielding closed form expressions
for r1(t) and ra(u), and hence for the Toda potential as a function of ¢, u. For the purposes of
computing the 11d metric and flux, however, the explicit expressions for ri(¢) and ro(u) are
not needed: when 7} or 7, are encountered, they can be eliminated using the ODEs (2.12). In
conclusion, we can express the metric and flux in terms of u, ¢, K7, and Ko,

o2\ 120,206 Dy?
dst) = —5 |ds*(AdSs) + ————ds*(S%) + ————
= mQ[S( 5)+ 4 s )+1—tu8yD
Kiu? + Kot? (dt? | du? KK
P ety I S LS AN
4tu K Ky Kiu? + Kot?
1 5 1
Gy =-—=volge Ad |—t3uPe A Dyx + tuv + ZFdp| , (2.15)
4m3 2

where the quantities v, —0,D, 6*65‘, and F are given by

1 o o uus Ky + t1te Ko
— vgdf = —~rd,DdB = |1 -2+ 2 d
v =vpdf = —5rdDdp [ 2 T2 T Ru2 + K2 ] P

(u1 + UQ)t — (tl + tg)u
Kqu? + Kot?
6_65\ _ (u1 +ug)t — (t1 + t2)u

tu(ulth2 — t1t2u2)

F =2(c — ut —o(t; + ta)u — o(u1 + u2)t . (2.16)

—9,D =

We observe that all quantities written above are real, even if we allow for complex roots of
K 1 and/ or KQ.



Reflections in ¢ and u. Let us consider a simultaneous flip in the signs of ¢, ¢1 2, and the
angular coordinates,

t— —t, t172 — —t172 R X = =X, ,3 d —ﬁ . (2.17)

The expressions (2.15) for the 11d metric and flux are invariant under these redefinitions. By
a similar token, one verifies invariance under the sign flips

U— —u, U — —UL2 , X =X, B— —03. (2.18)

From (2.15), (2.16) we see that the radius squared of the S?, given by %t2uze*6X, changes
sign as we cross t = 0 or u = 0. It follows that the allowed range for the (¢,u) coordinates
is necessarily contained in one of the four quadrants of the (¢,u) plane. Performing the sign
flips (2.17) or (2.18) if necessary, we can assume without loss of generality that the allowed
region in the (¢, u) plane lies in the first quadrant,

t>0, u>0. (2.19)

Positivity of metric functions. From (2.14) we observe that K7 and Ky must either be
both positive, or both negative. As a result, Kju? 4 Kst? is positive or negative, respectively.
In either case, we see from (2.15) that the metric in the directions ¢, u, £ is non-negative
definite if and only if tu(—0,D) > 0. This condition also automatically guarantees the non-
negativity of the coefficient of Dy? in the line element.

Without loss of generality we can assume o < 0. Indeed, ¢ = 0 would give e” = 0, and
o > 0 is equivalent up to exchanging the roles of ¢t and u. Let us define

fi(t,u) = titou? — uyuat? fa(t,u) = (t1 + t2)u — (w1 +u2)t . (2.20)

We proceed assuming (2.19). From the expressions of (=9, D) and e~%*, we infer that we have
two possibilities to ensure non-negativity of the warp factor and metric functions,

option (a) option (b)
t>0,u>0 t>0,u>0
(t—t)(t—t2) >0 | (t—t)(t—1) <0 (2.21)
(u—up)(u—u2) <0 | (u—u1)(u—wuz) >0
f120, f2>0 f1 <0, f2<0

These two sets of inequalities are the starting point for a systematic discussion of the allowed
domains in the (¢,u) plane.

3 Geometries, fluxes, and observables

3.1 Rectangular domains in the (¢,u) plane

Our next task is to identify possible choices for the parameters ¢; 2, u; 2 for which the inequal-
ities (2.21) define a compact region in the (t,u) plane. In what follows, we focus on option
(a) in (2.21), since option (b) gives analogous results with the roles of ¢t and u exchanged.



Depending on the values of u 2, 12, the allowed region in the (¢, u) plane, if compact, is
a polygon delimited by vertical, horizontal, and oblique lines. The latter (if present) originate
from f; > 0 and/or fo > 0. In this subsection, we provide a complete classification of the
choices of uj 2, t1,2 that yield rectangular domains in the (¢, ) plane, as opposed to polygons
admitting oblique sides. The physical motivation for this restriction on the shape of the
allowed domain originates from the analysis of singularities in the supergravity solutions. For
rectangular domains, all singularities that emerge can be interpreted in terms of smeared M5-
branes sources of the same kind as in [15]. For non-rectangular domains, in contrast, novel
singularities emerge, which are interpreted in terms of M5-brane sources that are smeared in
more directions. While we refrain from a classification of non-rectangular domains, we discuss
some examples in detail in section 3.3.

Inspection of the first column of (2.21) reveals that a necessary condition for having a
rectangular, compact domain in the (t,u) plane is that all roots ¢ 2, u12 be real and such
that 0 < t; <2, u1 < ua. As we vary u; 2 we obtain different allowed regions. Restricting to
rectangular domains, we find three cases, labeled I, II, III, and summarized in Figure 1.

3.2 Flux quantization and holographic quantities

While the geometries of Cases I, II, III are different, they share some common features. In
particular, we observe that the 8 component vg of the 1-form v in (2.15), (2.16) is piecewise
constant along vertical and horizontal segments in the (¢, u) plane of the form ¢ = ¢; or u = u;
(i = 1,2). This implies that, along such segments, a constant linear combination of the Killing
vectors 0y, Jg has vanishing norm, with different linear combinations for each segment.

In order to elucidate the geometry in each case, we find it convenient to introduce new
angular variables ¢, z. They are related to the Toda angular variables 5, x by a change of
coordinates of the form

1 1
x=(1+3)e-2  B=-go+s. .)

where C is a constant, which is given in terms of the value of the component vg along the
horizontal segment u = wus, for each case in Figure 1. The new angular coordinates are
engineered in such a way that, along the segment u = w9, the Killing vector whose norm
vanishes is simply 0.

In terms of the new variables ¢, z, it is convenient to group the coordinates t, u, ¢ into
a 3d base space, with the S? and the z circle being fibered on top. The 11d line element and
flux take the form

e 12026 Kiu? + Kot? (dt*  du?
dQ——d AdSs) + 8 482(8?) + R2D22 + R2dg? — o, p~L T2t (48 W
11 s 5) + 4 (8%) + R:D2" + ¢ ¢ 4ty K; + Ky
- Gy Volsz do _
Gy = GLF = in [Y - w2z o | Dz=dz—Lds. (3.2)

In the previous expressions, the fibration of the z circle over the 3d base space is encoded in
the 1-form Dz. We have introduced a rescaled version G4 of G4, which has the advantage of

,10,



Sl Sl
U2 ¢ U2 ¢
Py Ps Py Ps
Case I Case 11
up+uy <0 sM5 Sy uptuz=0  sM5 S
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U
2[p, P3
Case I11 sM5 S
P, P, _
uy +ug >0 Uy g1 fl =0
urug > 0 @ f =0
tiug —uite <0 2
ty

Figure 1: Cases that yield a rectangular domain in the (¢,u) plane, as determined by the
inequalities (2.21) option (a). In all cases, 0 < t; < t3 and u; < ug. The label Sé indicates
that the ¢ circle in the base of the Dz fibration (3.2) shrinks smoothly along that component
of the boundary of the allowed region. Similarly, the label S? indicates a smooth shrinking
of the S%2. The label sM5 stands for smeared M5-brane sources. Case III is understood to
include the limiting case tjus —uqts = 0, in which the lines defined by f; and f2 coincide, and
touch the lower right corner of the shaded rectangle.

having integral periods, see (2.8) (the minus sign is for convenience). The quantities L, R,
Ry, Y, W are functions of t, u. We refer the reader to appendix A for further details on the
change of coordinates (3.1) and for the expressions of C, L, R, Ry, Y, W.

We now consider Cases I, II, IIT in turn. The results of the remainder of this subsection

are summarized in Table 1.

3.2.1 Casel

Geometry. The allowed region in the (¢,u) plane is [0,#1] x [0, uz] as depicted in Figure 1.
We observe that, in this case, the inequalities f; > 0, fa > 0 are automatically satisfied once
the other inequalities in (2.21) option (a) are satisfied. The radius Ry of the ¢ circle in the
3d base space spanned by (t,u, ) goes to zero along the segments u = ug and ¢ = ¢;. Along

— 11 -



I IT II1
K, M, Ny, N K,M,N K, M, Ny
Aux quanta {Qa y VL, IVW, S} {Q7 5 VI, } {<]1N7Q2, ) 7NW}
Negt := qgM Neg i= 1M + oK, M :=M+ K
relations MN, (q1492) (M+K) (g2 M+q1 K)
Negg = Ny — =55 N =qM Negg = Ny — 212 22Tl
among fluxes eff W K 1 eff W (1 —gq2)(M—K)
N, N N,
1 K?NZg 1 K2N2 1 KQ(Nfﬂ+q2(Q1+q2)(J\72—K2))
Chol 12 MTK 12 M+K 12 MK
(A(01), A(03)) (3 K) (e K) (K2 )
, _ K(Neg—(q1—q2)(M—K))
other operators AO) =M - A(P1) = . M+K
A(P)) =K

Table 1: The flux quanta, U (1), isometry generator, holographic c-central charge, and opera-
tor dimensions of the Case I, II, III holographic SCFTs, presented in variables most amenable
to comparison. Note that Case II is recovered from the limit of Case I for which Ng — 0, in
which case Nyw — N. In section 5, the geometries with a monopole of charge ¢ are generalized
to monopole profiles corresponding to general Young tableaux.

these segments, the function L in the 1-form Dz is piecewise constant,

B 2(toug — t1uy)
o(ta —t1)(ug —ug

L(t,u2) =0, L(t1,u) = ) =q. (3.3)
The jump in L at the corner (¢,u) = (t1,u2) signals the presence of a monopole source for
the Dz fibration over the 3d base space (t,u,®). The charge of the monopole source is the
quantity ¢ in (3.3), which is automatically positive for the ranges of the parameters that yield

Case I. In order to have a well-defined geometry, the charge ¢ must be an integer,

geN. (3.4)

The radius R, of the S! fiber over (¢, u, ) has an isolated zero at the location of the monopole
point. Indeed, near the monopole the 4d geometry spanned by (t,u, ¢, z) is locally R*/Z,.
Thus, for ¢ > 2, the space develops an orbifold singularity.

Along the segment P1P5, the warp factor goes to zero. In terms of the Toda angular
variables y, 3, in the limit v — 0, the line element takes the form

13 [ yust2/3 wruat2/3
ds? ~ 2 142 ds®(AdSs) + —22 _Dy> 3.5
LN (uy + ug)l/3 5(AdS5) (uy + ug)'/3 (3.5)
w23 | (ug + ug)?/3 urug(uy + ug)?/? K?
d 2 2d 2 2 _ dt2 ld 2 )
T2 4 (d” + uds™(5%)) At —t)(t —t2) o dh
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Thus, we have M5-brane sources smeared along the ¢ and 8 directions, with harmonic function
H o 1/u. More precisely, the M5-branes are extended along the AdSs and x directions, while
the are smeared in two directions, ¢ and 5. The geometry near the segment P4P7 is completely
analogous, with a harmonic function H o 1/¢. These smeared M5-branes sources are denoted
with the label sM5 in Figure 1. They are the same sort of sources considered in [15].

Flux quantization. The geometry of Case I admits non-trivial 4-cycles, constructed as
follows. The 4-cycle A4 is obtained combining the segment P3P, with the 52 and the Dz
fiber. Notice that the S? shrinks at P4, while the Dz fiber shrinks at the monopole point Ps.
By a similar token, we define the 4-cycle A4 g by combining the segment PyP3 with the S?
and the Dz fiber. The periods of G4 over AsN, Ay are determined by the values of W in
(3.2) at the points Py 34. With the expressions recorded in appendix A, we find

64:—g(u2—u1)t15K€N, é4=-g(t2—t1)u25M€N' (3.6)
AgN 2 As g 2

In these expressions we have fixed the mass scale m as in (2.7).

We also have 4-cycles that measure the charges of the smeared M5-brane loci, in the
spirit of a “Gaussian pillbox” from electrostatics. We take two 4-cycles?, Ayg and Agw, to
measure the charges of the brane stacks along the South and West edges respectively. These
are comprised of the relevant interval, the S2, and the ¢ circle. The associated periods of G4
are determined by the values of Y in (3.2) at P33 4. The result reads

—(t ) — i
/ g, = the _ N g, = mtwt vy (3.7)
Ay w Uz — U1 Ass ta =t

The expressions of the flux quanta K, M, Nw, Ng and the monopole charge ¢ imply

Nw

M = .
g+

(3.8)

In particular, integrality of M imposes a constraint on the possible values for Nw, Ng, K, ¢:
Kq+ Ns must divide K Nyw. An analogous constraint was found in the solutions of [15].

With the flux quanta computed above, the x Killing vector can be written as
Neff

M
Kq+ 0= 0ot e 0 Ner = aM (3.9)

8X:3¢+

In the second step, we have defined an “effective brane charge” N.g, which will prove to be
useful in discussing the dual field theory interpretation of these solutions.

3To be proper, we construct these using intervals away from the edge, then consider the limit as we take
either t or u to zero.
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Central charge. For an AdS5 solution in 11d supergravity of the form

2X
ds?, = — [ds*(AdSs) + ds*(Ms)] (3.10)

m2

the holographic central charge is computed via the relation [32]

1 9\
= = lag. . 11
= TG oy O @1

Using our metric in (2.15), for values of the parameters yielding Case I, we can compute c as

—O’(t1UQ)2(tQUQ — t1u1) 1 (qKM)2 1 qKzNEQH
Cct = = — = ——
! 29373 (1l,)° 12 K+M 12¢K + Neg

(3.12)

In the second step, we have fixed m according to (2.7) and we have expressed the result in
terms of the monopole charge ¢ in (3.3) and the flux quanta defined in (3.6), (3.9).

M2-brane operators. An M2-brane wrapping a calibrated 2d submanifold C, in the inter-
nal space yields a BPS operator. The calibration condition reads

Y|, = volag (Ca) (3.13)

where the right hand side is the induced volume form from Mg. The calibration 2-form Y is
a bilinear in the Killing spinors [32]. For a solution in canonical LLM form (2.1), it reads [15]

1y o 1 ;
Y = Zy?’e*g)‘volsz + §y673>‘(1 — er*G/\)dT A Dy
L s Lye @7l

In the previous expression, the quantity 7 is a coordinate on the S?, which is parametrized as

ds*(S?%) = dr’ + (1 — 72)dyp? (3.15)
C1—72 v '

The explicit expression of Y’ for the metric in (3.2) is reported in appendix A.
Let us take Co to be the S? on top of the monopole point P3 (at which both 0y and 0,
shrink). The calibration 2-form restricted on Cy reads

1 (t1 + to)ug — (uy + ug)ty \ >/ 1
Y|, = —(tiug)? lg2 = ~volgs . 3.16
|C2 4( 1U2) ( (t1u2)(t1t2ug - u1u2t%) Vols? 4VO s ( )
On the other hand, the induced volume form on Cs is
1t2u3 1
ds? = 2 12742(8%) = —ds%(5?) . 3.17
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The calibration condition (3.13) is then satisfied. We can compute the conformal dimension
of an M2-brane operator O via [32]

1 ~
AO) = ———— [ volp,(Ca). 3.18
If O1 denotes the BPS operator associated to Co as above, we find

qgKM  qK Neg
M+ K ¢gK + Neg'

A(Ol) =tius = (3.19)

We can define another submanifold By by considering the interval P3P, and the linear
combination of the z and ¢ circles that does not vanish along this interval. That is, we choose
the Dz fiber. This 2-manifold sits at a single point on the S?. We notice that By is not a
2-cycle, but rather describes an open M2-brane ending on a smeared Mb5-brane source. The

form Y’ can be computed as

Y/‘Bg -

7o (2 4+ A)(u1 — ug) \/ult +uat —t — tQ)dt A Dz, (3.20)

8 u%t(uth - tltg’u,g)

while the induced metric is

(t1 + t2)ug — (u1 + ug)

t 2
(=10 =) dt* . (3.21)

ds®(By) = R%(t,us)Dz* +

One can readily check that the calibration condition is satisfied, provided we choose 7, = 1.
Let Oy denote the operator associated to By. Since Bo is an open M2-brane, we expect Os
to admit a degeneracy due to possible choice of boundary conditions for the M2-brane ending
on the Mb5-branes. The dimension of 05 is

A(0}) = —%tl(ug —u) =K . (3.22)

We can construct yet another submanifold Dy using the interval P3P9 and the Dz fiber.
We find that Y’ takes the form

Y,’m =

oty — ) \/tgu th(u—wm —ug) (3.23)

4 t%u(tQuQ — tluluQ)

and the induced metric becomes

t1 4+ to)u — (ug + u2)ty

2 — R2 2_ (
ds*(D2) = R;(t1,u)Dz At1u(u — ur)(u — ug)

dt?. (3.24)

The calibration condition is satisfied provided 7, = 1, and we again have a collection of BPS
operators, denoted collectively O3, with conformal dimension

Neff

. (3.25)

A(O}) = —%um ) =M=
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3.2.2 Case Il

The allowed domain in Case II is [0,¢;] x [0, u2], the same as in Case I, see Figure 1. Case II
can be regarded as a limiting case of Case I, in which u; 4+ ug > 0 is sent to zero. The salient
new feature of Case II is the behavior of the metric near the segment P1Ps. One can verify
that in this case the S? shrinks smoothly, while the warp factor remains finite. Compared
with Case I, we still have a monopole source for Dz at P3, and a smeared M5-branes source
along P,P;.

The solutions of Case II are the same as the solutions discussed in [15]. We refer the
reader to appendix A for the explicit change of coordinates that makes the correspondence
manifest. Since these solutions have already been studied in detail in [15], we will be brief.

Flux quanta K, M can be defined for Case II, in complete analogy with (3.6). We also
have the analog of the flux quantum Ny, while Ng is absent, since we no longer have a smeared
MS5-brane source along P1P3. The flux quanta K, M, Ny satisfy the same constraint as (3.8)
with Ng set to zero.

The expression of the holographic central charge is

1 gK?N?

L i i N = gM . 3.26
12¢K + N’ 1 (3.26)

cr
We have the direct analogs of the (7 operators associated to M2-branes wrapping the S? on
top of the monopole point, as well as analogs of the operators O, associated to open M2-branes
ending on the Mb-brane source along P1P4. We do not have, however, the analog of the O3
operators, because we only have one set of smeared Mb5-branes. The dimensions of Oy, Oy are

A(Oy) = KN A(OY) =K . (3.27)

3.2.3 Case III

Geometry. The allowed domain in Case III is the rectangle [0, 1] X [u1,usg], see Figure 1.
In this case, we find that the ¢ circle in the 3d base spanned by (¢, u,¢) shrinks along the
three segments PPy, PoP3, and P3sP4. The function L is piecewise constant along these
segments,

2(toug — t1uy)
oty —t1)(ug — up)’

We see that L jumps both at P and at P3. It follows that the Dz fibration has two monopole
sources, located at P3, P9, with charges ¢, g2 respectively,

2(ug + uy)
o(ug —uy)

L(t,UQ) = 0, L(tl, u) = — L(t,ul) = — (3.28)

2(t2U2 — tlul)
o(ta —t1)(ug —uq)

2(t2u1 — tﬂLg)

eN, at Po: =—
e S | (Y

at P3: ¢ = — eN. (3.29)

Along the segment P4P; we have a smeared M5-brane source of the same kind as explained
in Case I.
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Flux quantization. A first class of 4-cycles is associated to the three components along
the boundary of the allowed region, in which the ¢ circle in the base shrinks. Let us define

BaN : segment P3P, combined with the Dz fiber and the S? ,
By : segment PyP3 combined with the Dz fiber and the S? | (3.30)
Bis : segment PPy combined with the Dz fiber and the S? .

As before, we can compute the flux through these cycles in terms of the values of the function
W at Py 234. The result reads

64: é4=—gt1(UQ—U1)EKEN,
84’N B4,S 2

Go=-Z(ts—t1)(us —u1) = M €N . (3.31)
Ba.E 2

Interestingly we find that the fluxes through B4 n and By g are equal.

Next, we can construct a 4-cycle to measure the flux from the Mb5-branes source along
P,P;. To this end, we consider the S? combined with the u interval and the ¢ circle, yielding
a 4-cycle denoted A4 w. The associated flux quantum is

(b4 o) (W2 4 w2
/ G itt)latul) oy
Ay w Uz — Uq

We find it convenient to define
M=M+K, Ng=aqM+@pK. (3.32)

We may then write

Mg + K(q1 + ¢2)
M+ 2K

N,
Oy = Oy + 0, = 0p + — 0, . 3.33
X (] (o] M4 K ( )

The quanta found above satisfy the relation

_ M?(qf +¢3) + 2K (K + M) (a1 + g2)°
M(q1 — q2) ’

which in terms of N.g and M can be written

Nug = Ny — 1Y 2)(M + K) (@K + g2 M). (3.35)

(a1~ @2)(M ~ K)
Central charge. Applying formula (3.11), we arrive at

Nw

(3.34)

cir = W;ep)gt% (trurug(ur — ug) + ta(uj — ui))
LR (K +M)> (¢ +@)® = MPqig0)
12 M +2K
= iKQ(M2(Q1 + qu - (M— K)*q142) ' (3.36)
12 M+ K
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""‘E)" t1us — uity >0 S3 A f1=0
.—"‘ ‘:‘&K U f——="
t1 "

Figure 2: Non-rectangular domains arising from the inequalities (2.21) option (a), under the
assumptions 0 < t1 < t9 and uy; < ug. The label 5’(}) indicates that the ¢ circle in the base of
the Dz fibration (3.2) shrinks smoothly along that component of the boundary of the allowed
region. The labels sM5 and sM5’ stand for two different kinds of smeared M5-brane sources.

M2-brane operators. We still have the direct analogs of the calibrated submanifolds Co
and By constructed in Case I, associated to operators 01, O, respectively. In the case at
hand, their dimensions are

KNeff
M+ K’

AOY) = B (May+ K + a2)) = AO) =K.  (337)

- M +2K

We also have a new calibrated 2-cycle, analogous to Co, given by the S? on top of the new
monopole point Po. If we denote the corresponding operator as Pi, we find

KNjg M-K
M+K M+K

A(Py) = tiug = (Mgz+ K(q1 + q2)) = (1 —q)K . (3.38)

M+ 2K
Moreover, we also have a new open calibrated submanifold, analogous to Bs, constructed using
P;P; and the Dz fiber. We thus obtain a family of BPS operators, denoted collectively P3,
with dimension

A('Pg) = _gtl(UQ — ul) =K. (339)

Finally, we can combine the PyP3 segment connecting the two monopoles and the Dz fiber
to obtain a closed calibrated submanifold. We denote the associated BPS operator as Q and
we compute its dimension to be

A(Q) = fg(tg —t1)(ug —u1) = M . (3.40)

3.3 Examples of non-rectangular domains

In the previous section, we have assumed 0 < t; < t2, u; < w9, as these are necessary
conditions for having a rectangular domain. These conditions, however, are not sufficient.
Indeed, if we let uj 2 vary, we obtain two more cases, with non-rectangular domains, denoted
IV and V and summarized in Figure 2.
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Let us remark that Cases IV and V do not provide a full classification of all non-
rectangular, compact domains. Further domains (including triangular domains) can be ob-
tained by relaxing some of the assumptions ¢;2 € R, 0 < ¢ < t2, u1 < ug. In this section,
we provide some details on Cases IV and V as representative examples of non-rectangular
domains, but we refrain from a full classification.

Cases IV and V are conveniently described in terms of the same angular coordinates ¢, z
introduced above in (3.1) and entering (3.2).

3.3.1 Case IV

Geometry. The main novel feature of Case IV is the presence of a boundary component
with positive slope, which is determined by the inequality fo > 0, see Figure 2. Near the
vertical and horizontal segments along the boundary of the allowed region, we have similar
features as the Cases I, II, III.

Let us look closer at the geometry along the diagonal line defined by fo = 0. For con-
venience, and in analogy with (3.5), we work with the Toda angular variables x, 5. We
rearrange the coordinates (t,u) into linear combinations x|, x1, where x| runs longitudinally
to the diagonal line, and x; runs transversally. More precisely, we can set

t:f.f”—ﬁl]_, u:ax”—i—fxl, t_::tl—i-tg, U:=1uy +uy . (3.41)

In the limit x; — 0, the line element takes the form

—-1/3 ey _9 ) 1/3
2 T 4/3 [ tu (tltgu — ujust ) ) ,

2/3 _ 1/3 o
) sy aton)|

m* |4\ (tux))? (12 + u2)? t1tati? — ujugt?)

Here ds?(M3) denotes the metric on the space described by (., ||, 3), whose explicit expres-
sion is omitted for brevity. We interpret (3.42) in terms of a smeared M5-brane source with
harmonic function H « x . The linear behavior of H is indicative of a smearing to effective
codimension 1. Indeed, the Mb-branes are now smeared over more directions, compared to
(3.5). More precisely, they are extended along AdS5 and x, and smeared in all other directions,
except x| . In Figure 2 we use the label sM5’ to signal this new kind of source.

Flux quantization. The analysis of G4-flux quantization is closely analogous to Case I.
The role of the segment P1Ps of Case I is now played by the diagonal line determined by
f2 = 0. We can define the analog of the flux quanta M, K, Ng, and Ny and verify that they
satisfy the same relation as in Case I.
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Central charge. Application of (3.11) yields the result

=—— 17 [ 5ud(tous — t e
N = T 152973 (ml, )0 ! ( wltzur = i) + = T
1 gKM N3M3
=— 5qK M 3.43
120M+K<q NN (3.43)
3.3.2 Case V

The salient features of the geometry of Case V are a combination of the ingredients already
introduced above, as can be seen from Figure 2. The charge of the monopole at (1, us) is

q= 2(751’&1 — t2u2)
0'(751 — tg)(ul — UQ) ’

(3.44)

We can define the analog of the flux quanta K and M, given by differences of the values of
W at the points (t1,u2) and (0,u2), (t1, (u1 + u2)t1/(t1 +t2)),

o o
K = —§t1(u2 —u) , M = —§U2(752 —t1) . (3.45)

We observe that the analogous flux constructed with the horizontal segment at v = wuy is
vanishing. We can also define the analog of the flux Ny, which measures the charge of the
sM5 smeared source, and a new flux Ng which measures the sM5' charge along the diagonal
component of the boundary of the allowed region. These fluxes are determined by the values
of Y, and are given by

(t1 + t2) (uf + ud) ud(ty +ta) 2 (ug + ug)

Nw = — Ny = — . 3.46
W UL — U2 7 d Uy — U2 t1 — 1o ( )

The flux quanta and the monopole charge satisfy the following identity,

0 = 2¢(Ng + Nw) (K*Nw — KM (Nq + Nw) + M?(2Ng + Nw))
—2KMq* (K? + M?) + ¢*(K — M)*(KNyw — M(2Nq + Nw))
+ (Nq + Nw)*(K Nw — M(2N4 + Nw)) . (3.47)

Let us define
N = Ngq + Nw . (3.48)

We can use (3.47) to express Ny in terms of ¢, K, M, N,
2M(Kq+ N) <q2 (K?+ M?) —2MNg + 1\72)

M= (K + M)(q(K — M) + N)? ' (3.49)

The expression of the central charge in terms of the parameters o, t1 2, uy 2 is

cy =

o 1 <t?(u1 + ug)3 B ul(ty + t2)3

15 5tiuj(tous — t . 3.50
15 2973 (mdp)? \ (1 + t2)? (u1 + ug)? + Bt 1u1)> (3.50)
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We may also express this quantity in terms of the flux quanta and monopole charge,
K2 M2
——— —— X
60(K + M)%(Kq+ N)?>(N — Mq)?(¢(K — M)+ N)5

cy =

x [5K7q6 (19M?Kfq2 _oM3gP — 22MN2q + 7N3>

+ 5K (68M2N2q2 —2TMBNG + 6MAg* — 69M N3 + 23N4)
44@&&(mmﬁﬁ%?ﬂwmﬁﬁf+1%M%*—mmwﬁ%+1%NQ

+5KAP(N — Mg) (1041\42JV?’q2 _31IMBN2P — 1IMAN¢* + AMP¢° — 101M N*q + 34N5)
+6K%%N7AMV(MM%W&+2MﬁN%&7wMﬁ%4+MﬁfAbMﬁWq+%Nﬂ
+5K%uw¢—ﬁfqu+ﬁh(-mwﬂﬁ%2+wﬁﬁf+Jwﬁ4+zm4ﬁ%-qoﬁﬁ
+5K3M¢®(3Mq— N) +5K°M¢® + K'0¢°
+5Kuv—mmﬁ<—3M?ﬁ%2+3M%N&—Jw%5+2Nﬂ

+ M3¢@*(Mq— N)° <M2q2 —5MNq+ 5N2) ] . (3.51)

4 Electrostatic picture

In this section we review the map from the axisymmetric Toda system to an electrostatic
problem, and we describe the electrostatic interpretation of the solutions discussed in section 3.

4.1 Review of the Backlund transform

In this work, we study solutions for which the Toda function D is independent of the angular
coordinate § in the z!, 22 plane. For such solutions, it is possible to perform a Bicklund
transform, which furnishes an electrostatic interpretation for the BPS conditions [13].

The Bécklund transform takes the coordinates (r, y) and the function D(r,y) of the canon-
ical LLM form to new coordinates (p,n) and a new function V' (p,n). The Béacklund transform
is defined implicitly by the relations

P’ =r2el y=p0,V, logr =0,V . (4.1)

The 11d metric and flux can be written as

1 [VAY? 40% 4 2V
dst, = [ ] |:d3124d55 + A dse + v <d02 +dp’ + ———=p° dX%)

m2 |2V 2V -V
V-V 2V V! 2
T s 2 )]

2V A 2V -V
1 2V2Y" VvV
Gy = WVOISQ /\d|:— X dxs + <7]— X >d5:| , (4.2)
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where we used the notation V = p0,V, V' =0,V, and so on, and we introduced
A=QV-V)V"+ (V). (4.3)

The angle xp after the Backlund transform is related to the angle x in the canonical LLM
form as [33]

XB=X+0. (4.4)

The function V obeys the 3d Laplace equation in cylindrical coordinates: away from sources,
2 1
o,V + ;ap(p 0,V)=0. (4.5)

This equation motivates the interpretation of V' as an electrostatic potential in three dimen-
sions. We allow for electric charges localized along the 7 axis, with a charge density A\(n). The
charge density can be extracted from the potential V' via

A(n) = lim pd,V . (4.6)

p—0t

Some redundancies in the parametrization. We have already observed that the mass
scale m can be fixed according to (2.7) without loss of generality. We also notice that the 11d
metric and flux depend on V7, V., V, V’, but not on V’. It follows that a replacement of the
form

Vi(p;n) = V(p,n)+kn, (4.7)

where k is an arbitrary constant, has no effect on the 11d metric and flux.

Line element and flux in terms of V, z, ¢. In what follows, it will be convenient to
rewrite the metric and flux in (4.2) by trading the angular variables xp, 5 with the angular
variables z, ¢ first introduced in section 3.2 and discussed in greater detail in appendix A.
The change of coordinates that related the Toda angular variables x, 8 to the new variables
XB, [ is of the form

x=(1+g)e-s.  B=-gos, (4.9

where C is a positive constant. Below, we demonstrate that C can be identified with a ratio
of G4-flux quanta. Combining (4.4) and (4.8), we can recast (4.2) in the following form

"

y Z 1/3 "y
ds?, = (4m)/3 ¢ [V } [dsid& + ‘;AV dsge + ;/V(dpz +dn®) + R d¢* + R? DZ°| |

P 2 V//
— Gy volg2 do Dz
— _ y 2 w2 4,
G (2mey)? ! d[ 27 W 2r |’ (4.9)
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where we have introduced

v 2V -V
Ri:fpz, Rz:7~,
2V -V 2V A
1 2vV
Dz=dz— Ld¢ , L=-+4—"———-,
C 2v-V
o V7 (7 T
W=n— gr, Y:Kﬂi%ﬁm. (4.10)

Notice that we have fixed the mass scale m according to (2.7).

4.2 Electrostatic potential from Toda solutions

Let us study the Backlund transform reviewed above in the cases discussed in Section 3. The
expressions in this subsection apply to all cases.
From (2.11) and (4.1), we can immediately find the expression for p(¢,u),

p=VEKy=+/—02(t —t1)(t — t2)(u — u1)(u — ug) . (4.11)

The function 7(t,u) can be found in the following way. Let us treat V as function of ¢ and
u, where we have included the subscript ‘T’ to remind ourselves that this is the electrostatic
potential as inferred from the Toda coordinates via the Backliind transformation. We can use
the chain rule, equation (4.1), and the unspecified n(t,u) to write

O Vr = On (logr + logra) + Qt;élatKl , (4.12)
OV = Oyn (logry + logrse) + ;}é@qu .
Imposing the integrability condition 0;d, V1 = 0,,0: VT yields
Koto Ky — Kju0, Ko = 2 (Katdyn + Kiudm) (4.13)
while the condition that V7 is a solution to Laplace’s equation gives

1
;(p(?pVT) + 0$VT =0 = 2(udyn—tom) — (t0 Ko+ udKi) =0 . (4.14)

By combining (4.13) and (4.14), we can solve for dyn, d,n and find the simple relations

10K
on=—-—— and Oun = 75% (4.15)

We can use these to solve for the total n(t,u) as

(ur +u2)t + (t1 + t2)“> +A. (4.16)

MLM—J<M— .

where A is an integration constant.
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Now that we have expressions for both p and 7 in the (¢,u) coordinates, we can use (4.12)
to find an expression for the potential in (¢,u) coordinates. After rearranging we find

Valt.u) = (1= A)logrira) +1 (M5 ) o (152) (@17

- = t7log(ty —t) —t5log(te — ¢t
2<t2_t1(10g(1 ) — t5log(t2 — 1))

t1 + to
Uz — U1

_l’_

(u% log(u —uy) — u% log(ug — u)) ) + VW,

where Vj is another integration constant. We have used the fact that, for all Cases I through
V, in the interior of the allowed region in the (¢,u) plane we have we have 0 <t < t; < t2 and
w1 < u < us.

Having determined the explicit change of coordinates from (p,n) to (¢,u), for each Case
I through V we can map the allowed region in the (¢,u) plane to the allowed region in the
(p,m) plane, up to a constant shift in 1 related to the integration constant A, see Figure 4. In
particular, we observe that, in each case, the components of the boundary in the (¢,u) plane
where the ¢ circle in the base shrinks are mapped to segments along the 7 axis.

4.3 Electrostatic interpretation of Cases I and 11

We now analyze the electrostatic interpretation of Case I. The interpretation for Case II follows
by taking the limit us — —u1, or equivalently Ng — 0.

Charge density profile. The electrostatic potential Vi satisfies the Laplace equation for
any p > 0, but there are localized electric sources on the n axis. We can find their charge
density using the formula
>\T = lim pﬁpVT. (418)
p—0

Firstly, we have the segments on the 7 axis that correspond to the edges P3P4 and PoP3 in
Figure 1. For these segments we find

)\T(t) = uagt y /\T<’U,) =tu s (4.19)
respectively. The charge density is piecewise linear. At the monopole the charge density takes
the form

qK M
A= A1(Py) = tiug = . 4.2
1 T(P4) = tiug KM (4.20)

Using this and the expression (4.16) for 1, we can write the charge density as a piecewise
linear function in 7,

t 2 ~ A
t 1t <_(77_A) —tl(ul—{—uz)), Mmin < (7 —A) <11,
2 — U1 o

() = ! , (4.21)
-— ( (U—A)—Uz(t1+t2)>a m<(mn—A) <.

ug — Uq g

— 24 —



We have defined the special 1 positions as

- g . o ~ o
Thnin = —§t1(u1 + ug), m = —§(t2u2 +tiur), N2 = —§u2(t1 +t2) . (4.22)
We find it convenient to fix the integration constant A to the value A = —#jyn, that is
o
A= §t1 (u1 + UQ) . (4.23)

With this choice, the linear charge density takes the form

A
77177, 0<n<m,
=1 (4.2
- (n—m2), m<n<mn,
N2 —mM
where we have defined
o o
m = —§U2(t2 —t1) =M, N = —§(t2u2 —tuy) = (K+ M) . (4.25)

This charge density A(n) is depicted as a solid line in Figure 3.

Improved Form for V. The expression for Vr in (4.17) suffers from some drawbacks: it
is not a closed form expression in the (p,n) coordinates, and it is only determined within the
region in the (p,n) plane that corresponds to the allowed region in the (¢, u) plane. The charge
density profile Ap(n) is thus similarly confined.

To fix these issues, we replace V1 with a new electrostatic potential V', defined throughout
the entire (p,n) plane. We observe that V' and Vi need not be identical: if they differ by a
transformation of the form (4.7), they yield the same 11d metric and flux.

We write the new electrostatic potential V using the standard Green’s function for the
Laplace operator in R3,

o /
Vip,n) = ! ’ AW dn' . (4.26)

2 )00 PP+ (—1)?

Notice that the charge density profile is now extended to be a function on the whole 7 axis.

The new A(n) must necessarily agree with Ap(n) computed above for values of n within the
allowed region. Outside this region, we need an educated guess for the form of A(n).
With the benefit of hindsight, we choose A(¢) to be the piecewise linear function

4 )\2
- (77 + 77—2)7 N2 << -N_1,
N—2 —1N-1
)\1+)\2< m +n-1
Ay =4 222 (L LY <<, 427
(n) el U ver vt n-1<n<m (4.27)
- (n—m2), m<n<ny.
2 —m
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Figure 3: The extended charge density profile A(n) for Case I, featuring a “mirror monopole”
located at —n_; paired with the known monopole located at 1;. The labels Py, ..., P4 refer
to Figure 1. The extended charge density for Case II can be obtained by considering the limit
Ng — 0, which implies n_1 _2 = 112, A2 = A1 and gives an odd function of 7.

This charge density profile is depicted in Figure 3. It agrees with Ap in (4.24) for 0 < n < ns.
It extends Ar including a second monopole, i.e. a location on the 7 axis where the slope
changes. The extension is governed by the parameters n_s, n_1, A2, which will be fixed below.

We may now insert A(n) from (4.27) into (4.26) to compute the improved electrostatic
potential V. Due to the linear growth of A\ as n — 400 and n — —oo, the 7' integral in
(4.26) is divergent. We treat it by regularization and “minimal subtraction”. More explicilty,

we write
~ Aol — ) log(2 A — 1) log(2
V= Tim |V nm) + 2l — (0 +1-2)log(2nL)] _ Milnr + (1 — m2) log(2nr)] | (4.28)
=% 2(n—2 —1n-1) 2(n2 —m)

In the previous expression, Y/}(nL, nr) is the same as V' in (4.26), but with region of integration
[—nL,nr]. We add two “counterterms” to YA/(nL,nR) to remove all divergences. Notice that
the counterterms are independent of p and at most linear in 7, of the same form as the
transformation (4.7).

Allowed regions. Now that we have an expression for V(p,n) coming from our ansatz for
the linear charge density A(n), we can look at the regularity conditions coming from the metric
and find our allowed regions in the (p,n) plane. Looking at the 11d line element, we see that

we must satisfy
p>0, 9,V >0, RV > 0. (4.29)

These inequalities determine a region in the (p,7n) plane, which depends on the unfixed pa-
rameters 7_1, 7—2, A2 in the extended charge density profile (4.27). On the other hand, we
know what the allowed region in the (p,7n) plane must be, since it can be deduced from the
allowed region in the (¢, ) plane using (4.11), (C.6). By comparison, we determine the unfixed
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Figure 4: The allowed regions in the (p,n) plane for Cases I, IV, and V respectively. The

solid red arcs signify the loci where 9,V = 0, while the dashed red lines represent the loci
where O%V = 0. The similarity with Figures 1, 2 is intentional, as the solid and dashed lines
in each figure correspond to one another. As the combination tyus — uite goes from positive
to negative, we transition from Case V to Case III. The red dashed arc of Case V shrinks and
is replaced by the second monopole present in Case III.

parameters to be
o o
= — t _t o = —
n-1=gutz—t),  n-2= o

The allowed region can be seen in Figure 4.

t2’LL1 - tﬂ@) y )\2 = —t1u1 s (4.30)

4.4 Electrostatic interpretation of Case III and beyond

Case III. Case III can be studied in an analogous way. Compared to Case I, we also have
the edge P, Py with charge density
Ar(t) = urt, (4.31)

with another monopole at P9 such that
K(Mgz + K(q1 + q2))

)\2 = /\T(Pg) = t1u1 = Vi T oK (4.32)
The charge density, after fixing A as in (4.23), reads
A
2 (77 - nmin) 5 Tlmin < n<no,
710 — "lmin
A1
Ar(n) = pol m<n<m, (4.33)
A1
- (n—m2), m<n<n,
\ 12— M
where the 7n; are given as
M+ 2K Maqo + K(q1 +
Thmin = QQ( ) s o = @ (ql q2) ’ (434)
q1 — g2 q1 — g2
M K M +2K
m = o+ K(q +(I2))7 o — (M +2K) ' (4.35)
q1 — g2 q1 — g2
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Figure 5: The extended charge density profile A(n) for Case III. We notice the absence of
“mirror monopoles”™: the charge density outside the interval [fmin, 72] is obtained by prolonging
the outermost segments in a trivial way. The labels Py, ..., P4 refer to Figure 1.

The profile At is depicted in Figure 5 as a solid line.

As before, we seek an extension of A1 to the entire 7 axis, in such a way as to reproduce
the allowed region in the (p,n) plane as determined via the Bécklund transform. The outcome
of this analysis is that, in contrast with Case I, the extended charge density profile in Case
IIT does not feature any “mirror monopole™: the profile At is extended to the whole n axis by
simply extending the outermost linear pieces with constant slopes.

Cases IV and V. These cases can be studied in a similar fashion. Overall, we observe that
for all Cases I through V the extended charge density profile has exactly two monopoles. We
refrain from giving explicit expressions for Cases IV and V, but we depict the allowed regions
in the (p,n) plane in Figure 4.

5 More monopoles

In the previous section, we have identified the extended charge density profiles associated
to Cases I through V. This allows us to consider natural generalizations of these solutions,
obtained by decorating the extended charge density profiles with additional monopoles. The
explicit expression for the electrostatic potentials sourced by these multi-monopole charge
densities are reported in appendix B.

In this section we study in detail generalizations of Case II, for which the charge density
profile is an odd function of 7. The solutions discussed here will be identified in section 6 as
gravity duals of class § constructions with one irregular puncture, and one regular puncture

associated to a Young diagram of arbitrary shape.

5.1 Charge density profile

The sought-for generalizations of Case II solutions are all of the form (4.9). They are specified
by a choice of the positive constant C, and a choice of electrostatic potential V. The latter
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can in turn be written in terms of the standard Green’s function on R? and a charge density
profile A(n) along the n axis, see (4.26), repeated here for convenience,

1 oo ()
NGERUESD

Notice that the charge density A(n) is defined along the entire 1 axis. The actual physical

Vip,n) = (5.1)

range of the coordinate 7 is determined by the regularity and positivity of the metric functions.
The total charge density profile A that enters in (5.1) is conveniently written as the sum
of two contributions, see Figure 6,

() = Nog(m) + A0S () (5.2)

In the first term, Y denotes the Young diagram associated to the partition
P
N =) kowa, (5.3)
a=1

in which p > 1 is an integer, {w,}’_; is an increasing sequence of positive integers, and k, are
positive integers. The function )\}ég( ) is continuous and piecewise linear. It is also assumed
to be odd in 7,

Meg(=11) = =g (1) - (5.4)

reg reg\”]

It is sufficient to specify Ak, (n) for n > 0: it is given as

( p
nZkb for 0 <n<wp,
b:l
N _ 5.9
reg(n) Z kb+zwbkb fOrwa§77<wa+17 a:1,2,...,p—1, ( )
b=a+1
N for n > wy .

\

The profile )\reg( ) is exactly the same charge density profile that enters the AdSs solutions
that describe the local geometry near a regular puncture [13], hence the label “reg”.

(N,k)
irreg
where N is the same as in the partition (5.3), and k satisfies

The second term A >°7(n) in (5.2) is determined by two integer parameters N and k,

kE>w,—N . (5.6)
The quantity )\l(rreg)( ) is a simple linear function of 7,
Wy Y
irreg ( ) - k+ N n. (57)

The label “irreg” is motivated by the analysis of section 6, which shows that A )(77) is

irreg
naturally associated to the irregular puncture in the dual class S field theory construction.
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Figure 6: The total charge density A(n) can be written as the sum of the contributions

A};g(n) and Ai(r];[(;g) (n). Both )\z/eg(n) and )\i(r]je’g) (n) are odd functions of 7. The plot depicts
A(n), )\ng(n), and )\i(r]jég) (n) on the semiaxis 17 > 0 in the case N =7, p =3, w1 = 1, wy = 2,

wy =4, ki =ko=k3=1, N+ k=11.

Notice that, due to the linear growth of AR

irreg
electrostatic potential V is formally divergent. These divergences are treated by regularizing

(n) as |n| — oo, the formula (5.1) for the

the 1’ integral with a cutoff Apax, and performing a “minimal subtraction” of divergent terms.
We refer the reader to appendix B for further details, and for the explicit expression for V.
Finally, the positive constant C is also determined by the parameters N, k,
N+ Ek
C=——0—. 5.8
: (58)
Having prescribed C and A(7n), we have fully specified the solution. For p = 1 we recover
precisely the electrostatic description of the solutions in Case II.
Notice that we have not justified the form (5.2) of the charge density or the value of C.
We refer the reader to appendix C for a detailed analysis of the problem, which demonstrates
that (5.2) and (5.8) can be inferred from metric regularity and flux quantization.

5.2 Geometry of the solutions

Allowed region in the (p,7n) plane. Since we have chosen an odd profile for A\(n), the

electrostatic potential satisfies
Vip,—n) = =V(p,n) - (5.9)

In particular V' (p,0) = 0, signaling the presence of a conducting plane at n = 0. The radius
of the S? shrinks there. As a result, we restrict to n > 0.

Using the explicit expressions of the metric functions that can be obtained using (4.10),
we verify that all positivity requirements are satisfied, provided that we consider the region
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A px P

Figure 7: A schematic depiction of the allowed region in the (p,n) plane, for a case with
p = 3 monopoles along the 7 axis. The arc connecting wy, and p, corresponds to 9,V = 0 and
is defined by the equation (5.11). On the right, we also include the plot of the charge density
A(n) on the interval [0, wy,].

in the (p,n) plane determined by the conditions
p>0, >0, 9,V=>0. (5.10)

This domain is depicted in Figure 7. The curve 0,V = 0 is given more explicitly as

p

—26—77+Zka<\/(77+wa)2+p2—\/(n—wa)2+/)2>:0- (5.11)

a=1

One can verify that this curve intersects the 7 axis at
wm =N+£k, (5.12)

which is precisely the location of the positive zero of the function A(7), see Figure 6. The curve
(5.11) intersects the p axis at a point p,, where p, is the positive solution to the equation

P ko wq, 1
;\/,0*4'—“12 R (5.13)

We also observe that, in the case p = 1, the equation (5.11) can be equivalently written as

p2 ,,72
=1, 5.14
W (2CT—1) | uwlc? (5:14)

which describes an ellipse in the (p,n) plane. For p > 2, this is no longer the case, but the
locus 0,V = 0 has the same qualitative shape as for p = 1.
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Geometry of the internal space. The internal space Mg can be regarded as an S? x S}
fibration over the 3d space spanned by p, n, ¢. The radius of the ¢ circle in the 3d base goes
to zero smoothly along the 7 axis.

The size of the S? depends on p, 1, but it is not twisted over the 3d base. In contrast,
the z circle is twisted over the ¢ circle, as prescribed by the metric function L in (4.10). In
particular, L is piecewise constant along the n axis, with jumps at the locations n = w, where
the slope of the charge density A changes. It follows that the points (p,w,) are monopole
sources for the Dz fibration over (p,n,¢). Notice that the radius of Dz goes to zero at the
monopole points.

Behavior near the boundary of the allowed region. The boundary of the allowed
region depicted in Figure 7 consists of several components, which we discuss in turn.

As mentioned above, along the segment [0, p.] on p axis the S? shrinks smoothly, and
caps off the internal space. This is the green horizontal line in Figure 7.

Let us now consider the segment [wq, wa+1] (@ =0,1...,p — 1) along the n axis. Here a
combination of the S! and Sé circles shrinks smoothly. More precisely, the following linear
combination of 9., 0y,

P
9o+ Y k0., (5.15)
b=a+1
has vanishing norm as we approach the [w,, wq+1] segment. By a similar token, it is the Killing
vector Oy that has vanishing norm along the [wy, wn]| segment. We have thus accounted for
the whole vertical blue line in Figure 7.

Finally, we have to discuss the arc 0,V = 0, depicted in red in Figure 7. As shown
in appendix C, this locus corresponds to an Mb-brane source, of total charge IV, which is
extended along AdSs and z, smeared along ¢ and the 9,V = 0 arc in the (p,n) plane, and
localized in the remaining directions.

5.3 Holographic central charge

The general formula (3.11) is easily specialized to solutions of the form (4.9). It reads

1

© T 128 (xmB3)3

/ pVV"dpdn , (5.16)
Ba

where we have reinstated the mass scale m and Bz denotes the allowed region for the p, n
coordinates, determined by the conditions (5.10). To proceed, we observe that

. 1 1
pV V" =0, { -50 (apvﬁ] +p(pdpV) [BE,V 2 0P V)| - (5.17)

We argue that the second term can be dropped. We know that the combination 8%V +
%8,;(/) 0,V) is zero, except for terms localized on the 7 axis. The quantity pd,V is finite as
we approach the 7 axis: it is given by the charge density A(n). Because of the extra p factor
in front, we conclude that this term drops away in the limit p going to zero.
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The quantity of interest can then be cast as

/32 9 {1;) G V)]dpdnz/& d[;p%apv)?dn] :/332 [;(papV)zdn] . (5.18)

Recall that 0B consists of three components: the segment [0, p.] along the p axis, the arc
defined by the equation 9,V = 0, and the segment [0, wn| along the n axis. The 1-form

%(p GpV)an vanishes along the p axis (because it only has a leg along 7)), and it also
vanishes along the arc where 9,V = 0. It follows that the only non-trivial contribution
originates from the integral over the segment [0, wy,| along the n axis. Along this segment, we
can make the replacement pd,V — A. In conclusion, collecting all factors, the holographic
central charge can be written as

1 Wm 9 1 Wm 9
_ _1 . 1
o= Sy J, A= [N (519

In the second step we have fixed the value of the mass scale m according to (2.7).
The integral in (5.19) is readily evaluated making use of the expression (5.2) for the charge
density. Let us introduce the notation

-+ Zkb, a=0,1,....,p. (5.20)

a
Ya = Zwbkb ) Mq =
= b=a+1

For a = p, the sum in the second expression is understood to be zero. We also use the
convention wg := 0. We may then write

.-IA\F—‘

p
1
S DI L R P A I B U R ) I G2
a=0

We can also write ¢ directly in terms of k and the partition N = >F_, kywg,

1 N &
(N+I€)N2+ﬁm kawg—

p p
Zkﬁwg—%z > (Wi +3wawp) kaky .

a=1 a=1 a=1 b=a+1

[N

T 12
(5.22)

5.4 ’t Hooft anomalies from inflow

The inflow methods of [34] (based on [35, 36]) provide a systematic way of extracting ’t
Hooft anomalies from a holographic solution in 11d supergravity. The key ingredient in this
approach is the construction of the 4-form FEj, which is the closed equivariant completion of
the background flux G4 in (4.9). We refer the reader to appendix C for a discussion of F4 and
the derivation of the inflow anomaly polynomial. The results of our analysis are as follows.
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Symmetries from isometries. Even though the geometry possesses two U(1) isometries,
generated by 0. and g, only one linear combination of these Killing vectors yields a massless
U(1) gauge field in the 5d low-energy effective theory that describes 11d supergravity reduced
on Mg. The other linear combination of putative massless U(1) gauge fields gets massive
by a Stiickelberg mechanism: it “eats” an axionic scalar, which comes from the expansion of
the M-theory 3-form onto a cohomologically non-trivial closed 3-form in Mg. In terms of the
angular variables x, 8 in the canonical LLM form, the linear combination of Killing vectors
that yields a massless U (1) gauge field is simply d,. This is to be expected, since this isometry
corresponds to the superconformal U(1), symmetry. Using (4.8), we can also write

1 N

To summarize, the relevant isometries on Mg that correspond to massless 5d gauge fields are
U(1)y, and the SO(3) isometry of the S?. Let ¢1(U(1)y), p1(SO(3)) denote the first Chern
class and the first Pontryagin class constructed in terms of these massless gauge fields. These
quantities are identified on the field theory side with the Chern classes ¢] := ¢1(U(1),) and
el := c3(SU(2)r) constructed with the background fields for the U (1), x SU(2) g R-symmetry.
More precisely, we have the relations

aU(1)) =26, pi(SO)) = —4ck . (5.24)

Orbifold points and flavor symmetries. From the expressions recorded in (4.9), (4.10),
we verify that the monopole locations (p,n) = (0,w,), a = 1,...,p are orbifold points for the
internal space geometry Mg, More precisely, near the ath monopole location (p,n) = (0, w,),
the internal space Mg is locally given as S? x (R*/Zy, ), where k, € Z~g is the charge of the
ath monopole. Following the same logic as in [13|, we conclude that these orbifold points
correspond holographically to non-Abelian summands su(k,) in the global 0-form symmetry
algebra. Accordingly, in our inflow analysis we introduce background gauge fields for these
symmetries. We use ¢2(SU (k,)) for the second Chern class constructed with these background
fields.

Inflow anomaly polynomial. The anomaly inflow analysis in appendix C yields the fol-
lowing expression for the leading terms in the inflow anomaly polynomial at large IV,

p
0 = A E Y ks € e2(SU (k) - (5.25)

a=1

The 't Hooft anomaly coefficient A, p is given as

P

2

Ar,r = Z |:3 m?b (w2+1 - wfi) + M Ya (wngl - wg) ) (5.26)
a=0

where mg, y, are as in (5.20). One can verify that

A.r=—4c, (5.27)

— 34 —



where ¢ is given by (5.22). This identification is the expected 4d N = 2 SCFT relation that
holds at large N between the central charges a = ¢ and the mixed U(1), SU(2)r anomaly. It
provides a consistency check of the result (5.22) for the holographic central charge.

More interestingly, the inflow analysis provides the following values for the flavor central
charges of the SU(k,) symmetries,

ksu(ke) = 2 (Ya + Ma wa) (5.28)

with mg, y, defined in (5.20).

5.5 Operators from wrapped M2-branes

The expression of the calibration 2-form Y” in terms of the electrostatic potential V is

V//V 3/2 v V/ 2 2 v
Y' =2 [ } volgz + ( ) vy T Dzdn (5.29)
2A 2V A —vvr
V" (AV)Vp Ve vV v
— = Dzdr — drd
2VA(V’)2—VV” 2VA A QVA2V -V

! " " 2 / " 2
v VI(VA+20V (VY rdndo - 1% VZA4+2V (V')2V"p rdpds .
2VA 2V -V)(VN2 =V V") 2VA 2V -V)(V)2=VV"p

In the previous expression, we have used the shorthand notation

1 .
AV =V" + v (5.30)

and we have used the coordinates 7, ¢ on S? as in (3.15).

M2-branes located at monopoles. Let us consider an M2-brane wrapping the S? and
located at one of the monopole points, p = 0, n = w,. The relevant terms in the calibration
2-form Y’ and the 6d line element are

404
2A

"y,

3/2
] volgz ,  ds*(Mg) D ‘;{ds; . (5.31)

YDQ[

V'V
A

as we approach the monopole location. This can be done by setting
p=RvV1-1t>, n=w,+ Rt, (5.32)

and considering the limit R — 0 at fixed ¢t. With this prescription, we find that

V= Zkbwb—l—waZkb N+kw“+O(R)’

V:0+(’)(R) , V =O(1/R),
V' = finite but ¢-dependent quantity + O(R) . (5.33)
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Because of the 1/R pole in V", near the ath monopole we can write

V'V V'V 1
— = — — =-+0(R) . (5.34)
2A 22V -V)V"4+2(V)2 4

Notice how the finite value of V drops from the result. The calibration condition is then
satisfied by virtue of 2 (%)3/2 = i. Let us denote the BPS operator associated to an M2-
brane located at n = w, as O,.

The dimension of wrapped M2-brane operators is computed with the formula (3.18), which
in the present context takes the form (temporarily reinstating the mass scale m)

1 VA2
A= D /C LV”} volg, - (5.35)
2

Let us specialize to the operators O, defined above. We have

V"'V
2A

vole, = volge . (5.36)

(p:m)=(0,na)

The dimension of the operator O, is then given by (volg2 gives a factor 47)

N2 vy
AOd) = Ty 4 [;ﬂ il . (5.37)
(4mm>6;) 28 1(om=(0ma)
We have already observed that VZHZV approaches 1/4, for all monopoles. Near the ath monopole,
we also have s ) L N
VA VRV -V)V"+V (V) o

In conclusion, making use of (5.33) for the value of V, we arrive at

A(Og) = kpwy+wa > kp— ———w, . (5.39)

M2-branes stretching along the interval [wy,, wn]. These M2-branes wrap the 2d sub-
manifold obtained by considering the final segment [wy,wy] combined with the Dz circle.
Notice that this 2d submanifold is not closed: we are considering open M2-branes, which end
on the smeared M5-brane source. The relevant terms in Y’ are

Y/ 5 \Val (V/)Q +p2 (V//)Q
QA (V- TV

Dzdn . (5.40)

This quantity has to be evaluated in the limit p — 0, for a generic n with w, < n < wy. In
this limit, V is finite (it is given by the charge density), V/ — —N/(N + k) (independent of
wy, < 1 < wn), V goes to zero, V" is finite. It follows that
772 NAVEAY:
Vo V7 (5.41)
(V/)2 _ V V//
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The relevant parts of the Mg line element are

" 2V -V
ds*(Mg) D> — dn? + ——= D2z? , 5.42
(Mo) > - di + = (5.42)

1 VeV -=Vv) &
volg, = —— 1| —2L "V n Dz = | ——dn Dz , 5.43
STV Y 1 \V2va (5.43)

where in the second step we used the fact that V vanishes as p goes to zero. Comparing with

which implies

Y’ we see that the calibration condition is satisfied for 7 = —1. We denote the BPS operators
associated to these wrapped M2-branes as Oy, w,,]-

The dimension of these operators is computed from (5.35), The result reads

1 1 1
A - | Zaypi= — _ —N4k—w,. (544
(O[w"’wm]) T (47rm3€§;) /52 2 dn Dz (47rm3£%) /[wp,wm] an T (5:44)

M2-branes stretching along the intervals [w,, w,+1]. The discussion above generalizes
directly to M2-branes that wrap an interval [w,, wg+1] combined with the Dz circle on that
interval. In this case, this 2d submanifold is closed. The calibration condition holds for the
same reason as in the [wy, wy| case: 1% goes to zero, with finite V, V', V". The dimensions of
these operators are again computed from (5.35), with the result

A(O[wa,wa+1}) = Wg+1 — Wq - (5.45)

6 Comparison with field theory

In this section, we present evidence that the supergravity solutions presented in section 5 are
dual to the four-dimensional ' = 2 Argyres-Douglas SCFTs that arise from wrapping N M5-
branes on a sphere with one irregular puncture labeled by k, and one regular puncture labeled
by a partition of N. In particular, we identify Case II with the generalized monopole profiles
constructed in section 5 with the Argyres-Douglas SCFTs labeled by an irregular puncture
AE\],VE 1[k], for integer k& > —N, and one regular puncture labeled by a partition of N. This
proposal is checked in detail in the remainder of this section. It also matches the proposal of
[16].

It is natural to propose that Cases I and III also correspond to SCFTs of this type, with
an irregular puncture with possibly more finely-grained structure, and one regular puncture
labeled by a partition of N. Indeed, the three solutions share key features, as we briefly
summarize below. In order to simplify this discussion, let us temporarily restrict the regular
puncture to be labeled by a single monopole of charge ¢. By inspection of Table 1, we then
observe the following:

e In all cases, an integer N.g may be identified which plays the role of an effective number
of Mb-branes; and an integer M may be identified which plays a similar role to the
integer M in the Case II solution.
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e In terms of Neg, M , and the other fluxes, we observe that the R-symmetry twist, dimen-
sion of the Coulomb branch operator O, and dimensions of the Higgs branch operators
Oj are identical between the three cases.

e Case I and Case II share more features. Case I represents a one-parameter generalization
of the Case II solution labeled by the flux quantum Ng, and which reproduces the Case 11
geometry when Ng — 0. In terms of the effective number of branes Neg, the holographic
central charge is identical in these two cases. The difference lies in the additional stack
of smeared Mb5-branes labeled by Ng, and additional associated Higgs branch operators
(’)g. At the end of this section, we speculate on a possible field theory interpretation of
these features.

e By contrast, Case III is evidently not continuously connected to the other two by tuning
flux quanta. At present we refrain from further speculation as to the specific field theory
dual of Case III, but point out some intriguing features. The central charge differs from
that of Cases I and II by a term proportional to the new monopole charge g2, and there
are new operators in the spectrum. Furthermore, the two monopole charges ¢; 2 are
mixed by the relation Neg = q1M + g2 K. Tt would be interesting to understand the
mapping of these features to the field theory dual.

We now return to the proposed Case II duality, beginning with a summary of the partition
of N labeling the regular puncture is mapped to the electrostatic charge profile.

6.1 Map to the Young tableaux

As discussed in section 5, the geometry of the blue sides of the square depicted in Figure 1
is specified by a charge density profile A\(n). We now summarize the relationship between the
profile A(n) and the data of a Young tableaux specifying a regular puncture in this region of
the geometry. Our notation for this mapping closely follows the discussion in [33].

There are p monopoles located on the n axis at locations n,—1,... p, With positive integer
charges k, given by

P
ka=Lla—Llayr,  La=> Ky, Lp1=0. (6.1)
b=a
The configuration is labeled by a partition of N,
P
N =Y kawa (6.2)
a=1

where w, are an increasing series of positive integers. (We remind the reader that k£ without a
subscript labels the irregular puncture, and is not to be confused with the monopole charges
k,!) This data is related to the data of a Young tableaux as follows. Rewriting the partition
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of N as
N = Z(wa — Wa—1)lq , wo =0, (6.3)

we identify a corresponding Young tableaux with distinct row lengths ¢, with multiplicities
(wg — wqe—1). Changing variables, the lengths of all rows including repetitions are given by
the quantities

b=V, foralli=we 1+1,...,w,, (6.4)

with p = w,, the total number of rows. This reformulates the partition as N = Z E-. We

furthermore define the quantities k; = ¢; — ;41 (equivalently, ¢; = ?_ k;) such that

ki=k, ifi=w,, otherwise ];72'751% =0. (6.5)

The flavor symmetry of the associated regular puncture is given in terms of the monopole
charges as

p

=9 HU/Z:

i=1

p

[Tu

a=1

Gp=S5 (6.6)

where the product over ¢ is understood to not include the cases k; = 0.

Other useful quantities related to the Young tableaux are as follows. We introduce the

notation
a a—1
Ny = Z(wb wp—1)lp = Zwbkb +wely , Np=N. (6.7)
b=1 b=1

The corresponding variables N; in terms of the Young tableaux data are

i—1

Ze _ij +i Z Nj =Nz =N, (6.8)

which satisfy lz = Ni — ]\72-_1. We also will utilize the pole structure, a set of N integers
p; = @ — (height of i’th box) labeling the 7’th box in the diagram, starting with ¢ = 1 and
p1 = 0 in the bottom left corner and increasing from left to right across a row (in a convention
in which row lengths decrease from bottom to top). The p; are related to the N; by

N p
> (20— 1)p; = é (4N® —3N? = N) = > (N*—N}) . (6.9)

For reference, these data for some special cases are as follows:
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Rectangular box puncture, with N/¢ rows of length ¢, and flavor symmetry Gp = SU({).
The case £ = N corresponds to the maximal puncture, while £ = 1 corresponds to the
“non-puncture”.

tableaux data: ]5 = N/E N EL.“’I; =/ N D = E, kl,...,ﬁ—l =0 5 NZ =/
geometric data: p=1; (1 =4; ki=¥¢ N =N; w =N/ (6.10)

pole structure:  pi—i4(m_1)r.. e =0 —m, m=1,...,N/I

Minimal puncture, with one row of length 2 and N —2 rows of length 1, and flavor symmetry
Gr=U(1).

tableaux data: p=N —1; Zl =2, 172
geometric data: p=2; (=2, l=1; k=k=1; (6.11)
pole structure: p; =0, po N =1

These are drawn for the case N = 4 in Figure 8.

6.2 Checks of the holographic duality

We now review some properties of the field theories (Ag\],vjl[k],Y) which participate in the
proposed duality, and match these properties with those of the supergravity solutions pre-
sented above. The (AS\],VJI[k], Y) field theories are 4d N/ = 2 SCFTs of Argyres-Douglas type,
engineered by wrapping N Mb-branes on a sphere with one irregular puncture labeled by the
integer k£ denoted Ag\z,v_)l[k] [9, 10], and one regular puncture labeled by the Young tableaux
Y which is a partition of N. Since [15] includes a review of the classification of irregular
singularities, as well as a detailed review of the properties of the (AS\],V_)I[IC], Y) SCFTs when Y
is a Young tableaux of rectangular box type (including the trivial case with no regular punc-
ture on the sphere), in this section we focus primarily on how the data of the general Young

tableaux enters the checks between properties of the SCFTs and the holographic solutions?.

4We note that most of the checks performed in this section are not sensitive to differences between the
irregular singularities Ag\l;)fl [k] with b = N (Type I) versus b = N —1 (Type II), although we explicitly perform
checks for the former case. In particular, the central charges, R-symmetry twist, maximum Coulomb-branch
operator dimension, and rank of the flavor symmetry are all unchanged at leading order in N between the
Type I and Type II theories, differing only at subleading order. The Case II identification of the holographic
parameter K with the field theory parameter k would have an additional order 1 term in matching to the Type
II singularity, but this difference does not affect the leading order duality checks. One difference is that we do
not have access to a check of Higgs branch operator dimensions for the Type II singularities, since these cases
do not have a known quiver Lagrangian description.
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: n
1

(a) The maximal puncture with Gp = SU(N), corresponding to the box diagram Y; with £ = N.
Here, py = £ — 1, such that p, = {0,1,2,3} in the above diagram (allowing £ =1,..., N).

A
N

! n
2

(b) The puncture with Gp = SU(N/2), corresponding to the box diagram Y; with ¢ = N/2. Here,
Pe=1,...n/2 =L — 1 and py_n/241,.. N = £ — 2, such that in the diagram shown p, = {0,1,1,2}.
A

[

+— n

(c) The puncture with Gp = S(U(2) x U(1)). Here, pe = {0,1,2,2}.
A
N

} f n
1 N-1

(d) The minimal puncture with Gg = U(1), correpsonding to the tableaux with one row of length
2 and N — 2 rows of length 1. Here, p, = {0,1,...,1}.

A
N

% Ui
N

(e) The non-puncture, corresponding to the box diagram Y, with £ = 1. Here, p, = 0 for all £.

Figure 8: The Young tableaux, Newton polygons, and charge density profiles A.g of the
possible regular punctures for N = 4. The blue dots represent deformation parameters of the
Seiberg-Witten curve. The red circled dots are the Coulomb branch operators O, identified

in (6.31).
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6.2.1 R-symmetry

The U(1), superconformal R-symmetry of these N' = 2 SCFTs is independent of the details
of the regular puncture. It is given by a linear combination of the global U(1), isometry of
the sphere and the would-be U(1)4 R-symmetry that would be preserved in the absence of an
irregular defect, as

N
= —_— . 12
r R¢+k+NRZ (6 )

This matches the R-symmetry identified in (5.23).

6.2.2 Central charge

The central charge of the (AS\],le[k], Y’) theories may be decomposed as the sum of the central

charge c(ay_,,a,_,) for the SCFTs without the regular puncture, plus the additional contri-
bution Ac,’

C=ClAy 1,A4r_1) T AcC. (6.13)
The quantity ¢4y _,,a, ;) is given by [9]

ClAN_1,A5_1) = 12(k + N)
Nooo N2(M — N)?
- 12M ’

(6.14)
M=k+N (6.15)

where for later reference we also evaluated the large N limit of large N,k at fixed k/N, and
are using M = k+ N. Ac depends on the details of the Young tableaux Y, and can be derived
by partial closure of the maximal puncture to an arbitrary regular puncture [29],

1

Ac= —
‘T 12

(nh(Y) +2n,(Y) +2N3 — N — 1+ 61, — N3+ N)> . (6.16)

N
(k+N)(

This is given in terms of the quantities n,(Y") and ny(Y") which represent the effective number
of vector multiplets and hypermultiplets respectively contributed by the regular puncture
labeled by Y,

ny(Y) ==Y (N*=N}) - -N?+ - | (6.17)

(6.18)

®Since we are interested in checks at large N where a = ¢, here we focus only on the ¢ central charge.
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as well as the embedding index I, of su(2) into su(N) labeling the partial closure of the full
puncture,

i(i% — 1)k; . (6.19)
1

Iz
‘[PY =

7

These are given in terms of the Young tableaux data (NZ, l;:i,;ﬁ) defined in section 6.1. For
example, using (6.10) one can verify that for the box diagram labeled by ¢, these evaluate
to Iy, = sN(3F — 1), ny(¥e) = ZF(€2 — N?), and n, (V) = (3 + N — 42), which upon
substituting into (6.16) and (6.13) yield the ¢ central charge evaluated in [14, 15]. One can
similarly verify that using (6.11) for the case of the minimal puncture, the resulting central
charge matches the result obtained in [27].

The field theory central charge (6.13) can be compared with the holographic central
charge, computed above in (5.22) as

1 2 z N 3 2,3 z 3 2
Chol = 75 (MN +> (Mkawa = 2kZwd — > (wd + Bwawp)kaks | | - (6.20)

a=1 b=a+1

In order to check that these two quantities match at large N, we need to evaluate the large-
N limit of (6.16). First we change from Young tableaux variables (Nj, ks, ...,i = 1,..,p) to
variables (Ng,kq,...,a = 1,..,p). Since k; is only nonzero at the location of a monopole
i = wg, at which point k; = k, and N; = N,, we can replace > Ni.k; with Y a Nakq in np(Y),
as well as 3,4(i2 — 1)k; with 3, wa (w2 — 1)k, in I,,. We also make use of the following
identity (e.g. [33]),

p 2

) 202
E (N2 — Nf) = E (3('1112 - 'wgfl) + ga(Na - waga)(w?z - w?zfl) - 6
=1

a=1

Terms of O(N?) and less are subleading in the large N limit and can be dropped. These
include the sum Y, Ngkq, as well as the —1 part of the sum Y, wq(w? — 1)k,. Putting all
this together, and adding Ac to the large N limit of ¢ 4, , 4, ,) given in (6.15), we evaluate

Nooo 1 2 z Nuwgkq 2/, .3 3 2 2
T MN —|—Z T—%a(wa—wa_l)—3£a(Na—wa€a)(wa—wa_1) .

a=1

(6.22)
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Substituting for N, and ¢, from (6.1) and (6.7), we evaluate

CNHOO 1 [MN2 —i—Z—w?’k
» » (6.23)
—Z 2(2]@) (w3 — w3 )—1—3(2 )(ZWJ%) w? —w? ) ]
a=1 b=a b=a
1 N - =
2 3 2
= [MN +; ( kqw3 — 2k2w bZ;lwakakb - SbZ;wawbkakb)] , (6.24)

where in the second equality we converted the sums over w,—_; to sums over w,, and then
expanded the remaining sums in order to cancel some terms. The final sum in (6.24) can be

recast as
P a—1 p p
Zngwbkakb = Z Z waw?,kak:b ) (6.25)
a=1 b=1 a=1b=a-+1

Substituting into (6.24) and comparing with the holographic central charge (6.20), we find
agreement.

6.2.3 Coulomb branch operators

The Seiberg-Witten curve of the SCFT takes the form
V=V 2 pugr®t (6.26)

where ug, are deformations of the curve with scaling dimension

Augy) = (6.27)
The regular puncture with associated Young tableaux Y contributes terms
I (M — N)+nN

y© D lz;;vlmz T , Ay ) = % , (6.28)

where p; is the pole structure defined above (6.9).

Coulomb branch operators are scalar primaries of protected N/ = 2 chiral multiplets with
superconformal SU(2)g x U(1), R-charges satisfying r = 2A, R = 0. These correspond to
deformation parameters u,, with A(ug,) > 1. These deformations are nicely encoded in a
Newton polygon, by plotting the (a,b) coordinates associated to operators ug, on a grid. In
particular, the operators vy, associated contributed by the addition of the regular puncture on
the sphere will correspond to points below the horizontal axis of this grid, since the associated
powers of x and z in (6.28) are negative. Examples of the quadrants of the Newton polygon
associated to the regular puncture deformations are shown in Figure 8.
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In (5.33), we identified Coulomb branch type operators associated to wrapping an M2-

brane on the S? at each of the a = 1,...,p monopole locations, and computed their scaling
dimensions
a—1 p
Nuw, Nuw,
A = — = Ny — . 2
(Oa) ; kpwp 4 wq bz kp M a M (6.29)
= =a

In the second equality we used the definition of N, from (6.7). We can match these onto
operators in the SCFT as follows. Firstly we note that these operators correspond to some
value of [ and n = p; in (6.28), since at a given value of [ we are interested in the largest
dimension Coulomb branch operator (which has n = p;). In the Newton polygon, these are
points bounding the lower edge of the triangle.

Since the O, are associated with fluxes through the S? surrounding the monopole lo-
cations, we restrict attention to these points. The locations of the monopoles 71, coincide
with changes in the slope of the density profile A\(n), and correspondingly with changes in the
lengths between subsequent rows of the associated Young tableaux (or equivalently, changes
in the slope of the Newton polygon). Since the distinct lengths of rows of the Young tableaux
are given by the £,, with multiplicities (w, —wq—1), evidently these changes in slope occur at
box numbers I, = Y p_, (wy — wp—1)¢, which is none other than N,. Thus, we identify the
operators O, with the v, for | = N, and n = py,, with dimensions

N
A(Ul:Na,n:pNa) = Na I

3 Na—pa) - (6.30)

Finally, we evaluate pn, = N,—(height of N,’th box) by again appealing to the partition of
N. Since there are (wg —wq—1) rows of length ¢, in the tableaux, the height of the N,’th box is
equal to the number of rows that have already been surpassed, namely Y p_ | (wp —wp—1) = wq.
Therefore,

Nuw,
M M

A(Ul:Na,n:pNa) = Na - (631)

which exactly matches the dimensions of the holographic operators (6.29). These operators
are circled in red in the example Newton polygons drawn in Figure 8.

6.2.4 Flavor central charge

The flavor central charges associated to the SU (k,) flavor symmetries at the monopole loca-
tions were computed in (5.28) as

kst (ke) = 2(Ya + Mawa) (6.32)

Using mq = la4+1 — %, by =7, kp (wWith £,11 =0), Yo = > _p_, wpks, this can be rewritten

a p
N
ksuk,) =2 (Z kpwy + wq Z ky — Mwa> =2A(0,) , (6.33)

b=1 b=a+1
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where A(O,) are the scaling dimensions given in (6.29), which we showed in that section match
the maximal-dimension Coulomb branch operators associated to the a’th monopole. This
confirms the conjecture that the flavor symmetry central charge of the associated Argyres-
Douglas SCFT is equal to twice the scaling dimension of the Coulomb branch operator of
maximal dimension [27].

6.2.5 Higgs branch operators for the minimal puncture

In the special case that Y corresponds to either a maximal puncture or a minimal puncture,
a Lagrangian quiver description of the Argyres-Douglas SCFT is known. In [15], a class of
Higgs branch operators are matched in the case of the maximal puncture between baryonic
operators in the quiver, and a class of M2-brane probes in the holographic solution. With
the generalized holographic solutions for any regular puncture, we can now perform a similar
check for the minimal puncture case.

The Lagrangian description for the theories with a simple puncture in addition to the
irregular puncture is known for the case that £k = mN is an integer multiple of N. The UV
quiver and IR quiver are depicted in Figure 9. They consists of N —1 gauge nodes SU(mf+1),
¢ =1,...,N—1. Bifundamental hypermultiplets (Q;, Q) connect the £’th node to the £+ 1’th
node. There is one fundamental hypermultiplet (q1,G1) at the first node, and one (gn-1,Gn—1)
at the last node. There are adjoints ¢y for each of the gauge nodes. There are also singlets
M;, j=1,...,m(N —1) (j = j —m for j the index in [30]). The A" = 1 R-charges of the
quarks and adjoints are

(6.34)
2
RNZI(‘W) = m ,

from which the dimensions can be computed A = %RN:L
From the quivers, we can evidently construct sets of baryonic operators of the form

By = €iyigy_ 1y (Av-1)" (an—18) .. (qy_1 0N M) -nmi

(6.35)
By =q1Q1...QN-2qN-1 ,

with dimensions

k
A(By) =k — N +1, A(B2) = N . (6.36)
On the gravity side, we computed the dimensions of M2-brane probes corresponding to
Higgs branch operators in (5.44) and (5.45). For the minimal puncture with data summarized

in (6.11), these correspond to operators with dimensions
A(O[wp,wm]) =k+0(1), A(O[wlm]) =N+0(1). (6.37)

At large N, these operator dimensions match (6.36). We thus identify the M2-brane probes
Olwy,wi] a0d Opyy ) In the minimal puncture geometry with the baryons By and Bs in the
Lagrangian quiver of the proposed dual SCFT.
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Nm

Figure 9: The upper figure is the UV quiver and the lower figure the IR quiver for the flow

to the (Ag\],\:)l[k =mN],S) SCFTs.

6.3 Speculations on nested Young tableaux

We end this section with some comments on another Argyres-Douglas SCFT, which we spec-
ulate might be dual to the Case I geometries constructed in this work.

One generalization of the (A%V_)l[k],Y) Argyres-Douglas SCFTs takes the Higgs field in
the Hitchin system to be specified by a series T} C Tp C - C T, % of semisimple elements
of su(N) that are not necessarily regular (e.g. see [9, 10]). Then, the data of the irregular
puncture is refined to depend on a sequence of Young tableaux Y,, CY,,_1---CY;,n= % +2.
The Young tableaux encode the degeneracies of the eigenvalues of the matrices T;. The
“maximal” irregular singularity AE\J,V_)I[k:] is recovered in the limit that there is no degeneration
of the eigenvalues, so that all matrices are of maximal type.

In this case, the Seiberg-Witten curve has additional parameters,

N m; ) ' )
NN e N =0, m =3 —2i (6.38)
i=2 j=1 l

@

Here p;” is the pole structure of the i’th box in the /’th Young tableaux of the sequence. The

independent Coulomb branch operators thus have dimensions
B k+ N

Suggestive example: {Y,...,Yg}. Let usillustrate such a scenario with a suggestive ex-

(6.39)

ample. Suppose there is just one type of tableaux labeled by @, which occurs with multiplicity
k
n = N + 2,

p={Yo,.... Yo}, (6.40)
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where we assume that k is an integer multiple of N. The limit ) = N reduces to the
“maximal” irregular puncture without the additional nested structure. For simplicity let us
take the regular puncture on the other pole of the sphere to be trivial, i.e. ¢ = 1. Then, the
pole structure parameters are given by,

P =i-m, i=1+m-1)Q,....mQ, m=1,...,N/Q, (6.41)

k

For @ ~ O(1), the quantities m; are negative, and we cannot use this description (6.38) to
enumerate the Coulomb branch operators. However for @ ~ O(N), one may verify that the
m; are positive. In this case, we check that the Coulomb branch operator unﬁ\, has dimension
of order N, given by

Nk
(N)y — '
Altmy) = 773 (6.43)
and that the rank of the Coulomb branch is given by®
k:N N

We may compute the central charge at large N by summing over the Coulomb branch operator
dimensions [26], yielding

2a—c—72 2A(u;) — 1) Zzlk knjj]:f] —%rank(CB)

z2]1

k2N2

~ gy O 049

In particular, we note that at leading order for large N, these data — the large-N central
charge, maximal dimension Coulomb branch operator, and rank of the Coulomb branch —
are indistinguishable from the “maximal” irregular puncture theory, (Ax_1, Ax—1). This is
not surprising, since this singularity labeled by @ ~ O(N) is quite similar to the maximal
irregular puncture case. However, even for Q ~ O(N) there is additional data contributed
by the nested structure: the flavor symmetry of the field theory is enhanced. The number of
mass parameters is equal to the number of distinguished eigenvalues of 77 [10], which in this
example contributes rank,(F") to the rank of the flavor symmetry as,
N

rank,(F') = Q- 1, rank(F') = rank,(F") + rank,(SU(N)) . (6.46)

50ne check on this formula is that it satisfies the expected relation rank(CB) = dim,(CB) — dim(SU(N)),
where dim,(CB) is equal to one half times the sum over the dimensions of the nilpotent orbits of su(N) that

appear in the sequence p.
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Now, return to the Case I holographic solutions, again for simplicity taking ¢ = 1 such
that there is no regular puncture on the sphere. Their data is summarized in Table 1, where
since ¢ = 1 we may replace M = Nyg. If we identify the number of Mb5-branes N and the
irregular puncture parameter k& with the holographic fluxes Neg and K in a way identical to
the Case II dictionary,

N=Ng, k=K+M-N=K, (6.47)

then evidently the R-symmetry, central charges, and dimensions of the operators (J; match
both data of the Argyres-Douglas SCFT labeled by “maximal” regular puncture Ag\],vjl[k], and
the Argyres-Douglas SCFT labeled by the nested Young tableaux p = {Yp,...,Yp} with
Q ~ O(N).

In addition, both Case I and the p = {Yg,...,Yq} irregular puncture theory possess
enhanced flavor symmetry. Naively, we expect a flavor symmetry coming from the two stacks
of Ny and Ng smeared M5-branes in the geometry, where (again, naively) we might expect
that the maximal rank of this flavor symmetry is identified with the maximal possible rank of
the sources, equaling Ny + Ng—1. This identification would provide a proposed map between
the flux quantum Ng on the gravity side, and the field theory parameters N, k, and gq.

While a proposed duality along these lines seems promising, more precise checks would be
required to put it on firmer footing. In particular, a more precise understanding of the flavor
symmetry of the smeared M5-brane geometry would be necessary. We leave this direction to
future work. At present, we view this discussion as a hint that the dual to the Case I geometry
is consistent with Argyres-Douglas SCFT whose irregular puncture has refined structure.

7 Discussion

The results of this work suggest several interesting directions for future research, some of
which are discussed below.

Exploring the geometry of irregular singularities. The separable Toda solutions of
Case I and II studied in this paper exhibit an interesting qualitative feature that sets them
apart from the Maldacena-Nuifiez [12] and Gaiotto-Maldacena [13] solutions. Recall that the
latter describe the holographic duals of class S setups without punctures, and with regular
punctures, respectively.

To elucidate the novel features of the solutions of Case I and II, let us examine in closer
detail the locus y = 0 in the standard form of the line element (2.1). Recall that the internal
space Mg can be regarded as an S? x S}( fibration over a 3d base space Bj, with coordi-
nates x1, x2, y. The line element (2.1) reveals that the locus y = 0 in Bs has an intrinsic
geometric meaning, because it corresponds to the region where the S? shrinks. Both in the
Maldacena-Nufiez and in the Gaiotto-Maldacena solutions, the locus y = 0 consists of a single
component, at which the S? shrinks smoothly, while the warp factor remains non-singular.
This should be contrasted with the solutions of Case I and II, in which the locus y = 0 splits
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into two components, meeting transversally at a point. This structure is made manifest by
the introduction of the ¢, u coordinates, see (2.9). In particular, the relation y = tu can be
regarded as a way of parametrizing the split of the locus y = 0 into two components, t = 0
and u = 0, intersecting transversally at u =t = 0. In Case II, the splitting of the y = 0 locus
is particularly important for the structure of the internal geometry, because the behavior of
the warp factor and line element along the two components u = 0 and ¢ = 0 exhibits clear
qualitative differences: along the component v = 0, the S? shrinks but the warp factor re-
mains non-singular, while along the component ¢t = 0 we find a smeared M5-brane source, see
Figure 1.

The considerations of the previous paragraphs suggest a more physical way of thinking
about the change of coordinates y = tu: it describes setups in which the y = 0 locus has a
non-trivial sub-structure. From this point of view, it is natural to wonder whether the locus
y = 0 might admit richer structures than those studied in this paper. For example, one might
ask whether y = 0 could split into three components, C1, Co, C3 say, with C; and Cy meeting
at a point, and similarly for C and Cs. It is not clear whether such more complicated setups
would still allow for a separation of variables in the Toda equation; this might pose a technical
challenge to exploring such possibilities analytically in the Toda frame.

A possible strategy to study a multi-component y = 0 locus might be inspired by the
methods of [37]. This reference studies the most general AdSs M-theory solution preserving
4d N = 1 supersymmetry in which the internal space is a fibration of a compact 4-manifold
over a (punctured) Riemann surface. The internal geometry is assumed to preserve at least
a U(1)? isometry. The 4-dimensional fiber over the Riemann surface can be described as a
U(1)? fibration over a 2d base space. The latter is a region in R? with a boundary consisting of
several segments, where on each segment, a different linear combination of the two U(1) Killing
vectors shrinks to zero size. These setups bear some formal analogies to the multi-component
y = 0 locus we would like to explore.

Alternatively, one might work in the electrostatic picture after the Backlund transform.
In this frame, the task is to identify those charge densities that give rise to a multi-component
y = 0 locus, and to study them systematically.

Connections with Painlevé equations and integrable systems. In the Introduction,
we have motivated our assumption that the internal geometry admits an additional Killing
vector dg, in addition to the Killing vector d, dual to the superconformal U(1), symmetry.
We have also noticed, however, how this dg isometry does not give rise to a continuous U(1)
flavor symmetry on the field theory side. It is natural to wonder whether we could relax
the assumption of having the additional isometry ds, and search for solutions that can be
interpreted in terms of irregular punctures. In particular, one may wonder whether, upon
relaxing the 0g isometry, non-singular (or less singular) solutions could be found in which the
smeared Mb-brane sources encountered in this work are resolved.

The study of the Toda equation (1.2) in non-axisymmetric setups is particularly challeng-
ing. A possible inroad into this problem is furnished by the analysis in [38]. The main idea is
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to consider a coordinate change from x1, x2, y to a new set of coordinates 7, 9, ¢, of the form
x1 =€ Qq(7)sind cos ¢ , x9 = € Qo(7)sin¥sinp , y = Qa(7)cos? , (7.1)

where a is a constant parameter, {21 2 are functions of 7, 0 <9 < 7, and ¢ is an angle of period
27. In the generic case in which Q4 (7) is not identically equal to Qo(7), this ansatz describes
a non-axisymmetric configuration. Nonetheless, one retains analytic control as follows. If we
introduce a new coordinate s via as = e~", and we set the Toda potential D to be eP = a?s?,
we can verify that the Toda equation reduces to an ODE for a single function w = w(s). The

ODE is of Painlevé III type,

AV ! )
SV 0 I B (7.2)
w S w

where v, § are constant parameters.

Relating the search of M-theory solutions dual to irregular punctures to a Painlevé equa-
tion is particularly tantalizing, given that Painlevé equations have natural links to the Hitchin
integrable system on punctured Riemann surfaces, see e.g. [39]. A functional transform from
the Toda equation to the Painlevé IIT equation might thus be a way to establish a precise
correspondence between the holographic description of the class & model, and its description
in terms of the Higgs field entering the Hitchin system. We plan to investigate this direction
further in the future.

Holographic realizations of renormalization group flows. Another interesting direc-
tion is to understand the holographic analogues of known renormalization group flows between
Argyres-Douglas SCFTs. For example, there is an RG flow between the (Ag\],v_)l[k], Yiax) the-
ory with a regular maximal puncture on the sphere, and the (Ay_1, Ax4+n—1) theory with no
regular puncture, via nilpotent Higgsing [40]. This flow can furthermore be understood purely
from the Lagrangian perspective. It would be quite interesting to reproduce such an RG flow
holographically, using the proposed holographic duals that we have now identified.
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A Further details on separable solutions

A.1 Angular coordinates ¢, z

As anticipated in the main text, it is convenient to perform a change of coordinates from the
Toda angles x, 8 to a new pair of angles ¢, z. The change of coordinates is engineered in
such a way that, along the segment P3P, in each case in Figure 1, the linear combination of
Killing vectors d,, 0g that has vanishing norm is simply d,. This can be achieved by setting

v—1

where we have also given the value of the constant C that enters the parametrization (3.1)
used in the main text. In terms of the Killing vectors and differential forms, we can write

o\ (1 ) i (5 -1\ (do
<8Z> - (1 f’i) (f;:) ’ (dﬂ) = <—@111 . ) <d2> : (A.3)

With this, the metric takes the form

2X
2 _6
dsiy =3

2,2 ,—6)
e ™ 4252 (A4)

ds*(AdSs) + 1

Ku? + Kot? (dt?  du?
+ R2D2? + R2dg? — 9,D— 1T 220 ( u )] ,

1t R

,52,



where Dz = dz — Ld¢ and we have made the definitions

_ —0,DK K, N (vg —1)?

B 4tu 1 — tud, D
- 4tu(t1ltzu_2aj uyuot?) <Ut1t2(t1 02)u =)~ ) (45)
+ t2(t1 + t2) <u3 — ugug(3u — ug — ug)) — ttqte <4u3 — (ug + ug)(3u? — uluz))
+ 13 <4UU1U2 — (u1 + ug) (u® + U1UQ))> ,
L= - 2(“;“2) <tuu1 (H(uty — tuy) + 1 (fu — to(2u — u1)))

— (u— up)ug (ut1ta(2t — ty — t2) + tur (t — t1)(t — t2))
+ tugud(t — ) (t — t2)> ,

R2 = O-(UIP_'LQ)(t - tl)(t — tg)(u — Ul)(u - U2)<(t1 + t2)’LL - (ul + UQ)t) )

P =o(u; —ug) (utltg(tl + to)(u — up)(u — ug) + tz(tl + t2) <u3 —ujug(3u —uy — uz)>

— 3 (uQ(ul + ug) — ugug(du — uy — ug)) — ttqtse <4u3 — (u1 + ug) (3u? — U1UQ))> )

From these definitions we can readily read off that the ¢ circle shrinks along the intervals
where the K; vanish, and we can find that the Dz fibration will only vanish at the locations

of the monopoles.

In terms of the new angular coordinates, the flux reads

— Gy volg2 do Dz

- _ - Y £ —w == A6
G (2mep)3 4 " d[ 27 W 27 |’ (4.6)

where the 0-forms Y, W are given by
5 1
W = t3ule 5 (vg — 1) — tuvg — 5.7: ;
50— t
Y+ WL = —tyde—d L8 UU8 > (A7)

-1 o0-1 206-1)"

with vg, F as in (2.16).

Finally, let us record the expression of the calibration 2-form Y’ given in (3.14) in terms
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of functions appearing in the line element (A.4),

1 ; 1 ;
Y = = (tu)®ePvolg + §tue_3A(1 — (tu)?e"%)(vg — 1)dr A D2

4
3 v — g

+ %tue_g)‘(l - (tu)2e_65‘) ( 1 (vg — 1)L> dr Ndo

(1 5 [(D—ug 1 Kotue s [ 1
= _— — — 1)L — = L) |dtnd
+ 5Te u<ﬁ_1 (vg )>+41—(tu)26—“ 6—1+ ()
_1 _33, [V —vg 1 Kltuefng 1
- | ——— — -1)L|—- = L) |duAnd
P <6—1 (s = 1) ) 1T (e \51 1) |19
1 _ax 1 Kotue r
+ |z1e P ya(vg — 1) = ——————=|dt NDz
2 (o5 = 1) 41 — (tu)2e—6A
+ (L5 (v — 1) + = Kitue s | (A.8)
—re > y1(vg — ———————|duA Dz, .
_2 A 41 — (tu)2e=6X

A.2 Solutions in Case II in the notation of [15]

Brief review. The AdSj5 solutions discussed in [15] were obtained by uplift from 7d gauged
supergravity. The 11d metric and flux are given by

2 Bw'/3 H(w, p)"/? dw? C? h(w) dz?
2 7.2 ) 2
dsi] = ds“(AdS.
e VI—u? [ SAdSS) + ) A —wi2 T B
1— 2 d 2 1— 2 D 2 2d 2 SQ
L Yi-w u2+( p) D™ wpmds*(STN ] (A.9)
2B w (1l — p?) w H(w, @) H(w, )
The quantities B, C are parameters specifying the solution and satisfy
1
0<B<1, C=———, leZsg . A.10
B >0 i

The coordinates z, ¢ are angles with period 27, while the coordinates u, w have ranges

0<u<l, ogw§w1:=§(¢1+3—\/1—3) (A.11)
We have introduced the shorthand notation
H(w,p) = +w? (1 —p?),  hw)=B-2wV1-w?. (A.12)
The quantity ds?(S?) is the metric on the round unit 2-sphere, while the 1-form D¢ reads
D¢ =dp+C(2w* —1)dz . (A.13)

The expression for Gy is

3

1 %
Gy = ——=volg2d D A.l4
4 m3 VOlg2 ,UQ + w? (1 _ Mg) ol ( )
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where volg2 is the volume form on the 2-sphere of unit radius.
When these solutions are cast in canonical LLM form, the Toda potential D reads

L 16BC (1-2)"C [Bo2wyT=u?
e’ = (1= w?) G(w)? . (A.15)

The LLM coordinates r, y are related to the coordinates w, u by the relations

_4Bwp
Vi

In the previous expressions, the quantity G(w) is a function of w only, satisfying the ODE

r=(1-p?) "2 G(w) . (A.16)

G(w) C(1—w?) B—Qw\/l—wz}
Let us define a new variable  via
~ w
t= —— . A.18
T (A.18)
The above ODE can be written in the form
d -~ (65} a9
dt & ( ) t1—t to —t ( )
where 9
~ 1¥+v1-— B? B
t12 = S ) Q12 = — . (A.20)
B 2C[1 — B2+ 1 - B?]
The solution can be written as
log G(t) = —ay log(t; — t) — ag log(ty — t) + const . (A.21)

Dictionary with Case II solutions. The u, w coordinates are related to the ¢, u coordi-

tes of Case II vi
nates of Case II via 4Bw B 43?

U= Ul , == — ——— = A .22
2 usV1—w?  ug ( )
We also record the identifications
t 1++v1— B?
oc=-C, 2 _lhvi— ot (A.23)

1 1-V1i-B?
B Formulae for the electrostatic potential

In this appendix we discuss the electrostatic potential generated by a piecewise linear charge
density profile with an arbitrary number of monopoles. The electrostatic potential is computed
from the charge density using the standard Green’s function for the Laplace operator on R?,
see (4.26).
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We consider a total of n monopoles, located at n;, i = 1,...,n. We start by computing
the contribution of the linear charge density between two consecutive monopoles, which we

parametrize as
A(n) =min+q; for ;; <m < miy1, i=1,...,n—1. (B.1)

This segment of charge density gives the electrostatic potential

1 o,
V(1i, i1, mi, i) = = |man/p? + (n —n:i)? — (min + g;)arctanh ( 1 ) (B.2)

2 PP+ (n—m)?

—min/p? + (= mi1)? + (man + ¢;)arctanh > N it : .
V2 + (= nig1)

Next, we study the semi-infinite line at the right of the last monopole. The charge density

is written as
)‘(77) =mpN + qgn for n>n . (B.3)

This contribution suffers from divergences, which are treated in the same way as for Case |
in the main text. We introduce a regulator nr and we subtract the divergences as np — oo,
with the result

mp1 + qn
2

3 m.
Viighe = lim |:V(77m77Rumen)+ log(2nR)+"nR}
NR—0Q 2

1 1= Mn
_ 2 2
= —|mp\/p? + (0 —nn)? — (Mmun + gn)arctanh
2 [ P+ (1 —1n)?

+ (mnn + qn) log p + mnn (B.4)

The semi-infinite line at the left of the first monopole is treated in an analogous way. We

parametrize the charge density as
A(m) =mon+q  forn<mn . (B.5)
We then compute

mon + qo

2

™m
log(2n1,) — QOTIL]

Vet = lim [V(—TIL,TI1,WO7Q0)+
M —>00

1 n—m
_ 2 2
= - | —mov/p?+ (n—m)? + (mon + qo)arctanh
2 [ p? + (1 —m)?

+ (mon + qo) log p + mon (B.6)
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Let us remark that continuity of the charge density imposes the following constraints on
the monopole locations n;, the slope parameters m;, and the intercept parameters g;,

mi—11 + Gi—1 = M + ¢; , t=1,...,n. (B.7)

The total electrostatic potential for the full charge density takes the form

n—1

Viot = Z V(05 Mit1, M, @) + Viets + Vrignt - (B.8)

i=1
C Detailed analysis of generalized Case 11

In this appendix we present a more detailed analysis of the generalized Case II solutions
discussed in section 5. Before addressing these solutions, however, we describe the electrostatic
picture for Case II solutions in the notation of [15].

C.1 Electrostatic interpretation of Case II, revisited

Determination of p, 7, V. The expression of p as a function of (w, 1) is obtained directly
by combining (4.1), (A.15), and (A.16),

_4C\/§\/17,u2\/372w\/17w2
P VI_w? ‘

The function n = n(p, w) can be determined as follows. Let us regard V' as a function of p,

(C.1)

w. Its derivatives with respect to w, p can be computed from 9,V, 9,V with the help of the
chain rule, in terms of an unspecified 71 = n(u, w). The result reads

1 w i
OV (1, w) = Oun(p, w) log [(1 — )" Q(w)] “a _if) \//f_—wQ : (C.2)
4Bwp (2w? —1) 4 Bw? p

OuV (1, w) = Dun(t, w) log | (1 = u2) 7% G(w)| + ) [B-2uvi—a] O

The integrability condition 0,0,V (1, w) = 0,0,V (1, w) yields

0=Bw(l—p?) dum(p,w) +p (1l —w?) {3—27«0\/1 —wﬂ wn(p, w)
4B2C i + w? (1 - )]
V1—w?

We have used the expression for G'(w)/G(w). On the other hand, the function V' must satisfy
the Laplace equation (4.5), up to localized sources. In the first term of (4.5), we make use

—4BCw (14 p?) + (C.3)

of 0,(p0,V) = 0,y, and in the second term we write 8,2)‘/ = Oylogr. The quantities 0,y,
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Figure 10: A schematic depiction of the relation between the (w, ) coordinates and (p,n)
coordinates. The shaded regions on both sides correspond to the allowed values of the (w, ),
(p,n) coordinates. On the right, we also include the plot of the charge density A(n).

Oy logr are then expressed as functions of y, w with the help of the chain rule, in terms of
n = n(p, w). We get

10, w) — w (1 — w?) Dyn(p, w) —4Cp =0 (C.4)
Combining (C.3) and (C.4), we have two linear equations in 9,n(u, w), Own(p, w), with solu-

) c o Own(p,m) = —435“_"1012)_2 w (C.5)

tion

Bw
V1—w?

We can now solve these PDEs for the function n = n(u, w),

n:4cu<1—\/1B_sz> . (C.6)

We have fixed an integration constant by requiring n = 0 for p = 0.

Oun(p,m) =4C <1 -

In Figure 10 we depict schematically the change of coordinates from (w, p) to (p,n). It is
convenient to define

7]1:4C\/1—32:%, 772:4C:4(]\;V+k), p« =4BC . (C.7)

The locus w = 0 is mapped to an arc of the ellipse defined by the equation

P2 772

1682C2 T 1602

=1. (C.8)
Using (C.6), we can find the explicit solution to the PDEs (C.2). We may start with

the equation for 9,V and integrate it in p. To do so, we do not need the explicit form of
G(w). The resulting expression for V', up to an arbitrary function of w, is then plugged back
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in the equation for 9, V. Making use of the expression for G'(w)/G(w), we complete the
determination of V', up to an overall constant. The result reads

Bw

V1 — w?

1 B
Vi =4u—2log +“—2[1— v

1—p N ]ulogg(w)-

(C.9)

Ln%u—u%+4cb—

We have added a subscript ‘T’ as a reminder that this the electrostatic potential that is
inferred from the Toda form of the solution, via the Bécklund transform. We have fixed an
arbitrary additive shift in Vi by demanding Vr = 0 for u = 0. We can also extract the charge
density along the n axis from Vp using (4.6). The result, written as a function of 1, takes the
form of a continuous piecewise linear function defined on the interval [0, 7],

A
ﬁ” for 0 <n<m ,
Ar(n) = A (C.10)
- (n—mn2) form <n<n,
N2 —m

where we have introduced
M =4(1-+1-B?). (C.11)

Finally, we notice that the function G(w) is determined only up to a multiplicative constant.
This ambiguity, however, translates into an ambiguity in the potential Vp of the form (4.7),
and therefore has no effect on the metric and flux.

Improved form for V. The expression (C.9) for the electrostatic potential has two draw-
backs: it is not given in closed form as a function of p, n; it is only determined in the interior
of the shaded region in Figure C.9 in the (p,7n) plane. Correspondingly, the charge density
At is known on the interval [0, 72], but not on the entire 1 axis. We now discuss an improved
potential V| which is given explicitly as a function on the entire (p,n) plane.

To write V', we start by prescribing a charge density along the 7 axis, which is continuous
and piecewise linear, and extends (C.10) beyond the interval [0, 7],

A1
— for =1 < <,
m
A1
Am) =1 — (n—m2) forn>mn, (C.12)
m2—mM
A1
- (n+m) forn<-—n.
n2—m

Given this charge density, the electrostatic potential is determined using the standard Green’s
function for the Laplacian in R3. The naive expression for V would be

1 [*e A7)

— = dn' (C.13)
2 )0 VPP (n=1)?
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but this quantity suffers from logarithmic divergences from the large || region in the domain
of integration. We regularize the divergence by integrating in n’ in the range [—n.,7.], with
7« large and positive. We perform a “minimal subtraction” of the divergence, and we send the
regulator 7, to infinity. This prescription yields

1 +77* /
V= lim [ A logn, AC) (C.14)

- = dn'| .
meree L 2= 2 S PP+ (=)
The first term implements the minimal subtraction and it corresponds to a shift in the elec-

trostatic potential of the form (4.7). Computing the 7' integral and taking the limit, we
find

A1 [
V=c————<mvVmn—m)2+p2—myvm+m)?+p
21 (1 — ) VA ) V( )
n—m n+m
_(n_nl)ngarctanh< >+(77+771)n2arctanh< )
(n—m)?+ p? n+m)2+ 02
+—2nn110g(p)%-2nnl-—7nn10g(44 : (C.15)

The charge density (C.12) satisfies A\(—n) = —A(n), implying that V' is equal to zero along
the p axis at n = 0: this is a standard application of the method of images.

We may now compare V with the potential Vi given in (C.9). The values of 11, 72, A\ in
terms of B, C were given in (C.7), (C.11). After a lengthy but straightforward computation,
using the expression for G(w) in (A.21), one verifies that

Vo—V = (C.16)

aBc

where /C is a constant, given by
K =4B+4BC logG, + 2arctanhB + B log(16 B?) + 4B logC . (C.17)

We see that the difference Vi — V' is of the form (4.7). It follows that, for the purposes of
computing the 11d metric and flux, we can use V in (C.15) instead of V.

C.2 Generalization of the charge density profile

We now turn to the generalization of Case II solutions. The metric and flux are as in (4.9).
Our task is to specify C and V. The main idea is to compute V using the standard Green’s
function starting from a given charge density profile A along the n axis. Building on solutions
of Case II, we make the following working assumptions. The charge density is taken to be
continuous and piecewise linear. Its slope changes at a finite number of points along the 7

axis. Moreover, we require
A(=n) = =) , (C.18)
so that it is sufficient to specify A for n > 0.
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A generic continuous, piecewise linear profile for A can be parametrized as follows. Let
0 <w; <wsg < --- < wp be the locations on the n axis where the slope of A changes. We may

then write
mom for 0 <np<wp,
A =4 mgn+ys forw, <n<wgr,a=1,2,....p—1, (C.19)
mpn+y, forn>w,,
where we have introduced the slope parameters m, (a = 0,1,...,p) and the intercepts y,

(a=1,2,...p). We also define gy := 0. Continuity of A imposes
(mg —ma—1) W + (Yo — Ya—1) =0, a=1,2,...,p. (C.20)

Further constraints on the slope and intercept parameters will be derived below from metric
regularity and flux quantization. The outcome of our analysis will be the charge density (5.2)
discussed in the main text.

The electrostatic potential determined by the charge density (C.19) can be computed
as a sum of various contributions. Firstly, we may consider the interval [wg,wg+1], @ =
0,1,...,p—1, and its mirror image [—wq+1, —wg]. (By definition, wy := 0.) The corresponding
contribution to the electrostatic potential reads

_ 1 ot man + Ya / 1 e man — Ya /
V wavwa—i-lamaaya) - 5 Y

2 Jwe PP+ =12 2 Jwas VPP (—1)?

% (ma (n —wq) 2 4 p? — arctanh < T i;}sz n p2> (man + ya))
+ % ( ma\/m-i— arctanh ( T ZI}:;Z n p2> (man — ya))
L1 1 ( ma\/ (n — wgy1) 2 + p? + arctanh (\/(77 i;j:;; n p2> (maen + ya))
+3 ( o/ (N + way1)? + p* — arctanh (\/(77 Z::ﬁ;g n p2> (man — ya)) - (G2

Next, we have the contribution of the semi-infinite interval [wy,400) and its mirror image
(—o0, —wp]. In this case, a naive integration of the charge density against the standard
Green’s function yields a logarithmic divergence. We regulate and subtract the divergence in
the same way as in (C.14). We thus obtain the quantity

V(wpa Ooymmyp) =

1 Wi / 1 —Wp l
= lim [—2/ il Yp dn' — Tpl — Yp dn’+mpnlogn*]

we e wy VPP +(m—n)? \/p + (=)

1 1
= omp\/ (1 = wp) 4 p? = Smpy [ (0 + wp) ? + p? — §mpn(—2logp —2+log4) (C.22)

1 1+ wp 1 N — Wp
— (myn — y,) arctanh — — (mpn + y,) arctanh .
3 = ) ( <n+wp>2+p2> 3 (ot ) < G =)+ 7

+
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The final expression for V' is

p—1
V= Z V(wa, Wat1, Ma,Ya) + V(wp, 00, myp, yp) - (C.23)
a=0

By virtue of the method of images, V' is an odd function of 7, and thus in particular it is zero

at n=0.

C.2.1 Metric regularity

Monopole sources. The 11d metric functions entering (4.9) may now be computed in
closed form by plugging (C.23) into (4.10). In particular, we observe that

e The quantity Ri vanishes along the 7 axis in the (p,n) plane.

e The quantity R? has isolated zeros in the (p,n) plane, situated along the n axis at the
locations w, (a =1,2,...,p) where the slope in A(n) changes.

e The quantity L is piecewise constant along the n axis,

1
if wy <N < weq1, lim L(p,n) :=Llg41 =ma+ 5 . (C.24)
p—0t C

We infer that the internal geometry admits the following description. The total 6d space is
a fibration of S? and S! over a 3d base space, spanned by p, 7, ¢. The quantity Ry is the
radius of S¢1) in the 3d base space. The fact that it vanishes along the n axis implies that Sé
shrinks smoothly there inside the 3d base space. The locations w, (a = 1,2,...,p) on the 7
axis are monopoles for the S! fibration over the 3d base space. Indeed, the radius R, of S}
goes to zero at w,, and the function L which governs the fibration of S} over Sql5 jumps at wg.
The discontinuity of L at w, is identified with the monopole charge k, of the ath monopole,
which must be a positive integer,

Ea—€a+1:k‘a€Z>o, a=1,2,....p. (C.25)
It follows that all the slope parameters m, can be deterimined recursively in terms of the
monopole charges k, and the outermost slope parameter m,. Based on analogy with the

original solution given by the charge density (C.12), we set

mp, =—— or equivalently lpt1=0. (C.26)
1 p
Mma=—+ Y ks, a=0,1,...,p—1. (C.27)

— 062 —



The intercepts y, are then also fixed, using yp = 0 and the continuity condition (C.20),
a
ya:Zkbwb, a=1,...,p. (C.28)
b=1

The original solution based on the charge density (C.12) corresponds to the case of one
monopole, p = 1. In that case, the value of A at the location w; is positive. By analogy, we
now require that the value of A at the location w, of the last monopole be positive,

_Y

AMwp) = C

P
+3 kpw, >0 (C.29)
b=1
It follows that the charge density profile has a zero at a point wy, > wy, given by
P
Wm = C Z kb Wy - (C.30)
b=1

We observe that the charge density A\ is positive and concave in the interval [0, wy,).

Allowed region in the (p,n) plane. As already explained in the main text, it is determined
by the inequalities (5.10). The arc 9,V = 0 intersects the 7 axis at the value wy, where the
positive zero of A is located, see (C.30).

C.2.2 Flux quantization

In our normalization conventions, the quantity G4 in (4.9) has integral periods on any 4-cycle
in the internal space. The computation of the periods of G4 is facilitated by the following
properties of the functions Y, W in (4.9), which can be verified by direct computation using
(4.10), (C.23).

e The quantity Y (p,n) is piecewise constant along the 7 axis. Its values are determined
by the intercepts parameters y, in the charge density profile,

Y(0,1) =vyq , for we < < wga1 , a=0,...,p—1,
Y(0,n7) =y, for n > w, . (C.31)

e The values of the quantity W (p,n) at the monopole locations are

W(0,14) = wq , a=1,...,p. (C.32)

e Both Y (p,n) and W (p,n) vanish for n = 0, for arbitrary p.

We can now list the 4-cycles in the geometry and evaluate the corresponding Gy-flux
parameters. Our discussion follows closely the approach and notation of [33].
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W2
Arfes

w1

B, B, By px P

Figure 11: The 4-cycles of type C are obtained combining the dashed arcs A;B, with the
52 and the ¢ circle in the base of the Dz fibration. The 4-cycles of type B are obtained
combining a segment [wg, wq11] on the 1 axis with the S? and the Dz circle fiber.

Four-cycles of type C. With reference to Figure 11, let us consider the arc A,B,. The S?
shrinks at B,. The ¢ circle in the base of the Dz fibration shrinks at A,, because Ré goes to
zero there. We then have a four-cycle, which we denote C,.

To identify the ¢ circle in the base of the Dz fibration, we use that L = £,;1 and we set
0= Dz =dz— lyy1dop, giving us dz = ;11 d¢ along the arc A;B,. As a result, the relevant
terms in G4 are

d¢
27
The integral of this quantity over C, yields the value of the function Y at the endpoint A,,

_ 1
Gy = VZ;Q A(Y + LW — by W)

(C.33)

/ Gy =Y (A,) . (C.34)
Ca

But Y (A,) = y, from (C.31). We conclude that the intercept parameters y, are all integrally
quantized. (Throughout this appendix, we fix the mass scale m as in (2.7)).

We also notice that the outermost flux quantum y, (p = 3 in the example of Figure 11)
is identified with the number N of M5-branes,

yp =N . (C.35)

Four-cycles of type B. We can consider the segment [w,_1, w,] along the 1 axis, combined
with the S? and the Dz circle, to get a four-cycle denoted B,. The relevant terms in G4 are

— volge Dz
G —dW) — . C.36
42— (=dW) o (C.36)
The corresponding flux quantization implies that the following are integers,
/ G = W(0,w) — W(0, we_1) = g — wa_1 - (C.37)
B.
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In the second step we used (C.32). Since wp = 0, we conclude that
{we}P_, is an increasing sequence of positive integers. . (C.38)

We can also extend the arguments of the previous paragraphs to the last segment [wy,, wy).
The interpretation is now different: this is a four-cycle because the warp factor goes to zero
along the boundary of the (p,n) region. The lesson is that wy,, must be also an integer. The
flux quantum wy, should be regarded as a property of the smeared M5-brane source located
at 0,V = 0, which is discussed in greater detail below. We find it convenient to parametrize
it in terms of N and another integer parameter k,

wm=N+k, keZ. (C.39)

The zero wy, of the charge density is located at the right of the last monopole location,
Wm > wy. It follows that the integer k& must satisfy

N+k>w,. (C.40)

Regularity of G4 near monopoles. We observed above that Y and L are piecewise con-
stant along the n axis. This might potentially generated delta-function singularities in Gy, due
to the presence of the derivatives 9,Y", 0,L. One can verify, however, that these singularities
are absent by virtue of the conditions (C.20), which guarantee the continuity of the charge
density profile. The continuity condition implies (C.28), which together with (C.35) gives us

N =Y wika . (C.41)

We have thus verified the emergence of a partition of N from regularity and flux quantization.

The parameter C is fixed by flux quanta. The slope of the charge density profile for
n > wp is given in (C.26) in terms of C. It can be alternatively be computed by connecting
the points (1, A) = (wp, N —w,/C) and (1, A) = (N +k,0). The result is the following relation
between C and the flux quanta N, k,

_ N+k

C="%x

(C.42)

C.2.3 Mb5-brane source

To clarify the behavior of the solution near the arc defined by 9,V = 0, let us start from (4.9)
and perform two operations:

e We break up Dz and we complete the d¢ square, so that the line element is written in
terms of dz and D¢ = d¢ — L dz. (The quantity L is fixed requiring the absence of cross
terms dzDg).

e We collect the leading terms in the limit V' — 0.
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All electric sources are localized along the n axis. As a result, at a generic point along the arc
0,V = 0, the potential V satisfies the Laplace equation. Using this information, we can write
the resulting line element in the form

dsiy s [(V)2 =V VY V8
St § R S0 44 P ds?*(AdSs) 4 C? d2* C.43
1. VALV AR/El 0 : .
+ LV {( )2V” ] [v2 ds?(8) + 55 Do? + (V)2 = V'V (dp2+dn2)] .

We observe that, at leading order near the locus 9,V = 0, we can write £ ~ C, and hence
D¢ ~ d¢ — Cdz. This line element is compatible with an interpretation in terms of smeared
M5-branes. Near the arc 9,V = 0, we can parametrize the (p,7) 2d space in terms of a normal
coordinate n = V, and a tangential coordinate ¢, which varies along the arc. From the term
V2 ds?(S5?) = n? ds?(S?) inside the bracket on the second line, we see that, at small n near the
arc, n and S? combine into a local R3. We also observe the appearance of overall 1% prefactors
with powers 1/3, —2/3 in the first and second lines of (C.43), respectively, This structure
implies that the M5-branes are: extended in the AdS5 and z directions; smeared in the ¢ and
¢ directions; localized at the origin of the local R3 parametrized by n and S?. These findings
are directly analogous to the analysis of [15]|, which applies to the case p = 1.

We can also analyze the form of the G4-flux in the vicinity of the arc defined by 9,V = 0.
Making use of (4.9), (4.10), we verify that, as we approach the locus d,V = 0, we have

L~ - W=xn, Y~0. (C.44)

It follows that the G4 is given at leading order by

&, Yol dy Do

~ . A4
4 47 C 2 (C.45)

We can integrate this quantity along the S? and D¢, combined with an arc in the (p, ) plane
that approaches the boundary component 9,V = 0 from the inside of the allowed region. We
can use the coordinate 7 to parametrize this arc, regarding p = p(n) as fixed by 9,V = ¢, with
small positive €. As € goes to zero, the integral of G4 approaches a finite value,

~N—=—""—=N. 4
/G4 - 2 (C.46)

We have made use of (C.39) and (C.42). We conclude that the smeared M5-brane source has
a total charge equal to V.
C.3 Inflow analysis

In this section we derive the 't Hooft anomaly coefficients quoted in (5.26), (5.28). We first
construct Fy, the equivariant completion of the background flux G4, and we then compute
the integral of E3 on the internal space M.
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C.3.1 Construction of Ej

The background flux Gy is presented in (4.9) as the wedge product of volg: with the total
derivative of a locally defined 1-form. This suggests a naive candidate for E4. Firstly, we
replace volg2 /(47) with eg, which is the standard global angular form of SO(3), normalized
to integrate to 1 on S2. (For more details, see for instance [33, 36].) Secondly, we consider
the local 1-form inside the total derivative, and we perform the replacements

dp — dp+ Ay,  dz—dz+A, . (C.47)

Here Ay, A, denote the external background gauge fields associated to the isometries dg, 0..
The E4 resulting is manifestly closed and gauge invariant. It takes the form

: D D F, F,
Ejave — ey [(dY + W dL) Do aw P _ew oo, Y+WL)=2, (C.48)
2w 2 2w 2w
where we have introduced
Dp=dp+ Ay, Dz=dz+A.—LD¢, Fy=dA,, F.=dA,. (C.49)

Crucially, however, E4 is not automatically guaranteed to be globally defined. To clarify this
point it is convenient to trade A., Ay for the external gauge fields Ag, Ay, associated to the
canonical LLM angular variables, making use of (4.8). We obtain
- Do Dz
EPYe = dY + WdL) — — dW —
4 “ [( - ) 2m 27T:|
s

F
+e [Y—F(L—C‘l)W]ﬁJreg [Y+(L—c—1—1)w 2.

(C.50)
The coefficients of F, Fjg must be well-defined 2-forms in the internal space M. Recall that
the S? shrinks both along the p axis, and along the arc in the (p,7n) plane defined by the
condition 9,V = 0. We have already notices that both Y and W vanish along the p axis, so
regularity there is guaranteed both for the F, and the Fj3 term. Along the arc where 9,V = 0,
on the other hand, we have W ~ n, L ~ C~! and Y ~ 0. As a result, we observe that the
coefficient of F, goes to zero, but the coefficient of Fjg does not.

Equivalently, we can observe that the 3-form ¢, Gy is exact, while the 3-form (3G is
closed but not exact. This is the same phenomenon encountered in [15] for the solutions of
Case II (before generalization). Since 153Gy is cohomologically non-trivial, expansion of the
M-theory 3-form on 153G, yields an axion. The would-be massless gauge field Ag participates
to a Stiickelberg coupling with this axion, and is thus massive. It does not correspond to
a continuous U(1) global symmetry on the field theory side. We refer the reader to [15] for
further details about this Stiickelberg mechanism.
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Since we are interested in studying anomalies for continuous symmetries, we proceed
setting Ag = 0. We can then write

D D F
Eyq= e [(dY—deL)qﬁ—dWZ} + e [Y+(L—c—1)w}—x
2T 27 2
p kg—1 F\ ;
O Dt - C.51
+; ; 5 Wal (C.51)

On the second line we have introduced the contributions originating from the Cartan gener-
ators of the non-Abelian su(k,) flavor algebra associated to the ath monopole, of charge k.
The 2-forms @, ; are dual to the resolutions 2-cycles in the local C?/Zy, .

C.3.2 Integration of E}

Let us start from the contributions that do not involve the su(k,) flavor symmetries. By a
standard application of the Bott-Cattaneo formula [41], we arrive at

_Iénﬂowz/ 1 23_;01((](1))()]31(50(3))/ dW/\d{Y—i—W(L—Cfl)r- (C.52)

Ms 6 B2

Here ¢1(U(1)y) = F\/(2m) andf p;(SO(3)) is the first Pontryagin class of the SO(3) back-
ground gauge field associated to the isometries of the S? in the geometry. We have assigned
positive orientation to DzAD¢. The symbol By denotes the domain in the first (p, n) quadrant,
see Figure 7. The integral over By can be written as

_ 2 B 2
/BQdWAd[YJrW(L_c 1)] _/832Wd{Y+W(L_C 1)] _ (©.59)

Let us analyze in turn the components of 9Bs:
e Along the p axis, W = 0, hence we get zero.

e Along the arc defined by 9,V = 0, we know that W =17, Y =0, L = C~!, hence we get
Zero.

e Since L and Y are piecewise constant along the n axis, it is convenient to treat each
segment in turn. On a segment of the form [wq, we41], with a = 0,...,p — 1, we know
that L = 0,11 = mq + C~!. We also have Y = y,. We thus get a contribution

Wd[YJrW(L—C_l)rD—/ Wd[ya+wma]2

0B2 [Wa,Wa+1]

=—/ Wd[yg+2mayaW+m3W2}
[wa,ywa.+l]

= _ /{wa,wwl] d[% mZ W3+ mq ya W2]

2
= _g m?L (w2+1 - wz) — Mq Ya (wngl - wg) . (C'54)
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We have used W (0,w,) = w,. The minus sign in front comes from the fact that we
are taking 0By with a counterclockwise orientation in the (p,n) plane. Finally, we have
the final segment [w), wy]. It gives a contribution of the same form, formally obtained
taking a = p with the convention wy11 =N +k, {41 =0.

Making use of (C.52) and (C.54), as well as (5.24), we recover the expression (5.26) for
A, r quoted in the main text. The comparison between (5.26) and (5.22) relies on the following
identity,

p
1
Z |:3 mz (w2+1 - wg) + Mg Ya (wg—i-l - wg) + yg (wa+1 - wa):|

a=0

p
2
=3 | s = )+ i (i — )] (C.55)

Let us now turn to the contributions associated to the su(k,) factor of the symmetry
associated to the regular puncture. The relevant terms in the inflow anomaly polynomial are

: 1P, & e B F,
_Imﬂow - 1X al ~a,J /A B |:Y L—Cfl DD} . C.56
h > 5 9 aE:1 P 9 o Wa,I Wa,J +( ) ( )

The 2-forms dual to the resolution cycles are localized at the monopole locations. Even though
Y and L have jumps at the monopoles, the quantity Y + (L —C~!) W is continuous at each
monopole location, as may be verified using the continuity conditions (C.20) for the charge
density profile A. We can write

[Y+(L—C_1)W] (o) —(0) =Yg + Mg Wy - (C.57)

It follows that the relevant term in the inflow anomaly polynomial reads

1 F, L ﬁ I J (ka)
infl a, a, su(kqg
—Iptor 5 2 ﬁ > (Ya + mq wy) (—C7" )Y (C.58)

We have used the fact that the intersection pairing among the 2-forms &, ; reproduces minus

the Cartan matrix C?}(k“) of su(k,). This result implies the expression (5.28) for the flavor

central charge quoted in the main text.
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