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Abstract
We study epidemic arrival times in meta-population disease models through the lens
of front propagation into unstable states. We demonstrate that several features of
invasion fronts in the PDE context are also relevant to the network case. We show that
the susceptible-infected-recovered model on a network is linearly determined in the
sense that the arrival times in the nonlinear system are approximated by the arrival
times of the instability in the system linearized near the disease-free state. Arrival time
predictions are extended to general compartmentalmodelswith a susceptible-exposed-
infected-recovered model as the primary example. We then study a recent model of
social epidemics where higher-order interactions lead to faster invasion speeds. For
these pushed fronts, we compute corrections to the estimated arrival time in this case.
Finally, we show how inhomogeneities in local infection rates lead to faster average
arrival times.

Keywords Epidemic arrival times · Meta-population model · Invasion fronts

1 Introduction

The study of global disease spread across complex networks has been the focus of a
great deal of research over the past several decades; see Barrat et al. (2008), Brock-
mann and Helbing (2013), Colizza et al. (2006), Kiss et al. (2017), Pastor-Satorras
et al. (2015) and Taylor et al. (2015) for a survey of many of the models and methods
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employed. Meta-population models comprise one sub-class of models where the dis-
ease dynamics at each locality are assumed to obey some compartmental model (SIR
for example) and movement of individuals between localities is modeled by diffusion
on a complex network; see for example Brockmann and Helbing (2013) and Rvachev
and Longini (1985). This leads to a high-dimensional system of ODEs of reaction-
diffusion type. Among the questions that one is interested in are arrival times: given
that disease originates in one city how long does it take to appear in some other city?
For reaction-diffusion PDEs, instability spreading involves the formation of traveling
fronts and arrival times are inversely proportional to the speed selected by these fronts;
see for example Bramson (1983) and Ebert and van Saarloos (2000). It is a powerful,
albeit perhaps peculiar, fact that often times the speed of the front in the nonlinear
PDE is the same as the spreading speed of localized initial conditions in the PDE lin-
earized about the unstable state; see Aronson andWeinberger (1978) and van Saarloos
(2003). This fact was exploited in Chen et al. (2018) to derive arrival times estimates
based upon linearization near the unstable, disease-free state. The purpose of the cur-
rent study is to exploit this analogy further and demonstrate that several features of
front propagation into unstable states for PDEs are also relevant to meta-population
epidemics spreading on complex networks.

The meta-population model that we first consider is the following one; see Brock-
mann and Helbing (2013) and Rvachev and Longini (1985),

∂t sn = −αsn jn + γ
∑

m �=n

Pnm(sm − sn)

∂t jn = αsn jn − β jn + γ
∑

m �=n

Pnm( jm − jn)

∂t rn = β jn + γ
∑

m �=n

Pnm(rm − rn). (1.1)

Here sn , jn and rn denote the susceptible, infected and recovered proportion of the
population residing at node (city) n. The dynamics of these variables is assumed, for the
moment, to obey a standard SIRmodel at each node with infection rate α and recovery
rate β. The nodes are connected by edges described by the row stochastic adjacency
matrix P. Following Brockmann and Helbing (2013), we think of these edges are
describing airline transportation routes connecting cities with the values in the matrix
representing a normalized magnitude of passenger transport along each edge. The
matrix P is assumed to be row stochastic so that the total population at each node is
constant in time and it is only the proportion of the susceptible, infected and recovered
population that varies. The parameter γ is the diffusion constant, and we, crucially,
will assume that it is small (see again Brockmann and Helbing (2013) for estimates
of γ for the global airline network). We note that the number of nodes in typical
realizations of (1.1) is large (on the order of thousands for the airline transportation
network) and the corresponding parameter space is also high-dimensional due to the
large number of nonzero entries in P.

Brockmann and Helbing (2013) studied (1.1) with the goal of identifying the role
of geographically non-local transportation routes in the global spread of epidemics.
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Focusing on airline transportation networks, their influential idea was to consider
the epidemic process as a front propagation with respect to some effective distance,
Deff(P), that can be derived from the connectivity matrix P. They then predict the
arrival time of the disease at a city as the ratio Ta = Deff (P)

veff(α,β,κ)

1 so that arrival times are
linearly related to the effective distance. Here veff(α, β, γ, κ) is the effective velocity
which is assumed to be a function of the dynamical parameters in the model and κ ,
an invasion threshold. Key to this idea is the fact that the effective distance depends
only on the structure of P. As such, the distance prediction is agnostic in regards
to the particular disease model considered. Estimates for the coefficients in the real
world P are obtained in Brockmann and Helbing (2013) and comparisons with data of
observed arrival times in historical epidemics are considered which reveal a general
linear trend between arrival times and these effective distances. One drawback of the
effective distance computed in Brockmann and Helbing (2013) is that it assumes there
is a single dominant pathway of infection between the origin city and any other city
in the graph. Modifications of this effective distance to account for multiple pathways
of infection are presented in Iannelli et al. (2017). In addition to Brockmann and
Helbing (2013), a number of other authors have considered the dynamics of global
disease spread through the lens of front propagation; see for example Belik et al.
(2011), Besse and Faye (2021), Chen et al. (2018), Gautreau et al. (2007), Gautreau
et al. (2008), Hindes et al. (Jul 2013), Hoffman and Holzer (2019) and Hufnagel et al.
(2004).

A remarkable feature of fronts propagating into unstable states in the PDE context2

is that their speed often equals the spreading speed of localized disturbances in the
system linearized about the unstable state. This phenomena often occurs in systems
where the nonlinearity suppresses growth, as is the case in (1.1). Such fronts are
referred to as pulled; see van Saarloos (2003) or linearly determinate; see Weinberger
et al. (2002) as they are driven by the instability ahead of the front interface and
their speed is determined from the linearization near the unstable state. This is a
powerful tool as it allows for the computation of a quantity of interest in a high (or
infinite)-dimensional nonlinear system via a linear equation. This forms the basis
of the approach in Chen et al. (2018) where arrival time estimates are derived for
(1.1) by computing arrival times in the system linearized near the disease-free state.
The goal of the present study is to exploit this analogy between the dynamics of
reaction-diffusion equations like (1.1) and their PDE counterparts to make qualitative
predictions regarding the effects of arrival times where various modifications of (1.1)
are made. Our main results are qualitative in nature and can be summarized as follows:

• For systems with local dynamics described by SIR or SEIR, we derive explicit
arrival times estimates based upon linearization near the unstable state that reveal,
in the limit γ → 0, how arrival times depend on model parameters such as local

1 Deff (P) as defined in Brockmann and Helbing (2013) is defined by first computing an effective distances
between connected nodes defined as 1 − log(Pmn). Then, for any two notes that are not connecting the
effective distance is defined as the minimal sum of effective distances along all paths connecting the two
nodes.
2 In fact, this phenomena occurs more generally for spatially extended systems such as lattice dynamical
systems or systems with non-local diffusion in both discrete and continuous time; see Hindes et al. (Jul
2013) and Weinberger et al. (2002) among others for examples.
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infection rates, local recovery rates andmobility networkweights. At leading order
in γ , the effective distance between nodes is shown to be the graph distance d while
the effective velocity is proportional to − 1

log(γ )
. Network properties influence

arrival times at O(1) in γ where the key quantity is the random walk probability
of traversing between the two cities in the minimal number of steps.

• We show, by way of an example, that linear arrival times are not good estimates for
all systems. This example occurs for a model for which the nonlinearity enhances
growth of the local infection and we explain the mechanism by which this leads
to faster arrival times drawing an analogy to pushed fronts in spatially extended
systems. Based upon an analysis of the local dynamics, we derive arrival time
estimates and compare them with numerical simulations.

• We show that inhomogeneities in local reaction rates lead to faster arrival times
on average. We attribute this to the following mechanism based upon the linear
arrival times estimates for the homogeneous SIR model: increasing infection rates
leads to a decrease in arrival times at O (− log(γ )) while decreasing the random
walk probability between two nodes increases arrival times at O(1). Thus, if two
cities are connected by at least one shortest path consisting of cities with higher
than average infection rates, we expect an overall decrease in the arrival time.

It bears mentioning that if one had reliable estimates for the parameters in (1.1)—
the infection rate α, the recovery rate β and the coefficients of the mobility matrix
P, then to estimate arrival times one could simply numerically solve the system of
ODEs in (1.1). In fact, this would serve as a forecast for the entire course of the
epidemic. More broadly, there are a number of sophisticated tools for the forecasting
of epidemics; see for example the GLEAM simulator (Balcan et al. 2010; Van den
Broeck et al. 2011). In this light, our goal in this work is not epidemic forecasting but
instead is to present qualitative predictions for how arrival times depend on system
features and to strengthen the relationship between the dynamics of (1.1) and the
theory of invasion fronts in PDEs or other spatially extended systems which will, in
turn, help inform researchers making epidemic forecasting. Qualitative statements
are particularly useful for systems with a high-dimensional parameter spaces, as is the
case with (1.1).

We discuss some limitations of the present study. Most arrival time estimates that
we provide are obtained in the limit of small γ . In particular, our explicit arrival time
estimates will require γ to be asymptotically smaller than various quantities including
the instability parameter α − β and the coefficients of the mobility matrix P. While γ

is naturally expected to be small, once again see Brockmann and Helbing (2013), it
is not expected that these conditions will hold generally for real-world transportation
networks.While someof these deficiencies could be likely remedied by amore detailed
analysis we do not pursue such estimates here. Another interesting avenue for research
is to study howwell the arrival times estimates for the deterministic model (1.1) reflect
those in stochastic versions of epidemic spread; we point the reader to Jamieson-Lane
and Blasius (Oct 2020, 2020) for recent work in this direction.

For the purposes of illustrating our main results, we will perform numerical simu-
lations of (1.1) on a version of the world wide airline transportation network obtained
from https://openflights.org/data.html. This is a historical snapshot from June 2014.
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There are N = 3304 airports, and the network has 19, 082 edges representing one
or more flights connecting two cities. The mean degree is 11.53. We will use this
network to illustrate some of our results and arrival time estimates, but we do not
pursue a full numerical investigation. For the purposes of numerical simulations, we
do not attempt to construct accurate approximations for the flux matrix P as was done
in Brockmann and Helbing (2013). Let A be the symmetric adjacency matrix for the
airline transportation network from https://openflights.org/data.html where the entry
Anm equals 1 if there exists a flight connecting cities n and m and 0 otherwise. Let D
be the diagonal degree matrix. Then we will take P = D−1A for simplicity. For future
reference, we define the graph distance dmn as the minimum length path between the
node n and m. When the origin node n is fixed, we will shorten this to dm .

The rest of the paper is organized as follows. In Sect. 2, we review and motivate
the arrival time estimate of Chen et al. (2018). In Sect. 3, we extend this arrival
times estimate to a susceptible-exposed-infected-recovered (SEIR) model. In Sect. 4,
we show that the linear arrival time estimate is no longer valid in a model of social
epidemics that incorporates higher-order interactions between individuals but is able
to make corrections to the arrival time estimate to yield approximations. In Sect. 5,
we study the effect of inhomogeneous infection rates on arrival times and argue that
this will decrease arrival times on average.

2 Arrival Time Estimates via Linearization Near the Disease-Free State

In this section, we review the arrival time estimate presented in Chen et al. (2018).
We assume that the disease originates in city n with the initial infected proportion
jn(0) = χ0 so that sn(0) = 1 − χ0. We are interested in nonlinear arrival times tmn

defined as the minimal time at which jm(t) exceeds some threshold κ . The primary
purpose of this section is to review how estimates for tmn can be obtained by linearizing
near the unstable, disease-free state.

The arrival time estimate in Chen et al. (2018) is predicated on the fact that (1.1)
is linearly determined; see Weinberger et al. (2002), which informally means that the
linear arrival times will be a good prediction for the nonlinear arrival times. Thus, the
first step is to linearize (1.1) near the unstable state (we will neglect the recovered
population from here forward) to obtain the following system of linear equations
expressed in vector form,

st = −αj + γ (P − I) s

jt = (α − β)j + γ (P − I) j.

The j component decouples and can be solved using the matrix exponential,

j(t) = χ0e
(α−β−γ )teγPtδn, (2.1)

where δn is the standard Euclidean basis vector andχ0 is the initial infected proportion
residing in city n. The arrival time in citym is defined as the first timewhere the infected
proportion of the population exceeds a threshold κ and is therefore the smallest positive
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solution of

jm(tmn) = κ. (2.2)

Let τmn be an estimate for tmn obtained by setting the m-th component of (2.1) equal
to κ . To obtain this estimate, project the solution in (2.1) onto δm to extract the infected
proportion at the m-th node. Then we wish to solve

κ = δTmχ0e
(α−β−γ )τmneγPτmnδn . (2.3)

To exploit the smallness of the parameter γ , the matrix exponential is expanded as a
series,

δTme
γPτmnδn =

∞∑

k=0

γ k τ kmn

k! δTmP
kδn .

The coefficients δTmP
kδn are random walk probabilities for a walker traveling from

city m to city n in k steps. As such, all these terms are zero up to k = dm where we
recall that dm is the graph distance between the origin city n and the arrival citym. Let
ρm = δTm Pdm δn . Now, for γ sufficiently small we assume that the leading-order term
in the sum dominates and we obtain a leading-order expression for τmn by solving

κ = χ0ρm

dm ! γ dm τ dmmne
(α−β−γ )τmn . (2.4)

The solution of this equation can be expressed in terms of the Lambert-W function,
and we obtain the arrival time estimate

τmn = dm
α − β

W

(
1

γ

α − β

dm

(
dm !κ
ρmχ0

)1/dm
)

. (2.5)

Expanding the Lambert-W function we obtain

τmn = − dm
α − β

log(γ ) − dm
α − β

log(− log(γ ))

− dm
α − β

log

(
dm

α − β

(
ρmχ0

dm !κ
)1/dm

)
+ o(1), (2.6)

where o(1) represent terms that go to zero as γ → 0; see again Chen et al. (2018).
Note that in the O(1) terms we write the argument of the logarithm so that it is clear
that larger values of the random walk probability ρm lead to faster arrival times.

The primary take-away from (2.6) is that only two network features are relevant for
the determination of arrival times (in the limit as γ → 0) and are i) the graph distance
between the origin and arrival cities and ii) the random walk probability of traversing
between these two cities in the minimal number of steps. We remark further that, to
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leading order, the effective distance is simply the graph distance between the nodes
n and m while the effective velocity is α−β

− log(γ )
. This is consistent with the spreading

speed of instabilities along one-dimensional lattices; see for example Hoffman and
Holzer (2019).We also note that ifO(1) terms are involved then it is no longer possible
to separate the arrival times into a ratio of a network-dependent effective distance and
a dynamics-dependent effective velocity. Once again, we emphasize that these are
asymptotic estimates and should be expected to hold in limit as γ → 0. For larger
values of γ , we are not able to explicitly connect network properties to arrival times,
although we emphasize that numerical results suggest that linear arrival times remain
good estimates for nonlinear arrival times in this case; see Sect. 6.

As we have stressed above, the fact that these arrival time estimates are accurate
stems from the fact that (1.1) is linearly determined. In fact, we have the following
result which proves that the linear arrival times are always a lower bound for the
nonlinear arrival times.

Theorem 2.1 Consider (1.1) with the initial conditions sl(0) = 1, jl(0) = rl(0) = 0
for all l �= n and sn(0) = 1 − χ0, jn(0) = χ0 and rn(0) = 0 for some 0 < χ0 < 1.
Let τmn(α, β, γ, κ, χ0) be the linearized arrival time estimate in city m defined as the
solution of (2.3). Let tmn(α, β, γ, κ, χ0) be the nonlinear arrival time of the disease
at node m, defined by the minimum time at which

jm(tmn) = κ.

Then

τmn(α, β, γ, κ, χ0) < tmn(α, β, γ, κ, χ0).

Proof The proof is a standard application of the comparison principle andwas sketched
in Chen et al. (2018). Let

NS(s, j) = st + αs ◦ j − γ (P − I) s

NJ (s, j) = jt − αs ◦ j + βj − γ (P − I) j.

Here s ◦ j is the Hadamard, or component-wise multiplication of the vectors. The idea
is to find functions s̄(t) and j̄(t) such that both NS(s̄(t), j̄(t)) and NJ (s̄(t), j̄(t)) are
non-negative indicating that the temporal growth rate of the selected functions exceeds
that of the true solution and therefore any initial condition for which s(0) ≤ s̄(0) and
j(0) ≤ j̄(0) will satisfy s(t) ≤ s̄(t) and j(t) ≤ j̄(t) for all t > 0. To begin, it is easy to
see that if s̄(t) = 1 then NS(1, j(t)) > 0. Then we observe

NJ (1, j̄(t)) = j̄t − (α − β)j̄ − γ (P − I) j̄.

Thus, if j̄(t) is the solution of the linear Eq. (2.1), we have obtained a super-solution.
The result then follows. ��

To fully validate that the arrival times are linearly determined would require the
establishment of sufficiently sharp sub-solutions. We do not pursue this avenue of
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Fig. 1 Arrival time estimates given by (2.5) plotted against arrival times observed in numerical simulations
of (1.1). On the left, the mobility parameter γ = 0.001, while on the right the mobility parameter is
γ = 0.01. In both cases, the infection rate is α = 1.50 and the recovery parameter is β = 0.25.In both
cases, the linear estimate is a good approximation of the nonlinear arrival times (for γ = 0.01 absolute
error less than 0.75 days and relative error less than 0.04). We note that when γ = 0.001 (left), the observed
arrival time is always greater than the predicted arrival time as is expected. However, when γ = 0.01 (right),
a few cities have observed arrival times that are faster than the linear arrival time. This does not contradict
Theorem 2.1 since only one term in the matrix exponential is used to create the linear arrival time estimate
in (2.5). If one were to include more terms in the sum, then the linear estimate would again be less than the
observed nonlinear arrival time; see Chen et al. (2018) and Fig. 8

research here; however, we do point to Fu et al. (2016); Wu (2017) for constructions
in the case of (1.1) posed on an infinite lattice.

The linearly determined arrival time estimates are compared to arrival times
observed in numerical simulations in Fig. 1. We also point out that Theorem 2.1
does not depend on γ being small, see Fig. 8.

2.1 Alternate Derivation of Linear Arrival Time Estimate

The analysis above suggests that, in the small diffusion limit, epidemic spreading
in complex networks can be thought of as a cascading behavior where the epidemic
spreads from the node of origination out through the network with all nodes of fixed
graph distance from the origin node becoming infected at approximately the same
time. In this section, we explain how this point of view can be used to obtain analogous
arrival time estimates as in (2.3).

The purpose of this section is twofold. First and most importantly, this approach
and the ideas presented here will be employed later for cases where linear determinacy
fails (namely Sect. 4 where faster-than-linear invasion speeds are observed and then
in Sect. 5 where inhomogeneous infection rates lead to faster-than-average arrival
times). As a secondary goal, this section presents an alternate way to understand why
the linear arrival time estimates derived previously are good estimates of the nonlinear
arrival times. This alternate method is more combersome than expanding the matrix
exponential and relies on a number of formal calculations and therefore we do not
suggest that this derivation should supplant the estimate derived by solving (2.4).

To begin, without loss of generality we may assume that node n = 1 is the node
(city) at which the disease emerges. Let n = 2 correspond a city that is connected to
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the first node. The equation for the infected population at this node is then

d j2
dt

= αs2 j2 − β j2 + γ

N∑

k=1

P2k( jk − j2).

Assume that j2 	 1, s2 ≈ 1 and that jk 	 1 for all k ≥ 3. From this, it is reasonable
to approximate j2(t) in the short to intermediate time by the linear equation

d j2
dt

≈ (α − β) j2 + γP21 j1(t). (2.7)

This equation has an explicit solution

j2(t) ≈ γP21e
(α−β)t

∫ t

0
e−(α−β)τ j1(τ )dτ (2.8)

Assuming further that j1(t) ≈ χ0e(α−β)t then (2.8) reduces to

j2(t) ≈ γP21χ0te
(α−β)t ,

fromwhichwe see that imposing j2(t2) = κ and solving for the arrival time t2 produces

the same formula as in (2.3) and identical arrival time estimate t2 ≈ 1
α−β

W
(

κ(α−β)
χ0γP21

)
.

Now suppose that n = 3 is connected to n = 2 but not connected to node n = 1
nor any of its children (aside from node 2). Repeating the analysis above we can find

d j3
dt

≈ (α − β) j3 + γP32 j2(t). (2.9)

We now plug in the approximation j2(t) ≈ γP21χ0te(α−β)t . Then we obtain an
approximate solution formula

j3(t) ≈ χ0γ
2P32P21

t2

2
e(α−β)t ,

so that the arrival time t3, determined from setting j3(t3) = κ is approximately

t3 ≈ 2

α − β
W

(
(α − β)

2γ

√
P32P21χ0

2κ

)
. (2.10)

This expression is identical to (2.6). It is more tedious to derive estimates in this
manner when there are more than one shortest path between nodes. For example,
suppose that node 1 is connected to nodes 2 and 3 which are then both connected to
node 4. Using the same assumptions as above we would then obtain that j4(t) should
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have an approximate solution of the form

j4(t) ≈ γP42e
(α−β)t

∫ t

0
e−(α−β)τ j2(τ )dτ + γP43e

(α−β)t
∫ t

0
e−(α−β)τ j3(τ )dτ.

Using expressions for j2(t) and j3(t), we then would find

j4(t) ≈ γ 2 (P42P21 + P43P31) χ0
t2

2
e(α−β)t ,

where we note that ρ4 = P42P21 + P43P31 and we then find the same arrival time
estimate as in (2.5).

This process can then be continued and refined. In terms of providing accurate
arrival time estimates for (1.1), this method is cumbersome in comparison with the
matrix exponential expansion performed in Chen et al. (2018); however, it provides a
different point of view to see how the arrival time estimates in (2.6) may be derived
and will be used later in cases where the matrix exponential approach does generate
accurate estimates.

We conclude this section with three remarks.

Remark 2.2 Suppose that in (2.9) we had instead used the expression for j2(t) given
in (2.8). Then our solution for j3(t) would read (approximately)

j3(t) ≈ γ 2P32P21χ0
t2

2
e(α−β)t ,

and the arrival time estimate would be exactly as that derived from (2.4) despite the
fact that j1(t) is, unrealistically, assumed to grow exponentially on the entire time
interval 0 < t < t3.

Remark 2.3 The arrival time estimates in (2.3) are observed in numerical simulations
to be good predictors for arrival times in the nonlinear model if both χ0 and κ are
small (again in the limit as γ → 0). In light of the discussion above, we see that χ0
small is required so that j1(t) ≈ χ0e(α−β)t is accurate, while κ small is needed so that
the threshold is crossed when jn(t) is small and the approximation in (2.7) is valid.

Remark 2.4 Suppose that the local dynamics in (1.1) are changed to beSIS type dynam-
ics where recovered individuals become susceptible at some rate γ rn . Linearizing at
the disease-free state, it once again turns out the infected dynamics decouple and are
described by (2.1). Therefore, the linear arrival time estimates are exactly the same
as in (1.1). Numerical simulations of the SIS model show that the linear arrival times
remain good estimates for the nonlinear arrival times in this model.

3 Arrival Times for a SEIR Model

The local dynamics in (1.1) are described by the simple SIR model. We now demon-
strate how to extend the arrival time estimates for other types of disease models.
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For example, many disease models incorporate an exposed population that accounts
for the latency in infection once an individual becomes infected with a disease. The
generalization of (1.1) to this case is

∂t sn = −αsn jn + γ
∑

m �=n

Pnm(sm − sn)

∂t en = αsn jn − σen + γ
∑

m �=n

Pnm(em − en)

∂t jn = σen − β jn + γ
∑

m �=n

Pnm( jm − jn)

∂t rn = β jn + γ
∑

m �=n

Pnm(rm − rn). (3.1)

We demonstrate how to derive arrival time estimates in this case. First, linearize about
the disease-free state (1, 0, 0, 0)T to obtain (neglecting the recovered population once
again)

st = −αj + γ (P − I) s

et = −σe + αj + γ (P − I) e

jt = σe − βj + γ (P − I) j.

Note that the e-j sub-system decouples. Write this sub-system abstractly as

ht = Ãh + γ
(
P̃ − I

)
h, (3.2)

where h = (e1, j1, e2, j2, . . . , eN , jN )T , the 2N × 2N matrix P̃ = P ⊗ I2, and the
2N × 2N matrix Ã = IN ⊗ A with

A =
(−σ α

σ −β

)
.

The matrix A is the local linearization of the reaction terms for (3.1) at a fixed node.
Let

λ±(α, σ, β) = −(β + σ + 2γ ) + √
(β − σ)2 + 4σα

2
,

be the two eigenvalues of A and note that since det(A) = −σ(α−β) then if α−β > 0
we have λ+ > 0 > λ− and the disease-free state is unstable. Note that the instability
threshold for the SEIR model is identical to that of the SIR model. The matrix A is
diagonalizable. Let A = QDQ−1, with

D =
(

λ+ 0
0 λ−

)
, Q =

(
�+ �−
1 1

)
,
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where �±(α, σ, β) = β−σ±
√

(β−σ)2+4σα

2σ . Equation (3.2) can be solved using the
matrix exponential as

h(t) = e(Ã+γ (P̃−I))th0.

Key to the derivation of the arrival time estimate in the SIR model is the ability to
separate the homogeneous growth due to the instability from the diffusion due to the
coupling matrix P. Such a decomposition is possible here since the matrices Ã and P̃
commute which we verify using properties of the Kronecker product,

ÃP̃ = (IN ⊗ A)(P ⊗ I2) = (INP) ⊗ (AI2)

= (PIN ) ⊗ (I2A) = (P ⊗ I2)(IN ⊗ A) = P̃Ã.

Since the matricies commute, we can therefore write the solution

h(t) = e(Ã−γ I)teγ P̃th0, (3.3)

and expand the matrix exponentials as

e(IN⊗A)t =
∞∑

j=0

t j (IN ⊗ A) j

j ! =
∞∑

j=0

IN ⊗ A j

j ! t j ,

e(P⊗I2)t =
∞∑

k=0

tk(P ⊗ I2)k

k! =
∞∑

k=0

Pk ⊗ I2
k! tk .

To calculate arrival times for a disease propagating from city n to city m, we specify
that at time zero we have some proportion, χ0, of the infected population in city n
and calculate when the infected population exceeds some threshold κ at city m. Thus,
h0 = χ0δn ⊗ δ̃2, where δn denotes the standard Euclidean basis vector in R

N , while
δ̃ j is the same for R2. This leads to the following equation to determine the arrival
times, which we simplify using properties of the Kronecker product,

κ = χ0

(
δm ⊗ δ̃2

)T (
IN ⊗ QeDτmnQ−1

) ( ∞∑

k=0

γ kPk ⊗ I2
k! τ kmn

(
δn ⊗ δ̃2

))

= χ0

(
δTm ⊗ δ̃

T
2 Qe

DτmnQ−1
) ( ∞∑

k=0

γ kPkδn ⊗ δ̃2

k! τ kmn

)

= χ0

( ∞∑

k=0

γ k δTmP
kδn

k! τ kmn

)
⊗

(
δ̃
T
2 Qe

DτmnQ−1δ̃2

)
.

Since both terms in parenthesis are scalar, the Kronecker product in the last line is
actually just a multiplication. Assuming again that the leading-order term in γ will
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Fig. 2 Arrival times for the SEIR model (3.1) versus predictions. In the left panel we show arrival times
observed in numerical simulations versus predicted arrival times based upon the arrival time estimate for the
SIR model; see (2.5). Three simulations are performed with σ = 0.5, σ = 1.0 and σ = 10. As anticipated
the arrival time of the disease is delayed by the incorporation of an exposed phase. For σ = 10, individuals
reside in the exposed phase for a short amount of time and the arrival times for the SEIR model are close
to those of the SIR model. In the right two panels, we compare observed arrival times in the SEIR model
to the prediction (3.4) for σ = 0.5 (middle panel) and σ = 1.0 (right panel). Here α = 1, β = 0.25 and
γ = 0.001

dominate, we can neglect all terms in the sum aside from the one where k = dm . For
the terms on the right, we simplify to

δ̃
T
2 Qe

DτmnQ−1δ̃2 = 1

�− − �+
(
�−eλ+τmn − �+eλ−τmn

)
.

We neglect the exponential involving λ− since λ− < 0 and obtain

κ = χ0
γ dmρmτ

dm
mn

dm !
(

�−
�− − �+

)
eλ+τmn .

As was the case for the SIR model, this equation can be solved using the Lambert-W
function and we obtain the estimate

τmn = dm
λ+(α, σ, β)

W

(
1

γ

λ+(α, σ, β)

dm

(
κdm !(�−(α, σ, β) − �+(α, σ, β))

χ0ρm�−(α, σ, β)

)1/dm
)

+ o(1). (3.4)

Recall that as σ → ∞, the period of time that individuals spend in the exposed
phase tends to zero and we anticipate that the arrival times for the SEIR model should
approach those for the SIR model in this limit. Indeed, we observe that as σ → ∞,
�± → − 1

2 ± 1
2 and λ+ → α − β and the arrival time estimate (3.4) converges to

the estimate for the SIR model, see (2.5). Comparisons between this arrival time and
those in direct numerical simulations of (3.1) are presented in Fig. 2.

Remark 3.1 Arrival times estimates analogous to formula (3.4) can be obtained for
other compartmental models as well. Let A denote the linearization of the local model
near the disease-free equilibrium point of an 
 component disease model. Then the
linearization at the unstable state in the network system can be expressed as

ht = Ãh + γ
(
P̃ − I

)
h,
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for h ∈ R
N
. Assume that the components of h are ordered so that the infected

proportion is expressed first. Then the solution of the linear equation can be written
as

h(t) = e(Ã−γ I)teγ P̃th0,

where P̃ = P ⊗ I
, and Ã = IN ⊗ A Suppose that A is diagonalizable with maximal
eigenvalue λ1(A) and A = QDQ−1 where Q = (q1 q2 . . . q
) with q j the eigenvec-
tors of A. Then λ1 is the upper left entry of D. Let D̃ = diag(λ1, 0, . . . , 0). Then we
can estimate arrival times by solving

κ = χ0
γ dmρmτ

dm
mn

dm ! �(A)eλ+τmn ,

where the constant �(A) comes from projecting the initial condition of the local
dynamics onto the leading eigenvector and is defined as

�(A) = δ̃
T
1 QD̃Q

−1δ̃1 = q11
det(Q)

det
[
δ1 q2 q3 . . . q


]
.

This leads to the arrival time estimate

τmn = dm
λ1(A)

W

(
1

γ

λ1(A)

dm

(
κdm !�(A)

χ0ρm

)1/dm
)

+ o(1). (3.5)

4 Pushed Fronts: Faster Invasion Speeds Due to Nonlinearities

Not all invasion fronts are linearly determined. For the SIR model considered in
(1.1), the nonlinearity suppresses growth and the maximal growth rate of the infection
occurs when the infected population is small. In this section, we demonstrate that
nonlinearities which amplify growth can lead to faster-than-linear arrival times. This
phenomenon is well known in the PDE setting where the resulting fronts are referred
to as pushed; see for example Hadeler and Rothe (1975) and van Saarloos (2003).

Consider the following meta-population model,

∂t sn = −αsn jn − ρsn j
2
n + γ

∑

m �=n

Pnm(sm − sn)

∂t jn = αsn jn + ρsn j
2
n − β jn + γ

∑

m �=n

Pnm( jm − jn). (4.1)

The only difference between this system and (1.1) is the additional infection term
ρsn j2n . This system is motivated by recent work in Iacopini et al. (2019) where the
role of higher-order interactions in social epidemics is studied. Recall that the quadratic
terms αsn jn represent infections occurring due to interactions between infected and
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susceptible individuals. The cubic term ρsn j2n represents infections due to group (we
consider only groups of size three for simplicity) interactions and expresses the higher
probability of a susceptible individual adopting a new social norm if all the other
members of one of their social groups has already adopted that norm. We emphasize
that the model in Iacopini et al. (2019) is an agent-based stochastic model without
spatial structure and refer the reader to Iacopini et al. (2019) for more details.

We are interested in how these higher-order interactions affect arrival times. Based
upon our analysis of the SIR and SEIRmodels, the natural starting point is to compute
linearly determined arrival times. In fact, the linearization of (4.1) near the unstable
disease-free state is equivalent to that of (1.1) and therefore the linear arrival time
estimates for this system are also identical. However, numerical simulations reveal
faster invasion speeds; see Fig. 4.We proceed to explain and predict this faster invasion
speed starting first with a discussion of the local dynamics of (4.1).

4.1 The Local Dynamics

To obtain modified arrival times estimates using the approach presented in Sect. 2.1,
we need an estimate for the local dynamics of (4.1) at a fixed city in the absence of
diffusion. In this section, we obtain an approximation for these dynamics in the limit
as ρ → ∞. This corresponds to a regime where infections via group interactions
dominate those stemming from pairwise interactions.

Consider the local dynamics of (4.1),

S′ = −αSI − ρSI 2

I ′ = αSI + ρSI 2 − β I . (4.2)

We desire estimates on the solution of (4.2) for initial conditions starting near the
disease-free steady state (S, I ) = (1, 0). We will consider the case when ρ � 1
so that we can view (4.2) as a singularly perturbed system. Let ε = 1

ρ
	 1. After

transformation of the independent variable by τ = t
ε
, we obtain the following system

of equations

dS

dτ
= −SI 2 − εαSI

dI

dτ
= SI 2 + εαSI − εβ I . (4.3)

Setting ε = 0, we obtain the so-called reduced fast equation,

dS

dτ
= −SI 2

dI

dτ
= SI 2. (4.4)

This reduced equation is, to leading order, the same as the systemof equations analyzed
in Gucwa and Szmolyan (2009), and so we follow their analysis. System (4.4) has two

123



4 Page 16 of 28 A. Armbruster et al.

lines of equilibria: in the language of Geometric Singular Perturbation Theory these
are called slow manifolds—MI = {(S, I ) | S = 0 } and MS = {(S, I ) | I = 0 };
see for example Jones (1995). The two manifolds intersect at the origin. For I > 0,
the manifold MI is normally hyperbolic, whereas the manifold MS lacks normal
hyperbolicity.

Let W = S + I . Then for (4.4), W (τ ) is constant to leading order, while

dI

dτ
= (W − I )I 2.

For ε small and away from MS we therefore have that W (τ ) is constant to leading
order in ε, while I (τ ) increases from zero to W . This provides a leading-order fast
connection between the slow manifolds MS and MI .

In order to use the local solution to estimate arrival times in (4.1), we need some
basic estimates on the form of the solution starting near (1, 0) for small ε. We will
consider the initial condition I (0) = κ and S(0) = 1− κ with κ

ε
sufficiently small so

that κ < ε. We must then follow this initial condition in the slow time scales until I (t)
exceeds some threshold η and the fast dynamics prescribed by (4.4) take over and the
solution quickly converges to the slow manifoldMI . Once it nearsMI , the solution
relaxes exponentially to the origin since I ′ ≈ −β I there.

Since MS is not normally hyperbolic, we cannot directly use the linearization to
estimate the solution before the transition time �. This lack of normal hyperbolicity
can be traced to the fact that as I → 0, the dominant term on the right side of (4.3)
shifts from SI 2, which is formally O(1) in ε to ε I (αS − β) which is formally O(ε).

In “Appendix A,” we mimic the geometric desingularization approach of Gucwa
and Szmolyan (2009) to obtain estimates on �. We will obtain an approximation for
the transition time

� ≈ 1

α − β
log

(
ε(α − β)

κ

)
, (4.5)

and the solution to the local dynamics as

I (t) ≈
{

κe(α−β)t t < �

e−β(t−�) t ≥ �.
(4.6)

Solutions of the system (4.2) are shown in Fig. 3.

4.2 Arrival Time Estimates

We now turn our attention to making estimates of nonlinear arrival times using the
approach outlined in Sect. 2.1. Assume that the epidemic originates at node n = 1.
For simplicity, we assume that the initial infected proportion at city 1 is κ as in (4.6).
We then wish to estimate the nonlinear arrival times tm defined by the condition that
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Fig. 3 The local dynamics for the system of equations in (4.2). On the left are numerically computed
solution trajectories starting from the initial conditions I (0) = 0.001 and S(0) = 0.999 for ρ = 100 and
ρ = 0 (the standard SIR model) with α = 1.50 and β = 0.25. The red and blue curves are the infected
and susceptible proportions, respectively, with ρ = 100, while the purple and yellow are the infected and
susceptible proportions when ρ = 0. Note that when ρ = 100, the infected proportion has fast transition
around t = 2.80 with a theoretical estimate of � = 2.6865. On the right, the solution with ρ = 100 is
plotted in S − I phase space. The red lines depict the invariant fast transition curves that connect the two
slow manifolds (Color figure online)

jm(tm) = κ . In fact, we will obtain the estimate

tm ≈ dm
α − β

log

(
κα

γ (ρm)1/dm

)
+ dm�, (4.7)

wherewe recall that dm is theminimal number of flights connecting citym to the origin
city (the graph distance), ρm is the random walk probability of moving between city
m and the origin city in exactly dm stops, and � is the local transition time obtained
(4.5).

To verify this, we first consider the city n = 2 which we suppose is connected to
origin node. We approximate the evolution of the infected population at node two by
the equation

d j2
dt

≈ (α − β) j2 + γP21 j1(t).

Supposing that j1(t) evolves according to (4.6) leads to an approximate expression
for j2(t),

j2(t) ≈ γP21e
(α−β)t

(∫ �

0
κdτ +

∫ t

�

e−ατ eβ�dτ

)
.

The contribution from the second integral dominates, and we estimate the arrival time
by setting j2(t) = κ while ignoring lower order terms yields the equation

κ = γ
P21
α

e(α−β)(t−�),
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from which we estimate the arrival time t2 by

t2 = 1

α − β
log

(
κα

γP21

)
+ �,

which agrees with (4.7). Extrapolating, we can consider the evolution at an arbitrary
node m where the evolution of the infected population is approximately governed by
the following differential equation

d jm
dt

≈ (α − β) jm + γ
∑

k:dk=dm−1

Pmk jk(t).

The sum represents the coupling to cities which are closer to the origin city. For each
jk , we substitute

jk(t) ≈
{

κe(α−β)(t−tk ) t − tk < �

e−β(t−tk−�) t − tk ≥ �

As we did for the node j2, we approximate this solution as

jm(t) ≈ γ e(α−β)t
∑

k:dk=dm−1

∫ t

tk+�

Pmke
−ατ eβ(tk+�)dτ,

after which integrating and neglecting the upper bound of integration we obtain an
arrival time estimate by solving

κ = γ e(α−β)t
∑

k:dk=dm−1

Pmke
−(α−β)(tk+�). (4.8)

Using

tk = dk
α − β

log

(
κα

γ (ρk)1/dk

)
+ dk�,

then (4.8) becomes

κ = γ e(α−β)(t−dm�)
∑

k:dk=dm−1

γ dkρk

κdkαdk

Pmk

α
.

Since ρm = ∑
k:dk=dm−1 ρkPmk , this is equivalent to

(ακ)dm

γ dmρm
= e(α−β)(tm−dm�),

and solving for tm , we obtain the expression in (4.7).
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Fig. 4 Epidemic arrival times for (4.1) are plotted against various predictions. On the left, we plot numeri-
cally observed arrival times in (4.1) for ρ = 10, 50, 100 versus the linear arrival time estimate (2.5). Note
that large values of ρ lead to faster invasion speeds. In the other two panels, we plot in magenta observed
arrival times against our nonlinear prediction in (4.7) for ρ = 100 (middle panel, with original data for
comparison) and ρ = 50 (right panel, with original data for comparison). For all simulations, α = 1.5,
β = 0.25 and γ = 0.001

In Fig. 4, we show comparisons between this arrival time estimate and those
observed in numerical simulations.

5 Inhomogeneous Infection Rates Speed Up Average Arrival Times

System (1.1) assumes that local infection and recovery rates are uniform across all
cities. In this section,we consider how inhomogeneties in these rates affect arrival times
by allowing the infection rate to vary by node. We will suppose that the infection rate
at each node is expressed as α+ωn where α is themean infection rate andωn describes
city by city variations from this mean. Local infection rates are expected to differ for
a variety of factors and we point out that rather large differences are reasonable, for
example, for diseases that exhibit seasonality where the infection rate may vary by
hemisphere. The question wewill focus on is whether this inhomogeneity speeds up or
slows down the invasion process as compared to the average. We consider the system

∂t sn = −αsn jn − ωnsn jn + γ
∑

m �=n

Pnm(sm − sn)

∂t jn = αsn jn + ωnsn jn − β jn + γ
∑

m �=n

Pnm( jm − jn), (5.1)

where
∑N

n=1 ωn = 0 and α + ωn − β > 0 for all n.
A similar argument as in Theorem 2.1 shows that the linear arrival times once

again place a lower bound on nonlinear arrival times. However, in contrast to the SIR
or SEIR models, in the inhomogeneous case the linear arrival times are no longer a
reliable predictor for the nonlinear arrival times. We make two observations. First, if
we write (5.1) in vector form, then due to the inhomogeneity of the reaction terms it
is no longer the case that the reaction and migration matrices commute, so it is not
possible to decompose the solution as in (2.1) or (3.3). More problematic is the fact
that the linearized solution will be dominated by the largest eigenvalue, corresponding
to the largest ωn , and so the linear equation will asymptotically predict arrival times
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Fig. 5 Histograms showing the difference in arrival times between the inhomogeneous SIR model (5.1)
and the homogeneous model with constant infection rate equal to the mean of the inhomogeneous model.
Each figure represents observations over thirty different realizations of the random infection rates. In each
example, α = 1.0, β = 0.25 and γ = 0.001. On the left, αn is drawn from a normal distribution, scaled
by 0.2 and then normalized to have zero mean. On average, the epidemic arrives 3.66 days earlier in the
inhomogeneous model versus the homogeneous version. In the middle panel, we randomly select half the
nodes to have ωn = 0.2 and the other half to have ωn = −0.2. In this example, the arrival times are
advanced by an average of 1.20 days in the inhomogeneous versus homogeneous model. On the right, we
assign randomly one tenth of the nodes to have ωn = 0.18, while the remaining nodes have ωn = −0.02.
Again, the inhomogeneous network has faster on average arrival times with a mean of 0.814 days

equivalent to the homogeneous case with infection rate equal to α + maxn ωn . We
refer the reader to Sect. 2.1 to see why this unbounded growth does not degrade the
arrival time estimate in the homogeneous case.

Numerical simulations suggest that arrival times in the inhomogeneous system
are faster on average than arrival times in the homogeneous system. These results
are shown in Fig. 5 for three different types inhomogeneities. We argue that these
faster arrival times are due to the following mechanism. For the worldwide airline
transportation network, most cities are connected by multiple shortest paths. If the
inhomogeneities are distributed randomly then it is likely that one of these shortest
paths will connect the two cities along a route consisting entirely, or mostly, of cities
with ωn > 0. Consulting (2.6), we expect this increase in infection rate to decrease
the arrival times at O(− log(γ )), whereas limiting the disease to spread along fewer
of the possible shortest paths will decrease the random walk probability of traversing
between the two cities. However, according to (2.6) this would only affect the arrival
times at O(1). We substantiate this point of view with some formal calculations as in
Sect. 2.1.

For the nodes connected to the origin node, arrival time estimates can be derived
as in Sect. 2.1. Suppose that the disease originates at node n = 1 and this node is
connected to node n = 2. Let �n = α + ωn − β. Then we approximate the dynamics
of the infected proportion at node 2 by

j2(t) ≈ γP21χ0e
�2t

∫ t

0
e−�2τ e�1τdτ = γP21χ0e

�2t

[
e(ω1−ω2)τ

ω1 − ω2

]t

0

. (5.2)

Setting this equal to the threshold value κ we find two different arrival time estimates
depending on whether ω1 > ω2 or vice versa. Let the arrival time t2 be defined by
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j2(t2) = κ , then we get

t2 ≈ − 1

�1
log

(
1

γ

κ(ω1 − ω2)

χ0P21

)
, ω1 > ω2,

t2 ≈ − 1

�2
log

(
1

γ

κ(ω2 − ω1)

χ0P21

)
, ω2 > ω1.

In the case ω1 > ω2, one can interpret the estimate as saying that the growth in
infections at city 2 is dominated by migration of infections from city 1 where the local
growth rate is larger. In contrast, if ω2 > ω1, then the growth of local infections at
city 2 dominates and the coupling to city 1 is only required to transmit a few initial
infections to city 2. Both of these estimates rely on a gap between theω1 andω2 values
so that one of the boundary terms in the integral in (5.2) can be ignored. If these values
are comparable, then both terms need to be considered and the arrival time estimate
will involve an approximation of the Lambert-W function.

The purpose of these informal calculations is to demonstrate that arrival times can
be decreased by the disease passing through nodes with higher than average growth
rates. Now consider the grandchildren of the origin node. These nodes are connected
to the origin node through one or more children nodes. For networks such as the
worldwide airline network, there are typically multiple such paths. Thus, even if there
is only a 1/2 probability that the children nodes have higher than mean infection
rates, there is a greater than even probability that there is a path with positive ωn

connecting the grandchild node to the origin. This means that there exists a path
over which the disease can spread faster leading to faster arrival times. Numerical
evidence for this is presented in Fig. 6. Here we consider the worldwide airline
network https://openflights.org/data.html where each node has mean infection rate
α = 1.0 and deviation ωn = ±0.2 selected uniformly at random. We then plot arrival
times grouped by the minimum number of negative ω values among the shortest paths
connecting each node to the origin node. We see that the fewer such negative ω values
the faster the arrival times and most (in this example 91%) of the nodes have a path
connecting them to the origin node with two or less negative ω values.

We also considered the effect of different infection rates in the southern versus
northern hemispheres. In the airline network taken from https://openflights.org/data.
html, only about 20%of the airports reside in the southern hemisphere. Somenumerical
results are presented in Fig. 7. First we consider the case where the infection rate is
greater in the southern than in northern hemisphere. This causes arrival times in most
of the network to be advanced relative to the values predicted when the infection rate
is constant and equal to the global mean. If the prediction is changed to instead use
the infection rate for the southern hemisphere, then the predicted versus observed
arrival times are almost linear for cities in the southern hemisphere owing to the fact
that most pairs of cities in the southern hemisphere are connected by shortest paths
visiting only other cities in the southern hemisphere. When the infection rate is greater
in the northern hemisphere, a similar dynamic occurs and arrival times in the northern
hemisphere are advanced and approximately linear. Since ωn is rather small in the
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Fig. 6 Arrival times for (5.1) on the worldwide airline transportation network with half the nodes assigned
ωn = 0.2 uniformly at random with the remaining nodes having ω = −0.2. On the left, arrival times are
plotted against the linear prediction for the mean value of α = 1.0 (β = 0.25 and γ = 0.001). Consider
all paths that connect a node m to the origin node with the minimal graph distance dm . The data points in
red are those for which there exists a minimal path on which all ωn > 0. Green corresponds to nodes with
a minimal path with exactly one negative ωn . Blue nodes have two negative ω values while magenta has
three. The arrival times of all red nodes are advanced in the inhomogeneous system. Around 95% of the
nodes for which there exists a minimal path with exactly one ωn < 0 arrive faster (green nodes) and around
67% of the nodes with minimal paths with exactly two ωn < 0 arrive faster (blue nodes). This covers 91%
of the total nodes in the network. On the right, we compare arrival times in (1.1) with the linear prediction
(2.5) assuming that all nodes have α = 1.2. Observe that this constitutes a reasonable prediction for the
arrival times at nodes with all a path of all positive ω values (red data points) (Color figure online)

Fig. 7 Arrival times versus predictions for the worldwide airline transportation network https://openflights.
org/data.html withωn selected by hemisphere. In all simulations, themean infection rate is fixed to α = 1.0,
the recovery rate is fixed to β = 0.25 and the diffusion parameter is fixed to γ = 0.001. In all simulations,
the original city of infection resides the southern hemisphere. On the left, ωn > 0 for those airports in the
southern hemisphere and ωn < 0 for those airports in the northern hemisphere. The purple data points are
arrival times for cities in the southern hemisphere, while the blue dots are arrival times for airports in the
northern hemisphere. In the left panel, the predicted arrival time is the linear arrival time estimate (2.3) with
α fixed to be the mean infection rate. In the middle panel, the predicted arrival time is instead the linear
arrival time estimate with the maximal infection rate (constant in the southern hemisphere). On the right,
we show arrival times for the case where ωn > 0 in the northern hemisphere while ωn < 0 in the southern
hemisphere. The predicted arrival time is the linear arrival time estimate (2.3) with α fixed to be the mean
infection rate

northern hemisphere, this advancement is not as dramatic as it is for larger infection
rates in the southern hemisphere.

Remark 5.1 It is known in the PDE context that inhomogeneities can lead to faster
invasion speeds; see for example Berestycki and Nadin (2019) and Shigesada et al.
(1986). In these cases, the system typically exhibits pulsating traveling waves that
propagate with some mean velocity that exceeds the velocity in the homogeneous
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Fig. 8 Predicted versus observed arrival times for the SIR model (1.1) with infection rate α = 1.0, recovery
rateβ = 0.25 and diffusion parameter γ = 0.3 (left) and γ = 0.5 (right). The red predictions are those given
by (2.5) which uses only the first term in the summation (2.3), while the blue data are predictions computed
by numerically solving (2.3) including the first twenty nonzero terms in the summation. As expected, the
one term approximation over-estimates the arrival times since it considers only contributions coming from
the shortest path. The correspondence between the linear prediction and nonlinear arrival times observed in
numerical simulations suggests that (1.1) remains linearly determined even for large values of σ , although
no closed-form expression for arrival times is available

case. We emphasize that the mechanism at play in the PDE case is distinct than the
one we discuss here.

6 Conclusion

We have illustrated that the analogy between the dynamics of the meta-population
model (1.1) and invasion fronts for spatially extended reaction-diffusion systems canbe
used to make qualitative predictions on the behavior of (1.1) in certain circumstances.
To recap, we show that arrival time estimates can be procured for a variation of (1.1)
that includes an exposed population. Second, from the PDE theory we expect that
faster-than-linear invasion speeds should arise for somemodels where the nonlinearity
enhances the growth of the instability. Using a model motivated by recent work on
the role of higher-order interactions in social epidemics, we demonstrate that this
also occurs in the case of the meta-population model (1.1). Using the smallness of
the diffusion constant γ and viewing the invasion front as a cascading process we
are able to obtain corrections to the linear arrival times that provide more accurate
predictions of arrival times. Finally, we consider the effect of inhomogeneities on
mean arrival times. In the PDE case this can lead to faster arrival times. We show that
the same phenomena occurs in (1.1) although we argue that the mechanism leading
to the decrease is distinct and due to the asymmetry between how local growth rates
and random walk probabilities affect the arrival time calculation.

We conclude with comments on some directions for further research.
Throughout this article, we have assumed that the mobility parameter γ is asymp-

totically small. This assumption is valid in some situations, but it would be valuable
to understand how arrival times are determined for larger values of γ . This could be
relevant when mobility is increased or when the infection rate is only slightly larger
than the recovery rate so that the homogeneous growth and diffusion terms have sim-
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ilar scalings. Numerical simulations of the SIR model (1.1) suggest that linear arrival
times remain good estimates for nonlinear arrival times even for larger values of γ ;
see Fig. 8. It would be interesting if it were possible to characterize which network
features are relevant for this decreased arrival times.

In terms ofmathematical analysis, it would be interesting to establish rigorous upper
bounds on nonlinear arrival times to complement the lower bounds afforded by the
linearized equation in Theorem 2.1. One possible avenue is to derive sub-solutions for
(1.1).We refer to Fu et al. (2016) andWu (2017) forwork in this direction for lattice SIR
models. We have used the term linearly determined informally to describe situations
where the linearized arrival times are good estimates for the nonlinear arrival times.
A rigorous bound on nonlinear arrival times would serve to make this mathematically
precise. We point to recent work characterizing the location of solution level sets for
the lattice Fisher-KPP equation as a starting point for this analysis; see Besse et al.
(2022).

Several qualitative predictions for how network and system properties determine
arrival times in meta-population models of global disease spread have been presented.
Ultimately, part of the motivation of the current study was to provide predictions that
might be applied to more complicated and realistic models of disease spread.
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Appendix A Singular Perturbation Analysis of the Local Model 4.2

We consider (4.2) with the goal of motivating the approximate solution presented
in (4.6). Our approach mimics the analysis of a model of an autocatalator chemical
reaction model presented in Gucwa and Szmolyan (2009). We begin with the system
(4.3) where we wish to track the solution to the initial value problem with initial
conditions S(0) = 1 − κ , I (0) = κ in the limit as ε = 1

ρ
→ 0. As mentioned in

Sect. 4 this system has two slow manifolds defined as curves of equilibrium when ε

is set equal to zero; see (4.4). The slow manifold on the I axis is normally hyperbolic
and it follows that the reduced flow on the slow manifold is, to leading order in ε

given by I ′ = −β I and so we obtain that after some critical time � the solution of
I (t) can be described as in (4.6). The second slow manifold is given by the S axis, but
this manifold lacks normal hyperbolicity so we are unable to track the solution of the
initial value problem using linearization.

To overcome this lack of normal hyperbolicity we use geometric desingularization
techniques or “blow-up” techniques to resolve the flow when I is small. Following
Gucwa and Szmolyan (2009) we will change coordinates to

S = S̄, I = r Ī , ε = r ε̄, Ī 2 + ε̄2 = 1,

123



Epidemic Spreading on Complex Networks as Front… Page 25 of 28 4

effectively transforming the S axis to a cylinder with polar coordinates for the I and ε

variables. It is often easier to study the flow in coordinate charts and we employ two
distinct charts. The first is known as the rescaling chart with coordinates

S = S1, I = r1 I1, ε = r1,

while the second chart has coordinates

S = S2, I = r2, ε = r2ε2.

The two charts can be related via

S2 = S1, r2 = r1 I1, ε2 = 1

I1
.

Our goal is to track an initial condition with S(0) = 1−κ , I (0) = κ with κ small as it
evolves past the non-hyperbolic S axis to the section�out = {(S, I ) | I = η} for some
η > 0 at which the solution can be effectively described by a fast transition to the I
axis followed by a slow relaxation along the I axis until the solution converges to the
origin. In contrast to Gucwa and Szmolyan (2009), our estimates here are approximate
and not rigorous.We believe that the estimates presented here could be made rigorous,
but we do not pursue such an analysis here.

Analysis in first chart The first chart is known as the rescaling chart where r1 is
simply a proxy for ε. Converting (4.3) to the coordinates of the first chart we find,

dS1
dτ

= −αr21 S1 I1 − S1r
2
1 I

2
1

dI1
dτ

= αr1S1 I1 − βr1 I1 + S1r1 I
2
1

dr1
dτ

= 0 (A.1)

Rescaling the independent variable to divide the vector field by r1, we find the desin-
gularized system

dS1
dt

= −αr1S1 I1 − S1r1 I
2
1

dI1
dt

= αS1 I1 − β I1 + S1 I
2
1

dr1
dt

= 0. (A.2)

Let η > 0 and define the section �1 = {(S1, I1, r1) | I1 = η}. Suppose that we
start with initial conditions I (0) = κ and S(0) = 1 − κ which correspond to initial
conditions S1(0) = 1− κ and I1(0) = κ

ε
. We therefore require κ to scale smaller than
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ε so that I1(0) is near zero. To obtain a leading order description of the dynamics, we
set r1 = 0 in (A.2) and approximate S1(t) = 1. Then I1 obeys (to leading order in ε)

dI1
dt

= (α − β)I1 + I 21 , I1(t) = C(α − β)e(α−β)t

1 − Ce(α−β)t
, C = κ

κ + ε(α − β)
.

Define �1 such that I1(�1) = η. Using the leading-order description for I1(t), we
estimate

�1 ≈ 1

α − β
log

(
η(κ + ε(α − β))

(α − β + η)κ

)

We now convert our solution to the coordinates of the second chart and proceed
with tracking the solution.

Analysis in second chart Converting (4.3) to the coordinates of the second chart we
find,

dS2
dτ

= −αr22 ε2S2 − r22 S2

dr2
dτ

= αr22 ε2S2 − βr22 ε2 + S2r
2
2

dε2
dτ

= −αr2ε
2
2 S2 + βr2ε

2
2 − S2r2ε2 (A.3)

Rescaling the dependent variable to divide the vector field by the nonzero factor
αr2ε2S2 − βr2ε2 + S2r2 we obtain the desingularized system

dS2
ds

= −r2

(
1

1 − βε2
αε2S2+S2

)

dr2
ds

= r2

dε2
ds

= −ε2. (A.4)

Define �2 = {(S2, r2, ε2) | r2 = η} with η defined as before and recall the initial
conditions in the section �1 which correspond to S2(0) = 1− κ +O(ε), r2(0) = ηε,
ε2(0) = 1

η
. The transition time between sections can then be evaluated explicitly, it

terms of the transformed time-scale s, as s = − log ε. To determine estimates for the
transition time τ2 in the τ time-scale we note that the timescales are related by the
integral

τ2 =
∫ − log(ε)

0

1

αr2ε2S2(σ ) − βr2ε2 + S2(σ )r2(σ )
dσ
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We will obtain an approximation to t2 by setting S2(σ ) = 1 in the integral. We are
then able to integrate (recalling that r2ε2 = ε) and find

τ2 ≈ 1

ε(α − β)

(
− log(ε) + log

(
ε(α − β) + εη

ε(α − β) + η

))
,

≈ 1

ε(α − β)

(
− log(ε) + log

(
ε

η

(α − β) + η

1 + ε
η
(α − β)

))

≈ 1

ε(α − β)

(
− log(η) + log

(
α − β + η

1 + ε
η
(α − β)

))

Rescaling the independent variable from τ to t we obtain an estimate on the total
transit time of the initial condition I (0) = κε to I (t) = η as

� ≈ 1

α − β

(
log

(
η
(κ + ε(α − β))

(α − β + η)κ

)
− log(η) + log

(
α − β + η

1 + ε
η
(α − β)

))

≈ 1

α − β

(
log

(
(κ + ε(α − β))

κ

)
+ log

(
1

1 + ε
η
(α − β)

))
.

Using κ
ε
small and ε 	 1 we find the approximation in (4.5).
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and Erdős–Rényi graphs. Discrete Contin Dyn Syst Ser B 24(2):671–694
Hufnagel L, Brockmann D, Geisel T (2004) Forecast and control of epidemics in a globalized world. Proc

Natl Acad Sci 101(42):15124–15129
Iacopini I, Petri G, Barrat A, Latora V (2019) Simplicial models of social contagion. Nat Commun 10:1–9
Iannelli F, Koher A, Brockmann D, Hövel P, Sokolov IM (2017) Effective distances for epidemics spreading

on complex networks. Phys Rev E 95(1):012313, 7 (2017)
Jamieson-Lane A, Blasius B (2020) Calculation of epidemic arrival time distributions using branching

processes. Phys Rev E 102:042301
Jamieson-Lane A, Blasius B (2020) Epidemic arrival times; theory, discussion, and limitations. arXiv

preprint arXiv:2004.05557
Jones CK (1995) Geometric singular perturbation theory. Dyn Syst 44–118
Kiss IZ,Miller JC, Simon PL (2017)Mathematics of epidemics on networks, volume 46 of interdisciplinary

applied mathematics. Springer, Cham. From exact to approximate models
Openflights.org. Airport, airline and route data. https://openflights.org/data.html. Accessed 22 July 2021
Pastor-Satorras R, Castellano C, Van Mieghem P, Vespignani A (2015) Epidemic processes in complex

networks. Rev Mod Phys 87(3):925
Rvachev LA, Longini IM Jr (1985) A mathematical model for the global spread of influenza. Math Biosci

75(1):1–22. With an editorial note
Shigesada N, Kawasaki K, Teramoto E (1986) Traveling periodic waves in heterogeneous environments.

Theor Popul Biol 30(1):143–160
Taylor D, Klimm F, Harrington HA, Kramár M, Mischaikow K, Porter MA, Mucha PJ (2015) Topological

data analysis of contagionmaps for examining spreading processes on networks. Nat Commun 6(1):1–
11

Van den Broeck W, Gioannini C, Gonçalves B, Quaggiotto M, Colizza V, Vespignani A (2011) The
GLEaMviz computational tool, a publicly available software to explore realistic epidemic spread-
ing scenarios at the global scale. BMC Infect Dis 11(1):1–14

van Saarloos W (2003) Front propagation into unstable states. Phys Rep 386(2–6):29–222
Weinberger HF, Lewis MA, Li B (2002) Analysis of linear determinacy for spread in cooperative models.

J Math Biol 45(3):183–218
Wu C-C (2017) Existence of traveling waves with the critical speed for a discrete diffusive epidemic model.

J Differ Equ 262(1):272–282

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

http://arxiv.org/abs/2004.05557
https://openflights.org/data.html

	Epidemic Spreading on Complex Networks as Front Propagation into an Unstable State
	Abstract
	1 Introduction
	2 Arrival Time Estimates via Linearization Near the Disease-Free State
	2.1 Alternate Derivation of Linear Arrival Time Estimate

	3 Arrival Times for a SEIR Model
	4 Pushed Fronts: Faster Invasion Speeds Due to Nonlinearities
	4.1 The Local Dynamics
	4.2 Arrival Time Estimates

	5 Inhomogeneous Infection Rates Speed Up Average Arrival Times
	6 Conclusion
	Acknowledgements
	Appendix A Singular Perturbation Analysis of the Local Model 4.2
	References




