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Abstract

A model of population growth and dispersal is considered where the spatial habitat
is a lattice and reproduction occurs generationally. The resulting discrete dynamical
system exhibits velocity locking, where rational speed invasion fronts are observed
to persist as parameters are varied. In this article, we construct locked fronts for a
particular piecewise linear reproduction function. These fronts are shown to be linear
combinations of exponentially decaying solutions to the linear system near the unstable
state. Based upon these front solutions, we then derive expressions for the boundary
of locking regions in parameter space. We obtain leading order expansions for the
locking regions in the limit as the migration parameter tends to zero. Strict spectral
stability in exponentially weighted spaces is also established.

Keywords Invasion fronts - Lattice dynamical system - Velocity locking

Mathematics Subject Classification 37L60 - 35C07 - 92A15

1 Introduction

We study a model of population dynamics introduced in Wang et al. (2019), where
both space and time are discrete quantities. To envision the model, imagine an infinite
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chain of islands and a species of bird. Suppose that this species initially resides on a
single island in the chain. During each generation, both migration and reproduction
occur. First, some proportion of the bird population migrates to neighboring islands
while the rest remains. Second, the population at each island reproduces independently
according to some reproduction rule. Repeating this process over many generations,
the species spreads out and forms a traveling front. The speed of this front characterizes
how quickly the island chain is populated by the new species, and of interest is how
this speed depends on system parameters. For example, one might imagine that a small
increase in the migration rate would lead to a faster invasion speed. However, as was
noted in Wang et al. (2019), this is not always the case, and for some reproduction
functions and some parameters, the invasion speed can be locked and remain constant
over some subset of parameter space. This locking phenomena is the primary focus of
this article, and our primary goal is to construct locked traveling fronts and determine
conditions that prescribe the set of parameters over which these fronts exist.

We now describe the mathematical formulation of the model introduced in Wang et al.
(2019). Let u; ; be the population at the i-th lattice site during the ¢-th generation.
Following the description above, each generation consists of two steps: migration and
reproduction. First, it is assumed that some proportion m of the population at each
lattice site will migrate, with half moving left and the other half moving right. A
reproduction function g(u) then prescribes the population in the next generation as
a function of the post-migration population at each island. Putting these two steps
together, we have the following difference equation

m m
i = g (Fuiote+ (1= mu, + Suppr) (1.1)

A variety of reproduction functions were considered in Wang et al. (2019). Here, we
will focus on the most analytically tractable case, namely

O<u<c
u>c

gw) = {q" (12)

We only consider the case where rc¢ < 1, thatis, g(u) < 1 for any u > 0. The param-
eter ¢ represents a critical population density. Below this threshold, the reproduction
function is linear with a proportionality constant ». Above this threshold, the reproduc-
tion function returns the value of 1, which is the carrying capacity of the lattice site.
This jump in the reproduction function is characteristic of a weak Allee effect, where
the maximal per capita growth rate occurs at intermediate values of the population
density.

Invasion speeds determined from direct numerical simulations for two different
sets of parameters are shown in Fig. 1. These speeds are numerically calculated as the
ratio of the number of lattice sites (to the right) that transition to the carrying capacity
divided by the number of generations simulated. When the critical threshold c is large,
the invasion is dominated by the linear growth ahead of the front interface, and the
selected invasion speed appears to be a smooth monotonically increasing function of
the migration rate m. By contrast, for smaller values of c, it is observed that velocity
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Fig. 1 Numerically observed invasion speeds for (1.1) as a function of the migration rate m with r = 1.2
and two different choices of the critical population density c. On the left, the case of ¢ = 0.8 is depicted,
and the invasion speed appears to be a smooth monotonically increasing function of the migration rate. On
the right, the case of ¢ = 0.4 is depicted for which the invasion speed appears to be constant at certain
rational speeds and resembles a Devil’s staircase (color figure online)
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Fig. 2 Locking regions (shaded) as a subset of c-m parameter space with » = 1.2. Shown are regions for
all rational speeds £ with ¢ <20 and 1 < p < ¢ with ged(p, ¢) = 1. These regions are obtained via the
formulas derived in Sect. 4 (color figure online)

locking can occur, where the speed of the front remains fixed over an interval of
parameter values. As is described in Wang et al. (2019), this locking is a consequence
of the discrete nature of the problem. Fronts traveling with rational speed are fixed
points of a certain map: for rational speed s = g, this map consists of ¢ fold iteration of
(1.1), followed by shifting the solution p lattice sites to the left. In the case of locking,
these fixed points are robust with respect to small changes in parameters, leading to
preservation of the front over an open subset of parameter values. The speed plot
in the right panel of Fig. 1 resembles a Devil’s staircase and suggests an analogy to
phase locking; see for example (Arnol’d 1961). Indeed, in parameter space the locking
regions resemble resonance tongues; see Fig. 2.

Fronts propagating into unstable states have been studied extensively; see for exam-
ple (van Saarloos 2003). Most investigations involve PDE models where both space
and time are continuous variables. In this context, invasion fronts can be characterized
as pulled if their speed is equal to the spreading speed of disturbances for the equation
linearized near the unstable state, and pushed if their speed is determined by nonlinear
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effects. When space is discrete, the same dichotomy exists, and it is only in the case of
both discrete time and space that velocity locking is observed. In Wang et al. (2019),
locked fronts are introduced as a subset of pushed fronts where the rational velocity
is constant over some region in parameter space.

Velocity locking for traveling fronts has also been studied for difference equations
known as coupled map lattices, where the fronts connect two stable states; see for
example (Kaneko 1986). In some cases, the dynamics are shown to be equivalent to
a circle map, and an explicit analogy to mode locking is achieved; see for example
(Carretero-Gonzédlez et al. Feb 2000; Fernandez and Raymond 1997). Velocity lock-
ing with zero speed is also known as front pinning and has been studied widely in the
literature. In contrast to the velocity locking studied here, front pinning can occur for a
variety of systems with both time and space as continuous variables for reaction func-
tions of bistable type. Pinning was originally studied in the context of one-dimensional
lattices; see for example (Bell and Cosner 1984; Carpio and Bonilla 2003; Fath 1998;
Keener 1987). Pinning was later discovered to occur due to heterogeneities; see for
example (Dirr and Yip 2006; Lewis and Keener 2000; Xin 1993), in nonlocal equa-
tions; see for example (Anderson et al. 2016; Bates et al. 1997), and for problems
posed in higher spatial dimensions; see for example (Berestycki et al. 2016; Hoffman
and Mallet-Paret 2010; Lewis and Grindrod 1991).

The primary contribution of the current study is to construct locked fronts for (1.1)
and derive boundaries of the locking regimes in parameter space. Generally speaking,
a traveling front moving with speed s € R of (1.1) can be described by a function
® : R — Rsuch that u; ; = (i — s¢). In this way, constructing a traveling front for
(1.1) involves finding solutions of the following non-local traveling wave equation

O~ =g (FOE - D+U-mOE+TOE+D). (13

where & € R; see (Chow et al. 1998). Construction of traveling waves for these types
of equations is quite difficult. If s = g € Q, then the non-local equation (1.3) can

be re-expressed as a traveling wave difference equation in R?¢. Further complicating
the matter is that unless g(u) has an analytical inverse, this dynamical system is
defined implicitly. Constructing solutions in such a high dimensional phase space is
an extremely challenging problem. By restricting to the piecewise linear reproduction
function in (1.2), this construction becomes tractable by allowing us to piece together
linear solutions near zero with the stable state one.

Our main result is presented in Theorem 4.1. There we show that for any rational
s = g < 1 there exists a nonempty region in (r, m, ¢) parameter space for which

positive fronts of (1.1) propagating with speed s = g exist. These fronts are fixed

points of the following map. Let G : £>°(Z) — {£°°(Z) be the generational map
defined in (1.1) and let S : £°°(Z) — £°°(Z) be the left shift operator. Locked fronts
are fixed points of the map F(u) = S (G(q)(u)). Our second main result concerns
the stability of the locked fronts as a fixed point of F. In Theorem 6.1, we study the
spectral stability of this solution and show that its spectrum in an appropriate weighted
space is strictly contained inside the unit circle.
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The rest of this paper is organized as follows. In Sect. 2, we provide a short outline
of our approach. In Sect. 3, we derive some preliminary facts about (1.1) linearized
near the unstable equilibrium. In Sect. 4, we construct locked fronts propagating with
rational speed and state our main Theorem 4.1 prescribing the existence of locking
regions. Portions of the proof are presented in Sect. 5 and where we also derive
expansions for the locking regions in the limit m — 0. In Sect. 6 we prove that
the front is spectrally stable with respect to perturbations in a particular weighted
function space; see Theorem 6.1. In Sect. 7, we compare our predictions to numerical
simulations. Finally, we conclude in Sect. 8 with a discussion of future directions for
study.

2 Front construction: overview

Let us motivate the construction that will follow. Locked fronts propagating to the right
with speed £ are solutions of (1.1) which return to the same form after g generations but
are shifted p lattice sites to the right. For example, consider the following example of a
speed % front initially located at lattice site i = 0 and evolving over five generations:

Lattice Site i =—-1i=0i=1i=2i=3i=4

Generation 0 1 1 é1 ¢ 3 Pa
Generation 1 1 1 * * * *
Generation 2 1 1 * * * *
Generation 3 1 1 1 * * *
Generation 4 1 1 1 * * *
Generation 5 1 1 1 1 é1 P

Our goal is to compute the ¢; that describe the front as well as the front profile
during intermediate generations, marked in the table with asterisks. We make several
observations that will guide our approach in the coming sections. We say that a lattice
site is at capacity if the population is one at that lattice site. Lattice sites to the left of
the front interface are at capacity and remain at capacity. For those lattice sites ahead
of the front interface, the update rule is linear. As a result, we expect that the ¢; can be
written as linear combinations of solutions to the linearized problem. Finally, for those
lattice sites at the front interface, we must match the linearly decaying front ahead of
the front interface with those sites at capacity behind the front interface. Inspecting the
form of the front, we see that one condition is generated at each generation for which
the front does not advance. In the example above, this occurs at the first, second, and
fourth generations at the first lattice site below capacity.

This exercise motivates the remainder of the paper as follows. First, we will study
exponentially decaying solutions of the linearized equation and isolate ¢ — p such
solutions from which to construct the front. Then, matching conditions will be derived
at the ¢ — p generations at which the front does not advance. These conditions will be
solved to yield formulas for the traveling front solution. Finally, bounds on the locking
region in parameter space are obtained by verifying that the post-migration population
density remains above or below the critical population density c at each generation.
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In the process of deriving the front solution, several questions arise that we will
address. For one, it will turn out that most of the linear solutions which form the
building blocks of the front will be oscillatory in space. For the front to be relevant
to the model described in (1.1), it must be positive. We will verify that the linear
combination of these (mostly) oscillatory terms is, in fact, positive. Second, there is
also some question as to which ¢ — p linearly decaying solutions to include in the front
construction. Based upon the PDE theory, we will initially proceed by using the ¢ — p
with the smallest modulus. This choice will be substantiated by a spectral analysis
of the problem where we will show that the inclusion of any other weaker decaying
terms would lead to less desirable stability properties for the front.

3 Properties of the linearized system

In this section, we study of the dynamics for the linearization near the unstable zero
state. The linearized equation is described by

m m
i =1 (Fuior+ Q= mugy + Zuip). (3.1

We seek exponentially decaying solutions of the form
wip =Myl (3.2)

where y is the decay rate in space and A is the associated growth factor. We introduce
the shorthand notation
rm
(1:7, b:r(l—m),

and after plugging (3.2) into (3.1), we obtain the dispersion relation
1 2
o= (a+by +ay )

which relates the exponential decay in space of the solution to its temporal growth
rate. The speed associated to each decay rate y € R is called its envelope velocity
Senv(y) and can be calculated by solving u; ;4 = u;—p,, using (3.2), from which we

obtain
_ log(h())
log(y)
Suppose that we began with initial data for (3.1) that was localized in space. Then a
comparison argument shows that the spreading speed of this solution (recall we are

dealing with the linearized equation (3.1)) must be less than sepy () forany 0 < y < 1.
We therefore define the linear spreading speed as

Senv(Y) = (3.3)

Slin = Min_ Sepy(¥).
O<y<l
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Fig. 3 On the left is the envelope speed s¢;y as a function of the decay rate y for the parameter values
r = 1.1 and m = 0.1. The minimum value corresponds to the linear spreading speed, which for these
parameter values is approximately 0.1443. On the right is the linear spreading speed for » = 1.1 and
varying values of m (color figure online)

Associated to this speed is the linear decay rate yi, which satisfies

Senv(Vlin) = Stin

Plots of seny(y) and sjip are shown in Fig. 3. We will collect some facts regarding
Senv(y) and sji, in the following lemmas

Lemma3.1 Ifl <r < %, then Seny (¥) has a unique minimum, and syin is well defined
with siin < 1. Moreover, for any 1 > g > syin there exist exactly two decay rates

0 < ¥ < Yw < 1 such that Seny(Vs) = Senv(Yw) = g_

Proof Note that r < % is equivalent to a < 1. Express sepy (y) as

log (a + by +ay?)
logy

Senv(y) =1—

from which it is clear that lim, ¢ Seny(y) = 1. Apply the derivative:

b+2ay —1 log(a+by+ay?)
a+by +ay?logy y log? y '

Senv(¥) =
Critical points therefore occur whenever
(by + 2ay2) (=logy)=— (a + by + ayz) log (a + by + a)/Z) .
Let

Fi(y) = (by + 2ay2) (—logy),

F(y) = (a + by + ay2> (—10g (a + by + ayz)) ,
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and note limy, o F1(y) =0, F1(1) =0, F2(0) = —aloga, and F>(1) = —r log(r).
Since a < 1, we have F1(0) = 0 < F,(0), while since r > 1, we have F»(1) < 0 =
F1(1). Since these functions are continuous, there must be an intermediate value at
which they are equal. This gives the existence of a decay rate y such that s/, (y) = 0.
To show that this value is unique, we compute derivatives

F{(y) = (b +4ay)(—logy) — (b +2ay),
Fj(y) = (b +2ay)(~log (a + by +ay?)) — (b + 2ay).

We then see that if y < a + by + ay?, then we have that F{(y) > F,(y) for all
0 < y < 1, and therefore the intersection (and therefore the root of s/, (y)) must
be unique. Define the quadratic function p(y) = a + (b — 1)y + ay?, and note if
b > 1, then all coefficients are positive, and so p(y) > O forall 0 < y < 1. If
b < 1, then note that p(0) =a > 0, p’(0) = (b —-1) <0, p(1) =r —1 > 0, and
p'(1) = r > 1, and the minimum of p(y) occurs at (1 — b)/(2a). Computing the
value at the minimum, we obtain

_(b—1)2_4a2—(b—1)2_(r—l)(2rm—r+1) _

= 0,
4a? 4a? r2m?

where the last bound holds since 2rm —r + 1 = 1 — b 4+ rm > 0. The final part of
the Lemma now follows from uniqueness of the zero of s, (y). O
Remark 3.2 The restriction a = “5* < 1 is natural in the sense that a speed one front
always exists in the case a > 1, regardless of the value of c. The front in this case
is identically one to the left of the interface and identically zero to the right of the
interface. Therefore, the natural decay rate in this case is y = 0, which minimizes
Senv(y) on the interval [0, 1].

A related point is that when a > 1, it holds that sj, > 1, with p;; < O corre-
sponding to an oscillating front. Of course, due to the nature of the model, the fastest
possible invasion speed is one, and these faster fronts are therefore not observed. This
phenomena has previously been observed in Browne and Dickerson (2014) in the
context of feed-forward networks where the fronts are referred to as frustrated.

Lemma 3.3 Suppose that 1 <r < % Then for 0 < m < 1, it holds that

dsiin
dm

> 0.

Proof Define sjin as Seny(y) for the unique y such that s, (y) = 0. Then implicit
differentiation gives

dsiin 0Seny 3_)/ 0Seny 3_)\

dm 9y dm  9r Om’
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The first term is zero, and we calculate

0Senv OA 1 1 /r o,
bt et G )
aA dm Mlog(y) vy \2 2
1 (gmv+sr?Y)
log()m (3 —y +3v2) +v
1 (y—17°

Tlog() m (y — D2 +2y
O

Lemma 3.1 guarantees the existence of two decaying solutions to the linear problem
(3.1). Recall from our discussion in Sect. 2 that we expect to require g — p such
solutions. It will turn out that we will utilize y; and ¢ — p — 1 other solutions. We
turn our attention to those solutions now. Let s = g. Then from the envelope velocity
formula, we obtain

p _ log(a(y))

g log(y)

and unraveling this equation, we find that y must be a root of the polynomial
_ 2\ 4
yi P:(a+by+ay) : (3.4)

Lemma 3.4 Suppose that 1 <r < % and consider 1 > s = £ > g, Let y; (strong
decay) and y,, (weak decay) be the unique real values from Lemma 3.1 for which
Senv (Vs.w) = L with 0 < ¥ < Yiin < Yw. Then there exist ¢ — p roots of (3.4) with
modulus less tcizan or equal to ys.

Proof We will use Rouche’s Theorem to count zeros of the polynomial y9=7 —
(a + by + ay?)". Denote f(y) = y4~P which has a root of order ¢ — p at the origin.
Denote g(y) = (a +by + ayz)q. On the circle of radius yy, since g(y) is a polyno-
mial with positive coefficients, we have that g(y;) = f(y,) and |g(y)| < | f(y)]| for
all other |y| = y;. Let € > 0. Since we are studying the minimal root y;, we see that
| f ()] is strictly larger than |g ()| on the ball of radius y; + € for € sufficiently small.
Thus, Rouche’s Theorem applies, and there are exactly ¢ — p roots inside this ball.
Since € is arbitrary, the result holds as € — 0 as well. 0O

Remark 3.5 We have thus far considered fronts moving to the right with s > 0. Since
(1.1) is invariant with respect to the change i +— —i, our analysis would carry over to
fronts propagating to the left with speed s < 0. To see this, consider one of the roots
of (3.4) defined in Lemma 3.4. Let 7 = % Then z satisfies

b q
z”q=(a+—+%> )
z oz
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which after rearranging can be expressed as

q
P = (a +bz + azz)

This is the same polynomial that is obtained if one sets s = —p/q in (3.3).

4 Locked fronts

In this section, we construct locked fronts propagating at rational speed and obtain
bounds on the regions in parameter space for which they exist. Before treating the
general case, we will demonstrate what these fronts look like in two specific cases.
We assume throughout the remainder of this paper that » > 1 (giving instability of the
zero state) and rm < 2 (allowing for the existence of fronts with speed less than one).

4.1 Examples

We present several examples. Note that speed % has been discussed elsewhere; see
(Wang et al. 2019). The next simplest case is speed 1. which we discuss below. We
also consider the case of speed % before generalizing to arbitrary rational speeds.

Example Speed % In this case the polynomial (3.4) has six roots. Whenever % >
stin(r, m), there is a unique strong decay rate y;. By Lemma 3.4, there are exactly
two roots with modulus less than or equal to y;. Label the second root y» < 0 with
0 < —y» < y1. We then assume that the front is given by a semi-infinite sequence of
ones on the left, followed by a linear combination of the linear solutions y; for each

lattice site i > O on the right. That is, we seek a solution

I
o~z 51

Since the speed is % we impose that three generations later, the front should have the
same form but shifted to the right by one lattice site.

Expanding the front over three generations, we will show below that the front
evolves as follows:

Lattice Site i =0 i =1 i=2 i=3
Generation0 1 Y kjy; Y k;y? ijV/‘3
Generation1 1 ) k; )/j2/ 3 >k 75/3 Do kj V;m
Generation2 1 ) k; )/]-1/3 > kj V;-w > kj 71‘7/3
Generation3 1 1 Yokjvi Dkj ij
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We must find conditions on the constants k; appearing in the linear combination that
ensure that this is a solution, and we must verify the fractional powers appearing in
intermediate generations.

Rational roots of y; are not uniquely defined, so we therefore use the first generation
to define

2/3
yj/ = (a—f-byj +ayjz),

and note for future reference that

—18

1 2
Y; f(a+byj +ayj>.

Yj

Let us now justify the structure of the front stated above. Recall that we say that a
lattice site is at capacity if its population is one. In each generation, if a lattice site has
no parents at capacity, then the expression for the front at the that lattice site holds by
virtue of the polynomial (3.4). At all other lattice sites, conditions need to be imposed.
If the solution at a particular lattice site is below capacity but has a parent which is at
capacity, then this enforces a condition on the constants k1 and k5.

In this example, we see that conditions on the k; are enforced in generations one
and two at the first lattice site below capacity. In the first generation, we require

Yokt =atby kiyi+ad ki,

from which we note that if k; + ko = 1, then this equation can be re-written as

> ki (ij —a—by; - ay,-z) =0,

and equality is seen to hold by the definition of y 1.2/ 3. In the second generation, we

instead require

1/3 2/3 4/3
Sk P=a+bY kv +ad kiy”, (@.1)
and if
ki ko |
1/3 3~
7/1/ Vz/

then (4.1) can be written as

—1/3 2/3
Y kv (Vj/ —a—byj—ay,-z)=0,
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which is once again zero. This determines a system of equations for k;

-1/3 _—1/3 = s
" / 12 / ko 1
- _—1/3 —1/3 -1 ’
k> Vs /3 _ v B\l = 2

where the determinant can be simplified to

~1/3 ~1/3 1 1
Vo / - / :a(VZ_V1)+a<£__)~

with solution

4!

Note that the determinant is always negative in this case. We argue geometrically that
ki1y1 + kay» > 0. The equations defining k; and k; can be interpreted as

()0 () (5) -

The ones vector is obviously in the first quadrant. The vector (y, 13,7 3)T

72
fourth quadrant. Moreover, since —y{l/ 3 yf]/ 3, we have that the angle between

these two vectors exceeds 7. Therefore the angle 6 = tan~! (ky/k1) must satisfy

—% <0 < T,andsince —7 < tan~1 (y/y1) < 0, it follows that

4’
ki V1
. =k k 0.
<k2) <y2> 1Y1 +K2y2 >

A similar argument works for the vector (yli , yzi)T for all i > 1, and therefore we
obtain positivity of the front. Positivity of the front in all intermediate generations
then follows since ax + by + az > 0if x, y, and z are all positive.

Finally, it remains to specify the values of ¢ which are compatible with the existence
of the front. In this example, one such condition is imposed in the second generation
at the first lattice site below capacity. The concern is that the population at this site
will be so large so as to exceed the critical population density ¢ and thereby transition
to one following reproduction. To avoid this, we require

3, isin the

m m
¢ > Cpin(r, m) = 5 +(1 —m)zkjl/jz/S + EZ"/'V,%_

A second condition is imposed in the second generation, where we require that suffi-
cient population density occurs in the second position so that the reproduction function
maps the population to capacity. This requires
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m 1/3 m 4/3
¢ < Cmax(r,m) 1= 3+(1 _m)zkjyj/ +Ezkfyj/ .

Example Speed % In this case, the polynomial (3.4) has ten roots, the smallest three of
which are of interest to us. Each of these three roots gives an exponentially decaying
solution to the linearized equation (3.1). Once again, we seek a front solution given as
a semi-infinite string of ones, followed by an exponentially decaying tail made up of
a linear combination of the relevant roots. To solve for k;, we expand the front over
five generations:

Generation0 1 > kjy; > kj)/-z > kj7/'3
Generation 1 1 ) k; V;/S > kj V;{/S 2. kj leé/s
Generation 2 1 Zk‘,‘y;/s ijl/jﬁ/s ijl/j”/s
Generation 3 1 1 D ok; V;VS D kj Vj9/5
Generation 4 1 1 > kjy j2/5 > kj Vj7/5
Generation 5 1 1 1 D kjvyj

Conditions on the constants & ; are imposed in the first, second, and fourth generations.
In the first generation, we require

Yy =a+ oYk +a Lk

Therefore if ) i k;j =1, we can substitute

ijij/S =a2kj +b2kjj/j —I—aij)/jz,

and rearrange to find

3/5
0:Zk.,~ [a+by,+ay]-2—yj/ ]

where equality holds since y; is a root of (3.4). Furthermore, we note that since there
is some ambiguity in the definition of rational roots, this equation also serves to define
the root

3/5
yj/ =a+by; +ay}. 4.2)

Since 3 and 5 are relatively prime, all other roots can be obtained by taking powers of
3/5 5/5
yj/ and y; = yj/ .

The second condition is imposed at the second generation, where we require
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In this case, if ) k; yj_z/ - 1, then we can substitute and use (4.2) to show equality.

The final equation to be satisfied occurs in the fourth generation and is

Sk =at bk ba Yk,

and the condition ) k; y;l/ =1 implies that this condition is satisfied.
We then have three equations for k; that take the form

1 1 1 ki
-1/5 —-1/5 —1/5
" 2/5 2 2/5 V3 2/5 k2
Vli / Vzﬁ / 7/37 / k3

We recognize that the matrix is Vandermonde, and owing to the existence of explicit
formulas for the determinant, we are able to solve the system using Cramer’s rule as

—1/5 —1/5_

()’2 *1)(}’3 1)

—1/5 —1/5 —1/5 —-1/5

k (Vz / -V / )()’3 / -V / )

1 _ _

o | — v Py -

2 | = S S VA NP VR Ve

k3 (62} = -7 )
v Py -

—1/5 —1/5 —1/5 —1/5

(71 / V3 / )(Vz / V3 / )

Having determined the coefficients &, it remains to verify that the front solution is
positive and to determine conditions on the critical population density c. We return
to the question of positivity later and leave the computation of critical ¢ values to the
general case.

General Case Speed £. We now consider r > 1 and general rational speeds s = g <1
with p and g relative?y prime. Our main result is the following.

Theorem 4.1 Letr > 1, and lets = £ < 1 with p and q relatively prime. Then there
exists a my(r) and functions cpay (v, m) and cpin(r, m) such that for all 0 < m <
min{l, m,(r)} and all cpin(r,m) < ¢ < cmax(r, m), there exists a positive traveling
front solution to (1.1) with speed s.

The construction mimics the examples worked out above. Since » > 1, the linear
spreading speed is well defined. By Lemma 3.3, we have that sj;;, is monotone increas-
ing in m. Since s — 0 as m — 0, we have that there exists a m,(r) < 1 such that
L~ sy for all m < my(r). Then for all m < m,(r), there exists exactly one real
root y; of (3.4) satisfying O < y1 < yin. By Lemma 3.4, there exist exactly ¢ — p
roots with modulus less than or equal to yj, including the root y;. Label these roots
as y; € C. For each y;, define the rational root

q=pr

v,! = (a + by + ayjz) . (4.3)
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Since p and g — p are relatively prime, the remaining roots can be obtained by taking
powers of this one. Now define the front

N i<0 »

Let u; o = ¢;. Then using (4.3), we calculate formally that

"
i = min {1, Syl } |

provided that certain conditions on ¢ and k; are satisfied.

Conditions on k ; apply at each lattice site for which a parent lattice site is at capacity.
This occurs at each of the ¢ — p generations during which the front does not advance.
This leads to a system of linear equations that determine k. Let

-1
g = Vi /q‘

The equations for k; lead to a solvability condition

1 11
& Q) coe Cq—p k1 |
g ., 2= . (4.5)

qg—p—1 .q—p—1 g—p—1
¢ ¢y Y

Using Cramer’s rule, the system can be solved explicitly, and we obtain

é-n_l
é'n_;j'

kj=
n#j

(4.6)

We now have shown that the sum in the definition of the traveling front (4.4) is well
defined. Note that although the y; and k; may be complex, the front obtains only real
values. To see this, suppose that y; € C. Since y; is a root of a polynomial with real
coefficients then there exists a j such that y; = Y- Then it also holds that §; = ¢ ;
and using (4.6) we have that E =k ;- Since this holds for any complex root y; we
then have that the sum ) k;y; € R.

It remains to determine conditions on the critical population density parameter ¢
that are consistent with the existence of the front. To do this, note that there are p
generations in which the front advances. During each such generation, the population
at that lattice site before reproduction must exceed the value of c. This imposes the
condition

m 5 m 5 ~
c < E+(1—m)ijyf/q+Eijy;p+q)/q, 1<p<p.
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The right hand side of this inequality is minimized for p = p (we delay a proof of
this fact until the following section), and we therefore define the upper boundary of
allowable c values as

m m
emax (r.m) = =+ (L=m) Y k[ + 23 kT @)

On the other hand, during each of the ¢ — p generations for which the front does
not advance, it is required that the population density is sufficiently small so that the
solution does not transition to one. This means we require

m 5 m 5 .
E—i-(l —m)ijyjP/q—i—Eijy;pﬂ)/q <c¢, p+1=<p<gqg.

In this case, we present a proof in the following section that the lower boundary of
allowable ¢ values is

m 1 m 1
Cmin(r, m) = 3 + (1 —m) Zk.fy]‘(p+ )/q + 3 ijyj(["ﬂl-i- )/q. (4.8)

It remains to validate that cyin (¥, m) < cmax(r, m) for all m < m,(r), as well as
the fact that ¢; > 0. We perform this analysis in the following section.

5 Front positivity and expansions of locking regions in the small
migration limit

In Sect. 4, we constructed candidate traveling front solutions consisting of a linear
combination of exponentially decaying solutions to the linearized solution near zero
concatenated with a semi-infinite string of lattice sites at capacity. The goal of this
section is to show that for any m < m(r) there exists a non-empty interval of ¢ values
for which the candidate solution is actually a traveling front solution of (1.1). In this
process, we will also verify that the constructed front is positive for these parameter
values.

The solutions constructed in (4) can be written explicitly in terms of the roots y;.
However, it will turn out that these explicit formulas are not an efficient means to
verify the existence of a suitable interval (cyin (7, m), cmax (7, m)) nor that the front
is positive. Our strategy will be to first consider the case of m asymptotically small.
In that limit, we will derive coarse bounds on the roots y; and the coefficients k;
in Sect. 5.1. These will imply that ¢; — 0 asm — O for all i > 1 (see 4.4) as
does the solution in all intermediate generations. Importantly, it will be the case that
lim, 0 %,k) = 0. Then, by tracing solutions backwards over g generations, we
will then be able to express ¢ as a function of m and ¢; and in the process show that
¢1 must be positive for m sufficiently small. In fact, we can do this for the value of the
front at any lattice site and any intermediate generation and verify the existence of an
non-empty interval (cmin (7', M), cmax (7, m)) such that for any c inside this interval the
solution constructed in Sect. 4 is a traveling front solution of (1.1). Extensions to larger
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values of m can be accomplished by a proof by contradiction. This will complete the
proof of Theorem 4.1.

The case of speed L fronts is easiest, so we begin with this analysis in Sect. 5.2.
We then extend our results to general rational speeds in Sect. 5.3 and then extend to
arbitrary values of m in Sect. 5.4.

5.1 Asymptotic analysis in the small migration limitm — 0

In this section, we consider the limit as the migration rate tends to zero (m — 0) with
the assumption that r > 1 is held constant. To leading order, this is equivalent to the
limit a — 0. For most quantities of interest, the first order correction will also match,
and so we proceed treating a as a small parameter. To begin, we require expansions
for the ¢ — p roots y;. Let N = g — p. Then (3.4) reads

q
YN = (a+by ~|—ay2) .

To leading order, we therefore solve yV = a?, and expanding further we are able to
obtain

a4 2 bg
yj =av (a)j +anw ﬁw§+h.o.t.) , 5.1
where w; are the N-th roots of unity, given by

27 (j—Di
wj=e N .

_1
We now consider ¢; = Y, . To compute ¢; and its expansion, we use the expression

yi!
¢ = J - (5.2)

(a +by; + ayj2>

for some positive integers £ and £>. The constants must be chosen to satisfy the
Diophantine equation g€; — N¢; = —1. Since N and ¢ are relatively prime, we see
that this equation has integer solutions. Furthermore, using Bezout’s identity, we can
also surmise that 0 < £; < £, < N. The following expansion for the ¢; holds:

b
tj=a v <w§1 - Na%wfl“ +h.0.t.) . (5.3)

Finally, using our expansions for ¢;, we find that [{; — 1] < Ea_% , while |[¢; —¢,| >

Qa_%, so that
lkjl < C, (5.4)

for some C independent of a.
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Example Speed % Recall that in this case N = ¢ — p = 2, and we will use the two
roots of unity w; = 1 and w» = —1. Using (5.1), we obtain expansions for the roots
as follows:

3 3 ; 3
Y= a% + Eba2 +hot.,, y»= —a% + gba2 + h.o.t..

Since ¢ = 3 and N = 2 we obtain £; = 1 while £, = 2 and using (5.3) we find

! b + h.o.t ! b + h.o.t
=— —= .0.t., =—— - = 0.t
d Ja 2 £ Ja 2
Next,
1 b
—1 —— —1—2+4+h.ot 1 1_|_Q
K = 2 _ Ve 2 - - 2 Ja+hot.,
H—a0 —% + h.o.t. 2 2
1 b
1— ——F—+4+1+4+ 3 +ho.t 1 1+Q
fy= LS _ Ve 2 =-——2/a+hot.
& — & —la +h.o.t. 2 2

We now obtain expansions for cyin (, m) and cpax (r, m). We use

b b
y11/3 = Ja+ 24+ h.o.t., V21/3 =—a+ Fat h.o.t.,

so that
ijyjl/3 = (1+b)a +ho.t.

Recall cppax (r, m) and write it in terms of a,
1 1/3 4/3
cmax(r,m):;<a+b2kjyj +a2kjyj )

A naive inspection of the formulas for k; and yjl/ 3 would suggest that that middle
term should dominate, and we would expect a leading order expansion in terms of
J/a. However, due to cancellation we instead find the expansion

2

I r r
Cmax (r, m) = §+§+7 m + o(m).

On the other hand, we have
2/3

y12/3 =a+ba’? +hot., v, =a-— ba*? +ho.t.,
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and so we have the expansion

1 r
Cmin (r, m) = (5 + 5) m —+ o(m).

In particular, the width of the % speed locking region is O(m) as m — 0; see Fig. 4.

Remark 5.1 While we have already established positivity of the front in this case, we
note that the leading order expansions of k; and y; are insufficient to verify positivity
of the front due to cancellation. This turns out to be true for general speeds g, and so
we will need to adopt a different approach to show that the front is positive.

5.2 Scalings of the locking region for the case s = %
It turns out that leading order scalings for ¢y (7, m) and cpax (r, m) can be attained
in a simpler fashion than the direct method employed in the previous example. We
demonstrate how this works in the simplest case of s = 1/g and return to the general
case in the next sub-section. To simplify notation, let

Tu= kv

Then ¢; = I';,, and we can write the front solution over all g generations in terms of
I, (again for s = é) as
0i=1i=2i=3
Iy Ta Ty
Ly—1 Tog—1 T'3g-1
Ly g2 T3y

Lattice Site i
Generation 0
Generation 1
Generation 2

_—

Generationg —2 1 Iy Tayg IMagag
Generationg — 1 1 ' Tigg Tigog
Generation ¢ 1 1 | AP

We can then re-express

m

2

Cmax (r,m) =

m
+ {0 -—mI' + Erl-i-q,
and
m m
Cmin(r, m) = E + (1 —mIy + EF2+q-

Consulting (5.1), we observe that
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and consequently 7I"11, and 7 I'24, are (at most) O(m?). Therefore, to show that
Cmin(r, m) < cmax(r, m) as m — 0, we must show that 0 < I'y < I'; in this limit.
Formally, this turns out be quite easy, as we note that these two quantities are related
via

' =a+ bl +alyy,

where we note that I'>1, = O(a) and b > 1 so that I’y < I'y. Of course, this relies
on I'» being positive, and so in order to make this argument rigorous (for small m),
we must iterate this procedure to express 'y and I'; in terms of the quantities in the
zeroth generation, where we recall that all I' j, are o(m). We proceed as follows:

' = a+bly+alhy

a—+ by 4+ o(a)

a—+b(a+blI's +al'z1y) + o(a)
= a+ ba + b*T3 + o(a)

= a+ba+b’a+ba+---+b1%a+ o).

We have therefore obtained (after expressing a and b in terms of » and m) that
m 1
r = 7 Z;rf + o(m),
=

while

q—2
I %erj + o(m),
j:

from which we conclude that 0 < I'y < I'y for m sufficiently small. We therefore
have that ¢y (r, m) < cmax (r, m) for m sufficiently small. By another application of
the argument above we can also show that 0 < ;4| < I, for all n thereby validating
our choice of I'; in the formula for ¢y« (7, m). Note also that a similar argument
allows us to write the front ¢; = I'y = al'y + 0(a?). Thus, we have that ¢1 > 0 for
m sufficiently small. A similar argument works for ¢, = I'z,. We omit the specific
details but note that I'z, can be expressed the sum of a term dependent on a and b
and strictly O(a®) plus a linear combination of I"j4. The coefficients of this linear
combination are such that each contribution is o(a"). Indeed the coefficient on Iy is
O(a?) while the coefficient on I'y4 is O(a) and that on I'3, is O(1). Our naive bounds
for T'j, then imply that I'z, is O(a?) and positive.
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Fig. 4 Locking regions for speed one third (left) and speed s = é for g between two and ten (right). The
red shaded region are numerically computed using the formulas cpjn (1, m) and cmax (7, m); see (4.8) and
(4.7). The blue (dashed) lines depict leading order asymptotic expansions in the limit as m — 0 (color
figure online)

Finally, note that scalings for cyin(r, m) and cpax(r, m) are then obtained with
leading order expansions

q-—2 g—1
Cmin(r,m) = %Xg)rj+0(m), Cmax (r, m) = g;)rj+0(m)-
J: =

A comparison between these expansions and numerically determined locking regions
are shown in Fig. 4.

5.3 Scaling of locking regions for the general case s = 5

We now consider the general case. We will obtain expansions for I, and I', 4 1, estab-
lishing that 0 < I'),;1 < I'), for m sufficiently small. We start with I',. Once again,
the goal is to express I'j, in terms of the population values in the previous generations
and iterating the procedure to eventually obtain I'j, in terms of only a, b and I' 4.

For fixed p and ¢, consider an integer w with | < w < ¢ and then define the
integers z; (w) > 0 and n;(w) € {0, 1,2, ..., p — 1} as follows:

q =z1(w)p +w + ni(w),
29 = 2w)p +z1(w)p +w + n2(w),

pq = (Zp(w) + z2p—1 (W) + -+ z1(W)p + w + np(w).

For fixed w, the n; are in fact a permutation of the integers {0, 1,2, ..., p — 1}. Note
also thatif w = p,thenn, =0and (zp +zp-1 +---+z1+1) =gq.
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Example Speed % We now work out an example that will illustrate the general argu-
ment. For s = %, we will need to show that I'y < I'z. In this example, we have

8§=34+34+2, 16=3-34+34+3+1, 24=3-3+3-3+343, (5.5)

so that z1(3) = 1, z2(3) = 3, and z3(3) = 3, while n1(3) = 2, n2(3) = 1, and
n3(3) = 0. To see the relevance on these quantities, consult the left hand panel of the
table below, where we sketch the front solution over ¢ = 8 generations, ending with
the one containing I'3. Tracing the dependence on a backwards through generations,
we see that there is exactly z1(3) = 1 lattice site at capacity located one lattice site to
the left of I'3; there are zo(3) = 3 lattice sites at capacity located two lattice sites to
the left of I'3, and there are z3(3) = 3 lattice sites at capacity located three lattice sites
to the left of I'3. In this way, we can recursively express I'3 in terms of its predecessors
until I'3 is expressed as some function of a, b, and I'g;. Since I's; = o(a’), this
estimate is sufficient to obtain an expansion for '3 valid to O (a3).

1Tg x = ' = % x
ITs % = 1 T'e * =
1Ty * x* 1 I's = =%
1177 % 1 1Ty =
11Ty % 1 17Ts %
1171 % 1 171 %
11 1T 1 1 11y
11 1713 1 1 1Ty

Now consider I'4. Expanding as in (5.5), we find
8=3+4+1, 16=3-34+3+4+0, 24=2-3+3-3+3+4+2.

Thus, z1(4) = 1 and z2(4) = 3, while z3(4) = 2. The implication is that the predeces-
sors of I'4 one lattice site to the left have z1(4) = 1 lattice site at capacity, while those
two lattice sites to the left have z5(4) = 3 lattice sites at capacity. The key difference
is that z3(4) < z3(3). Therefore, to obtain a O(a?) expansion for I'3 and I'4, we could
work backwards z; + zp = 4 generations and find that each could be written as a
common function of a and b, as well as a sum of other terms all dependent on I'; with
Jj = 7,and all o(a?). Therefore, the expansions would agree to O(a?). To continue to
O(a?), however, we see that ['4 has one fewer at-capacity lattice sites to draw from,
and its value will therefore be necessarily smaller. Thus, 0 < I's < I'; for m small.
A similar analysis could be performed to verify that 0 < I',; < I', for any n1 > na,
thereby validating that our expressions for ¢y and cpax are well-defined.

General Case Speed g. We will focuson I'), and I" 1 and show that "), < I"), for
m sufficiently small. In the process, we will obtain that I', — I' ;-1 = O(m”) so that
the width of the locking region is proportional to m?.

Define z; (p) and n; (p) as above and note that n,(p) =0 and 1 + z1(p) +--- +
7p(p) = q. Recall that z; (p) specifies the number of lattice sites a distance i to the
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left of ", which are at capacity for previous generations of the front evolution. Since
all n;(p) > 1fori < p, we then note that for any j < p,

jga=zj(p)p+---+zpp+p+1+n(p —1,

sothatz;(p+1) =z;(p) and n;(p + 1) = n;(p) — 1 for any integer 1 < j < p. For
j = p, since n;(p) = 0, we must instead write

rqg=zp(p)—Dp+zp1(pp+---+z(pp+p+1+p—1,

sothat z,(p +1) =z,(p) — L.
Therefore, tracking both I", and I', 1 backwards g generations, we find that there
exists a positive function ®4(a, b, z1, 22, . .., zp) and linear maps A ; such that

Iﬂp = ch(a7 ba ZI(P)7 s Zp(p)) + Ap (Fq, F2q’ ceey Fq(q—p)) .

Furthermore, by (5.1) we have that I'j, = o(a’), so that A p provides a contribution
that is o(a?). We also have that

Tpi1=Pga,b,zi(p+1).....2p(p+ 1)+ Aps1 (T1. T - Dyg—ptn+1) -

Consider z, w € (Z1)? and let z < w be the lexicographic ordering, where z < w
means z; < w; for some j while zx = wy forall 1 < k < j < p. Then for a
sufficiently small, ®,(a, b, z) is monotone increasing with respect to <. Then since
z(p +1) < z(p), we have that ', 1 < I')p.

Since z(n + 1) < z(n), this argument can be generalized to show that 0 < ', 41 <
I, for all n > 1. This justifies our choice of I'; in the definitions of cyin(r, m) and
Cmax (r, m), proves that the interval (cpin (7, m), cmax (', m)) is nonempty for fixed r
and small m and guarantees positivity of the front (again for small m). We also obtain
that the width of the speed s = g locking region scales with O(m?).

5.4 Extension to larger values of m

Let m be sufficiently small and select parameters » and ¢ so that the existence of a
positive front with speed s = g is guaranteed. We now increase m and show that
positivity is preserved. We argue by contradiction and assume that we can change
parameters continuously so that we remain within the speed £ locking region. This
is done until a set of parameters (c, r, m) is reached at which the front attains a zero
value at one or more lattice sites. Suppose for the moment that this occurs at a single
lattice site. Then one generation later, since the coefficients in (1.1) are positive, it
must be the case that the value of the front at all lattice sites is positive. This holds
for all subsequent iterations, and so it is not possible for ¢ iterations of the (1.1) to
return some lattice site to zero. A similar argument works if more than one lattice site
attains a zero value, even if the number of said lattice sites is not finite. Finally, it is not
possible for all lattice sites to attain zero simultaneously for a front with speed s < 1.
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This establishes positivity of the front for all parameters within the speed g locking
region.

In a similar fashion, we can demonstrate that for fixed » and any 0 < m <
min(1, m*(r)) it holds that cyin(r, m) < cmax(r, m). This amounts to showing that
I'y, > T4 for all n. This holds for m sufficiently small by the analysis in the previous
subsection. Now increase m while keeping ¢ > cpin (7, m). The front solution will be
well defined so long as m remains below min(1, m*(r)) and cmax (7, m) > cmin (r, m).
Suppose that in doing so I';, = I',,4+1 for some value of r and m. Each of these quanti-
ties can then be expressed in terms of values of I'; taken from the previous generation.
Since a and b are positive it holds that I, = I, for the first time if and only if
Cntp = Unptts UCntprg = Dngprgr1and Uny p—g = D p—gt1 (ifn+p—gq > 0).
If n + p — g = O this yields a contradiction as we would then require 1 = I'j. If
n + p — g # 0 then we can continue this process to write I';4 4 and I'y1 441 In
terms of their predecessors until such a contradiction is obtained.

6 Spectral stability

In this section, we establish (strict) spectral stability of the locked fronts constructed
in previous sections. Spectral stability (in weighted spaces) is a prerequisite for emer-
gence of the front, and our analysis here will also substantiate our choice of the g — p
steepest decaying terms y; to include in the front construction.

Consider a locked front with rational speed s = £. We follow (Chow and Shen
1995); see also (Chow et al. 1998; Turzik and Dubcova 2008). Consider the Banach
space X = £°°(Z) with the supremum norm. Let G : X — X be the generational map
defined by (1.1). Let § : X — X be the left shift operator defined by (Su); = u ;1.
Locked fronts with speed s = 5 are therefore fixed points of the map

Fu) = SPGDw).

We will linearize this map at the traveling front and study its spectrum. We will fix
ideas using a specific case and then generalize.

Example Speed % Let us begin with the simplest case of speed s = % Let ¢ be a

locked front solution. Since N = 1, there is one relevant root of (3.4), and we see that
the front is described by the function

¢i:{1 IZSO~

yf i>1

Next, we set u = ¢ + n and linearize F near the front. For i < 0, due to the fact that
g’ (1) = 0, we have that (DF (¢)n); = 0. For any i > 1, the linearization is the same
as that of the constant state at zero, namely,

(DF(@)n)i = a’ni—1 + 2abn; + (b* + 2a*)ni1 + 2abn; 1 + a*nisa,
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while at the remaining value of i = 1, we have
(DF(@)m)1 = 2abyy + (b* + 2a”)ny + 2abns + a’ .

Following (Chow and Shen 1995), the spectrum of DF can be described in terms of its
Fredholm properties and decomposed into continuous essential spectrum oegs(DF)
and point spectrum op (D .F), consisting of isolated eigenvalues of finite multiplicity.

The boundary of the essential spectrum is given in terms of two curves, which can
be derived from the asymptotic operators near the homogeneous states zero and one.
Since the linearization near the stable state one is simply zero, this portion of the
essential spectrum merely consists of the point at zero. For the unstable zero state, we
compute

00ess(DF) ={AeC| 1= aZe—ik
+2ab + (b 4 2a%)e* + 2abe™* + a3k, k € R).

Since a and b are both positive, the most unstable portion of this curve occurs when
k = 0 and A = r?, reflecting the pointwise instability of the zero state with growth
rate r and the fact that F consists of the evolution over two generations. It is important
to note that this uniform growth is not observed if the perturbations are sufficiently
localized in space. We will employ exponential weights to control the decay of the
perturbation and study the subsequent impact on the spectrum. To this end, suppose that
the perturbation 7 is localized so that sup; . n;7 " < oo for some weight0 < 7 < 1.
Consider the weighted space X with norm ||u||; = sup u;w;, where w; = )7_i for
i > 0and w; = 1 otherwise.

Then the boundary of the essential spectrum associated to DF in the weighted
space becomes

1 .
aaess,)?(Df) ={reC|r= Tazeﬂk
14
+2ab + (b* + 24yt + 2aby* P + a*p3eF* | k e R).
The most unstable point again occurs for k = 0, where

(a + by +ayp?)?
—

)\max =

Recall the values y; = y; and y,, from Lemma 3.4 that describe the strong and weak
decay rates. Also note that the right hand side of the previous equation is convex. If we
were to select the weight y to be y; = vy, then we would have that A, = 1, while
for weight y chosen as y,,, we also have that An,x = 1. Due to convexity, it follows
that for any choice of weight between y; = y, and y,,, we have that the essential
spectrum lies within the unit disk in the complex plane and is therefore stabilized.
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We now show that there is no unstable point spectrum. To do so, we seek solutions
to the eigenvalue equation DF (¢)n = An for some |A| > 1. Since the linearization is
zero for i < 0, we quickly obtain n; = O there. Fori > 1, we have

Ay = 2abny + (b +2a*)n, + 2abns + a*na,
M = a’ni_1 + 2abn; + (b® + 2a*)niq1 + 2abnigy +a’niga, i > 1. (6.1)

We will attempt to build eigenfunctions using a shooting method. The first equation
in (6.1) can be solved for 714, yielding a three dimensional shooting manifold. The
second equation can be re-expressed as a difference equation satisfying

Nit1 8 (1) (1) 8 i
(% bl IR S %0 L
Ni+4 -1 —23 - ;—2 —sza“—zz“z —22 Ni+3
The characteristic polynomial for this dynamical system is
(a+by +ay>?*—ary =0. 6.3)

When A = 1, this polynomial is exactly (3.4), and there are four roots, with only y;
small enough so that the solution remains in X, . For other values of A with [A]| > 1,
the polynomial (6.3) can be rewritten as

1 272
sz(a+by+ay ),

and since the modulus of the right hand side is diminished when || > 1, we can
extend the argument using Rouche’s Theorem from Lemma 3.4 to show that there
remains a unique root y1 (1) with |y1(1)| < y1(1). The eigenvector associated to this
eigenvalue is, upon consulting (6.2), given by (1, y1 (1), ylz A), y13 anT.

To recap, we have shown that there is a three dimensional shooting manifold for
which, if X is to be an eigenvalue, must coincide with the one dimensional (strong)
stable manifold of (6.2). However, since ng = 0, it turns out that we must have

0 1
y1(A)
n
€ Span ,
m P yE)
3 Y

which is clearly not possible (aside from the trivial solution). We have thus ruled out
unstable (or marginally unstable) point spectrum. In combination with our bounds
on the essential spectrum in the weighted space X, we have therefore demonstrated
strict spectral stability of the locked front propagating with speed one-half.
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General Case Speed Z. For general locked fronts of speed £, the method above can
be adapted to once again yield stability. We have the following result.

Theorem 6.1 Fixr > 1 andfors = £ < 1 let ¢; be the traveling front constructed in
Theorem 4.1. Then there exists a 0 < y < 1 such that the front is spectrally stable in
X;.

Proof Recall that the map F in this case involves ¢ iterations of (1.1), followed by a
shift of p lattice sites to the left. The boundary of the essential spectrum associated
to the unstable state has a point of maximal modulus when £ = 0 and A = r?. In the
weighted space X, this maximal point instead has real part

o (a+by +ayp>)?
max — )7(1717 .
As was the case in the specific example considered above, the essential spectrum is
stabilized for any weight y; < y < yy.
We now turn to the eigenvalue problem DFn = An. Assuming once again that the
front interface is located at i = 0, we see that n; = 0 foralli <0.Fori > g + 1, we

find
q

M=) jgprits 6.4)
j==q
where the «; are the trinomial coefficients of the polynomial (a + by + ay?)9. As
in (6.2), this recursion can be written as linear dynamical system in 2¢ dimensions.
There exists a (strong) stable eigenspace of dimension N = g — p for the recursion,
corresponding to those decaying solutions with rate greater than or equal to y;. The
equation for 7 is

q

AN = Z Ajt+qgNp+1+j,
j==r

which differs from (6.4) in that the first ¢ — p terms are absent. We will therefore seek
11 through 12, n such that

0 1 1

: y1(2) yn(A)

0 € Span

m PR A T e

’ 20— 2g—
N2g-N ZRAS vl )

Inspecting the first N elements, we observe that a (non-trivial) inclusion is impossible,
since the N x N Vandermonde matrix corresponding to the roots y;(4) has non-zero
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Fig.5 Locking regions (shaded) for all rational speeds g withg <5Sand 1 < p < g with ged(p,q) = 1.
On the left is the case of r = 1.5, while on the right is the case of r = 1.1 (color figure online)
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Fig. 6 Speed one third (left panel) and speed two fifths (right panel) velocity locking regions in m — ¢
parameter space with r = 1.3. Red asterisks show parameter values for which the numerically observed
speed in direction simulations of (1.1) differs from the locked speed. Green circles show those parameter
values that lead to speed % (left) or speed % (right). The blue curves depict the boundary of the locking
regions derived from the construction of the traveling front in Sect. 4 (color figure online)

determinant. We therefore obtain spectral stability of the linearization in the weighted
space Xy . m|

7 Numerical results

In this section, we present numerical simulations of equation (1.1) and compare the
observed invasion speeds to those predicted by the analysis of Sect. 4.

Direct numerical simulations of (1.1) were computed for a lattice consisting of 300
to 400 lattice sites. Similar to Wang et al. (2019), we use a domain shifting approach so
that large number of generations may be simulated. This approach works as follows:
the first three lattice sites are initially set to capacity, while the remaining lattice sites are
below capacity and rapidly converge to zero (we typically used zero initial conditions
in these sites or some population density that decays faster than any exponential). The
system is then evolved using (1.1) until the fourth lattice site transitions to capacity.
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At this point, the solution is then shifted to the left by one, and the site at the far right
boundary is set to zero. Speeds are then computed by calculating the number of shifts
that occur and dividing by the total number of generations simulated. Typically, an
initial transient is discarded. In the simulations presented in Fig. 6, the initial transient
is 10, 000 generations, and the speed is calculated over the next 10, 000 generations.

The analysis in Sect. 4 reveals that the locking regions in parameter space are
bounded by three curves. We will again fix » > 1 and vary the migration rate m and
the critical population density parameter c. The rightmost point in the locking region is
avertical line at m,.(r), where the linear spreading speed is the rational speed p/q. For
m > m,(r), there are no longer g — p distinct roots near zero, and the construction
in Sect. 4 no longer holds. For m < m.(r), the boundaries in parameter space are
given by the curves cpax (7, m) and cpin (7, m), which are given by formulas (4.7) and
(4.8). Numerical computation of these regions are presented in Fig. 5 as subsets of
(m, c) parameter space for two different choices of r. We also present simulations that
compare the observed invasion speed for different m and ¢ values to those predicted
by the analysis in Sect. 4; see Fig. 6.

8 Discussion

The primary contribution of this paper was the construction of locked fronts for (1.1)
for the piecewise linear reproduction function g(u) in (1.2) and estimates for the
boundary of their existence in parameter space. We conclude with several directions
for future research.

8.1 Pulled fronts and fronts with irrational speed

Our construction of locked fronts with rational speeds uses the fact that locked fronts
are fixed points of the map consisting of ¢ iterations of (1.1) followed by a shift of
p lattice sites. One can imagine that this construction could be extended to pulled
fronts propagating with (rational) linear spreading speeds. One complication is that
the root i, is now a double root, so that the construction would involve ¢ — p + 1
roots y; (counted with multiplicity). The resulting solvability condition analogous to
(4.5) would then be underdetermined, and a family of fronts would exist. The hope is
that this flexibility could be utilized to satisfy the population density conditions that
ensure that cyax (7, m) can be taken to be } Since this pulled front is a fixed point of
a map, one might be tempted to expect locking to occur which is not consistent with
observations from direct numerical simulations; see again Fig. 1. In fact, we do expect
this front to persist as m is varied. However, based upon our calculations in Sect. 6
and in analogy with the PDE theory, we anticipate a change in stability to occur as the
migration rate is varied; see (van Saarloos 2003) for a review of marginal stability.
Constructing fronts with irrational speed involves locating solutions to the non-local
problem (1.3), so their construction would be more challenging still. In the special
case where r¢c = 1 and the reproduction function is continuous, we would expect
that a comparison principle argument could be used to prove the existence of pulled
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Fig.7 On the left are locking regions for various speeds with r = 1.5. The red regions are locking regions
corresponding to speeds 1/¢g with ¢ from 1 to 6. The green regions are locking regions for speeds 2/¢
with ¢ from 3 to 11 with ¢ odd. The blue regions are locking region for speeds 3/¢ with g from 4 to 17
with ged(3, g) = 1. On the right is the case of » = 1.1. Shown in red are locking regions with speed 1/19
and 1/20 calculated using cmax (r, m) and cpin (7, m) from (4.7) and (4.8). The green circles represent
parameter values for which speed 2/39 is observed. At these values, direct numerical simulations of (1.1)
are observed to propagate exactly 10, 000 lattice sites in 195, 000 iterations, after a transient of 100, 000
iterations is neglected (color figure online)

invasion waves; see for example (Weinberger 1982). Extensions to the case rc < 1
are less clear.

8.2 Scaling of locking regions

For the locking regions studied here, the largest regions appear to be those with speed
1/q; see Fig. 7. This is in contrast to the classical case of phase locking of rotation
numbers for circle maps, where the largest measure locking regions are the ones
corresponding to smaller ¢ values. We also showed that locking regions for speed
s = p/q scaled with O(m?). It would be interesting to whether similar scalings hold
for more general reproduction functions.

One question considered in Wang et al. (2019) concerns the proportion of parameter
space taken up by locked fronts, pulled fronts, and pushed (but not locked) fronts. In
Wang et al. (2019), such estimates are derived using direct numerical simulations. We
had hoped that our approach could corroborate their findings, but the fact that small
p locking regions have relatively large measure makes this problematic. For example,
numerically computing the s = 2/39 locking region requires obtaining the 37 smallest
roots of a degree 78 polynomial and then solving (4.5) to determine the constants ;.
Our numerical routine was unable to determine reliable boundaries in this case using
(4.7)—(4.8). Determination of the locking region using direct numerical simulation
reveals that for some parameters, this locking region has significant size compared to
other locking regions with smaller ¢ values; see Fig. 7.
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